
Permutation Tree Invariant Neural Architectures

Johannes Urban 1 Sebastian Tschiatschek 1 2 Nils M. Kriege 1 2

Abstract
Exploiting symmetry as an inductive bias has be-
come a fundamental technique in deep learning to
improve generalization and sample efficiency. We
investigate the design of models that are invari-
ant to subgroups of the symmetric group defined
by hierarchical structures. We propose permuta-
tion trees, which represent permutations by the
ordering of their leaves and allow the reordering
of siblings depending on the type of their parent,
generalizing PQ-trees. We characterize the permu-
tation trees that represent permutation groups and
derive invariant neural architectures from them
in a bottom-up fashion. We show that our ap-
proach learns faster with less data and achieves an
improved prediction performance on a synthetic
dataset.

1. Introduction
Symmetries naturally arise in various applications, and in-
corporating them into machine learning models can dras-
tically improve their generalization and sample efficiency.
For example, a molecule can be represented by a set of
atoms annotated with 3D coordinates. As chemical prop-
erties depend on the spatial arrangement of atoms but not
directly on their coordinate, models can benefit from invari-
ance to rotation. Moreover, the set of atoms is typically
passed to the network in an arbitrary order. However, the
order should not influence the prediction, leading to the
requirement of invariance to all possible permutations of the
input. Such set functions arise in various applications and
have been extensively investigated recently (Zaheer et al.,
2017; Wagstaff et al., 2022; Amir et al., 2024). Moreover,
permutation invariance is essential in methods such as graph
neural networks (Xu et al., 2018; Fuchs & Veličković, 2023),

1Faculty of Computer Science, University of Vienna, Währinger
Str. 29, 1090 Vienna, Austria 2Research Network Data Science,
University of Vienna, Kolingasse 14–16, 1090 Vienna, Austria.
Correspondence to: Nils M. Kriege <nils.kriege@univie.ac.at>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at 41 st International Conference on
Machine Learning, Vienna, Austria. PMLR Vol Number, 2024.
Copyright 2024 by the author(s).

(a) Vienna Ferris wheel

C

P

x1 . . . xi

. . . P

xj . . . xn

(b) Permutation tree

Figure 1: Illustration of the Vienna Ferris wheel (a) and a
permutation tree (b) modeling the symmetries of the partici-
pants of a ride. The passengers within the same gondola are
regarded as a set, meaning that they can be permuted arbi-
trarily in the list of participants. However, they are grouped
according to the gondolas in the order of the Ferris wheel,
allowing cyclic shifts of whole groups.

where sets of neighboring nodes need to be processed. A
requirement orthogonal to invariance is that of universality,
i.e., in particular, there should be a parametrization of the
network such that it computes a different output for all pairs
of inputs with different underlying sets. Besides sets with
the requirement of invariance to all possible permutations,
more specific permutation groups have not been investi-
gated to the same extent. Notable exceptions are neural
architectures for sets of objects with symmetries (Maron
et al., 2020) and the use of the wreath product to reflect
hierarchical symmetries (Wang et al., 2020).

In this work, we investigate and propose neural architectures
invariant to subgroups of the symmetric group represented
by a permutation tree, a generalization of PQ-trees intro-
duced by Booth & Lueker (1976) in a different context.
Permutation trees represent permutations of their leaves by
allowing the reordering of siblings based on the node type of
their common parent. Permutation trees naturally represent
permutations with a nested structure. Consider the exam-
ple of a Ferris wheel illustrated in Figure 1. A function on
the list of participants should be invariant to the reordering
within each gondola, and these groups, in turn, should be
invariant to cyclic shifts following the order of gondolas on
the Ferris wheel. Formally, we aim at developing neural net-
works computing a function f : Xn → Rd that are invariant
to a given permutation group P , i.e., for all π in P it holds

1

Submission and Formatting Instructions for GRaM Workshop at ICML 2024

f(x) = f(π(x)). Here, we restrict permutation groups to
those that can be represented by permutation trees.

Our contribution. We propose permutation trees and
show that they give rise to permutation groups if certain
structural properties are satisfied. From such trees, we can
learn functions that are invariant to the permutation group
they represent by associating the input sequence with the
leaves and computing embeddings in a bottom-up fashion.
We derive functions to combine the embeddings of children
at inner nodes depending on their type. We experimen-
tally show that our method learns faster with less data and
achieves an improved prediction performance on a synthetic
Ferris wheel dataset.

2. Preliminaries
A permutation of a set S is a bijection π : S → S. Let π be
a permutation of {1, 2, . . . , n} and let x = (x1, x2, . . . , xn)
a sequence of n objects in Xn, we denote by π(x) the se-
quence (xπ(1), xπ(2), . . . , xπ(n)). Two sets of permutations
P and Q of sets S and T , respectively, are isomorphic if
there is a bijection φ : S → T such that renaming objects in
P according to φ yields P ′ = T . A set of permutations P
together with the composition of permutatins denoted by ◦
is a permutation group if (i) P is closed under composition,
i.e., for all π, σ in P the permutation π ◦ σ is in P , (ii) the
identity permutation x 7→ x for x in S is in P , and (iii) for
all π in P the inverse π−1 is in P . Given a permutation
group P acting on S, the orbit of s in S is {π(s) | π ∈ P}.
The orbits of P yield an equivalence relation, and we write
x ∼P y if x and y are in the same orbit.

3. Permutation Tree Invariant Networks
We introduce permutation trees to represent sets of permuta-
tions by hierarchical structures and relate them to permuta-
tion groups necessary to derive invariant networks.

3.1. Permutation Trees

We provide a general definition of permutation trees and
derive specific instances later.
Definition 3.1 (Permutation tree). A permutation tree on
a set L is a rooted ordered tree with leaves L, where each
internal node v is endowed with a permutation group Gv

acting on its children.

We introduce several node types associating well-known
permutation groups to the internal nodes.
Definition 3.2 (Node types). Let v be an internal node of a
permutation tree with children c = (c1, c2, . . . , cn).

• If v is a P-node, then Gv is the symmetric group
{π(c) | π ∈ Sn}, allowing arbitrary reordering of

P

S

a b

P

c d

Frontiers Permutations

(a, b, c, d) π1 = (1, 2, 3, 4)
(a, b, d, c) π2 = (1, 2, 4, 3)
(c, d, a, b) π3 = (3, 4, 1, 2)
(d, c, a, b) π4 = (3, 4, 2, 1)

Figure 2: Permutation tree T , the frontiers of all equiva-
lent permutation trees, and the associated permutations in
one-line notation forming Perm(T). Note that π3 ◦ π2 =
(4, 3, 1, 2) is not supported by T and, thus, Perm(T) is not
closed under composition and not a permutation group.

the children.
• If v is a Z-node, then Gv is {π(c) | π ∈ Cn} with Cn

the cycles πj : i 7→ (i + j mod n) + 1 for some j in
N, allowing circular shifts of the ordered children.

• If v is a Q-node, then Gv is {c, (cn, cn−1, . . . , c1)},
i.e, the order of the children can be inverted.

• If v is a C-node, then Gv are the circular shifts of the
children with possible inversion of their order.

• If v is a S-node, then Gv = {c}, meaning that no
reordering of the children is allowed.

Two permutation trees R and T are equivalent, written
R ≡ T , if R is obtained from T by reordering siblings
according to the permutations supported by their common
parent. Formally, for all inner nodes v of T , there is a per-
mutation πv in Gv such that their application to T yields a
tree isomorphic to R. The frontier f(T) of a permutation
tree T is the sequence of its leaves read from left to right. A
permutation tree T on n elements supports the permutations

Perm(T) = {π ∈ Sn | R ≡ T ∧ π(f(T)) = f(R)}.

Figure 2 shows an example of a permutation tree. Note that
we recover the standard definition of PQ-trees introduced by
Booth & Lueker (1976) when restricting permutation trees
to nodes of type P and Q. The node type C is inspired by
the more recent PC-trees (Wei-Kuan & Wen-Lian, 1999).

3.2. Permutation Trees and Permutation Groups

Our goal is to learn functions that are invariant to the per-
mutations supported by a permutation tree. The conception
of invariance requires that this set forms a group (Bronstein
et al., 2021). However, the permutations supported by a
permutation tree, in general, do not form a group; see Fig-
ure 2 for a counter-example. Although structures like PQ-
and PC-trees have been used for decades and are closely
related to permutation trees, to the best of our knowledge,
they have not been related to permutation groups. In the fol-
lowing, we characterize the permutation trees that represent
permutation groups.

We associate with each node v of a permutation tree T its

2

Submission and Formatting Instructions for GRaM Workshop at ICML 2024

scope s(v) containing all the leaves of the subtree rooted at
v. A node v represents the permutations Perm(v, T) of its
scope s(v) defined by the subtree rooted at v. We introduce
regular permutation trees and relate them to permutation
groups in the following.

Definition 3.3 (Regular permutation tree). A permutation
tree T is regular if for all nodes v in T having children s, t
with s ∼Gv

t it holds Perm(s, T) ≃ Perm(t, T).

Figure 1b shows a regular permutation tree assuming that
each P-node has the same number of children. The tree
depicted in Figure 2, in contrast, is not regular since the root
allows its two children to be permuted, although one is an
S-node and the other a P-node yielding non-isomorphic sets
of permutations on their scope.

To show that regular permutation trees lead to permutation
groups, we first consider a single node and its children.

Lemma 3.4. Let v be a node in a permutation tree T with
children c = (c1, c2, . . . , cn). The set Perm(v, T) forms a
permutation group if

(i) Perm(ci, T) forms a permutation group for all i in
{1, 2, . . . , n},

(ii) Perm(ci, T) ≃ Perm(cj , T) holds for all i, j with
ci ∼Gv

cj .

Proof. We show that conditions (i) and (ii) are sufficient
to obtain a permutation group. Assume that (i) and (ii) are
satisfied and Perm(v, T) is not closed under composition.
Then there are permutations π, σ in Perm(v, T) with π ◦ σ
not in Perm(v, T). Since π and σ are supported by the
permutation tree, we obtain two permutations τπv and τσv of
the children c leading to π and σ, respectively. We apply the
permutation τπv ◦τσv to c. Since this maps only children with
equivalent permutation groups, we obtain a permutation tree
for π ◦ σ contradicting the assumption. Similarly, we can
show that we obtain the identity permutation for the identity
mapping of the children. The inverse of a permutation π in
Perm(v, T) is obtained by inverting the permutation of the
children, which is possible according to condition (i). We
have derived the three defining properties of a permutation
group, proving the result.

We apply the result to relate regular permutation trees and
permutation groups.

Theorem 3.5. If T is a regular permutation tree, then
Perm(T) forms a permutation group.

Proof. We prove the result by structural induction over per-
mutation trees. As the base case, we assume that the tree
T consists of one inner node with an arbitrary number of
leaves. Since the inner node v is associated with a per-
mutation group Gv, also Perm(T) = Perm(v, T) forms

a permutation group as it is isomorphic to Gv. In the in-
duction step, we create from a set of n trees with roots
R = {r1, r2, . . . , rn} a new tree T consisting of a new
root r with children R corresponding to the roots of the n
trees. The induction hypothesis allows the application of
Lemma 3.4 and the result directly follows.

3.3. Invariant Neural Networks

Let T be a regular permutation tree with n leaves. We
would like to compute a function f : Xn → Rd with
f(x) = f(π(x)) for all x in Xn and π in Perm(T). To this
end, we associate the ith entry xi of x with the ith leaf of T .
We compute embeddings for the inner nodes in a bottom-up
fashion from the embeddings of their children. The final
output f(x) is the embedding obtained for the root. The
approach satisfies the invariance properties given that the
embeddings (x1,x2, . . . ,xk) of the children of v are com-
bined in a Gv-invariant way to obtain the embedding xv.
Moreover, our approach is universal if the neural networks
that realize the individual nodes are universal. This is the
case for suitable configurations of the techniques we de-
scribe in the following for the node types of Definition 3.2.

P-nodes. We realize P-nodes using the seminal Deep Sets
method introduced by Zaheer et al. (2017), i.e.,

xv = ψ

(
k∑

i=1

ϕ(xi)

)
,

where the functions ψ and ϕ are realized by a multilayer
perceptron.

S-nodes. We realize S-nodes by concatenating the em-
beddings of the n children and mapping them to a fixed
dimensional embedding using a neural network ϕ, i.e.,

xv = ϕ(x1∥x2∥ · · · ∥xk).

Z-nodes. We realize Z-nodes using the approach intro-
duced by Gaiński et al. (2023) splitting the cyclic sequence
of children into all possible tuples of z consecutive elements,
where z in {2, 3, . . . , k} is a parameter. The embeddings
of all tuples are regarded as sets and combined accordingly,
i.e.,

xv = ψ

(
k−1∑
i=0

ϕ
(∥∥z−1

j=0
x((i+j) mod z)+1

))
.

Q- and C-nodes. We obtain embeddings for Q- and C-
nodes by computing embeddings using the technique for
S- and Z-nodes, respectively, for (x1,x2, . . . ,xk) and
(xk,xk−1, . . . ,x1). The two resulting embeddings are
summed up and transformed using a Deep Sets like ap-
proach for sets of two elements, cf. P-nodes.

3

Submission and Formatting Instructions for GRaM Workshop at ICML 2024

0 50 100 150 200 250 300
epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sc
or

e

etnn_train-r2
etnn_test-r2
baseline_train-r2
baseline_test-r2

(a) |D| = 10 (Baseline test below −1)

0 50 100 150 200 250 300
epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sc
or

e

etnn_train-r2
etnn_test-r2
baseline_train-r2
baseline_test-r2

(b) |D| = 1,000

0 50 100 150 200 250 300
epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sc
or

e

etnn_train-r2
etnn_test-r2
baseline_train-r2
baseline_test-r2

(c) |D| = 10,000

Figure 3: Performance (coefficient of determination, r2) on the Ferris wheel data set for varying amounts of data. Our
approach, ETNN, achieves better performance on the test set for all amounts of available data. Refer to the main text for
details.

4. Experiments
We evaluate our proposed permutation tree invariant neu-
ral architecture on synthetic data and leave the evaluation
on real-world data with appropriate characteristics, e.g., in
the field of stereochemistry, to future work. The code for
the experiments shown in this part is stored in a GitHub
repository1.

4.1. Data

We construct a Ferris wheel inspired dataset in which the
labels are invariant to a permutation tree with C- and P-
nodes as shown in Figure 1b.

In particular, we create a data set with n samples, where
each sample corresponds to an assignment of passengers
to the gondolas in a Ferris wheel and an associated score.
Concretely, let nG be the number of gondolas and nP the
number of persons in each gondola. Each person is asso-
ciated with person-specific data extracted from the Sleep
Health and Lifestyle Dataset data set (Tharmalingam, 2023).
The labels are computed such that the rotation of the Ferris
wheel, and hence the relative position of a gondola, and the
ordering of the persons within a gondola do not affect the
labels. The information about the passengers is stored in
arbitrary order within each gondola and such that the infor-
mation about which gondola is next to each other is retained.
We use varying amounts of data for training and testing the
models. For a given data set size, the available data is split
into a test data set (30% of the available data) and a training
data set (70% of the available data). The training data is
further split into 70% for the actual training and 30% for
validation (mainly hyperparameter tuning). The data (but
not the labels) is further normalized using a Min-Max scaler.
A detailed description of the creation of the synthetic data

1https://github.com/JellyJoe13/P2_
EquivariantTreeNN

is provided in Appendix A.

4.2. Models, Training, Evaluation

We compare the following two models:

(i) BASELINE. As a baseline model we use vanilla neural
networks consisting of (multiple) linear layers with ReLU
activation functions followed by a linear output layer. The
number of hidden layers and hidden units was chosen to
ensure that the number of parameters of the baseline is close
to the number of parameters of the ETNN model.
(ii) ETNN (our approach). The Equivariant Tree Neural
Network (ETNN) realizes invariance to a specified permuta-
tion tree through the use of the update functions as described
in Section 3.3. In general, a collection of linear layers, and
non-linear activation functions is used to derive the order
invariance for each internal node of the tree.

All models are trained using Adam for 300 epochs and we
report the performance of the models during training on the
training and the test data. Performance is measured using
the coefficient of determination (r2). Hyperparameter opti-
mization of the number of hidden unis and layers, learning
rate, and data normalization of the label (i.e., using a Min-
Max-scaler or not) is performed using Optuna (Akiba et al.,
2019), which runs and evaluates the experiments using the
validation split of the data after 100 epochs.

4.3. Results

We report the performance of our proposed model in compar-
ison to the baseline model in Figure 3 for varying amounts
of training data.

We observe that our proposed model achieves better per-
formance than the baseline on the test set for all evaluated
data set sizes. While the baseline performs similarly to
ETNN on the training data for data sets of size 1,000 and
10,000, it clearly overfits and does not work well on the

4

https://github.com/JellyJoe13/P2_EquivariantTreeNN
https://github.com/JellyJoe13/P2_EquivariantTreeNN

Submission and Formatting Instructions for GRaM Workshop at ICML 2024

test data—this emphasizes that our proposed model bene-
fits from directly including the desired invariances into the
models’ architectures. As the baseline model has to learn
about the invariances from the training data, its performance
is particularly low for small training sets and it only reaches
a maximum coefficient of determination of about −0.5 for
data set sizes up to 1,000. Our proposed ETNN already
achieves a positive coefficient of determination for data sets
of size 1,000 and a coefficient of determination of 0.75 for
data sets of size 10,000.

5. Conclusion
We proposed and analyzed permutation trees, a hierarchical
representation of permutations from which invariant maps
can be derived. To this end, we introduced a sufficient
condition on the structure of permutation trees guaranteeing
the group property of the represented permutations. We
show how to learn functions invariant to such permutation
groups from the permutation tree in a bottom-up fashion
using existing neural architectures for its internal nodes.
Experiments on a synthetic Ferris wheel dataset show the
effectiveness of our approach.

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Amir, T., Gortler, S., Avni, I., Ravina, R., and Dym, N.
Neural injective functions for multisets, measures and
graphs via a finite witness theorem. Advances in Neural
Information Processing Systems, 36, 2024.

Booth, K. S. and Lueker, G. S. Testing for the consecutive
ones property, interval graphs, and graph planarity using
pq-tree algorithms. Journal of Computer and System
Sciences, 13(3):335–379, December 1976. ISSN 0022-
0000. doi: 10.1016/s0022-0000(76)80045-1.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges. arXiv preprint
arXiv:2104.13478, 2021.

Fuchs, F. B. and Veličković, P. Universality of neural
networks on sets vs. graphs. In ICLR Blogposts 2023,
2023. URL https://iclr-blogposts.github.
io/2023/blog/2023/sets-and-graphs/.
https://iclr-blogposts.github.io/2023/blog/2023/sets-and-
graphs/.

Gaiński, P., Koziarski, M., Tabor, J., and Śmieja, M. Chi-
ENN: Embracing Molecular Chirality with Graph Neu-
ral Networks, pp. 36–52. Springer Nature Switzer-
land, 2023. ISBN 9783031434181. doi: 10.1007/
978-3-031-43418-1 3.

Maron, H., Litany, O., Chechik, G., and Fetaya, E. On
learning sets of symmetric elements. In Proceedings of
the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 6734–
6744. PMLR, 2020. URL http://proceedings.
mlr.press/v119/maron20a.html.

Tharmalingam, L. Sleep Health and
Lifestyle Dataset. https://www.
kaggle.com/datasets/uom190346a/
sleep-health-and-lifestyle-dataset,
2023. Accessed: 2024-06-03.

Wagstaff, E., Fuchs, F. B., Engelcke, M., Osborne, M. A.,
and Posner, I. Universal approximation of functions on
sets. Journal of Machine Learning Research, 23(151):1–
56, 2022. URL http://jmlr.org/papers/v23/
21-0730.html.

Wang, R., Albooyeh, M., and Ravanbakhsh, S. Equivariant
maps for hierarchical structures. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, pp. 13806–13817, 2020.

Wei-Kuan, S. and Wen-Lian, H. A new planarity test. Theo-
retical Computer Science, 223(1–2):179–191, July 1999.
ISSN 0304-3975. doi: 10.1016/s0304-3975(98)00120-0.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, October 2018. doi: 10.48550/ARXIV.
1810.00826.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R., and Smola, A. Deep sets. Advances in
neural information processing systems, 30, March 2017.
doi: 10.48550/ARXIV.1703.06114.

5

https://iclr-blogposts.github.io/2023/blog/2023/sets-and-graphs/
https://iclr-blogposts.github.io/2023/blog/2023/sets-and-graphs/
http://proceedings.mlr.press/v119/maron20a.html
http://proceedings.mlr.press/v119/maron20a.html
https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset
https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset
https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset
http://jmlr.org/papers/v23/21-0730.html
http://jmlr.org/papers/v23/21-0730.html

Submission and Formatting Instructions for GRaM Workshop at ICML 2024

A. Data Set Creation
The considered Ferris wheel data set is constructed by creating n samples as follows: (1) sample nG · nP passengers with
characteristics according to the Sleep Health and Lifestyle Dataset data set (Tharmalingam, 2023), where nG is the number
of gondolas and nP the number of passengers in each gondola; (2) randomly assign these passengers to gondolas; (3)
compute a label (score) as described below and associate it to the sample.

A.1. Label Computation

For each sample (assignment of passengers to the gondolas), we compute a score (SCORE) as an artificial measure for
quantifying the mood/satisfaction of the passengers and use it as the sample’s label. The score generation is such that it
satisfies the invariances according to the permutation tree in Figure 1b but is arbitrary otherwise.

The score is computed from individual gondola scores (GONDOLASCOREi, where i is the index of the gondola) including a
bonus for each gondola (BONUSi) if neighboring gondolas have a similar passenger age group (intuitively accounting for
the meaning that a larger group was not separated by other groups in between):

SCORE =

NG∑
i=1

min(10, Ti),

where

Ti =

(
GONDOLASCOREi +

GONDOLASCORE(i−1) mod NG
+ GONDOLASCORE(i+1) mod NG

2

)
/2 + 2 · BONUSi,

BONUSi =

{
1 if

∣∣AVGAGE(i−1) mod NG
− AVGAGEi

∣∣ < 5,

0 else,

where AVGAGEi is the average age of the passengers in the ith gondola.

Note that SCORE satisfies the properties of a C-node. The computation of the gondola score (GONDOLASCOREi) is
described below.

Gondola score. For each gondola i we compute the gondola score GONDOLASCOREi. For brevity, we omit the subscript
i in the following. Let p1, . . . , pP be the passengers in gondola i. The gondola score is computed as

GONDOLASCORE = 2.5 · AGESCORE + 2 · GENDERSCORE + 0.5 · SLEEPSCORE + 2 · BMISCORE + 3 · FEARSCORE,

where the AGESCORE, GENDERSCORE, SLEEPSCORE, BMISCORE and FEARSCORE are based on the passengers’ age,
gender, sleep, BMI, and fear, respectively, as described below.

• Age score AGESCORE. The age score is constructed such that the more similar the ages of the passengers in a gondola
are, the higher the score:

AGESCORE =

{
1 if gap ≤ 10

(−1/60) · (gap − 10) + 1 else

where

gap = max{age(pj) | j = 1, . . . , P} −min{age(pj) | j = 1, . . . , P}

and age(pj) is the age of passenger pj .

• Gender score GENDERSCORE. This score is based on the distribution between female and male passengers in a
gondola. It increases if the distribution is equal and reduces if the distribution is skewed towards one group. Concretely,

GENDERSCORE =

{
2 ·min(percm, percf) if percm ̸= 0 ∧ percf ̸= 0

1 else,

where percm and percf are the percentages of male and female passengers in the gondola, respectively.

6

Submission and Formatting Instructions for GRaM Workshop at ICML 2024

• Sleep score SLEEPSCORE. The sleep score quantifies how well-rested the passengers in a gondola are:

SLEEPSCORE = min(1,AVGSLEEPQUALITY/10 · AVGSLEEPDURATION/7.5),

where AVGSLEEPQUALITY and AVGSLEEPDURATION are the average sleep quality and average sleep duration of
the passengers of a gondola, respectively. This quantifies whether the passenger is too tired to have fun and they would
benefit from more sleep.

• Fear score FEARSCORE. The fear score quantifies the fear of passengers in a gondola based on their health information.
The score is 0 if the product of the two blood pressure scores and the heart rate (using the maximal value of all
participants in the gondola) exceeds the value 900,000 and 1 in case it does not. Concretely,

FEARSCORE =

{
0 if maxj(blood-p1(pj) · blood-p2(pj) · heart-rate(pj)) ≥ 900000

1 else,

where blood-p1(pj), blood-p2(pj) and heart-rate(pj) are the two blood pressure scores for passenger j and the heart
rate of passenger j, respectively.

• BMI score BMISCORE. The BMI score quantifies the possible discomfort of passengers in a gondola considering
limited space and seating as follows:

BMISCORE = 1− 1

NP
·
NP∑
j=1

max(0, (BMI(pj)− 1)/2),

were BMI(pj) is the jth passengers BMI.

7

