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Abstract

The process of developing new drugs, from initial discovery to obtaining regulatory
approval, has historically been neither cost-efficient, expeditious, nor free from
risk. The growing availability of large-scale observational healthcare databases,
combined with the rise of foundational models, offer an unparalleled opportunity
to enable automatic high-throughput drug screening for both repurposing and
pharmacovigilance. In this work, we present a general workflow for automatic
high-throughput drug screening which estimates the association between various
drug exposures and disease outcomes. We provide frameworks for parsing the
accurate exposure length for each prescription from clinical texts and removing
confounding relationships between drugs and diseases using bioinformatic mapping
and foundational models. Using a self-controlled cohort study design, we tested the
intention-to-treat association between 3,444 medications and 276 diseases across
6.6 million UK patients from the Clinical Practice Research Datalink (CPRD).
Our analysis revealed 16,901 drug-disease pairs with significant risk reduction,
indicating candidates for repurposing, as well as 11,089 pairs with significant
risk increase which raise drug safety concerns. Our data-driven, nonparametric,
hypothesis-generating, and automatic approach demonstrates the potential of foun-
dational models in drug discovery and provides a scalable framework for drug
repurposing that can be extended to other observational medical databases.
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1 Introduction

Approved treatment options for many diseases, such as cancer, Alzheimer’s, or HIV, remain limited,
with restricted drug targets, high costs, and long development times hindering the development of
new therapies. As a result, there is considerable unmet demand for disease-modifying medications
for various groups of disorders. Meanwhile, there are 3,000 medications currently prescribed in
the UK, offering valuable opportunities to repurpose existing treatments for new indications. Aside
from the potential for discovering new uses, existing drugs must be monitored for adverse drug
reactions (ADR), also known as side effects, and other unintended consequences. In 2018, ADRs
accounted for 5-8% of impromptu UK hospitalizations that resulted in 4-6% hospital beds filled, with
an approximate annual bill of £1-2.5bn for the National Health Service (NHS) [1]. Longitudinal
observational databases, including electronic health records (EHRs) and administrative claims, offer
real-world insights into the relationships between drugs and clinical outcomes [2]. These types of
data capture broad healthcare information, including physician diagnoses, therapies filled for patients,
and lab tests, which have been actively used to conduct hypothesis-testing pharmacoepidemiology
studies for causal effect estimation in clinical settings. In recent years, there has been increasing
interest in adopting such databases to inform early drug development [3], identify novel treatment
pathways [4], and discover unknown benefits [5] and side-effects of existing medications [6] in a fast,
large-scale, data-driven, nonparametric, and high-throughput method.

Prior work employing identical study design has focused on specific clinical outcomes [7–10] or a
particular drug class of interest [11] using US administrative claims data. However, other contexts
of observational data, such as EHRs, remain underexplored. Moreover, the empirical performance
of several study designs has been assessed as a tool for risk identification and analysis in healthcare
data [12, 13]. Due to inadequate prescription information in claims data, a fixed 30-days gap between
consecutive fills was utilized to calculate length of exposure. Previous applications also relied on
manual removal of drugs confounded by indication and focused on drug-disease associations without
relating target quantity to causal interpretation.

Additionally, the past two years have seen an explosive growth of artificial intelligence-generated
content (AIGC) [14], especially through the release of the powerful large language model (LLM)
ChatGPT-4 developed by OpenAI [15]. While ChatGPT is considered a disruptor to the healthcare
industry [16], having demonstrated applicability to healthcare settings (e.g., [17]), its utility in drug
discovery has not been widely explored [18, 19].

In this paper, we establish an automated framework for high-throughput drug screening on potential
disease groups to detect beneficial clinical signals, leveraging foundational models to improve
exposure length estimation, remove drug-indication confounding pairs, and provide causal-wise
interpretations. We then apply this approach to identify drug-disease pairs with potential therapeutic
benefits, offering a novel and scalable approach to drug repurposing. We also include results on
pharmacovigilance in the Appendix.

2 Methods

2.1 Study Design

Owing to limitations of existing pharmacoepidemiology study designs, we focus on the self-controlled
cohort for high-throughput drug screening [7–11]. As illustrated in Figure 1, a self-controlled cohort
only utilizes new users of the drug of interest where individuals serve as their own controls. This setup
handles potential confounding issues in the treatment allocation and ensures exposures are randomized
automatically. This approach can be exemplified by studying the relationship of a drug-disease pair
when all new drug-users are incorporated into the cohort. For each specific patient, equal person-time
is allocated to the exposed period after initial prescription and to the unexposed period before first
treatment. This arrangement is then replicated for available medications on possible diseases in the
database, enabling a comprehensive analysis. Notably, simulation studies have demonstrated that
the self-controlled cohort method yields less biased estimates and better predictive performance
compared to other study designs [12, 13, 20, 21].
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I Control starts II Control ends;
Exposure starts

III Exposure ends IV

Possible initial diagnosis time
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Figure 1: Illustration of self-controlled cohort study design. Disease incidence can take place before
unexposure starts (I), during unexposure (II), during exposure (III), after exposure ends (IV), or never
happens.

2.2 Data Sources

The screening is conducted on Clinical Practice Research Datalink (CPRD), an ongoing primary care
database consisting of more than 60 million participants, with 16 million currently registered patients
among 674 general practices in the UK [22]. Patient follow-up starts in 1987 and ends at the earliest
between mortality, transfer-out, or last collection of practice. The mean and standard deviation of
follow-up are 16.77 years and 15.75 years. CPRD includes diagnosis (coded in medcode), therapy
(coded in prodcode and common dosages), lab tests, consultation, and referral information. The use
of CPRD database is approved by Independent Scientific Advisory Committee (ISAC) with protocol
20_000207.

2.3 Exposure Lengths

Raw prescription information is available in the “therapy” table of CPRD. For each prescription, the
table contains the patient id, “prodcode” for medicinal product, “eventdate” for prescription date,
“qty” for total quantity prescribed, and “numdays” for duration entered by prescriber [23]. By linking
to the ‘common dosages’ table, “dose_duration”, estimated duration available for 1% of all data, and
raw clinical text can be obtained for every prescription. The “eventdate” in the table is frequently
considered as the start date of exposure. Although the stop date is not recorded, we approximate it
by dividing “qty” by the number of doses to be taken per day, also referred to as numeric daily dose
(ndd). The “ndd” can be computed as ndd = DF×DN

DI , where where DF represents the dose frequency
(number of doses per day), DN the dose number (number of tablets to take each time), and DI the
dose interval (number of days between doses). DF, DN, and DI can all be parsed from unstructured
free text written by general practitioners following [24, 25] using R package doseminer [26]. To
extend exposure period by reducing “ndd” when clinical texts inform a range of plausible values, we
set DF to max, and DN and DI to min by drug.

The conversion from raw data into a table with exposure length can be roughly realized in 3 broad
steps. The initial cleaning step aims to correct missing and implausible values for “qty” and “ndd”.
For simplicity and completeness, we set the maximum of “qty” as 5,000, minimum of “qty” as
1, maximum of “ndd” as 50, and minimum of “ndd” as 1. The second step generates stop dates
at the prescription level by “qty” and “ndd”. The last step starts by summing durations for the
same medication with the same start dates. We overlook overlapping prescriptions due to enormous
time-complexity when recursively adding overlap to the end of subsequent prescriptions for all drug
users. To compensate for possible shorter exposure time, we allow for a maximum of 90-day gap
between consecutive refills when constructing the exposure period. The first and second steps are
implemented using R package drugprepr [27] while the last step leverages data.table to boost
speed.

The first prescription date is considered as exposure start and the time from treatment initiation until
discontinuation is considered as exposure end. Exposure time is then calculated by

exposure time = min{30 days, exposure start − frd, exposure end − exposure start,
min(tod, lcd)− exposure start}

where “frd” stands for first registration date, “tod” represents transfer out date, and “lcd” is last
collection date GOL [23]. It follows that control start = exposure start − exposure time and
exposure end = exposure start + exposure time. A minimum of 30 days exposure increases the
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chance to capture clinical outcomes. Once exposure period for each drug user is defined, longitudinal
diagnosis history can be combined and assessed.

2.4 Outcome Definition

The first incidence of every disease and category is identified by using code lists phenotyped by
validated bioinformatic algorithms from [28]. We test a total of 276 distinct diseases and 16 broad
condition categories.

2.5 Removing Confounding Pairs

A self-controlled cohort study requires that initial exposure is not caused by indication. For example,
if previous hypertension diagnosis (which happen to be both the indication and the clinical outcome at
the same time) led to subsequent anti-hypertensive treatment, pre-exposure incidence rate will always
be higher than post-exposure incidence rate. Then the spurious protective effect will appear because
the first hypertension diagnosis often occurs before (and thus impacts) initial anti-hypertensive
exposure. We can manually remove drug-indication combinations using subject-matter knowledge
from previous studies focused on particular diseases [7, 9–11] or on specific drug classes [8] with
clear relationship to the primary indication. However, since we aim to screen available drugs on
possible diseases, manual removal is laborious, time-consuming, and prone to error. To address
this issue, we propose a systematic framework for automatically identifying potential confounding
pairs by leveraging prodcode-medcode associations with established relationships. This approach
allows for efficient screening of drug-indication combinations across a wide range of diseases and
medications.

Figure 2 demonstrates the medication-indication open loop starting from potential therapies (coded
by prodcode) and ending at potential targets, or diagnoses (coded by medcode). The open loop starts
from prodcode, the only local therapeutic coding system in CPRD which can be mapped towards
British National Formulary (BNF) code and gemscript code. To the best of our knowledge, there
is no existing drug-indication map available within the UK system, and thus we have to turn to the
US system and leverage the may_treat relationship between rxcui and Medical Subject Headings
(MeSH) according to [29]. In order to map prodcode to rxcui and MeSH to medcode, respectively,
the Systematized Nomenclature of Medicine (SNOMED), an international organized terminology, is
selected as the bridge. As the map between gemscript codes and SNOMED drug codes is not actively
managed [30], the UK national BNF code, currently administered by National Institute for Health and
Care Excellence (NICE), is adopted instead. Prodcodes are then mapped to the first six digits of BNF
codes at the ingredient level [31]. Though BNF codes can only be mapped to UK SNOMED drug
codes, the “Has specific active ingredient” attributes further convert UK-only SNOMED drug codes
to universal SNOMED ingredient codes, which can be used to match rxcui and rxcui ingredients.

On the drug branch of Figure 2, we need to map MeSH code to medcode. As MeSH is US-based
while medcode is UK-based, SNOMED is again chosen as the international link. Since SNOMED
clinical codes cannot be mapped with CPRD-local medcode directly, Readcode, a clinical terminology
system that was widely used in UK general practice until 2018, comes into play. SNOMED clinical
codes are mapped to Readcode v3 then to Readcode v2. Although Readcode v2 stopped updating in
2016, it is the only version that can be converted to CPRD-local medcode directly. As a result, the
drug side, the clinical aspect, along with the rxcui-MeSH drug-indication map can be joined into a
comprehensive medcode-prodcode drug-indication table.

After removing drug-disease pairs following the deterministic mapping rules above, the remaining
drug-disease pairs are still subject to unmappable confounding by indication. To automate the high-
throughput screening procedure, we start by calling the ChatGPT API sequentially with the question
“is [drug] used to treat [disease]? Just answer yes or no” for all the remaining pairs. This prompt
limits the answer from ChatGPT to yes or no without explaining the reasoning of the association.
This approach to prompting ChatGPT demonstrates the nuanced impact of prompt wording on AI
responses. By allowing for an "unknown" option, we inadvertently encourage a more conservative
response pattern, where the AI tends to default to "unknown" rather than committing to a "yes" or
"no" answer. This behavior likely stems from the AI’s training to avoid making definitive statements
when uncertainty exists. The observation highlights the importance of carefully crafting prompts to
elicit the desired type of response, balancing between encouraging definitive answers and allowing for
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Figure 2: Drug indication map from prodcode to medcode. Solid boxes reveal specific coding system
while dashed boxes contain sources of maps between adjacent coding systems along with R packages
for extraction. If R package in a dashed box is missing, then the source of map are in machine-readable
format.

appropriate uncertainty. As noted by John [32], the art of prompt engineering involves understanding
these subtle interactions between prompt structure and AI behavior, and tailoring the prompts to
achieve the most useful and accurate responses for the task at hand.

After pulling out confounding by indication pairs, the remaining duplets are still subject to confound-
ing by risk factors of all indications of the drug of interest. Motivated by two-stage least squares, we
adopt a two-step procedure by taking the output from the first stage as part of input in the second
stage. For candidate pairs with the potential for drug repurposing, we start by calling the ChatGPT
API with the question: “which diseases are [drug] used to treat? Limit answer within eight words”
and record the response as [indication.of.drug] besides the drug-disease pairs. We limit the length of
the answers since ChatGPT tends to provide explanations which are irrelevant in the next stage. In
the second stage, we identify confounding by risk factors of all indications of the drug of interest
with the response from the first stage by asking the question: “is any disease in [indication.of.drug]
a risk factor of [disease]? Just answer yes or no.” Eventually, we can discard all pairs subject to
confounding by risk factors of all indications of the drug of interest.

Finally, for pharmacovigilance purposes, the drug-disease pairs may still suffer from natural con-
founding issues. The diseases can be a direct consequence of an indication of the drug, and we remove
such pairs by asking ChatGPT “is [disease] caused by any indication of [drug] Just answer yes or no”.
Though aging does not exacerbate time-varying confounding for drug repurposing in self-controlled
cohort studies, it is an major source of bias for drug safety especially for those medications with
long exposure. As people getting older after prescribing the drug, the probability of developing
aging-related diseases increases regardless of the effect of the medication. Hence, for prescriptions
that last longer than a year, we remove pairs with a yes to the question “is [disease] more common as
people age? Just answer yes or no.”

2.6 Causal Interpretation

To our knowledge, IRR in a self-controlled cohort study has not been clearly expressed in counterfac-
tual language. In this section, we discuss a causal interpretation of IRR and its additive equivalent,
the incident rate difference (IRD). It can be shown that the interpretability of these quantities relies
on the untestable common trend assumption between factual rate before exposure and counterfactual
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rate after treatment initiation had the exposure been removed. This assumption becomes less likely to
hold as exposure length increases, so we conduct sensitivity analysis to inspect how estimates are
affected by possible violations of the assumption to various extent.

Suppose there are a∗ exposures of interest, j∗ outcomes of interest, and na units who have ever
been exposed to treatment a = 0, 1, . . . , a∗. Let Ai be the exposure (i = 1, 2, . . . , na) and the
time of the first exposure be time 0. For treatment a, assume Tia,pre is the control period before
time 0 and Tia,post is the exposed period after time 0. Let Yija,pre ∈ {0, 1} and Yija,post ∈ {0, 1}
denote whether unit i experiences non-terminal event j within [−Tia,pre, 0] and [0, Tia,post]. Note
that Yija,pre + Yija,post ∈ {0, 1} for all i, j, a since a patient can only encounter the event no more
than once for each treatment. Define Y a

ij,post as the counterfactual posttreatment event indicator for
outcome j had subject i received treatment a. Note that the potential outcomes for the pre-exposure
indicator are not defined since it will never be exposed.

We define the potential posttreatment incidence rate (IR) as

IRa
j,post =

E(Y a
ij,post)

E(Tia,post)

Then, the causal incidence rate ratio (IRR) and the causal incidence rate difference (IRD) can be
defined as

IRRa
j =

IRa
j,post

IRa=0
j,post

, IRDa
j = IRa

j,post − IRa=0
j,post

The following conditions are required to identify IRR or IRD:
Assumption 1 (Stable unit treatment value assumption (SUTVA)). Including no interference between
subjects after or before exposure Y

(A1,A2,...,An)
ij,post = Y

(A′
1,A

′
2,...,A

′
n)

ij,post , if Ai = A′
i, ∀i; and consistency

Y a
ij,post = Yija,post.

Assumption 2 (Common intensity assumption). E(Yija,pre)/E(Tia,pre) = E(Y a=0
ij,post)/E(Tia,post).

Had the exposure been removed, the population pretreatment intensity equals to the potential popula-
tion post-exposure intensity.
Assumption 3 (Positivity assumptions). Positivity holds for the population in the following periods:
pre-exposed period E(Tia,pre) > 0, post-exposed period E(Tia,post) > 0, and pretreatment observed
outcomes for the population E(Yija,pre) > 0. Note that causal IRD does not require E(Yija,pre) > 0.

Assumptions 1 and 2 are crucial to identify IRR/IRD but are both empirically unverifiable. Assump-
tion 2 is similar to the parallel trends assumption in difference-in-differences [44] and rate-change
assumptions in calibrated self-controlled cohort studies [45]. Note that this assumption is required
for self-controlled cohort studies but exchangeability is not needed since its external control group is
absent. Assumption 3 is ensured automatically since the study is designed to be self-controlled. In
addition to these requirements, all subjects are assumed to be observable from unexposure starts until
exposure ends. Identification issues pertaining to administrative censoring, terminal events such as
death, recurrent event, intermittent exposure, and lag-time are beyond the scope of this work [46, 47].

Under Assumptions 1, 2, and 3, the causal IRR can be identified and estimated as

IRRja =
E(Yja,post)/E(Ta,post)

E(Yja,pre)/E(Ta,pre)
, ÎRRja =

∑na

i=1 Yija,post/
∑na

i=1 Tia,post∑na

i=1 Yija,pre/
∑na

i=1 Tia,pre

and causal IRD can be identified and estimated as

IRRja =
E(Yja,post)

E(Ta,post)
−

E(Yja,pre)

E(Ta,pre)
, ÎRDja =

∑na

i=1 Yija,post∑na

i=1 Tia,post
−

∑na

i=1 Yija,pre∑na

i=1 Tia,pre

Suppose the IRR is a ratio between two rates with Poisson distribution [48]. Then, the closed-form
confidence interval can be computed as

CI(ÎRRja) =

∑na
i=1 Tia,pre/

∑na
i=1 Tia,post

2
(∑na

i=1 Yija,pre
)2

[
2

na∑
i=1

Yija,pre

na∑
i=1

Yija,post +
(
zα/2

)2 na∑
i=1

(Yija,pre + Yija,post)

±

√√√√(
zα/2

)2 na∑
i=1

(Yija,pre + Yija,post)×

{
4

na∑
i=1

Yija,pre

na∑
i=1

Yija,post +
(
zα/2

)2 na∑
i=1

(Yija,pre + Yija,post)

}
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where zα/2 is the z-statistic with type I error rate α/2. The closed-form large sample z-test based
confidence intervals for IRD between two Poisson rates can be found in [49].

The selection between IRR and IRD depends mainly on research tasks. IRR has the advantage of
cancelling background scale such that comparison across treatment a and outcome j can be made
directly. IRD focuses on the absolute scale of contrast whose intrinsic incidence rates may differ
substantially across a and j, such that broader comparisons become less meaningful.

The study results can be particularly controversial in situations when Tia,post or Tia,pre is large,
since time-varying factors may affect the validity of IRR/IRD analyses with critical reliance on the
untestable common intensity Assumption 2. Here, we provide a sensitivity analysis to examine how
violations of various scale would affect estimates. For IRR, suppose that E(Y a=0

ij,post)/E(Tia,post) ̸=
E(Yija,pre)/E(Tia,pre) = E(Y a=0

ij,post)/E(Tia,post) × biasIRR, where biasIRR > 0 is the bias for IRR.
Under this sensitivity model, the IRR can be expressed as

IRRja =
E(Y a

ij,post)/E(Tia,post)

E(Y a=0
ij,post)/E(Tia,post)

× 1

biasIRR
= IRRa

j ×
1

biasIRR

When biasIRR = 1, ÎRRja becomes an unbiased estimator for IRRa
j ; when 0 < biasIRR < 1, ÎRRja

serves as an upper bound for IRRa
j ; whereas when biasIRR > 1, ÎRRja acts as an lower bound for IRRa

j .
For IRD, we can parameterize the violation as E(Yija,pre)/E(Tia,pre) ̸= E(Y a=0

ij,post)/E(Tia,post) =

E(Y a=0
ij,post)/E(Tia,post)− biasIRD, where biasIRD is the bias for IRD. Under this sensitivity model, the

IRD can be expressed as

IRDja =
E(Y a

ij,post)

E(Tia,post)
−

E(Y a=0
ij,post)

E(Tia,post)
+ biasIRD = IRDa

j + biasIRD

When biasIRD = 0, ÎRDja becomes an unbiased estimator for IRDa
j ; when biasIRD > 0, ÎRDja serves

as an upper bound for IRDa
j ; whereas when biasIRD < 0, ÎRDja acts as an lower bound for IRDa

j .

As neither biasIRR nor biasIRD can be estimated from data, our sensitivity analysis can be conducted
by testing a set of values. Note that the conditional counterfactual incidence rate can be defined as
IRa

j,post(x) = E(Y a
ij,post | Xi = x)/E(Tia,post | Xi = x), where X must be baseline time-invariant

covariates, such that conditional counterfactual IRR/IRD, identification conditions, estimators, along
with sensitivity analysis can be adapted and derived accordingly.

3 Application

A total of 6,613,198 patients, 3,444 medications, and 276 diseases were analyzed in this study. We
also investigate various exposure lengths, age groups at initial prescription, drug classes, and more
general disease categories. The exposed period is designed to be the same as unexposed period at the
patient level for symmetry and simplicity. Only drug-disease pairs satisfying the following conditions
are included: (1) drug does not confound with disease through known pathways; (2) after pairing
with a specific drug, the total number of occurrences in the data should be more than 100; (3) the
number of outcomes during both control and exposure period is larger than 30. Depending on the
specification, the analyses require 208-256 CPU cores and 2-3TB memory, with execution times
ranging from several to less than 10 hours.

If there is no association between the exposure and the outcome, the pretreatment incidence rate
should be approximately identical to the posttreatment incidence rate such that the estimated IRR
should not be significantly away from 1. An upper 95% confidence interval of IRR < 1 reveals
potential protective effect while an lower 95% confidence interval of IRR > 1 indicates possible
adverse reactions. A total of 16,901 drug-disease pairs are found with significant risk reduction and a
total of 11,089 pairs revealed significant risk augmentation.

For repurposing candidates, we focus on dementia and present upper 95% confidence interval of
IRR, the number of participants exposed to each drug, exposure period mean, and exposure period
standard deviation by increasing upper 95% confidence interval of IRR in Table 1. The results
presented in Table 1 reveal several promising drug candidates for potential repurposing in dementia
prevention or treatment. Notably, all listed medications show significant protective effects, with
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upper bounds of the 95% confidence intervals for IRR well below 1. These drugs, ranging from
common over-the-counter medications like paracetamol and folic acid to prescription drugs such as
omeprazole and latanoprost, are typically used for diverse conditions including pain relief, acid reflux,
and glaucoma. The consistent protective signals across this varied group of medications underscore
the potential for repurposing existing drugs in novel approaches to dementia management, opening
up exciting avenues for further research and clinical investigation.

Table 1: Summary of self-controlled cohort study to repurpose multiple drugs candidates for dementia.
For each drug, “Upper” denotes the upper bound in the 95% confidence interval of IRR, “N exposed”
the number of participants exposed to the drug, “Exposure mean” the length of the exposure period
(in days), and “Exposure SD” the standard deviation of the exposure period.

Drug Upper N exposed Exposure
mean

Exposure
SD

chloroform / magnesium oxide light /
magnesium sulfate dried / sodium hydroxide 0.51 26,189 28.31 5.76

folic acid 0.53 280,096 28.43 5.53
omeprazole 0.53 1,408,560 28.86 4.72
dipyridamole 0.54 81,372 28.21 5.89
paracetamol 0.56 1,455,955 28.53 5.40
promethazine hydrochloride 0.56 77,760 29.31 3.71
quinine bisulfate 0.58 308,277 29.03 4.36
latanoprost 0.61 101,823 28.36 5.64
permethrin 0.62 118,084 321.29 96.81

To the best of our knowledge, no self-controlled cohort study has been conducted to explore unknown
adverse effects on various diseases. After removing malignancy outcomes, the lower 95% confidence
interval of IRR, the number of participants exposed to each drug, exposure period mean, and exposure
period standard deviation are presented partially by decreasing lower 95% confidence interval of IRR
in Table 2.

4 Discussion

4.1 Strengths

There are several strengths of this work. The self-controlled cohort study allows subjects to act as
their own control, automatically accounting for all time-fixed covariates (whether observed or not)
sycg as genetics. Moreover, by overshooting risk reduction and risk augmentation, it avoids the
pitfalls of narrow confidence intervals induced by underestimated variability and erroneous findings
resulting from multiple comparisons often seen in other cohort studies. While some potential effects
may be missed, the lack of significant discoveries indicates that the estimated associations are not
substantial, rather than entirely absent. Potential false positives (type 1 errors) are less concerning for
hypothesis-screening studies, we we are targeting candidates for futher research instead of confirming
causal effects.

Additionally, we defined causal IRR/IRD and outlined conditions for identification, with the key
distinction from exchangeability-based external control group methods being the common intensity
Assumption 2. Although this assumption is challenging in practice, the estimated IRR/IRD can
still serve as upper bounds for causal IRR/IRD if the control/exposed periods are long enough for
aging to become a dominant factor that boosts posttreatment incidence. We focused on Imbens’
approach [50] which targets average treatment effects for sensitivity analysis and does not require
detailed subject-matter knowledge of unmeasured time-varying confounders. Moreover, IRR/IRD
conditioned on time-fixed covariates can be readily defined and identified by some modifications to
the assumptions for unconditional IRR/IRD.

Accurate exposure lengths are critical for capturing clinical events and computing incidence rates
in self-controlled cohort studies. Since prescription lengths are not uniform across medication,
patient, practice, and region, setting a fixed value for all prescriptions would result in biased IRR/IRD
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estimates. We computed more accurate exposure lengths for each prescription by parsing clinical
texts, using common dosage information in CPRD.

The major drawback in self-controlled cohort studies is intrinsic confounding due to indications,
contraindications, comorbidities, complications, and off-label uses, where temporal sequences are
predetermined by existing clinical guidelines or natural connections between diseases. Due to medical
ontology incompatibilities between the UK and the US, only mappable drug-indication pairs can
be removed and often requiring manual input from physicians. Our application of foundational
models not only addresses unmappable confounding by indication and other types of drug-disease
relationships, but also enables the creation of new high-quality ontologies and extraction of clinical in-
formation from text data, adding value to the fields of bioinformatics and pharmacoepidemiology [51].
Finally, our framework demonstrates computational efficiency, allowing large-scale screening of rich
databases such as CPRD at a relatively fast rate which can be extended to other similar observational
databases.

4.2 Limitations

Chronic diseases might not be well suited for self-controlled cohort analysis when the amount of time
on medication after initial prescription is short. In such cases, the incidence rates before and after
treatment are expected to be similar, as aging is not an essential factor with short exposure times.
However, this was not a major issue for many drug-disease pairs found in the study, as patients with
shorter exposure times have a lesser contribution to capturing outcomes. Chronic diseases also pose
challenges due to their gradual onset and delayed formal diagnosis, which can result in temporal
misclassifications and erroneously increased estimated risks, potentially reducing true negatives for
repurposing intentions.

Clinical outcomes are phenotyped using diagnosis codes based on established studies, rather than
subjective definition of conditions. We avoid under-recording in CPRD data by not requiring multiple
diagnoses for the same condition to identify clinical outcomes, which may result in false positives due
to single exclusion, misdiagnosis, or misclassification. If these false positive cases are non-differential
with respect to the treatment, then the results should lie around the null which cannot be explained by
the directional effects found in the analysis. Additionally, this study is based on UK primary care
data, which may impact its generalizability to other countries with different treatment guidelines.

Another limitation is the potential for inaccuracies in ChatGPT responses used to identify known
drug-disease associations, as foundational models are known to occasionally produce “hallucinations”–
confident but incorrect answers. This could introduce false positives or negatives in the analysis.
Future work in this area should implement validation steps such as cross-referencing ChatGPT
outputs with curated databases or developing ensemble approaches that combine foundational model-
generated insights with traditional bioinformatics methods to mitigate the risks of hallucination errors
and enhance the reliability of pharmacovigilance findings.

5 Conclusion

The growing availability of observational databases enables the detection of unknown benefits via
large-scale in-silico drug screening, which helps to address the large unmet medical needs for
effectove disease-modifying therapies. We utilized a self-controlled cohort study to assess the
association between marketed drug initiation and disease onset in millions of patients using UK
primary care data from CPRD. We determined accurate exposure periods using unstructured text
analysis. To remedy built-in selection bias issues of the self-controlled cohort study, we discard
drug-disease pairs based on cross-ontology maps and insights from ChatGPT. We also offered causal-
wide interpretation of incidence rate contrasts along with an Imbens-type sensitivity analysis on the
critical common intensity assumption. After screening for positive signals, our approach identified
16,901 drug-disease pairs with reduced risk as potential candidates for repurposing. The results of
this large-scale analysis can help generate hypotheses for subsequent observational, preclinical, and
clinical research, which would further the validity and efficacy of our findings. The general workflow
of this work demonstrates the potential of AIGC in bioinformatics and pharmacoepidemiology, and
can be easily applied to other observational healthcare databases.
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A Appendix

Table 2: Summary of self-controlled cohort study for multiple drug-disease pairs for pharmacovigi-
lance. For each drug-disease pair, “Lower” denotes the lower bound in the 95% confidence interval
of IRR, “N exposed” the number of participants exposed to the drug, “Exposure mean” the length of
the exposure period (in days), and “Exposure SD” the standard deviation of the exposure period.

Drug Disease Lower N exposed Exposure
mean

Exposure
SD

atenolol primary pulmonary
hypertension 3.90 641,137 867.89 1345.64

naproxen
multiple myeloma and
malignant plasma
cell neoplasms

3.54 994,272 327.66 91.45

nicorandil anorectal fistula 3.37 82,631 753.49 1100.67
simvastatin aspiration pneumonitis 3.21 1,057,217 956.02 1199.80
salbutamol dilated cardiomyopathy 2.95 1,160,084 290.81 127.41
cyclopenthiazide /
potassium chloride dermatitis 2.91 17,013 376.98 372.25

chamomile extract menorrhagia and
polymenorrhoea 2.88 8,918 327.82 86.59

malathion lichen planus 2.86 82,966 132.14 106.52

metformin primary pulmonary
hypertension 2.69 358,596 984.75 1251.41

aciclovir trigeminal neuralgia 2.68 382,413 332.59 84.53
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper provides an automated framework for high-throughput drug screen-
ing on potential disease groups, leveraging foundational models to improve exposure length
estimation (section 2.3), remove drug-indication confounding pairs (section 2.5), and pro-
vide causal-wide interpretations (section 2.6). The study design is outlined in section 2.1
and the results of our analysis are included in section 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 4.2 is dedicated to discussing the potential limitations of our study.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We state the theoretical assumptions behind IRR/IRD identification in section
2.6, which assists in the causal interpretation of our results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper introduces a framework for screening drug-disease pairs in observa-
tional databases for potential repurposing or pharmacovigilance candidates. While some
aspects of the study are dataset-specific and are not directly applicable to other clinical
databases (e.g., computing the drug dosages from CPRD columns), we provide details on
each step of the screening process that can be reproduced in other experimental studies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The CPRD data used in this study is proprietary and cannot be accessed
without ISAC approval.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The study design do not require any model thus no sample splitting. Prompts
for foundational models are described and discussed in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the 95% confidence interval upper bound, number of datapoints,
exposure length mean, and exposure length SD, which are important to assess the significance
of our IRR/IRD estimations, in Table 1 and Table 2.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed in section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The use of CPRD data complied with the Institutional Review Board (IRB)
process, ensuring the ethical use of de-identified patient health records. This is in alignment
with the NeurIPS Code of Ethics.]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: The use of foundational models for drug repurposing and pharmacovigilance
enables new avenues for automated, fast, and economical signal identification from existing
clinical data. However, this work is subject to limitations and should only be used to inform
future confirmatory studies and clinical investigations.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As we do not release the data and models from CPRD, which is subject to
strict approval guidelines by ISAC, the risk of misuse by researchers applying our general
framework is extremely low.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are properly credited and the license and terms of use explicitly
mentioned are properly respected.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not directly crowdsourse or perform research with human
subjects beyond the approved use of past observational data as approved by ISAC.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The CPRD data was collected used in accordance with IRB. We did not
contribute to the collection or processing of CPRD data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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