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Two children throw _____ at each other
as a video is captured in slow motion.

_____ sits at a drum set and practices
playing the drums.

A boy is trying to comb his hair while
_____ dries it.

Correct answers: balloons, balloons
filled with water, balloons of water, pink
balloon, pink water balloon, things, wa-
ter, water balloons, water-filled balloons

Correct answers: child, drummer, fu-
ture drummer, girl, kid, little girl, little
kid, musician, small child, young girl

Correct answers: another person,
friend, girl, his sister, his sister with hair
dryer, person, young woman

Figure 1: Three examples from our dataset, each including three video frames, the caption, the blanked answers
from the original caption together with the collected answers (all answers normalized, see Section 3.2).

Abstract

We propose fill-in-the-blanks as a video under-001
standing evaluation framework. The task tests a002
model’s understanding of a video by requiring003
the model to predict a masked noun phrase in004
the caption of the video, given the video and005
the surrounding text. To this end, we introduce006
a novel dataset consisting of 28,000 videos and007
fill-in-the-blank tests with multiple correct an-008
swers. The task and the dataset are challenging009
for the current state-of-the-art systems to solve.010
This task also does not share the weaknesses of011
the current state of the art language-informed012
video understanding tasks, namely: (1) video013
question answering using multiple-choice ques-014
tions, where models perform relatively well be-015
cause they exploit linguistic biases in the task016
formulation; and (2) video captioning, which017
relies on an open-ended evaluation framework018
that is often inaccurate because system answers019
may be perceived as incorrect if they differ in020
form from the ground truth.021

1 Introduction022

Despite current progress on multimodal (textual023

and visual) representations, language-informed024

video understanding is still a very challenging task025

for machine learning systems (Zhang et al., 2021;026

Li et al., 2021). This is due in large part to how the027

task is set up and how the corresponding datasets028

are built. Current video understanding datasets029

often have limited application value (e.g., multiple- 030

choice questions (Lei et al., 2018; Tapaswi et al., 031

2016; Jang et al., 2017; Castro et al., 2020) do not 032

reflect real-world tasks) or are based on subjective 033

evaluation metrics (e.g., video captioning (Tran 034

et al., 2016; Krishna et al., 2017; Zhou et al., 2018; 035

Wang et al., 2019)) and are therefore hard to eval- 036

uate automatically, as the same caption can be ex- 037

pressed in different ways. In this paper, we address 038

these limitations by introducing a new dataset that 039

collects multiple perspectives on the same video, 040

focusing on noun phrases as a proxy for different 041

entities and their interactions in the video. Our data 042

focuses on recall and tests the ability of models to 043

capture a wide range of possible interpretations for 044

a particular aspect of a video. 045

We construct a large fill-in-the-blanks dataset 046

by systematically blanking captions from an exist- 047

ing video captioning dataset (Wang et al., 2019) 048

and by providing additional correct answers for 049

the blanks. VaTeX is a video captioning dataset 050

that contains 40,000 10-second YouTube videos 051

with 10 English captions per video. We build our 052

video fill-in-the-blank dataset by blanking random 053

noun phrases from one of the English captions for 054

each video, from a subset of VaTeX with 28,000 055

videos. In an extensive analysis, we show that the 056

blanked noun phrases are essential for understand- 057

ing important visual aspects from the video. We 058

1



use crowdsourcing (Amazon Mechanical Turk) to059

gather additional possible correct answers for the060

blanks in the validation and test sets.061

To address the fill-in-the-blanks task, we pro-062

pose a Transformer-based (Vaswani et al., 2017)063

multimodal model. Our experiments show that our064

best multimodal model achieves a token-level F1065

score of 71.4 while the F1 score of crowd workers066

is 82.5, indicating that this task is challenging for067

video and text understanding.068

The contribution of this work is threefold: (1)069

We introduce a novel fill-in-the-blank task as a070

framework that addresses the drawbacks associated071

with previous approaches for video understanding.072

To facilitate the task, we offer a novel dataset of073

28,000 videos and fill-in-the-blank captions with074

multiple correct answers. (2) We propose several075

unimodal baselines and two multimodal models for076

solving this task. (3) We provide a detailed analysis077

of the data to measure the diversity and complexity078

of the answers, and also compute an error analysis079

of the models’ performance, to gain insights on080

what blanked captions and videos are hard for the081

models to solve.082

2 Related Work083

Language-informed video understanding is a com-084

plex task that has been extensively addressed in the085

multimodal (natural language and computer vision)086

machine learning research, by proposing diverse087

tasks and benchmarks.088

Multiple-Choice Video Understanding.089

Multiple-choice benchmarks consist of dis-090

tinguishing the only correct answer from a set091

of distractors, where the set of possible answers092

varies depending on the input. Video Question093

Answering (Video QA), a popular format, consists094

of answering questions based on the video content.095

Numerous multiple-choice Video Understand-096

ing benchmarks have been proposed such as097

TVQA (Lei et al., 2018), MovieQA (Tapaswi et al.,098

2016), TGIF-QA (Jang et al., 2017) (Repetition099

Action and State Transition tasks), LifeQA (Castro100

et al., 2020), PororoQA (Kim et al., 2017), Mari-101

oQA (Mun et al., 2017), VCQA (Zhu et al., 2017),102

VideoMCC (Tran et al., 2016), and ActivityNet103

QA (Yu et al., 2019). However, they provide104

choices and are thus easier to solve than writing105

free text. On top of this, the performance without106

the visual input is generally already high as models107

are able to exploit biases in the dataset (Agrawal108

et al., 2018) or they count on other modalities that 109

overlap in functionality with the visual one. 110

Video Captioning. Video Captioning consists 111

of generating a piece of text that describes a 112

given video. There are multiple datasets for 113

this task such as ActivityNet Captions (Krishna 114

et al., 2017) (also features Dense-Captioning), 115

YFCC100M (Thomee et al., 2016), (Alayrac 116

et al., 2016), DiDeMo (Anne Hendricks 117

et al., 2017), MSR-VTT (Xu et al., 2016), 118

YouCook2 (Zhou et al., 2018), How2 (Sanabria 119

et al., 2018), HowTo100M (Miech et al., 120

2019), VaTeX (Wang et al., 2019), TGIF (Li 121

et al., 2016), MovieNet (Huang et al., 2020), 122

LSMDC (Rohrbach et al., 2017), TGIF-QA (Li 123

et al., 2016) (Frame QA task). Due to the diversity 124

of captions provided, Video Captioning datasets 125

do not achieve a high human performance and are 126

thus hard to evaluate automatically with certainty 127

(Aafaq et al., 2019). 128

Fill-in-the-Blank Video Understanding. 129

VideoBERT (Sun et al., 2019b), CBT (Sun 130

et al., 2019a), UniVL (Luo et al., 2020), Act- 131

BERT (Zhu and Yang, 2020), and HERO (Li et al., 132

2020) methods propose to mask random parts of 133

the input from text and video pairs for training. 134

However, they do this only for the purpose of 135

system training and do not use the framework to 136

test and evaluate video understanding. The only 137

exception is MovieFIB (Maharaj et al., 2017) 138

who proposes a video fill-in-the-blank, based on 139

LSMDC (Rohrbach et al., 2017) for both training 140

and evaluation. However, they blank a single 141

word, which makes it easier to guess; they evaluate 142

correctness with a single ground truth answer per 143

caption; and they focus on the movies domain (we 144

focus on YouTube videos). 145

Concurrent Work. The most similar work to 146

ours is VidQAP (Sadhu et al., 2021) that presents an 147

evaluation framework to fill in blanks with phrases 148

based on semantic roles based on ActivityNet Cap- 149

tions (Krishna et al., 2017) and Charades (Sigurds- 150

son et al., 2016); unlike them, we design our bench- 151

mark to have a high human accuracy (avoid Ac- 152

tivityNet Captions as it is contextualized, collect 153

multiple correct answers, and show a high human 154

performance). Our work is also close to (Yang 155

et al., 2021) on evaluating using free-form QA, 156

however they present a small vocabulary and no 157

human accuracy that serves as an upper bound for 158
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the task.159

Our work is novel because it presents a hard160

task (a considerable gap between human and best161

model performance) that measures a form of video162

understanding while at the same time it has high163

human performance due to the large number of164

possible correct answers we collected (∼13 per165

caption) from multiple annotators (∼9 per caption).166

3 Video Fill-in-the-Blank Dataset167

We construct a large video understanding dataset168

that can evaluate a model’s ability to interpret and169

use multimodal context by requiring the models to170

“fill in” (generate) a “blank” (a missing constituent)171

in this context. We construct this “fill-in-the-blank”172

video dataset in two steps: (1) data generation,173

where we compile a large set of video-caption pairs174

with selectively blanked words; and (2) data an-175

notation, where crowd workers provide additional176

valid answers for these blanks.177

Note that we could also develop a “fill-in-the-178

blanks” dataset by completing only the first step:179

the data generation. However, this will result in180

only one valid answer (the original blanked word181

or phrase), which can lead to unfair evaluations182

that are too strict because of dismissing alternative183

correct answers (e.g., “child” provided as an an-184

swer where the blanked word was “kid”). Other185

than manual annotations, we found no high-quality186

method to automatically obtain additional correct187

answers (e.g., “building” and “t-shirt” from Table 7188

are too dissimilar but both are correct, “pink” and189

“yellow” from Fig. 1 are semantically close but only190

one is correct).191

3.1 Data Generation192

The dataset is constructed starting with the Va-193

TeX (Wang et al., 2019) dataset. VaTeX is a multi-194

lingual video captioning dataset, consisting of over195

41,250 video clips, each of which is taken from a196

unique public YouTube video, and lasts around 10197

seconds. For each video clip, there are 10 English198

and 10 Chinese captions associated with it.199

We produce blanked captions by blanking noun200

phrases in the English captions in VaTeX. We chose201

to mask only noun phrases for three main reasons.202

First, noun phrases often require visual information203

to identify or understand. They cover a large vari-204

ety of information in visual content, as their head205

noun can describe people, objects, scenes, events,206

and more. A model often needs to identify the re-207

lated objects in the videos, as well as the objects’ 208

properties (e.g., color, number, or size) to fill the 209

blank correctly. 210

Second, nouns are usually essential to the under- 211

standing of visual content and represent reliable 212

predictors for a system’s ability to understand a 213

video. Other phrases, such as verbs or adjectives, 214

can more easily be guessed only from the text while 215

ignoring the visual information. To illustrate, con- 216

sider the example “A woman _____ in the pool,” 217

where a model can easily predict that the blank 218

should be “swims” only from the textual content 219

(which would not be the case for “A woman swims 220

in _____”), where the blank could be completed by 221

sea, pool, lake, water, and so on. 222

Third, in preliminary experiments, we found that 223

nouns lead to more robust annotations, as com- 224

pared to e.g., adjectives, which can have low inter- 225

annotator agreement due to their subjectivity. As an 226

example, consider the phrase “A _____ hill stands 227

behind the house.” where the blank could be filled 228

with a color property, a size property, and so on. 229

For each video, we choose the first English cap- 230

tion that contains at least one noun phrase as de- 231

tected by spaCy1 (Honnibal et al., 2020), and ran- 232

domly blank one of these noun phrases to generate 233

an instance. Accordingly, we generate our training, 234

validation, and test data starting with the VaTeX 235

v1.1 training set, a random subset of size 1,000 236

from the validation set, and a random subset of size 237

1,000 from the test set, respectively. 238

3.2 Data Annotation 239

We performed a crowdsourced annotation proce- 240

dure to collect additional correct answers for each 241

blank in the validation and test sets. As highlighted 242

earlier, the main reason for collecting such addi- 243

tional annotations is to account for the natural di- 244

versity of language, and have multiple alternative 245

answers for each blank. 246

We use Amazon Mechanical Turk (AMT) for the 247

annotation. Figure 2 shows the annotation interface 248

and a highlight of the data collection instructions 249

(additional guidelines were provided, not shown 250

here for space reasons). For each blanked caption, 251

workers were presented with a video clip along 252

with the corresponding masked caption. They were 253

then asked to fill in the blank with a noun phrase.2 254

1We used the model en_core_web_trf from spaCy
v3. An error analysis identified only three tagging errors in a
sample of 247 sentences.

2We blanked multi-word spans for the task, rather than
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Figure 2: Annotation interface.

We also request annotators to provide answers in255

a confidence-descending order (the first answer256

should be the most natural one to the annotator).257

We presented five videos in each Human Intelli-258

gence Task (HIT). Nine workers annotated each of259

them with at least two answers for each blank. We260

paid a bonus for each extra answer to each blanked261

caption, from the second one to the fifth one, to262

encourage them to provide more answers. We cal-263

culated a twelve-dollar hourly rate for a worker264

that provides at least five answers. We estimated265

the time to annotate one video to be 30 seconds.266

Consequently, the HIT pay rate was $0.2, which267

can result in a total of $0.5 with the added bonus.268

Additionally, we offered another type of bonus of269

$0.2 to the worker with the largest number of cor-270

rect answers for every HIT, to encourage them to271

provide more than five answers.272

We required workers to be in Canada or the273

United States,3 and to have completed at least 1,000274

HITs on AMT with at least 92% approval rate. The275

interface also checked that for a given worker and276

caption the answers were different. For this, we277

first normalized the answers by lower-casing, strip-278

ping punctuation and extra spaces, and removing279

the determiners “the”, “a”, and “an.”280

single-word noun phrases, because blanking a single noun
at a time led us to less annotator agreement in preliminary
experiments, likely due to less potential for overlap. E.g.
annotator 1 might write “young boy” and annotator 2 might
write “young child”, which would have at least some overlap
as compared to “boy” and “child” (no overlap).

3We restricted the task to these countries because it is a
good proxy for proficient English speakers and because our
task received lower-quality responses when we did not restrict
the location.

Statistic True labels Answers

Unique labels per cap-
tion

∼ 13.0 ± 4.14

Unique labels per cap-
tion per annotator

∼ 2.63 ± 0.49

Characters per token 5.09 ± 1.89 5.27 ± 2.00
Tokens 1.47 ± 0.68 1.36 ± 0.68
Noun phrases 100% 95%
Visual word use (color,
number, or size)

8.21% 3.31%

Table 1: Summary statistics for true labels and annota-
tions; token counts computed after text normalization.

During the annotation, we manually reviewed a 281

sample to identify cases of incorrectly tagged noun 282

phrases (e.g., “inside” marked as a noun when it 283

should be a preposition) and factually incorrect 284

noun phrases (e.g., referring to bags as “eggs” with- 285

out any evidence about the contents of the bags); 286

we disqualified workers who consistently provided 287

incorrect annotations. After collecting annotations, 288

we filtered for noun phrases using the same method 289

as before, based on whether the text is parsed as 290

a noun phrase (including bare nouns, e.g. “man 291

is walking”), a wh-phrases (“who is speaking”), 292

a simple gerund (“eating is a good way to stay 293

healthy”), or infinitive (“to eat is wonderful”). 294

We compute summary statistics on the annotated 295

data, to determine the degree of similarity with the 296

label data. The statistics are shown in Table 1. We 297

find that in general, annotators tend to provide ∼3 298

unique labels for the provided data. Compared to 299

the true labels, annotators tend to use about the 300

same number of tokens. Annotators also use visual 301

words at a much lower rate than the true labels, 302

possibly because the task encouraged the annota- 303

tors to generate as many distinct nouns as possible 304

without regard to descriptive information. 305

3.3 Annotation Analysis 306

To further validate the utility of the annotations 307

collected in this study, we provide an extensive 308

analysis of the annotations and ground truth labels. 309

We compute the most-frequent answers provided 310

by the annotators and most-frequent ground-truth 311

labels and find as expected that noun phrases re- 312

lated to “person” are the most frequent: the word 313

“man" appears in 5.7% of total ground truth labels 314

and 1.2% of total annotations (see Figure 5 in the 315

Appendix). Note that our annotations have a long 316

tail distribution, as the most-frequent noun phrase 317

appears in only 1.2% of total annotations. In ad- 318

dition, we find that answers related to “person”, 319
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Figure 3: The t-SNE representation of the clustering
of most frequent fill-in-blanks annotations. Each color
represents a different cluster.

such as “another person" are not trivial, but on the320

contrary: e.g., in the third example from Fig. 1,321

a model has to reason about the actions of both322

persons and distinguish between them. The other323

two examples from Fig. 1 are also representative324

of how a model needs to understand both the video325

and the text in order to complete the blanks.326

In Fig. 3 we show what kind of answers are327

depicted in the videos: we collect the top 100328

most frequent annotations, represent them using the329

pre-trained model Sentence-BERT (Reimers and330

Gurevych, 2019) and then we cluster and plot them331

using t-distributed Stochastic Neighbor Embedding332

(t-SNE) (Van der Maaten and Hinton, 2008). This333

analysis shows the diversity and complexity of an-334

swers that a model needs to fill in, demonstrating335

a strong video understanding. As expected, the336

cluster Person-related has the most answers, fol-337

lowed by the clusters: Objects (e.g., shoes, glasses),338

Places (e.g., mountain, street), Materials (e.g.,339

metal, wood), and Body parts (e.g., fingers, head).340

Note also that the Person-related cluster, among341

more typical answers such as “male" and “female”,342

also contains complex and diverse answers such as343

“dancer”, “workers”, “musician” or “audience”.344

3.4 Human Agreement345

To establish a reference for machine models, we346

compute the agreement among annotators using the347

evaluation metrics described in Section 5.1, which348

we also use for model evaluation (Section 5.2).349

Specifically, we apply a leave-one-out strategy350

to construct the “test set” and the “ground truth351

Statistic %

F1 first answers (per caption) 82.6 (± 15.7)
Exact Match first answers (per caption) 75.3 (± 19.7)
F1 first answers (per answer) 70.0 (± 11.9)
Exact Match first answers (per answer) 58.1 (± 16.3)

Table 2: Agreement statistics for answers (leave-one-
worker-out-comparison; std. dev. in parentheses).

set.” We compare the first answer provided by 352

each crowd worker (which is their most natu- 353

ral/confident answer) against the complete set of 354

answers provided by the other crowd workers, us- 355

ing maximum F1 score (token overlap) and maxi- 356

mum exact match (EM) as agreement metrics, as 357

described in Section 5.1. 358

Table 2 shows the inter-annotator agreement. We 359

show the mean values of the agreement metrics per- 360

caption and per-answer (recall there are multiple 361

answers per caption, so in the former case we first 362

average among the answers within the caption, then 363

across the captions). The higher rates of agreement 364

at the caption level, compared to the answer level, 365

indicate a high amount of answer diversity among 366

the workers. 367

To validate the quality of the crowdsourced an- 368

notations, we also compare them against human 369

annotations collected from two trusted annotators 370

(both Computer Science researchers). We sample 371

200 captions from the validation set and ask these 372

two annotators to perform the same labeling task 373

that the MTurk workers performed, then compare 374

their agreement with the crowdsourced data. The 375

annotators obtain a per-caption average of 90.2% 376

F1 score and 49.0% exact match accuracy, com- 377

parable with the agreement scores obtained by the 378

workers. 379

4 Multimodal Method for Video 380

Fill-in-the-Blanks 381

We propose an encoder-decoder multimodal 382

method to perform the task of video fill-in-the- 383

blanks. We first encode the text and visual modal- 384

ities together to get a semantic representation of 385

the blanked caption and video. The decoder uses 386

the semantic representation to generate text cor- 387

responding only to the answer to the blank. To 388

correctly generate an answer, a model needs to 389

learn which parts of videos relate to the missing 390

parts of the caption. To accomplish this, we use the 391

original transformer architecture (Vaswani et al., 392
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Figure 4: (a) early-fusion multimodal model for video
fill-in-the-blanks (b) late-fusion multimodal model for
video fill-in-the-blanks

2017), whose self-attention mechanism is partic-393

ularly effective for encoding relations within an394

input sequence and have been shown to perform395

well in many language understanding tasks.396

We consider two types of encoders, namely397

the early-fusion encoder and the late-fusion (two-398

stream) encoder. The structure of our multimodal399

model with an early-fusion encoder is shown in400

Fig. 4a. The input to the model consists of the tok-401

enized blanked caption text t1, . . . , tn, as well as a402

representation of the video consisting of multiple403

video sequence features v1, . . . , vm from a video404

feature extractor. The blanked captions are embed-405

ded by an embedding layer. The video features are406

projected into the encoder by a linear layer. We407

use a special token to represent the masked phrase408

and another one to separate the input text and video409

sequences. We add positional embeddings to each410

input token or video feature to represent the se-411

quence order, and another embedding to indicate412

whether it belongs to the text or video sequence413

similarly to BERT (Devlin et al., 2019).414

The late-fusion model is shown in Fig. 4b. We415

use a late-fusion that first encodes the language416

and video separately and then jointly. The modali- 417

ties may benefit from learning independently about 418

their own context before using them together. 419

4.1 Implementation Details 420

For the video encoder, we use the existing I3D (Car- 421

reira and Zisserman, 2017) features (size 1024 422

every 8 consecutive frames) provided by the Va- 423

TeX dataset (Wang et al., 2019), in which videos 424

were sampled at 25 fps. We initialize our multi- 425

modal model using T5 (Raffel et al., 2020), given 426

its ability to fill in variable-length blanks. T5 is 427

an encoder-decoder Transformer (Vaswani et al., 428

2017) model that is a good starting point as it 429

provides state-of-the-art performance on text-only 430

tasks and it was pretrained to fill arbitrary-length 431

text spans that were previously masked. Building 432

upon T5 allows our model to not only leverage 433

the pre-trained large-scale language models that 434

already have strong language abilities but also to 435

fuse it with visual inputs. We initialize the early- 436

fusion model with pretrained T5-base weights. 437

For the late-fusion model, we use T5-base for 438

the text encoder and for the decoder. We use two 439

one-layer transformers to encode videos and fuse 440

text and video features, and the weights of these 441

two transformers are randomly initialized. Follow- 442

ing T5 model implementation, the special token 443

<extra_id_0> is used to represent the blanked 444

phrase, and <\s> is used to separate the text and 445

video sequences. The generated output follows T5 446

output format: the special token <extra_id_0> 447

followed by the predicted text for the blanked 448

phrase. See Appendix B.1 in the Appendix for 449

more details. 450

4.2 Baselines 451

We compare our model to the following baselines. 452

Most Frequent Answer. The baseline makes use 453

of the most frequent answer in the training set (“a 454

man”) as the answer to all the blanked captions 455

during evaluation. 456

Text-based Transformer. Previous visual 457

question-answering datasets found that a text-only 458

model can nearly match the performance of the 459

multimodal system (Antol et al., 2015). We 460

analyze the degree to which language alone can 461

contribute to our video understanding framework 462

by conducting experiments based on text-only 463

models. We use the off-the-shelf T5-base trans- 464

former model (Raffel et al., 2020) as our baseline 465
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model. We use both a zero-shot model (not trained466

on our data) and a fine-tuned model. For the467

latter, we use the base model v1.1 later released468

by Google because it performed better in our469

experiments on the validation set. The decoding470

hyperparameters are the same as in the multimodal471

models, except the beam size is 8 for both the472

zero-shot one and 2 for the fine-tuned variant as473

we obtained the best validation results for each one474

using these beam sizes.475

Single video feature. We consider using a sin-476

gle I3D feature per video to see how well can the477

model do with a small portion of the video. Based478

on a study of 50 randomly sampled videos, the479

blanked entity in the caption appeared 95% of the480

time at the third second of the video (see Fig. 11481

in the Appendix). For this method, we pick the482

I3D feature which corresponds roughly to it and483

apply it to the proposed multimodal methods in-484

stead of using all the video features. Note I3D485

takes a window of 16 frames as input, which in486

our case corresponds to 640 milliseconds, centered487

at the mentioned moment within the video. This488

can be seen as a small generalization to the Image489

Understanding task, that considers a single image490

(frame).491

5 Experiments and Results492

We perform experiments and evaluations using the493

dataset described in Section 3.494

5.1 Evaluation Metrics495

We use exact match accuracy and ROUGE-1 F1496

score (token-level) (Lin, 2004) to evaluate the out-497

put of the generation models and to evaluate human498

agreement (Section 3.4). For the exact match, we499

count a generated text string as correct if it has at500

least one string-level match among the provided501

annotations. For the token-level F1, we compute502

the token overlap (true positives) between the gen-503

erated text string and each annotation, normalized504

by the sum of the true positives and average of the505

false negatives/positives, then compute the maxi-506

mum across all annotations. For all evaluations, we507

computed the metrics based on the normalized text508

(i.e., without articles).509

5.2 Results510

We evaluate our multimodal model’s visual under-511

standing ability by comparing its performance with512

the text-only baseline and human performance. The513

val test
Method EM F1 EM F1

BASELINES

Most Frequent Answer 15.4 45.1 16.4 45.3

T5 zero-shot 39.3 52.0 37.4 49.2
T5 fine-tuned 58.0 73.8 54.5 70.9

OUR MULTIMODAL MODELS

T5 + 1f I3D 59.2 74.7 54.3 70.5
T5 + I3D 60.2 75.0 56.2 71.4

Late-fusion T5 + 1f I3D 53.7 70.3 50.3 67.6
Late-fusion T5 + I3D 53.5 69.7 51.6 67.8

UPPER BOUND (HUMAN AGREEMENT)

leave one worker out 75.3 82.6 75.0 82.5
new humans* 49.0 90.2 n/a n/a

Table 3: Results on the validation set. EM stands for
Exact Match, and F1 is the token-level F1 score (both in
percentage). 1f refers to the variant of the multimodal
model with a single I3D feature. The new humans
performance is measured from a random sample of size
200. See Section 3.4 for more details on the human
baselines.

results from the fill-in-the-blank task are shown in 514

Table 3. The text-only model’s accuracy and F1 515

score is low, indicating that the language bias is 516

controlled in our dataset. The multimodal model 517

outperforms the text-only baselines in both exact 518

match accuracy and F1 score, meaning that our 519

multimodal model is able to learn video features 520

relevant to caption language during training. We 521

also note that the early-fusion multimodal model 522

(T5 + 13D) slightly outperforms the late-fusion 523

multimodal model, which suggests that the model 524

learns more effectively without extra encoders (see 525

Fig. 4b). Both the early-fusion and the late-fusion 526

multimodal models perform worse with a single 527

I3D feature. This suggests that the model bene- 528

fits from the whole video to correctly answer the 529

caption. 530

There is also a large performance gap between 531

the multimodal model performance and human per- 532

formance. Therefore, there is plenty of space for 533

improvements to achieve human performance, and 534

the video fill-in-the-blank task is worth investigat- 535

ing in future visual understanding research. 536

5.3 Error Analysis 537

Results per Semantic Label. To measure how 538

well the model understands different patterns in 539

the caption data, we compare the predictions gener- 540

ated for blanks corresponding to words of different 541

semantic categories (the rest of the answers gen- 542
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erally belong to the same category as the blanked543

words). Two of the authors annotated the ground-544

truth labels for common non-overlapping semantic545

categories, including people, passive entities, and546

locations, similar to Semantic Role Labeling (SRL)547

categories. Person corresponds to answers about548

people, Passive entity represents passive entities549

such as objects, Pronoun includes subject or ob-550

ject pronouns, Location corresponds to places in551

general, Preposition includes noun phrases inside552

multi-word prepositions (e.g., “order” in “in order553

to”), Action involves actions over time (“a hand-554

stand” in “perform a handstand”), Audio refers to555

noun phrases indicated through audio (“the pro-556

cedure” in “the person describes the procedure”),557

Abstract corresponds to high-level concepts (e.g.,558

“a great time”), Event are long-running processes559

(“a party”), and Other correspond to instances hard560

to label for the annotators (e.g., “a video”).561

We list the categories and their distribution/size562

in Table 4, and we also show the performance563

for the best text-only zero-shot method (T5 zero-564

shot), text-only fine-tuned method (T5 fine-tuned),565

and multimodal method (T5 + I3D). The results566

of T5 zero-shot show some categories can be eas-567

ily predicted, without fine-tuning on the dataset,568

such as Preposition, Pronoun, and Event. How-569

ever, fine-tuning T5 on our dataset accomplishes570

improvements for nearly all categories. The mul-571

timodal (T5 + I3D) model presents improvements572

for categories such as Person and Abstract nouns573

but performs worse for others such as Audio and574

Action. This finding follows from the fact that un-575

derstanding higher-order audio and visual concepts576

requires complex reasoning, for which the video-577

aware model may need more training. In general,578

Action and Passive entity will likely require extra579

attention in future work, considering the compara-580

tively low performance for these categories.581

Best model vs. Human performance. We want582

to measure where our best model (T5 + I3D) fails583

and humans perform well, in order to gain insights584

on how to improve our models for future work. We585

find three main types of wrong predictions: The586

most common error is predicting “man” instead of587

“women”, followed by predicting “person” instead588

of “child” or “baby”. The majority of the remain-589

ing errors are predictions close to the ground truth590

answers such as “dance” instead of “exercise”, “pil-591

low” instead of “sheets”, “rug” instead of “sand”,592

“floor” instead of “court”, “knife” instead of “spat-593

Category Size (%) T5 zs T5 ft T5 + I3D

Passive entity 40.4 52.9 63.6 63.6
Person 33.4 37.0 81.8 83.2
Pronoun 6.1 73.5 85.6 84.3
Location 5.5 55.1 74.5 75.4
Preposition 4.5 81.6 95.7 97.5
Action 3.9 47.8 65.5 59.9
Audio 2.5 56.4 73.0 63.6
Abstract 2.2 59.6 70.0 77.9
Other 1.5 56.9 75.0 83.7
Event 1.0 70.0 68.0 84.0

Table 4: F1 scores on the validation set for blanks with
different semantic categories, in descending order based
on their size. The results correspond to the best T5
zero-shot, T5 fine-tuned, and T5 + I3D models.

ula” or “basketball game” instead of “wrestling”. 594

Based on these types of errors, in future work, 595

the model would benefit from pre-training on un- 596

biased data (both gender and age) and also from 597

pre-training on a large-scale multimodal (language 598

and video) dataset, to learn about more diverse 599

situations and objects. 600

6 Conclusions 601

This paper introduced a fill-in-the-blanks evalu- 602

ation framework for video understanding. The 603

framework addresses drawbacks of alternative 604

video understanding tasks, such as multiple-choice 605

visual question answering or video captioning. 606

The paper made three important contributions. 607

First, we generated a large dataset consisting of 608

28,000 videos and fill-in-the-blanks tests, building 609

upon an existing video captioning dataset with a 610

new set of manual annotations, using a modified an- 611

notation framework to encourage diverse responses 612

among annotators. This process can be easily repli- 613

cated to create new fill-in-the-blank data for other 614

datasets and tasks. Second, we conducted extensive 615

analyses of the dataset and the manual annotations, 616

to measure the quality of the annotations, and to un- 617

derstand the patterns and limitations of the data. Fi- 618

nally, we introduced a multimodal model that fuses 619

language and visual information and found that the 620

video-aware models significantly outperform the 621

text-only models. Notably, we found a consistent 622

gap between model performance and human per- 623

formance, which suggests room for improvement 624

among future models in the task of fill-in-the-blank 625

for video understanding. 626

Our dataset and code are available at 627

https://anonymous.4open.science/ 628

r/video-fill-in-the-blank-754D/. 629
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A Dataset896

A.1 Most-Frequent Noun Phrases897

We report the most-frequent noun phrases in the898

original labels and in the annotations we collected,899

in Fig. 5. The most frequent nouns for both label900

sets tend to reference people, which makes sense901

considering the content of the videos. In the annota-902

tion data, we see a greater variety of synonyms for903

the same kind of person (“male”, “man”, “guy”),904

likely a result of the task definition, which encour-905

ages paraphrasing.906

Figure 5: Top 20 nouns for ground-truth labels and
annotations in validation and test data.

A.2 Part-of-speech Distribution 907

We compare the rate of use of words in different 908

part-of-speech categories for the ground-truth la- 909

bels and the annotations, using the same parser 910

specified earlier to label part-of-speech tags in the 911

noun phrases. The distributions are shown in Fig. 6, 912

and we see that the annotations have roughly the 913

same rate of part-of-speech tag use in all categories, 914

except among adjectives and pronouns where the 915

ground-truth labels have a higher rate of use. This 916

is likely an artifact of the data collection strategy, 917

which encouraged annotators to generate unique 918

noun phrases rather than phrases with adjectives or 919

pronoun references. 920

A.3 Part-of-speech Sequence Distribution 921

Although the candidate answers collected from 922

crowd workers consist of noun phrases, they may 923

include different part-of-speech (POS) sequences 924

within the noun phrases. The distributions of POS 925

sequences in Fig. 7 show that the annotators tended 926

to write “bare” nouns without extra determiners 927

and proper nouns, more than the original labels. 928

This makes sense considering that the task asked 929

annotators to provide many unique nouns without 930

consideration for the nouns’ structure. 931

A.4 Dependency categories 932

Due to the sampling process, some of the labels oc- 933

cur in different syntactic contexts, e.g. in a preposi- 934

tional phrase in “A woman does push-ups on _____” 935
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Figure 6: Relative frequency of part-of-speech tags in
annotated and ground-truth labels.

Figure 7: Relative frequency of POS tag sequences in
annotated and ground-truth labels.

Figure 8: Dependency category counts (per caption).

Figure 9: The unique number of labels provided for
masked noun phrases grouped by dependency category
(categories sorted by frequency).

or as a subject in “_____ at a driving range demon- 936

strating...” (see Fig. 1). We plot the distribution 937

of dependency categories in Fig. 8, which shows 938

that nouns occur in a wide range of positions but 939

mostly occur in a preposition, subject, and direct 940

object positions. 941

Next, we test whether certain syntactic contexts 942

tend to attract more labels from the annotators than 943

others, by computing the mean unique number of 944

labels per annotator within each syntactic context 945

(based on the dependency parse connected to the 946

masked NP). The distribution is shown in Fig. 9. 947

Captions that mask noun phrases which occur in 948

preposition (pobj) and direct object (dobj) posi- 949

tions tend to attract slightly fewer unique labels per 950

annotator than the next most-frequent categories, 951

subject (nsubj) and compounds (compound). 952

This intuitively makes sense, since annotators 953

would likely have fewer options for noun phrases 954

when faced with a preposition or a direct object, as 955

opposed to the less restrictive subject noun posi- 956

tion. 957

A.5 Gender Representation 958

Often, language processing models can learn to en- 959

code social bias due to non-representative training 960

data, such as image captions for photos of men and 961

women taken in stereotypical environments (Zhao 962

et al., 2017). We find a slight gender gap in our 963

own data: by using a gender word list, we find 964

that about 10.9% of the original masked labels are 965

male-related words in contrast to 6.2% that are 966

female-related, and 9.1% of the annotations are 967

male-related while 5.9% are female-related. We 968

note that the gender imbalance is less severe for 969

the annotations than for the original labels, and the 970

annotations do in fact use more gender-neutral hu- 971
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man words than the labels (6.6% for annotations972

vs. 6.0% for original labels). While some of the an-973

notators may undoubtedly have some bias in terms974

of their decisions, some of the bias may also result975

from the original video clips. We acknowledge this976

limitation as a direction for future work in collect-977

ing video caption data.978

We used the following lists for gendered words,979

which were chosen to be in similar semantic cate-980

gories (e.g. male “brother”, female “sister”, neutral981

“sibling”):982

• Male-oriented words: “boy”, “brother”, “fa-983

ther”, “guy”, “he”, “him”, “himself”, “his”,984

“male”, “man”, “son”985

• Female-oriented words: “daughter”, “female”,986

“girl”, “her”, “herself”, “lady”, “mother”,987

“she”, “sister”, “woman”988

• Gender-neutral words: “adult”, “baby”,989

“child”, “human”, “kid”, “parent”, “people”,990

“person”, “sibling”991

A.6 Spatiotemporal Trends of the Blanked992

Entities993

One of the authors of this paper randomly sampled994

50 videos to analyze spatiotemporal information on995

the blanked entities. Figures 10 to 12 show trends996

on where, when, and for how long the blanked997

entities appear in the videos. As expected, the998

blanked entity generally appears at the center of999

frames, with a small tendency to be on the lower1000

side. We observe that around 93% of the time the1001

blanked entity appears between seconds 2 and 4 of1002

the video but that there is still a high chance (75%)1003

of seeing it at any given moment. 68% of the time1004

the blanked entities appear for the entire duration1005

of their corresponding video.1006

B Experiments and Results1007

B.1 More Implementation Details1008

We use the T5 model from the HuggingFace Trans-1009

formers library (Wolf et al., 2020). We train the1010

model with Adam (Kingma and Ba, 2015) on a1011

V100-16Gb with a batch size of 64 for 10 epochs1012

(4,000 steps) using a learning rate of 1e-4 with a1013

warm-up of one epoch and a linear decay. The train-1014

ing time is short, less than an hour. We compute1015

the loss as the cross-entropy between the model-1016

generated output and the originally blanked phrase.1017

Figure 10: A heat map showing where the blanked entity
appears within the video if we divide each frame into a
4 by 4 grid, for a sample of 50 videos. A blanked entity
is counted for a given cell if any part of the entity is
present in that cell at any moment of its corresponding
video (so multiple cells can be counted because it is big
enough or because there is movement).

Figure 11: The Percentage that the blanked entity ap-
pears at a given time in its corresponding video for
a sample of 50 videos. The time is divided into one-
second buckets, and a bucket is counted if it appears in
any of its frames.
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Figure 12: Distribution of the total time that each
blanked entity is seen within its video, for a sample
of 50 videos.

For test-time decoding, we use beam search with1018

a beam size of 4 for the early-fusion model and1019

8 for the late-fusion one, with a maximum token1020

length of 10. We stop the decoding early, if an1021

example has seen as many complete hypotheses1022

as the beam size (beam search early-stopping4).1023

We penalize the repetitions of bigrams within a1024

decoded text. For each example, we choose the1025

first beam that is a noun phrase, as detected by1026

spaCy (Honnibal et al., 2020), or the first one if1027

none. We show the effect of varying the beam1028

size in Appendix B.2. We find that modifying the1029

beam search early-stopping property does not lead1030

to major performance changes.1031

B.2 Beam Search1032

Table 5 shows the effect of varying the beam size1033

during the beam search decoding. In all cases,1034

using a beam search of at least size 2 is better than a1035

greedy search. However, the results are marginally1036

better or inconclusive when using beam size 4 or1037

8. This is probably related to the phenomenon1038

described by Meister et al. (Meister et al., 2020)1039

in which beam search does get us closer to the1040

true maximum a posteriori solution but the answers1041

actually start to get worse after a certain point.1042

4https://huggingface.co/transformers/
internal/generation_utils.html#
transformers.BeamSearchScorer

1 2 4 8

T5 fine-tuned 72.9 74.2 73.8 73.8
T5 + I3D 73.0 74.0 74.3 74.2
Late-fusion T5 + I3D 69.0 69.6 69.7 69.7

Table 5: F1 scores on the validation set for the beam
sizes 1 (greedy search), 2, 4, and 8.

EM F1

t5-small 20.2 37.1
t5-base 34.9 50.2
t5-large 43.5 59.5
t5-3b 44.9 62.6

Table 6: Results on the validation set for different model
sizes of the T5 text-only zero-shot model.

B.3 Model size 1043

In Table 6 we show the result of changing the T5 1044

model size for the text-only zero-shot baseline. We 1045

note we could not fit the model variant t5-11b 1046

into GPU memory. As expected, we note an in- 1047

crease in the evaluation metrics as the model capac- 1048

ity increases. 1049

B.4 Qualitative Analysis 1050

We show in Table 7 several examples of answers 1051

correctly predicted by the best multimodal method 1052

but incorrectly answered by the best text-only 1053

method. Even though the answers provided by 1054

the text-only method are plausible by just looking 1055

at the text, they do not make sense with the given 1056

videos. In the second example, one can quickly tell 1057

the person is not at a gym but instead is in some 1058

kind of indoor room. For these examples, the mul- 1059

timodal method seems to have identified what is 1060

visually important. 1061
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A person at the top of _____ with
ropes hanging down.

A guy is by the stairs in _____
doing the moonwalk in socks.

A man is showing and describing
a rock sample to _____.

correct an-
swers

adirondacks, cliff, climb, frozen
waterfall, gully, hill, ice, icy cliff,
ledge, mountain, ravine, slope,
snow

building, doors, entryway, foyer,
his home, his house, home,
house, living room, room, shorts,
t-shirt

audience, camera, consider
where its hinge goes, describe
how it looks, discuss its hinge,
explain his viewers, his audience,
his followers, his subscribers,
his viewers, people, students,
viewer, viewers

T5 fine-
tuned

a tree (0) a gym (0) a woman (0)

T5 + I3D a mountain (100) a room (100) a camera (100)

Table 7: Examples of instances correctly predicted by the best multimodal method but incorrectly predicted by the
best text-only method. The F1 score obtained by each answer is shown in parentheses. The correct answers are
shown normalized and separated by commas while the model predictions are shown verbatim. From each video, we
show a single frame illustrating the key moment.
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