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Abstract

We perform a comprehensive benchmarking of
contrastive frameworks for learning multimodal
representations in the medical domain. Through
this study, we aim to answer the following re-
search questions: (i) How transferable are general-
domain representations to the medical domain?
(i1) Is multimodal contrastive training sufficient,
or does it benefit from unimodal training as
well? (iii) What is the impact of feature granu-
larity on the effectiveness of multimodal medical
representation learning? To answer these ques-
tions, we investigate eight contrastive learning
approaches under identical training setups, and
train them on 2.8 million image-text pairs from
four datasets, and evaluate them on 25 down-
stream tasks, including classification (zero-shot
and linear probing), image-to-text and text-to-
image retrieval, and visual question-answering.
Our findings suggest a positive answer to the
first question, a negative answer to the sec-
ond question, and the benefit of learning fine-
grained features. Finally, our code is available
at: https://github.com/afkanpour/
benchmarking-contrastive/.

1. Introduction

The medical domain has seen rapid advancements due to the
recent progress in Al methodologies, particularly in leverag-
ing diverse data types to support complex decision-making
processes and intervention planning (Acosta et al., 2022).
In this domain, integrating data from multiple sources, such
as imaging, pathology, and clinical notes, is essential for
providing comprehensive patient care. This diversity in data
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modalities introduces challenges in building robust Al mod-
els, especially as it is practically impossible to curate large
labeled datasets for all tasks, modalities, and outcomes nec-
essary for training supervised models. Recently, multimodal
learning has become a pivotal paradigm in Al, where models
learn representations of multiple modalities by exploiting
the interplay between them (Driess et al., 2023; Girdhar
et al., 2023; Singh et al., 2020). Multimodal representation
learning has also demonstrated its effectiveness in the medi-
cal domain (Lin et al., 2023; Eslami et al., 2021), enabling
models to leverage unlabelled data to learn generalizable
representations of medical data (Huang et al., 2023).

Contrastive learning is a popular, effective method for learn-
ing multi-modal representation from paired datasets. How-
ever, it requires vast unlabelled data to learn generalizable
representation, often unavailable in the medical domain. Be-
sides data size, the learning approach is vital for building a
robust foundation model (Kaplan et al., 2020; Manna et al.,
2024). Although prior works explored contrastive learning
in the medical domain (Ikezogwo et al., 2024; Lin et al.,
2023; Eslami et al., 2021), a comprehensive, systematic
investigation of multimodal representation learning, crucial
for understanding contrastive learning’s efficacy, remains
unexplored. In this work, we raise and explore three re-
search questions (RQs).

RQ1: How effective and transferable are general-
domain representations to the medical domain? By un-
derstanding the extent of knowledge transfer from general
vision tasks to medical imaging tasks, we can capitalize
on existing resources, potentially accelerating the develop-
ment of specialized models. This understanding is critical
for medical representation learning for two reasons: (a) it
diminishes the necessity for large-scale medical datasets
comparable to those in the general domain, and (b) it re-
duces the computational burden associated with training
medical foundation models from scratch.

RQ2. To train effective multimodal image-text models in
the medical domain, is multimodal contrastive training
sufficient, or should unimodal training be added for
better performance? Given that it has been shown in
the general vision domain that the addition of unimodal
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learning alongside multimodal learning can improve learned
unimodal representations (Wei & Hu, 2024; Zhang et al.,
2023b), we question whether this approach would benefit
contrastive training in the medical domain as well.

RQ3. What is the impact of feature granularity on the ef-
fectiveness of multimodal representation learning in the
medical domain? Learning both global (high-level) and lo-
cal (low-level) representations is necessary for medical tasks
(Lu et al., 2024; Zhao et al., 2023). For instance, detecting
microcalcifications in mammograms involves identifying
small, clustered specks that can indicate the early stages of
breast cancer (Alsheh Ali et al., 2019). Accordingly, we aim
to identify the impact of different levels of feature granu-
larity on contrastive representation learning in this context
(Huang et al., 2021; Miiller et al., 2022). Although some
prior studies have investigated the impact of granularity on
a small scale, these studies have not been conducted under
a unified framework with an identical training setup.

To address these questions, we investigate eight main ap-
proaches to contrastive learning through extensive empiri-
cal analyses. First, we carefully curate an extensive set of
datasets consisting of a total of 2.8 million image-text pairs.
These datasets span three primary medical image modal-
ities namely radiology (MRI, CT, ultrasound, and x-ray),
histopathology, and endoscopy images. We then pretrain the
contrastive methods on the paired curated samples, which is
followed by evaluation on 25 downstream tasks, including
classification (zero-shot and linear probing), image-to-text
and text-to-image retrieval, and visual question-answering.

2. Methods

2.1. Preliminaries

To answer the questions raised above, we need to learn
effective representations from paired image-text samples.
Prior work has shown that contrastive learning is a suit-
able approach for learning representations from paired data
(Radford et al., 2021; Girdhar et al., 2023). Let ¢ denote
an image encoder and ¢ denote a text encoder that maps
images and text to a common representation space, respec-
tively. Given a batch of training samples B = {(x;, )},
where x; and t; denote the i image and text instances re-
spectively, the InfoNCE loss (Oord et al., 2018) is optimized
by minimizing the distance between the representations of
an image and its corresponding text, (¢(x;), ¥ (t;)), while
maximizing the distance between unrelated image-text rep-
resentation pairs, (¢(z;),¥(t;)), @ # J:
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Figure 1. Illustration of eight contrastive learning approaches stud-
ied in the paper.

where (-,-) denotes similarity between two vectors (e.g.
cosine similarity), and 7 > 0 is a temperature parameter.
For simplicity of notation, we drop B and denote the loss for
(2,t) by Leon(x,t). Multimodal contrastive learning trains
encoders ¢ and v by minimizing Eq. 1 over the pairs in B:

Lrnultimodal = mln Ep |: chon Ti,t :| ()

2.2. Explored solutions
2.2.1. TRANSFERABILITY OF REPRESENTATIONS

To study the transferability and effectiveness of general-
domain representations (RQ1), we consider encoders trained
on a large-scale dataset of general image-text pairs. By a
full or partial freeze of each of these encoders as shown
in Figure 1 (a and b), we will study the effectiveness of
representations of the corresponding modality for medical
tasks. In particular, we consider the following cases:

1. Freeze the first v portion of layers of the image encoder
and the first 3 portion of layers of the text encoder, but
adapt the remaining layers. Here, adapt refers to the
unsupervised fine-tuning of a model (or part of it) via
contrastive learning on medical image-text pairs.

2. Fully freeze the image encoder, but adapt the text en-
coder (a = 1,8 =0).

3. Fully freeze the text encoder, but adapt the image en-
coder (a =0,8=1).

Partial fine-tuning while freezing early layers on a network
allows for building high-level features on top of the early
layers’ features. In addition to leveraging general-domain
features, this approach offers two additional benefits: (i)
it reduces the number of learnable parameters, which im-
proves robustness when training on a small amount of data,
and (ii) it reduces the computational cost.

The extreme cases of a full encoder freeze (cases 2 and 3)
imply a constant representation space for the corresponding
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modality. However, adaptation of the other modality’s en-
coder allows for aligning its representations to that of the
frozen encoder. A similar approach was taken in ImageBind
(Girdhar et al., 2023), where the text and image encoders
were frozen, but encoders of four other modalities were
tuned to align with the frozen encoders.

2.2.2. UNIMODAL LEARNING

Vision-language contrastive learning maximizes alignment
between image-text pairs. While this focuses on inter-modal
alignment, a vast body of work in self-supervised learn-
ing has been devoted to unimodal representation learning.
Leveraging unimodal representation learning in a multi-
modal framework has the potential to enhance represen-
tations by considering the relationship between examples
within each modality (Wang et al., 2023). To explore this,
we consider two unimodal learning approaches and combine
each of them with multimodal contrastive loss.

For this purpose, we employ SimCLR (Chen et al., 2020)
which is one of the pioneering techniques for visual self-
supervised learning. In this technique, two views of an
image are created by applying a series of random augmenta-
tions (e.g. crop-and-resize, color jitter, Gaussian blur, etc.)
to the source image. Then, an encoder is learned by min-
imizing the contrastive loss (i.e., minimizing the distance
between two views of an image in the representation space,
and maximizing the distance between two views of different
images) as illustrated in Figure 1 (c). Our method slightly
differs from SimCLR in the implementation of the augmen-
tation module. Since the medical domain is sensitive to a
higher degree of cropping and certain colour distortions, we
follow the augmentation module of Quilt (Ikezogwo et al.,
2024) to our method, which has been proven to be effective
in medical representation learning. Given a batch of data,
B, and random augmentations, .4; and .A,, SimCLR learns
encoder  and projector ¢ (usually a multi-layer perceptron)
by minimizing:

Caimodal = ming ¢ B, 4s.2 [feon (€0 (AL(B))), £ (Ax(B))) ) -
2.2.3. FEATURE GRANULARITY

We study how changing the granularity of features affects
multimodal representation learning. To learn fine-grained
features, we investigate CoCa (Yu et al., 2022), which per-
forms simultaneous image-text contrastive learning and im-
age captioning as shown in Figure 1 (e). The addition of
autoregressive caption generation via a text decoder condi-
tioned on the image representation enforces learning more
granular features (Yu et al., 2022). The loss is defined as
Mnuttimodal + (1 — A)€cap, Where for an image-text pair (x, t),
the captioning loss, £c,p, is defined as,

Ceap(,1) = =Y 10g 8ty [t<vs p(2)).

Table 1. Vision encoder selection results. For each case, we mea-
sure validation loss on PMC-OA validation set, retrieval Re-
call@200 on four datasets, and VQA accuracy on two datasets.

ROCO  Quilt MIMIC-CXR DeepEyeNet|PathVQA VQARAD
Encoders| Val. loss|; . ToII=T ToIIST  T=T [I=T T-I || overall  overall
RN-50 | 131 [0.68 0.72]0.32 0.35/025 040 [0.09 010 || 4644  62.53
VIT-B/16| 115 |0.78 0.77|0.44 046027 044 [0.11 011 | 4675  61.64
VITB/32| 194 (072 0.71]042 043]033 043 [012 0.0 | 4633  62.97

Table 2. Retrieval (Recall@200) and VQA performance of various
methods examined in RQ1 for transferability of learned represen-
tation from the general domain.

ROCO ‘ Quilt ‘MIMIC-CXR

DeepEyeNet || PathVQA VQARAD

Models ‘

15T T-I|I-T T=I|I-T T—I [I-T T—I| overall  overall

Baseline 0.78 0.77|0.44 0.46|0.27 0.44 |0.11 0.11 46.75 61.24

Text Full Freeze 0.64 0.65]0.28 0.28|0.24 0.25 |0.12 0.12 || 46.69 59.87
Text Partial Freeze (3L) |0.73 0.73]|0.36 0.37[0.27 0.36 [0.10 0.10 || 47.15 62.08
Text Partial Freeze (6L) |0.73 0.72|0.40 0.41{0.32 043 [0.09 0.11 || 46.31 63.19
Text Partial Freeze (9L) |0.78 0.78]0.43 0.43]0.28 0.38 [0.09 0.11 || 45.80 63.19
Image Full Freeze 0.52 0.61]0.22 0.28|0.17 0.24 |0.07 0.10 || 46.28 59.27
Image Partial Freeze (3L)|0.74 0.76|0.44 0.46|0.25 0.36 [0.09 0.10 || 46.69 60.53
Image Partial Freeze (7L)| 0.82 0.82]0.48 0.51/0.43 0.55 [0.07 0.11 46.06 61.42
Image Partial Freeze (9L)|0.81 0.83|0.44 0.47|0.34 0.45 |0.08 0.10 46.74 60.31

Here, )\ is a trade-off parameter, J is a text decoder, ¢,
denotes the v-th token of ¢, t,, denotes all tokens up to the
v-th token in ¢, and ¢ (z) denote the embedding of x.

Going in the other direction, to study the effect of learn-
ing high-level (coarse-grained) features in multimodal con-
trastive learning, we follow FLIP (Li et al., 2023). This
method masks a large portion of image patches and applies
contrastive loss between the visible patches and text, Fig-
ure 1 (f). In addition to enforcing the vision encoder to
learn higher-level features, masking 50-75% of patches also
reduces the computation cost by 2-4 x.

3. Experiments

Model selection. Due to the extensive nature of this study,
it is challenging to perform model selection for each con-
trastive learning variant. Therefore, we first perform hy-
perparameter tuning and model selection with vanilla con-
trastive learning. Hyperparameter tuning was mainly per-
formed as a grid search on batch size and learning rate. We
evaluate three image encoders, ResNet-50 (He et al., 2016),
ViT-B/16, and ViT-B/32 transformers (Dosovitskiy et al.,
2020). For the text encoder, we used the default GPT/77
encoder used by CLIP (Radford et al., 2021). We pretrain
each candidate on our pretraining data (2.8M pairs) and then
evaluate its performance by measuring validation loss, re-
trieval Recall@200, and VQA accuracy. The validation loss
is measured on the validation set of the PMC-OA dataset.
The retrieval performance is measured for both image-to-
text and text-to-image cases on ROCO, Quilt, MIMIC-CXR,
and DeepEyeNet datasets. VQA accuracy is measured on
PathVQA and VQARAD datasets. For VQA tasks, we use
a context length of 12 instead of 77 for the text encoder,
similar to (Do et al., 2021). Table 1 presents the results
for these encoders. Findings from this experiment suggest
that ViT-B/16 is the best-performing encoder compared to
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Table 3. Retrieval (Recall@200) and VQA performance of various
methods examined in RQ2 for integrating unimodal representation
learning with multimodal learning.

Mode ROCO | Quilt |MIMIC-CXR|DeepEyeNet|PathVQA VQARAD
00ES T TSI[IST ToI|IST  T—I 15T T—I || overall  overall
Baseline  |0.78 0.77]0.44 046(0.27 044 [0.11 0.1 | 4675  61.64
Augmented CL|0.56 0.55]0.32 0.34/021 027 |0.11 008 | 4625  63.24
Masked CL |0.56 0.56|0.33 035021 028 |0.13 009 || 4686  64.52

Table 4. Retrieval performance (Recall@200) of various methods
examined in RQ3 for feature granularity.

models ‘ ROCO ‘ Quilt |MIMIC-CXR |DeepEyeNet||PathVQA VQARAD
I-T T-=I|I-T T-1|I-T T—1 |[[-T T-I overall overall
Baseline 0.78 0.77]0.44 0.46|0.27 0.44 |0.11 0.11 46.75 61.64
Fast CL (25%) |0.76 0.78|0.44 0.46|0.27 0.38 [0.08 0.13 46.79 62.08
Fast CL (50%) |0.77 0.76]0.43 0.45/0.34  0.50 |0.08 0.09 46.25 61.64
Fast CL (75%) |0.72 0.73|0.41 0.44|0.23 033 |0.12 0.11 46.79 62.97
Fast CL (85%) |0.69 0.69|0.40 0.41[0.22 0.33 ]0.08 0.10 46.72 58.31
Image captioning|0.74 0.74|0.44 0.46(0.34 047 [0.09 0.12 47.46 62.53

other encoders in our study. Specifically, it achieves the
best validation loss and outperforms the other encoders on
6 out of 8 retrieval and 1 out of 2 VQA tasks. Therefore,
we consider ViT-B/16 as our default vision encoder and
consider the performance of this model as the baseline.

Representations learned in the general domain can be
transferred to the medical domain. As summarized in
Table 5, we investigate four contrastive learning approaches
to examine the transferability of representations from the
general domain to the medical domain. The retrieval and
VQA results are presented in Table 2. As we find from
this table, partially freezing the image encoder (7-layer un-
locked) shows the best result. These findings suggest that
transferability from the general domain is a viable route
for representation learning in the medical domain. In par-
ticular, primitive features learned in the early layers of a
vision transformer on a large, general domain dataset do not
require much adaptation by further pretraining on medical
data. Accordingly, a partial freeze of the image encoder
trained on general domain data could lead to improvement
in the medical domain. The same phenomenon, however, is
not observed when partially freezing the text encoder. Only
1 in the VQA tasks benefits from partial freezing of the text
encoders, with 9L showing the best results among the partial
text encoder freezing experiments. We also present classi-
fication results with F1-score on linear probing in Figure
3. Here, we observe that both partial freezing of the image
and text encoder show similar results. More specifically,
partially freezing the image encoder outperforms the base-
line on 6 datasets, and partially freezing the text encoder
outperforms the baseline on 6 datasets. Finally, fully freez-
ing either of the encoders hurts performance. This is not
unexpected, as representations learned for general-domain
data may not be fully transferrable to the medical domain.
Yet, for full encoder freezing, 5 tasks (3 in classification and
2 in retrieval) benefit from this approach for text encoders,
while 1 classification task showed improvement with full
freezing of image encoders.

Unimodal representation learning may not enhance mul-
timodal learning. The results of our experimentation on
two contrastive learning approaches enabling joint unimodal
and multimodal representation learning are presented in
Table 3 (retrieval and VQA) and Figure 4 (classification).
While neither of the variants in this study performs well
across most tasks, masked CL does improve performance
in the 2 VQA tasks, 2 classification tasks, and one retrieval
task (I—=T). A few explanations are possible. For instance,
a different trade-off in the loss combination could result in
a better performance. It is also possible that optimizing the
unimodal and multimodal loss functions requires very differ-
ent feature sets, making the resulting representation space
ineffective for our downstream tasks. Further investigation
is required to better understand these results.

Fine-grained representation learning can enhance mul-
timodal medical representations. In this study, Fast CL
and Image Captioning are the two contrastive learning meth-
ods aimed at encouraging learning of the coarse-grained
and fine-grained representations, respectively. As shown in
Table 4, fine-grained learning improves (or is on par with)
performance in 4 retrieval and 2 VQA tasks. Additionally,
Figure 5 demonstrates that learning fine-grained features
enhanced performance in 4 classification tasks. On the
other hand, Fast CL is on par or outperforms the baseline
in 3 retrieval tasks, but no VQA task, and 5 classification
tasks with 25% masking setting. These results suggest that
learning fine-grained features could be useful in the medi-
cal domain, compared to the coarse-grained representation.
This observation is supported by the fact that local details
are important in medical diagnosis tasks (Lu et al., 2024).

Other observations. Based on a holistic view of the results
obtained from the experiments, we observe that in the medi-
cal domain, for the task of retrieval, Image Partial Freezing
yields the overall highest results based on Tables 2, 3 and 4.
For both zero-shot learning and linear probing, the standard
CLIP baseline shows the overall best results according to
Figures 3 through 5. Finally, for VQA, according to Tables
3 and 4, Masked CL and Image Captioning can yield the
best performances.

4. Conclusion

We performed an extensive study of eight contrastive learn-
ing approaches for multimodal representation learning in
the medical domain. This includes evaluating these vari-
ants on 19 classification tasks, 4 retrieval tasks, and 2 VQA
tasks. Our results demonstrate that partial freezing of early
layers of vision transformers and fine-tuning the remaining
layers via contrastive learning could improve performance
in medical downstream tasks. Additionally, incorporating
techniques in contrastive learning that lead to fine-grained
visual features could potentially improve performance.
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A. Related Work

Vision language contrastive learning. Learning multimodal visual and text representations without human supervision
using contrastive cross-entropy loss is a straightforward yet powerful pretraining paradigm that has gained significant
interest in self-supervised tasks. The pioneering work of CLIP (Radford et al., 2021) builds a task-agnostic model by
leveraging this method, which performs competitively with task-specific supervised models (Zhang et al., 2024). ALIGN
(Jia et al., 2021) further scales up CLIP by leveraging a noisy dataset containing over one billion image-alt-text pairs. Given
the data and compute-intensive nature of these Vision-Language Models (VLMs), several studies have explored more
data and compute-efficient VLM pretraining methods using fewer image-text pairs. DeCLIP (Li et al., 2021b) introduces
nearest-neighbor supervision to utilize information from similar pairs, enabling effective pretraining on limited data. LiT
(Zhai et al., 2022) proposed contrastive tuning with a frozen image encoder, demonstrating another approach to enhance
pretraining efficiency without extensive datasets. FLIP proposes a simple method of randomly masking out a large portion of
image patches during training, which improves performance by encouraging the model to learn higher-level representations
(Li et al., 2023). Another line of research has proposed combining dual-encoder contrastive pretraining with unimodal
pretraining (Li et al., 2021a; Yu et al., 2022; Singh et al., 2022). This approach allows models to inherit the strengths of both
methods, resulting in strong performance on vision-language benchmarks. For instance, ALBEF (Li et al., 2021a) integrates
contrastive loss with masked language modelling using a dual-encoder design. CoCa (Yu et al., 2022) presents a simpler
and more efficient approach by jointly training with contrastive and captioning losses. Another line of follow-up studies
has focused on capturing finer-level information, such as the relationship between visual objects and textual words, by
performing image-text contrastive learning across various semantic levels (Zhan et al., 2021; Li et al., 2020; Kim et al., 2021).
For example, FILIP (Yao et al., 2021) introduces fine-grained semantic alignment (image patches and text tokens) through a
novel cross-modal late interaction mechanism in contrastive learning, enabling the model to learn detailed vision-language
correspondence.

Contrastive learning in the medical domain. The development and extension of contrastive vision language representations,
particularly through models like CLIP (Zhao et al., 2023), has garnered significant interest in the medical domain. These
models have demonstrated promising results and explored transferability of original CLIP in their application to chest X-ray
(Boecking et al., 2022; Tiu et al., 2022; Seibold et al., 2022), ECG data (Liu et al., 2024), histological analysis of stomach
tissue (Zhang et al., 2023c), lung CT scans (Liu et al., 2023), dermatology (Kim et al., 2023), and eye fundus images (Baliah
et al., 2023). To satisfy the needs of medical CLIP-style (or foundational models) and resolve data scarcity, some studies
have focused on generating novel image-text pairs across multiple domains (Lin et al., 2023; Eslami et al., 2021; Zhang et al.,
2023a) and histopathology (Ikezogwo et al., 2024; Huang et al., 2023). Due to notable differences between general web
images and medical domain images, where small abnormalities can significantly influence diagnostic results, incorporating
fine-grained contrastive learning has been shown to improve performance (Chaitanya et al., 2020). Similarly, in diagnostic
reports consisting of multiple sentences that describe image findings in specific regions, the inclusion of local vision features
has been demonstrated to be important for accurate interpretation (Pang et al., 2023). Studies such as GLoRIA (Huang et al.,
2021) and LoVT (Miiller et al., 2022) have explored local-level cross-modal contrastive learning between both text-to-image
and image-to-text local features. Additionally, CONCH (Lu et al., 2024) incorporated (generative) loss for fine-grained
region-level features, thereby benefiting various tasks such as visual recognition, crossmodal alignment, image captioning,
and multimodal understanding.

Benchmarking in vision-language contrastive learning. Benchmarking is recognized as an essential tool for continuous
improvement of quality (Dattakumar & Jagadeesh, 2003). In the deep learning era, characterized by rapid advancements and
the proliferation of novel methods, the role of benchmarking has become increasingly pronounced (Russakovsky et al., 2015).
It has evolved to provide a fair and consistent basis for evaluating different models, facilitating comparison, and driving
innovation (Chen et al., 2024). In the realm of vision-language contrastive learning, surprisingly, there have been only a few
comprehensive benchmark studies. In a recent study, (Cui et al., 2022) benchmarked contrastive learning across the three
dimensions of data, supervision, and model architecture. They discovered that the quality of the data and the application of
appropriate supervision significantly enhance the performance of contrastive learning. (Tu et al., 2024) explored the safety
objectives of 83 CLIP models in terms of resilience to variations in visual factors, calibrated uncertainty estimations, and the
ability to detect anomalous inputs. The differences between these models were not in their architecture but in their training
methods, usage scenarios (such as few-shot learning and fine-tuning), and the types of encoders employed. In the medical
domain, the importance of benchmarking is even more pronounced due to the critical nature of healthcare applications. To
the best of our knowledge, no study has yet explored various contrastive learning frameworks in this domain.
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Table 5. Different contrastive learning (CL) methods.

RQ | Method name | Description

Image Partial Freeze
Text Partial Freeze

Freeze the first 50% of the image encoder
Freeze the first 50% of the text encoder

RQI Image Full Freeze Fully freeze the image encoder
Text Full Freeze Fully freeze the text encoder
RQ2 Augmented CL Combined unimodal (SimCLR (Chen et al., 2020)) and multimodal CL
Masked CL Combined unimodal masked and multimodal CL
RQ3 ‘ Image Captioning Combined CL and captioning (Yu et al., 2022)
Fast CL CL between text and the masked image (Li et al., 2023)
Radiology Histopathology Other Captions

b ')/' ™

Plaque cellularity and percentage affected
region. Representative HE-stained tissue
sections of control (a) and treated (b) regions
and respective magnifications (c, d) showed that
RFA greatly reduced cellular content. This
effect was most pronounced 24 h post-RFA, after
which cellularity was normalized at 7 and

28 days (e). The decellularized area was
quantified as a percentage of the total region
where RFA was performed and showed that the
effect of RFA was most apparent after 24 h (f)

Image taken during upper endoscopy. a) Oedema
present at the anastomotic site of the
gastrojejunostomy. b) No evidence of obstruction
beyond the anastomosis.

Figure 2. Samples from the datasets used in this study.

Table 6. Evaluation datasets used in this study.

Task Setup Dataset Modality Nb. Samples
Quilt-1M Histopathology 13,559
. MIMIC-IV-CXR Chest X-ra 3,269
Retrieval I-T & T—I ROCO Chost X_raz 3176
DeepEyeNet Retina 3,140
6 classes PAD-UFES-20 Dermatology 460
7 classes SkinCancer Dermatology 2,003
2 classes PatchCamelyon (PCam)  Histopathology 32,768
8 classes NCT-CRC-HE-100K Histopathology 6,333
3 classes LC25000Lung Histopathology 3,000
2 classes LC25000Colon Histopathology 2,000
4 classes BACH Histopathology 100
4 classes SICAPv2 Histopathology 2,122
14 classes™® ChestMNIST+ Chest X-ray 112,120
Zero-shot 9 classes PathMNIST+ Colon Pathology 107,180
classification & 7 classes DermaMNIST+ Dematoscope 10,015
Linear probing 4 classes OctMNIST+ Retinal OCT 109,309
2 classes PneumoniaMNIST+ Chest X-Ray 5,856
5 classes RetinaMNIST+ Fundus Camera 1,600
2 classes BreastMNIST+ Breast Ultrasound 780
8 classes BloodMNIST+ Blood Cell Microscope 17,092
8 classes TissueMNIST+ Kidney Cortex Microscope 236,386
11 classes OrganAMNIST+ Abdominal CT 58,830
11 classes OrganCMNIST+ Abdominal CT 23,583
11 classes OrganSMNIST+ Abdominal CT 25,211
VQA ) VQA-RAD Radiology 3,515
PathVQA Histopathology 32,799

*Denotes multi-label classification.
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Figure 3. F1 score for linear probing on the study of transferability. Here, Image Partial Freeze (7L) outperforms the baseline on 6 datasets,
while Text Partial Freeze (9L) also performs better than the baseline in 6 datasets. Text Full Freeze and Image Full Freeze perform better
than the baseline in 3, and 1 datasets, respectively. Here, We only show the best-performing partial freezing experiments.
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Figure 4. F1 score for linear probing on the study of unimodal learning. Here, Masked CL performs better than the baseline on two
datasets.

B. Experimental Setups

Pretraining. We train eight contrastive vision-language models, categorized along three key dimensions: transferability
(RQ1), unimodal learning (RQ2), and fine-grained representation learning (RQ3). Table 5 presents the benchmarked
methods and their descriptions. Here, Fast CL follows the prescription of contrastive learning between a masked image
and the corresponding text, proposed by FLIP (Yao et al., 2021). The training data consists of 2.8 million image-text pairs
encompassing radiology (1.4M), histopathology (1.2M), and general medical images (e.g., endoscopy). Please see Figure
2 for a few samples. These pairs are sourced from four medical datasets including PMC-OA (Lin et al., 2023), Quilt-1M
(Ikezogwo et al., 2024), MIMIC-CXR (Johnson et al., 2019), and ROCO (Pelka et al., 2018). These datasets contain a
broad spectrum of textual content such as scholarly articles, clinical reports, and social media posts. We use the training
splits of Quilt-1M, MIMIC-CXR, and ROCO for pretraining, while the test splits are later used for retrieval in downstream
evaluation. The PMC-OA dataset is entirely used for pretraining. Please refer to Appendix Section C for more details on the
pretraining data.

Evaluation. We perform an extensive evaluation of all models on a total of 25 retrieval, classification, and visual question-
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Figure 5. F1 score for linear probing on the study of feature granularity. Here, Image Captioning and Fast CL outperform the baseline on
4 datasets each.

Table 7. Training Datasets

Name | Image Sub-modality | Training Split Size
PMC-OA Radiology and Histopathology | 1.3M

Quilt-1M Histopathology 1.0M
MIMIC-IV-CXR | Radiology 369.0K

ROCO Radiology 65.6K

SUM | | 2.7T™M

answering (VQA) tasks. Within our evaluation, we also explore models’ generalization performances on two modalities
including dermatology and ophthalmology that are not present in pretraining data. Table 6 presents the datasets used for all
evaluations. The image and text retrieval tasks encompass both image-to-text (I—T) and text-to-image (T—1) retrieval. To
evaluate the (I—T) performance, we utilize test sets from the ROCO, Quilt, and MIMIC-CXR datasets. For each case, we
report Recall @200 results. The image classification tasks include both zero-shot classification and linear probing across 22
tasks, including histopathology (9 tasks), radiology (8 tasks), dermatology (3 tasks), and ophthalmology (2 tasks). Visual
question-answering is performed using the Mixture of Enhanced Visual Features (MEVF) method (Do et al., 2021) without
using a decoder. We use our trained vision and text encoders to encode the image and question, respectively. This task
contains open- and close-ended questions and is mapped as a classification problem and performed on PathVQA (He et al.,
2020), VQARAD (Lau et al., 2018).

Inspired by (Wang et al., 2023), we also perform contrastive learning between representations of an original image and its
masked version, Figure 1 (d). Following (Dosovitskiy et al., 2020), we divide the image into non-overlapping patches and
then use a masking operator, M, to randomly mask a certain fraction of patches. The unimodal contrastive loss in this case
is defined as,

Lunimodal = Iglgn IE./\/I,B |:‘€con (5(30(3))3 f(sﬁ(M (B)))):| :
Finally, in each case, the text and image encoders are trained by optimizing,

)\gmultimodal + (1 - )\>£unimodala

where, {mulimodal 18 the image-text contrastive loss (Eq. 2), and 0 < A < 1 is a tradeoff parameter.

C. Datasets

Table 7 shows the datasets we used for training all models and each dataset’s size and image sub-modality. The training data
is balanced between radiology and histopathology sub-modalities.
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MIMIC-CXR: MIMIC-CXR contains 377,110 images from 65,379 patients, with de-identified free-text reports describing
the images. This dataset is the largest public chest X-ray dataset, acquired in the emergency department of Beth Israel
Deaconess Medical Center in the US. For each patient, there are multiple views and a corresponding report labelled for
13 common radiological conditions using the CheXpert labeller (Irvin et al., 2019) or with “no finding” if no condition is
present. Available labels include atelectasis, cardiomegaly, consolidation, edema, enlarged cardiomediastinum, fracture,
lung lesion, lung opacity, pleural effusion, pleural other, pneumonia, pneumothorax, support devices, and no finding.

Quilt-1M: Quilt-1M contains more than one million histopathology image-text pairs. This dataset comprises four subsets.
The main subset, Quilt, contains 802, 144 image-text pairs sourced from 1,087 hours of education histopathology videos on
YouTube. Images and textual captions were automatically extracted from the videos using a mixture of models, including
large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. Three other
subsets are sourced from PubMed Open Access Articles, The Large-scale Artificial Intelligence Open Network (LAION-5B),
and Twitter data from OpenPath. Image-text pairs which are related to histopathology were extracted from these three
datasets and combined with Quilt to constitute more than one million image-text pairs.

ROCO: Radiology Objects in COntext (ROCO) is a set of over 81K radiology image-text pairs with several medical
imaging modalities including Computer Tomography, Ultrasound, X-Ray, Fluoroscopy, Positron Emission Tomography,
Mammography, Magnetic Resonance Imaging, Angiography. ROCO is sourced from open-access biomedical articles on
PubMedCentral.

PMC-OA: PMC-OA contains 1.65M image-text pairs encompassing histopathology, radiology, digital camera output, and
other modalities. PMC-OA comprises many diagnostic procedures including X-ray, MRI, CT, Fluorescence, Ultrasound,
fMRI, ENG, Radioisotope, Endoscope, Mitotic, DOT and PET. The pairs are automatically collected from PubMedCentral’s
open-access articles via a pipeline proposed in the original paper (Lin et al., 2023).

D. Hyperparameter and vision encoder configuration

All hyperparameters were established using vanilla contrastive learning, achieving the lowest validation loss across four
retrieval tasks. We tuned the learning rate and batch size by training a selected model (ViT-B/32 and GPT/77) with various
values of each hyperparameter and choosing the pair of hyperparameters which yielded the least validation loss. The chosen
hyperparameters are [ = 5¢~° and batch size of 32. Validation was done on the validation split of the PMC-OA dataset.
After selecting the learning rate and batch size, we fixed the text encoder, GPT/77, and tested three different vision encoders
to identify the optimal combination for all experiments. The least validation loss and retrieval scores for each encoder are
shown in Table 1. As observed in Table 1, the combination of the vision encoder ViT-B/16 and the GPT/77 text encoder
outperformed the other two vision encoders. This combination and the above hyperparameter will be used for all subsequent
experiments.

E. Pretraining

For pretraining, we use a cosine decay learning rate scheduler with no warmup steps. We use the AdamW optimizer
(Loshchilov & Hutter, 2017) with a weight decay of 0.1, 51 = 0.9 and 52 = 0.999, along with gradient accumulation with a
frequency of 4. Gradient accumulation performs gradient updates after processing 4 batches. We use a cosine decay learning
rate scheduler with no warmup steps. Our experiments are distributed across four A40 or A100 GPUs.

F. Downstream evaluation

Tables 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 show AUC and F1 score of linear probing and zero-shot classification for
the three RQs. Table 20 shows VQA results for encoder selection. Tables 21, 22, 23 show VQA results for the three RQs.
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Table 8. Linear Probing AUC across various medical datasets for models in RQ1.

S| S|
N N
|8 - |8 -
= =g« = =g«
2 = = = A 2 = = = A
£y | 5| =g Ele | 5%y
% s )~ )~ & % & )~ )~ &
Dataset = E = = E Dataset ==} é = = E
sicap 091 | 0.88 | 0.88 | 0.91 | 0.98 || dermamnist+ 0.96 | 096 | 0.96 | 0.96 | 0.96
pad_ufes_20 0.88 | 0.90 | 0.88 | 0.88 | 0.89 || octmnist+ 0.97 | 096 | 0.96 | 0.96 | 0.96
skin_cancer 095 ] 096 | 0.96 | 0.96 | 0.96 || pneumoniamnist+ | 0.99 | 0.97 | 0.98 | 0.99 | 0.99
pcam 095 | 091 | 0.94 | 0.95 | 0.95 || retinamnist+ 0.86 | 0.83 | 0.85 | 0.86 | 0.87
nct_crc_he_100k | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 || breastmnist+ 0.88 | 0.88 | 0.89 | 0.89 | 0.88
1c25000_lung 0.99 | 1.00 | 1.00 | 1.00 | 1.00 || bloodmnist+ 099 | 0.79 | 091 | 091 | 091
1c25000_colon 1.00 | 1.00 | 1.00 | 1.00 | 1.00 || tissuemnist+ 091 | 0.89 | 091 | 091 | 091
bach 098 | 090 | 0.99 | 0.97 | 0.98 || organamnist+ 0.99 | 099 | 0.99 | 1.00 | 0.99
pathmnist+ 0.99 | 099 | 099 | 0.99 | 0.99 || organcmnist+ 0.99 | 099 | 099 | 0.99 | 0.99
chestmnist+ 0.78 | 0.75 | 0.77 | 0.79 | 0.80 || organsmnist+ 097 | 097 | 097 | 098 | 0.97
5 E) ) )
[ o ] =) = o ] =)
@ A < A < ) A = A <
£ 8 as ) A £ g M g A
% ] )~ ) )~ % ] )~ & )~
Dataset /® é = E = Dataset =< E = é =
sicap 091 | 090 | 0.90 | 0.92 | 0.92 || dermamnist+ 0.96 | 0.96 | 0.96 | 0.96 | 0.96
pad_ufes_20 0.88 | 0.90 | 0.88 | 0.90 | 0.87 || octmnist+ 097 | 0.97 | 0.97 | 099 | 0.97
skin_cancer 095 | 096 | 0.96 | 0.96 | 0.96 || pneumoniamnist+ | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
pcam 095 | 093 | 0.96 | 0.95 | 0.95 || retinamnist+ 0.86 | 0.86 | 0.85 | 0.86 | 0.86
nct_crc_he_100k | 0.98 | 0.99 | 0.99 | 1.00 | 0.99 || breastmnist+ 0.88 | 0.85 | 0.89 | 0.90 | 0.88
1c25000_lung 0.99 | 1.00 | 1.00 | 1.00 | 1.00 || bloodmnist+ 0.99 | 1.00 | 1.00 | 1.00 | 1.00
1c25000_colon 1.00 | 1.00 | 1.00 | 1.00 | 1.00 || tissuemnist+ 091 | 090 | 091 | 091 | 091
bach 098 | 0.96 | 0.99 | 0.98 | 0.98 || organamnist+ 0.99 | 0.99 | 1.00 | 0.99 | 1.00
pathmnist+ 0.99 | 099 | 0.99 | 1.00 | 0.99 || organcmnist+ 0.99 | 099 | 099 | 0.99 | 0.99
chestmnist+ 0.78 | 0.96 | 0.79 | 0.80 | 0.79 || organsmnist+ 097 | 097 | 098 | 0.98 | 0.99
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Table 9. Linear Probing F1-score across various medical datasets for models in RQ1.
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= | = | F | = | = | E|:

ElS |2 &5 EIS 2|5

7 < 1 1] < @ =) ] ] ]

Dataset 2 E = = E Dataset 2 é = = é
sicap 0.67 | 0.61 | 0.88 | 0.91 | 0.98 || dermamnist+ 0.68 | 0.68 | 0.70 | 0.70 | 0.71
pad_ufes_20 0.54 | 0.58 | 0.52 | 0.58 | 0.59 || octmnist+ 0.73 |1 0.68 | 0.70 | 0.71 | 0.71
skin_cancer 0.68 | 0.66 | 0.67 | 0.67 | 0.66 || pneumoniamnist+ | 0.91 | 0.85 | 0.88 | 0.90 | 0.93
pcam 0.88 | 0.82 | 0.85 | 0.88 | 0.87 || retinamnist+ 049 | 0.49 | 048 | 0.49 | 0.50
nct_crc_he_100k | 0.90 | 0.86 | 0.88 | 0.91 | 0.90 || breastmnist+ 0.84 | 0.79 | 0.78 | 0.77 | 0.78
1c25000_lung 0.99 | 098 | 1.00 | 1.00 | 1.00 || bloodmnist+ 0.97 | 0.89 | 091 | 091 | 091
1c25000_colon 1.00 | 1.00 | 1.00 | 1.00 | 1.00 || tissuemnist+ 0.54 | 0.49 | 054 | 0.54 | 0.52
bach 0.88 | 0.67 | 0.99 | 0.97 | 0.98 || organamnist+ 092 | 0.89 | 0.99 | 1.00 | 0.99
pathmnist+ 091 | 0.88 | 0.99 | 092 | 0.99 || organcmnist+ 0.85 | 0.81 | 0.99 | 0.99 | 0.99
chestmnist+ 0.08 | 0.02 | 0.06 | 0.07 | 0.09 || organsmnist+ 0.73 | 0.70 | 0.99 | 0.98 | 0.97

0 =) ) )

[ 5 ] ) [ 5 = c«

I T R B T - B I
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Dataset 2 é = E = Dataset 2 é = é =
sicap 0.67 | 0.63 | 0.66 | 0.70 | 0.70 || dermamnist+ 0.68 | 0.62 | 0.69 | 0.69 | 0.71
pad_ufes_20 0.54 | 0.58 | 0.54 | 0.55 | 0.51 || octmnist+ 0.73 | 0.73 | 0.63 | 0.73 | 0.72
skin_cancer 0.68 | 0.67 | 0.66 | 0.68 | 0.65 || pneumoniamnist+ | 0.91 | 0.88 | 0.92 | 0.91 | 0.89
pcam 0.88 | 0.85 | 0.88 | 0.89 | 0.88 || retinamnist+ 049 | 048 | 047 | 0.54 | 0.50
nct_crc_he_100k | 0.90 | 0.88 | 0.92 | 0.93 | 091 || breastmnist+ 0.84 | 0.77 | 0.83 | 0.81 | 0.80
125000 lung 0.99 | 0.99 | 1.00 | 1.00 | 1.00 || bloodmnist+ 097 | 096 | 0.98 | 0.98 | 0.98
1c25000_colon 1.00 | 1.00 | 1.00 | 1.00 | 1.00 || tissuemnist+ 0.54 | 050 | 0.54 | 0.54 | 0.54
bach 0.88 | 0.82 | 0.87 | 0.85 | 0.87 || organamnist+ 092 | 090 | 0.92 | 091 | 0.91
pathmnist+ 091 | 090 | 093 | 0.94 | 0.92 || organcmnist+ 0.85 | 0.81 | 0.85 | 0.84 | 0.84
chestmnist+ 0.08 | 0.05 | 0.06 | 0.08 | 0.07 || organsmnist+ 0.73 |1 0.69 | 0.73 | 0.73 | 0.72
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Table 10. Zero-shot classification AUC across various medical datasets for models in RQ1.
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Dataset /® E = = E Dataset = E = = —_
sicap 0.71 | 050 | 0.72 | 0.75 | 0.79 || dermamnist+ 0.60 | 0.50 | 0.64 | 0.63 | 0.64
pad_ufes_20 0.59 | 0.54 | 0.61 | 0.55 | 0.66 || octmnist+ 0.68 | 0.55 | 0.73 | 0.72 | 0.65
skin_cancer 0.57 | 048 | 0.66 | 0.72 | 0.63 || pneumoniamnist+ | 0.94 | 0.52 | 0.93 | 0.84 | 0.85
pcam 0.71 | 0.62 | 0.84 | 0.57 | 0.78 || retinamnist+ 0.59 | 0.48 | 0.41 | 047 | 0.56
nct_crc_he_100k | 0.95 | 0.78 | 0.86 | 0.91 | 0.92 || breastmnist+ 0.53 | 0.56 | 0.44 | 0.62 | 0.46
1c25000_lung 0.97 | 0.59 | 098 | 0.97 | 0.94 || bloodmnist+ 0.65 | 0.56 | 0.67 | 0.56 | 0.59
1c25000_colon 0.99 | 091 | 0.88 | 0.99 | 1.00 || tissuemnist+ 045 | 0.41 | 0.50 | 0.50 | 0.48
bach 0.82 | 0.62 | 0.66 | 0.73 | 0.79 || organamnist+ 0.85 | 073 | 0.82 | 0.84 | 0.85
pathmnist+ 0.88 | 0.79 | 0.81 | 0.83 | 0.86 || organcmnist+ 0.78 | 0.66 | 0.77 | 0.77 | 0.78
chestmnist+ 0.50 | 0.52 | 0.47 | 0.50 | 0.50 || organsmnist+ 0.81 | 0.63 | 0.78 | 0.78 | 0.80

5 E ) E
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Dataset = .-54 = E = Dataset - .-E4 = E =
sicap 0.71 | 0.59 | 0.67 | 0.80 | 0.68 || dermamnist+ 0.60 | 0.53 | 0.64 | 0.60 | 0.65
pad_ufes_20 0.59 | 0.59 | 0.65 | 0.60 | 0.62 || octmnist+ 0.68 | 0.69 | 0.56 | 0.72 | 0.69
skin_cancer 0.57 | 0.52 | 0.61 | 0.64 | 0.66 || pneumoniamnist+ | 0.94 | 0.83 | 0.56 | 0.83 | 0.78
pcam 0.71 | 0.79 | 0.80 | 0.71 | 0.59 || retinamnist+ 0.59 | 0.58 | 0.51 | 0.45 | 0.47
nct_crc_he_100k | 0.95 | 0.90 | 0.88 | 0.95 | 0.90 || breastmnist+ 0.53 | 036 | 0.53 | 0.55 | 0.58
125000 lung 097 | 094 | 098 | 0.98 | 0.96 || bloodmnist+ 0.65 | 0.61 | 0.56 | 0.62 | 0.65
1c25000_colon 0.99 | 098 | 0.97 | 1.00 | 0.95 || tissuemnist+ 045 | 043 | 0.50 | 0.50 | 0.35
bach 0.82 | 0.63 | 0.74 | 0.82 | 0.72 || organamnist+ 0.85 | 0.84 | 0.78 | 0.82 | 0.85
pathmnist+ 0.88 | 0.84 | 0.88 | 0.85 | 0.91 || organcmnist+ 0.78 | 0.78 | 0.71 | 0.76 | 0.78
chestmnist+ 0.50 | 0.50 | 0.50 | 0.50 | 0.50 || organsmnist+ 0.81 | 0.78 | 0.77 | 0.79 | 0.80
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Table 11. Zero-shot classification F1-score across various medical datasets for models in RQ1.
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Dataset = E = = E Dataset = E = = —_
sicap 0.40 | 0.12 | 0.30 | 0.35 | 0.32 || dermamnist+ 0.07 | 0.05 | 0.09 | 0.07 | 0.06
pad_ufes_20 0.12 | 0.08 | 0.21 | 0.07 | 0.15 || octmnist+ 0.23 | 0.10 | 0.26 | 0.25 | 0.24
skin_cancer 0.07 | 0.04 | 0.11 | 0.08 | 0.03 || pneumoniamnist+ | 0.52 | 0.38 | 0.39 | 0.71 | 0.77
pcam 0.66 | 0.57 | 0.69 | 0.54 | 0.65 || retinamnist+ 0.05 | 0.14 | 0.09 | 0.08 | 0.12
nct_crc_he_100k | 0.54 | 0.33 | 0.41 | 0.56 | 0.53 || breastmnist+ 0.52 | 055 | 0.22 | 047 | 047
1c25000_lung 0.73 | 0.26 | 0.90 | 0.85 | 0.77 || bloodmnist+ 0.03 | 0.56 | 0.10 | 047 | 0.59
1c25000_colon 095 | 082 | 041 | 0.93 | 0.94 || tissuemnist+ 0.03 | 0.04 | 0.09 | 0.04 | 0.03
bach 0.54 | 0.23 | 0.32 | 0.34 | 0.42 || organamnist+ 0.28 | 0.13 | 0.20 | 0.21 | 0.23
pathmnist+ 044 | 037 | 0.27 | 0.38 | 0.43 || organcmnist+ 0.19 | 0.11 | 0.20 | 0.19 | 0.16
chestmnist+ 0.09 | 0.10 | 0.10 | 0.10 | 0.10 || organsmnist+ 0.21 | 0.09 | 0.19 | 0.19 | 0.18
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sicap 04 | 0.15 | 0.20 | 0.56 | 0.28 || dermamnist+ 0.07 | 0.04 | 0.07 | 0.09 | 0.07
pad_ufes_20 0.12 | 0.07 | 0.16 | 0.03 | 0.10 || octmnist+ 0.23 | 030 | 0.10 | O.11 | 0.10
skin_cancer 0.07 | 0.07 | 0.06 | 0.10 | 0.18 || pneumoniamnist+ | 0.05 | 0.55 | 0.53 | 0.60 | 0.67
pcam 0.66 | 0.67 | 0.58 | 0.66 | 0.33 || retinamnist+ 0.52 | 0.12 | 0.02 | 0.08 | 0.12
nct_crc_he_100k | 0.54 | 0.42 | 0.55 | 0.63 | 0.59 || breastmnist+ 0.52 | 042 | 046 | 0.25 | 043
125000 lung 0.73 | 0.77 | 0.90 | 0.90 | 0.73 || bloodmnist+ 0.03 | 0.15 | 0.04 | 0.05 | 0.14
1c25000_colon 095 | 091 | 0.90 | 0.98 | 0.89 || tissuemnist+ 0.03 | 0.04 | 0.02 | 0.03 | 0.03
bach 0.54 | 033 | 0.37 | 0.52 | 0.36 || organamnist+ 0.28 | 0.24 | 0.22 | 0.18 | 0.23
pathmnist+ 0.44 | 046 | 0.44 | 0.43 | 0.57 || organcmnist+ 0.19 | 0.21 | 0.15 | 0.17 | 0.21
chestmnist+ 0.09 | 0.10 | 0.10 | 0.10 | 0.10 || organsmnist+ 0.21 | 0.20 | 0.20 | 0.20 | 0.20

Table 12. Linear probing AUC across various medical datasets for models in RQ2.
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Dataset < = Dataset < =
sicap 091 | 091 || dermamnist+ 0.90 | 0.90
pad_ufes_20 0.80 | 0.82 || octmnist+ 0.95 | 0.93
skin_cancer 0.90 | 0.90 || pneumoniamnist+ | 0.97 | 0.96
pcam 0.93 | 0.94 || retinamnist+ 0.84 | 0.78
nct_crc_he_ 100k | 0.99 | 0.99 || breastmnist+ 0.76 | 0.82
1c25000_1ung 0.97 | 0.97 || bloodmnist+ 0.98 | 0.98
1c25000_colon 1.00 | 1.00 || tissuemnist+ 0.89 | 0.89
bach 0.97 | 0.98 || organamnist+ 0.99 | 0.99
pathmnist+ 0.99 | 0.99 || organcmnist+ 0.99 | 0.99
chestmnist+ 0.79 | 0.79 || organsmnist+ 0.98 | 0.98
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Table 13. Linear probing F1-score across various medical datasets for models in RQ2.
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Dataset < = Dataset < =
sicap 0.67 | 0.60 || dermamnist+ 0.39 | 042
pad_ufes_20 0.41 | 0.36 || octmnist+ 0.64 | 0.51
skin_cancer 0.42 | 0.40 || pneumoniamnist+ | 0.84 | 0.84
pcam 0.85 | 0.86 || retinamnist+ 0.33 | 0.30
nct_crc_he_100k | 0.50 | 0.42 || breastmnist+ 042 | 042
1¢25000_lung 0.97 | 0.97 || bloodmnist+ 0.84 | 0.84
1c25000_colon 1.00 | 1.00 || tissuemnist+ 045 | 045
bach 0.55 | 0.54 || organamnist+ 0.85 | 0.84
pathmnist+ 091 | 0.92 || organcmnist+ 0.65 | 0.64
chestmnist+ 0.01 | 0.01 || organsmnist+ 0.64 | 0.64

Table 14. Zero-shot classification AUC across various medical datasets for models in RQ2.
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Dataset < = || Dataset < =
sicap 0.59 | 0.64 || dermamnist+ 0.44 | 049
pad_ufes_20 0.51 | 0.48 || octmnist+ 0.50 | 0.62
skin_cancer 0.47 | 0.53 || pneumoniamnist+ | 0.20 | 0.65
pcam 0.82 | 0.76 || retinamnist+ 047 | 048
nct_crc_he_100k | 0.89 | 0.87 || breastmnist+ 0.57 | 0.58
1c25000_1lung 0.98 | 0.96 || bloodmnist+ 048 | 0.44
1c25000_colon 0.92 | 0.96 || tissuemnist+ 0.49 | 0.50
bach 0.60 | 0.65 || organamnist+ 0.79 | 0.67
pathmnist+ 0.78 | 0.84 || organcmnist+ 0.72 | 0.69
chestmnist+ 0.41 | 0.44 || organsmnist+ 0.75 | 0.72

Table 15. Zero-shot classification F1-score across various medical datasets for models in RQ2.
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sicap 0.23 | 0.23 || dermamnist+ 0.12 | 0.03
pad_ufes_20 0.09 | 0.07 || octmnist+ 0.10 | 0.18
skin_cancer 0.13 | 0.12 || pneumoniamnist+ | 0.20 | 0.18
pcam 0.74 | 0.69 || retinamnist+ 0.05 | 0.05
nct_crc_he_100k | 0.44 | 0.37 || breastmnist+ 0.25 | 0.50
1c25000_1lung 0.89 | 0.86 || bloodmnist+ 0.09 | 0.12
1c25000_colon 0.67 | 0.88 || tissuemnist+ 0.05 | 0.12
bach 0.39 | 0.29 || organamnist+ 0.13 | 0.12
pathmnist+ 0.30 | 0.32 || organcmnist+ 0.12 | 0.12
chestmnist+ 0.10 | 0.10 || organsmnist+ 0.12 | 0.13
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Table 16. Linear probing AUC across various medical datasets for models in RQ3.
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sicap 092 | 0.90 | 092 | 0.87 | 0.87 | dermamnist+ 095 | 0.96 | 0.96 | 0.97 | 0.96
pad_ufes_20 0.90 | 0.88 | 0.87 | 0.89 | 0.86 | octmnist+ 096 | 096 | 0.96 | 0.96 | 0.95
skin_cancer 0.95 | 095 | 096 | 0.96 | 0.96 | pneumoniamnist+ | 0.98 | 0.99 | 0.98 | 0.99 | 0.98
pcam 096 | 094 | 091 | 091 | 0.92 | retinamnist+ 0.85 | 0.87 | 0.86 | 0.86 | 0.85
nct_crc_he 100k | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | breastmnist+ 0.87 | 0.86 | 0.90 | 0.90 | 0.88
1c25000_lung 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | bloodmnist+ 1.00 | 1.00 | 1.00 | 1.00 | 1.00
1c25000_colon 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | tissuemnist+ 091 | 091 | 091 | 091 | 091
bach 097 | 098 | 0.96 | 0.97 | 0.97 | organamnist+ 0.99 | 1.00 | 0.99 | 1.00 | 0.99
pathmnist+ 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | organcmnist+ 0.99 | 0.99 | 0.99 | 0.99 | 0.99
chestmnist+ 096 | 0.79 | 0.96 | 0.78 | 0.78 | organsmnist+ 0.98 | 098 | 098 | 0.97 | 0.98

Table 17. Linear probing F1-score across various medical datasets for models in RQ3.
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sicap 0.65 | 0.67 | 0.62 | 0.59 | 0.57 | dermamnist+ 0.39 | 0.69 | 0.39 | 0.70 | 0.68
pad_ufes_20 0.57 | 0.55 | 0.53 | 0.51 | 0.53 | octmnist+ 0.42 | 0.62 | 0.39 | 0.70 | 0.48
skin_cancer 0.65 | 0.66 | 0.66 | 0.67 | 0.66 | pneumoniamnist+ | 0.84 | 0.89 | 0.84 | 0.87 | 0.88
pcam 0.88 | 0.87 | 0.88 | 0.84 | 0.83 | retinamnist+ 0.50 | 0.50 | 0.50 | 0.50 | 0.50
nct_crc_he 100k | 0.61 | 0.89 | 0.59 | 0.90 | 0.85 | breastmnist+ 0.79 | 0.79 | 0.77 | 0.77 | 0.77
1c25000_lung 1.00 | 1.00 | 0.53 | 1.00 | 1.00 | bloodmnist+ 049 | 098 | 0.53 | 0.98 | 0.98
1c25000_colon 095 | 1.00 | 0.53 | 1.00 | 1.00 | tissuemnist+ 0.54 | 098 | 0.54 | 0.53 | 0.52
bach 0.83 | 0.89 | 0.80 | 0.80 | 0.84 | organamnist+ 090 | 091 | 0.88 | 092 | 091
pathmnist+ 092 | 091 | 092 | 091 | 0.87 | organcmnist+ 0.73 | 0.85 | 0.72 | 0.85 | 0.85
chestmnist+ 0.06 | 0.07 | 0.07 | 0.06 | 0.06 | organsmnist+ 0.77 | 0.73 | 0.77 | 0.73 | 0.73

Table 18. Zero-shot classification AUC across various medical datasets for models in RQ3.
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sicap 0.70 | 0.75 | 0.67 | 0.67 | 0.64 || dermamnist+ 0.60 | 0.55 | 0.60 | 0.60 | 0.52
pad_ufes_20 0.66 | 0.60 | 0.57 | 0.54 | 0.52 || octmnist+ 0.57 | 0.65 | 0.56 | 0.56 | 0.42
skin_cancer 0.67 | 0.67 | 0.59 | 0.59 | 0.57 || pneumoniamnist+ | 0.90 | 0.90 | 0.80 | 0.79 | 0.52
pcam 0.61 | 0.75 | 0.61 | 0.61 | 0.78 || retinamnist+ 0.50 | 0.55 | 0.50 | 0.50 | 0.60
nct_crc_he_ 100k | 0.91 | 0.90 | 0.91 | 0.91 | 0.80 || breastmnist+ 0.71 | 0.66 | 0.53 | 0.53 | 0.56
1c25000_lung 095 | 098 | 091 | 0.96 | 0.95 || bloodmnist+ 0.60 | 0.56 | 0.66 | 0.66 | 0.69
1c25000_colon 0.99 | 099 | 0.99 | 0.99 | 0.96 || tissuemnist+ 0.53 | 047 | 0.50 | 0.50 | 0.57
bach 0.72 | 0.77 | 0.72 | 0.72 | 0.77 || organamnist+ 0.78 | 0.82 | 0.81 | 0.82 | 0.81
pathmnist+ 0.84 | 0.84 | 0.85 | 0.87 | 0.76 || organcmnist+ 0.76 | 0.76 | 0.74 | 0.79 | 0.77
chestmnist+ 0.50 | 0.50 | 0.50 | 0.50 | 0.50 || organsmnist+ 0.78 | 0.79 | 0.75 | 0.79 | 0.76
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Table 19. Zero-shot classification F1-score across various medical datasets for models in RQ3.
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sicap 029 | 0.33 | 0.29 | 0.22 | 0.24 | dermamnist+ 0.05 | 0.08 | 0.04 | 0.14 | 0.12
pad_ufes_20 0.18 | 0.11 | 0.12 | 0.10 | 0.07 | octmnist+ 0.12 | 0.21 | 0.10 | 0.10 | 0.18
skin_cancer 0.16 | 0.16 | 0.13 | 0.12 | 0.13 | pneumoniamnist+ | 0.78 | 0.40 | 0.71 | 0.71 | 0.41
pcam 047 | 0.62 | 0.45 | 045 | 0.34 | retinamnist+ 0.14 | 0.07 | 0.14 | 0.14 | 0.12
nct_crc_he 100k | 0.53 | 0.51 | 0.53 | 0.59 | 0.39 | breastmnist+ 042 | 0.52 | 0.21 | 0.21 | 043
1¢25000_lung 0.62 | 0.84 | 0.53 | 0.79 | 0.79 | bloodmnist+ 0.49 | 0.05 | 0.53 | 0.02 | 0.02
1c25000_colon 0.95 | 0.96 | 0.53 | 091 | 0.84 | tissuemnist+ 0.08 | 0.02 | 0.12 | 0.03 | 0.06
bach 032 | 0.33 | 0.29 | 0.28 | 0.49 | organamnist+ 0.13 | 0.12 | 0.12 | 0.20 | 0.27
pathmnist+ 0.51 | 0.33 | 0.51 | 0.51 | 0.28 | organcmnist+ 0.13 | 0.14 | 0.13 | 0.18 | 0.22
chestmnist+ 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | organsmnist+ 0.13 | 0.14 | 0.13 | 0.17 | 0.20
Table 20. Visual question answering Accuracy score across two medical datasets for models in Table 1.
Vision encoders VQARAD PathVQA
Open-ended Close-ended Overall | Yes/No Number Other Overall
RN50 45.81 73.53 62.53 82.31 33.33 10.23 46.44
ViT-B/16 42.46 74.26 61.64 83.19 27.78 9.99 46.75
ViT-B/32 44.13 75.37 62.97 82.63 27.78 9.7 46.33
Table 21. Visual question answering Accuracy score across two medical datasets for models in RQI.
Models VQARAD PathVQA
Open-ended Close-ended Overall | Yes/No Number Other Overall
Baseline 42.46 74.26 61.64 83.19 27.78 9.99 46.75
Text Full Freeze 40.78 72.47 59.87 82.96 27.78 10.11  46.69
Text Partial Freeze (3 Layers Unlocked) 41.34 75.74 62.08 83.81 33.33 10.14 47.15
Text Partial Freeze (6 Layers Unlocked) 43.58 76.10 63.19 82.6 33.33 9.67 46.31
Text Partial Freeze (9 Layers Unlocked) 46.93 73.90 63.19 82.37 27.78 8.92 45.81
Image Full Freeze 38.55 73.90 59.87 82.1 33.33 10.11 46.28
Image Partial Freeze (3 Layers Unlocked) 36.87 76.10 60.53 83.52 27.78 9.55 46.69
Image Partial Freeze (7 Layers Unlocked) 41.9 74.26 61.42 82.54 27.78 9.25 46.06
Image Partial Freeze (9 Layers Unlocked) 40.22 73.53 60.31 83.28 33.33 9.84 46.74
Table 22. Visual question answering Accuracy score across two medical datasets for models in RQ?2.
Models VQARAD PathVQA
Open-ended Close-ended Overall | Yes/No Number Other Overall
Baseline 42.46 74.26 61.64 83.19 27.78 9.99 46.75
Augmented CL 46.37 75 63.64 82.54 33.33 9.61 46.25
Masked CL 49.16 74.63 64.52 83.13 3333 10.23 46.86
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Table 23. Visual question answering Accuracy score across two medical datasets for models in RQ3.

Models VQARAD PathVQA

Open-ended Close-ended Overall | Yes/No Number Other Overall
Baseline 42.46 74.26 61.64 83.19 27.78  9.99 46.75
FastCL 25% 41.90 75.37 62.08 83.19 27.78 10.08 46.80
FastCL 50% 40.22 75.74 61.64 82.31 27.78  9.88 46.25
FastCL 75% 45.25 74.63 62.97 83.10 27.78 10.17 46.80
FastCL 85% 40.78 69.85 58.31 83.43 27.78  9.70 46.72
Image captioning 41.34 76.47 62.53 82.6 61.11 11.84 47.46
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