
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MULTI-OBJECTIVE DIFFERENTIABLE NEURAL
ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Pareto front profiling in multi-objective optimization (MOO), i.e., finding a diverse
set of Pareto optimal solutions, is challenging, especially with expensive objectives
that require training a neural network. Typically, in MOO for neural architecture
search (NAS), we aim to balance performance and hardware metrics across devices.
Prior NAS approaches simplify this task by incorporating hardware constraints into
the objective function, but profiling the Pareto front necessitates a computationally
expensive search for each constraint. In this work, we propose a novel NAS
algorithm that encodes user preferences to trade-off performance and hardware
metrics, yielding representative and diverse architectures across multiple devices
in just a single search run. To this end, we parameterize the joint architectural
distribution across devices and multiple objectives via a hypernetwork that can
be conditioned on hardware features and preference vectors, enabling zero-shot
transferability to new devices. Extensive experiments involving up to 19 hardware
devices and 3 different objectives demonstrate the effectiveness and scalability
of our method. Finally, we show that, without any additional costs, our method
outperforms existing MOO NAS methods across a broad range of qualitatively
different search spaces and datasets, including MobileNetV3 on ImageNet-1k, an
encoder-decoder transformer space for machine translation and a decoder-only
space for language modelling.

1 INTRODUCTION

The ability to make good tradeoffs between predictive accuracy and efficiency (in terms of latency
and/or energy consumption) has become crucial in an age of ever increasing neural networks
complexity and size (Alabdulmohsin et al., 2023; Hoffmann et al., 2022; Kaplan et al., 2020; Zhai
et al., 2022) and a plethora of embedded devices. However, finding the right trade-off remains a
challenging task that typically requires human intervention and a lot of trial-and-error across devices.
With multiple conflicting objectives, it becomes infeasible to optimize all of them simultaneously
and return a single solution. Ideally, NAS should empower users to choose from a set of diverse
Pareto optimal solutions that represent their preferences regarding the trade-off between objectives.
Neural Architecture Search (NAS) (White et al., 2023) provides a principled framework to search for
network architectures in an automated fashion. Several works (Cai et al., 2020; Chen et al., 2021a;
Elsken et al., 2019b; Wang et al., 2020b) have extended NAS for multi-objective optimization (MOO),
considering performance and hardware efficiency metrics like latency and energy consumption.
However, to the best of our knowledge, no existing gradient-based method returns the full Pareto front
for the MOO problem at hand without repeating their search routine multiple times with different
hardware constraints.
In this work, we propose a scalable and hardware-aware Multi-Objective Differentiable Neural
Architecture Search (MODNAS) algorithm that efficiently trains a single supernet which can be
used to read off Pareto-optimal solutions for different user preferences and different target devices,
without any additional search steps. To search across devices, we frame the problem as a multi-task,
multi-objective optimization problem, where each task (device) has multiple (conflicting) objectives,
e.g., classification accuracy and latency. The user’s preferences are modelled by a preference vector
that defines a scalarization (weighted sum), of the different objectives. This preference vector, along
with features of the hardware of interest, is fed to a hypernetwork (Ha et al., 2017) that outputs
continuous architectural parameters α. To search in the space of architectures, we employ a one-shot

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0

1

2 3

Figure 1: MODNAS overview. Given a set of T devices, MODNAS seeks to optimize M (potentially
conflicting) objectives across these devices. To this end, it employs a MetaHypernetworkHΦ(r, dt),
that takes as input a scalarization r, representing the user preferences, and a device embedding dt, to
yield an un-normalized architectural distribution α̃. The Architect uses α̃ to sample differentiable
discrete architectures, used in the Supernetwork to estimate accuracy and in the MetaPredictor
to estimate the other M − 1 loss functions (e.g. latency, energy consumption) for every device. By
iterating over devices and sampling scalarizations uniformly from the M -dimensional simplex, at
each iteration we update the MetaHypernetwork using multiple gradient descent (MGD).

model and a bi-level optimization scheme, as is typically done in gradient-based NAS. In our case,
however, the upper-level parameters are the hypernetwork weights, optimized in expectation over
different preference vectors and hardware devices via multiple gradient descent (Désidéri, 2012).
To evaluate our method, we conduct experiments on multiple NAS search spaces, including CNN
and Transformer architectures, and up to 3 objectives across 19 hardware devices. While other NAS
methods that utilize hardware constraints in their search objectives require substantial search costs
both for each new constraint and each new hardware, MODNAS addresses both in a zero-shot manner,
without extra search cost, while yielding higher quality solutions.
Our contributions can be summarized as follows:

1. We present a principled approach for Multi-objective Differentiable NAS, that leverages hyper-
networks and multiple gradient descent for fast Pareto-Front approximation across devices.

2. This work is the first to provide a global view of the Pareto solutions with just a single search
run, without the need to repeat search or fine-tune on new target devices.

3. Extensive evaluation of our method across 4 different search spaces (NAS-Bench-201, Mo-
bileNetV3, an encoder-decoder and a decoder-only Transformer space), 3 tasks (image classi-
fication, machine translation and language modeling), and up to 19 hardware devices and 3
objectives, show both improved efficiency and performance in comparison to previous approaches
that use a constrained objective in their search.

To facilitate reproducibility, we provide our code via the following anonymous link.

2 BACKGROUND AND RELATED WORK

In this section, before describing our algorithm, we introduce some basic concepts, definitions and
related work. Refer to Appendix A for an extended related work.
Multi-objective optimization (MOO) for Multi-Task Learning. Consider a multi-task dataset D
consisting of N instances, where the feature vector of the i−th instance is denoted as xi ∈ X , and the
M -many associated target variables as y1i ∈ Y1, . . . , yMi ∈ YM . Moreover, consider there exists a
family of parametric models f(x;w) : X → {Y1 × · · · × YM}, parameterized by w, that maps the
input x to the joint space of the multiple tasks. To simplify the notation, we denote the prediction of the
m-th task as fm(x;w) : X → Ym, and the respective loss Lm(w) ≜ 1

N

∑N
i ℓm(ymi , fm(xi;w)).

The vector of the values of all loss functions is denoted as L(w) ≜ (L1(w), . . . ,LM (w)). MOO
then seeks to find a set of Pareto-optimal solutions w∗ that jointly minimize L(w)1:

w∗ ∈ argmin
w

L(w) (1)

1w can be replaced with any other parameter here, also architectural ones (see Section 3).

2

https://anonymous.4open.science/r/MODNAS-1CB7/README.md

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 2.1. (Pareto Optimality): A solution w2 dominates w1 iff Lm(w2) ≤ Lm(w1), ∀m ∈
{1, . . . ,M}, and L(w1) ̸= L(w2). In other words, a dominating solution has a lower loss value on
at least one task and no higher loss value on any task. A solution w∗ is called Pareto optimal iff there
exists no other solution dominating w∗.
Definition 2.2. (Pareto front): The sets of Pareto optimal points and their function values are called
Pareto set (Pw) and Pareto front (PL = {L(w)w∈Pw}), respectively.

Linear Scalarization. In MOO, a standard technique to solve the M -dimensional problem is
using a preference vector r ∈ S ≜ {RM |

∑M
m=1 rm = 1, rm ≥ 0,∀m ∈ {1, . . . ,M}} in

the M -dimensional probability simplex (Lin et al., 2019; Mahapatra & Rajan, 2020; Ruchte &
Grabocka, 2021). Every r ∈ S yields a convex combination of the loss functions in Equation 1
as Lr(w) = rTL(w). Given a preference vector r, one can apply standard, single-objective opti-
mization algorithms to find a minimizer w∗

r = argminw Lr(w). By sampling multiple r vectors,
one can compute Pareto-optimal solutions w∗

r that profile the Pareto front. Several methods (Hoang
et al., 2023; Lin et al., 2020; Navon et al., 2021; Phan et al., 2022) employ a hypernetwork (Ha et al.,
2017) to generate Pareto-optimal solutions given different preference vectors as input. In this work,
we utilize a hypernetwork conditioned on scalarizations to generate Pareto-optimal architectures.
Furthermore, we also extend the hypernetwork by conditioning it on different task vectors.
Multiple Gradient Descent (MGD). MOO can be solved to local optimality via MGD (Désidéri,
2012), as a natural extension of single-objective gradient descent, which iteratively updates w towards
a direction that ensures that all tasks improve simultaneously (called Pareto improvement): w′ ←
w − ξg∗w, where g∗w is a vector field that needs to be determined. If we denote by gmw = ∇wLm(w)
the gradient of the m-th scalar loss function, via Taylor approximation, the decreasing direction of
Lm when we update w towards g∗w is given by ⟨gmw , g∗w⟩ ≈ −(Lm(w′)− Lm(w))/ξ. In MGD g∗w
is chosen to maximize the slowest update rate among all objectives:

g∗w ∝ argmax
gw∈Rd,||gw||≤1

{
min

m∈[M]
⟨gw, gmw ⟩

}
. (2)

The early work of Désidéri (2012) has been extended in various settings, particularly multi-task
learning, with great promise (Lin et al., 2019; Liu & Vicente, 2021; Mahapatra & Rajan, 2020; Sener
& Koltun, 2018), but these approaches are applied to mainly a fixed architecture and extending them
to a supernet subsuming a search space of multiple architectures is non-trivial.
One-shot NAS and Bi-Level optimization. With the architecture space being intrinsically discrete,
large (often consisting of upto 1036 architectures) and hence expensive to search on, most existing
differentiable NAS approaches leverage the weight sharing paradigm and continuous relaxation to
enable gradient descent (Bender et al., 2018; Chen et al., 2021b; Dong & Yang, 2019; Liu et al., 2019;
2023; Movahedi et al., 2022; Pham et al., 2018; Xie et al., 2019; Xu et al., 2020a; Zhang et al., 2021).
Typically, in these approaches, architectures are stacks of cells, where the cell structure is represented
as a directed acyclic graph (DAG) with N nodes and E edges. Every transition from node i to j, i.e.
edge (i, j), is associated with an operation o(i,j) ∈ O, where O is a predefined candidate operation
set. Liu et al. (2019) proposed a continuous relaxation of the search space by parameterizing the
discrete operation choices in the DAG edges via a learnable vector α. This enables framing the NAS
problem as a bi-level optimization one, with differentiable objectives w.r.t. all variables:

argmin
α
Lval(w∗(α), α) s.t. w∗(α) = argmin

w
Ltrain(w, α), (3)

where Ltrain and Lval are the empirical losses on the training and validation data, respectively, w
are the supernetwork parameters, α ∈ A are the continuous architectural parameters, and w∗(α) :
A → Rd is a best response function that maps architectures to their optimal weights.
Comparison to single-objective constrained NAS. Early NAS methods predominantly targeted high
accuracy, whereas contemporary hardware-aware differentiable NAS approaches (Cai et al., 2018; Fu
et al., 2020; Jiang et al., 2021; Wan et al., 2020; Wang et al., 2021; Wu et al., 2019; 2021; Xu et al.,
2020b) are designed to identify architectures optimized for target hardware efficiency. Typically, these
methods integrate hardware constraints within their objectives, yielding a single optimal solution
and necessitating multiple search iterations to construct the Pareto front. Our proposed algorithm
addresses this by profiling the entire Pareto front in a single search iteration. While single-objective
constrained optimization is advantageous in scenarios demanding optimization of one objective under
a specific constraint, practical applications often require a suite of models adaptable to varying user

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

preferences even on a single device. Our efficient Pareto-front approximation algorithm provides
such a suite of optimal models to choose from.

3 HARDWARE-AWARE MULTI-OBJECTIVE DIFFERENTIABLE NEURAL
ARCHITECTURE SEARCH

We first formalize the multi-objective bi-level optimization NAS problem across multiple hardware
devices, and then introduce a scalable and differentiable method that combines MGD with linear
scalarizations to efficiently solve this problem.

3.1 PROBLEM DEFINITION & SKETCH OF SOLUTION APPROACH

In multi-objective NAS, the bi-level problem described in Equation 1 becomes more difficult, since
we are not only concerned with finding w∗ given a fixed architecture, but we want to optimize in the
space of architectures A as well. Assuming we have T hardware devices (target functions) and M
objectives (e.g. accuracy, latency, etc.), similar to (3), for every t ∈ {1 . . . T}, the Pareto set can be
obtained by solving the following bi-level optimization problem:

argmin
α

Lvalid
t (w∗(α), α) s.t. w∗(α) = argmin

w
Ltrain
t (w, α), (4)

where the M -dimensional loss vector Lt(w
∗(α), α) ≜

(
L1
t (w

∗(α), α), . . . ,LM
t (w∗(α), α)

)
is

evaluated ∀t ∈ {1, . . . , T}. Ltrain
t and Lvalid

t are the vectors with all M loss functions evaluated on
the train and validation splits of D, used in the lower- and upper-level problems of (4), respectively.

*

Figure 2: Architecture overview of
the MetaHypernetwork, which gets
as input a device embedding dt (in-
put to an embedding layer E) and
a scalarization r (input to K hyper-
networks) and yields an architecture
encoding α̃.

Our goal is to find Pareto-optimal architectures for each target
device, covering diverse and representative preferences for
different objectives. However, naively solving (4) for each
device t requires T independent bi-level searches, making
this very inefficient for large models. To overcome this, we
incorporate a single hypernetwork within the one-shot model
(supernetwork) commonly used in conventional NAS (Bender
et al., 2018; Liu et al., 2019; Pham et al., 2018). This allows
us to generate architectures based on device embeddings and
preference vectors in just one search run, reducing the search
cost from O(T) to O(1).

3.2 ALGORITHM DESIGN AND COMPONENTS

Our search procedure is composed of four core modular com-
ponents (see Figure 1): (1) a MetaHypernetwork that gen-
erates the architectural distribution; (2) an Architect that
samples discrete architectures from this distribution; (3) a
Supernetwork that exploits the weight-sharing paradigm for
search efficiency and serves as a proxy for the network accu-
racy; and (4) a MetaPredictor that predicts hardware metrics and enables gradient propagation back
to the MetaHypernetwork. We now discuss each of these in detail.
MetaHypernetwork. In order to generate architectures across multiple devices, inspired by Wang
et al. (2022) and Lin et al. (2020), we propose a MetaHypernetwork that can meta-learn across
different hardware devices (see Figure 2). Hypernetworks are a class of neural networks that generate
the parameters of another model. They were initially proposed for model compression (Ha et al.,
2017) and were later adopted for NAS (Brock et al., 2018) and MOO (Lin et al., 2020; Navon et al.,
2021). Here, given a preference vector r = (r1, . . . , rM) and a hardware device feature vector dt, for
device t ∈ {1, . . . , T}, we use the MetaHypernetwork HΦ(r, dt), parameterized by Φ, to generate
an un-normalized architecture distribution α̃Φ that is later used to compute the upper-level updates
in (4). Similar to Lee et al. (2021b), dt is a fixed-size feature vector that is obtained by evaluating
a fixed set of reference architectures on device t. The MetaHypernetwork is composed of 2 main
components (see Figure 2):

1. A bank of K independent hypernetworks: hpn1, . . . , hpnK , that parse the preference vector r and
generate the architectural parameters α̃1, . . . , α̃K , respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2. A linear layer E, that learns a similarity map from device feature vectors to the bank of hpns. E
takes as input the device feature vector dt and outputs an attention vector of size K.

The final output, α̃Φ, of the MetaHypernetwork is computed as a weighted sum of the outputs of the
K hypernetworks, where the vector of weights is the output of the linear layer E. For a more detailed
description of the MetaHypernetwork we refer the reader to Appendix E.2.
In all experiments, we initialize the MetaHypernetwork to yield a uniform probability mass over
all architectural parameters for all scalarizations and device embeddings. By using the preference
vector r to create a linear scalarization of Lt and the MetaHypernetwork to model the architectural
distribution across T devices, the bi-level problem in (4) reduces to:

argmin
Φ

Er∼S
[
rTLvalid

t (w∗(αΦ), αΦ)
]

s.t. w∗(αΦ) = argmin
w

Er∼S
[
rTLtrain

t (w, αΦ)
]
, (5)

where αΦ are the normalized architectural parameters obtained from the Architect Λ(α̃Φ)

and rTLt(·, αΦ) =
∑M

m=1 rmLm
t (·, αΦ) is the scalarized loss for device t. Conditioning the

MetaHypernetwork on the hardware embeddings allows us to generate architectures on new test
devices without extra finetuning or meta-learning steps. Iniutively, the MetaHypernetwork, learns
to map the new test device, to the most similar device, in its learnt bank of embeddings (see also
Figure 12 in the appendix). We use the Dirichlet distribution Dir(β), β = (β1, . . . , βM), to sample
the preference vectors and approximate the expectation over the scalarizations using Monte Carlo
sampling. In our experiments, we set β1 = · · · = βM = 1, for a uniform sampling over the
(M − 1)-simplex, however, one can set these differently based on user priors or make it a learnable
parameter (Chen et al., 2021b).
MetaPredictor. For the cheap-to-evaluate hardware objectives, such as latency, energy consumption,
we employ a regression model pmθ (α, dmt) that predicts the target labels ymt for objective m and
device t, given an architecture α and device embedding dmt . We use the same predictors as Lee
et al. (2021b) and optimize the MSE loss: minθ Eα∼A,t∼[T]

(
ymt − pmθ (α, dmt)

)2
, as done in Lee

et al. (2021a) for meta-learning performance metrics across datasets. In our experiments, we pretrain
a separate MetaPredictor for every hardware objective m (e.g. latency, energy, etc.) on a subset
of (α, ymt) pairs, and use its predicted value directly in (5) as Lm

t (·, αΦ) = pmθ (αΦ, d
m
t). Since the

MetaPredictor is in principle a small neural network this pretraining step is inexpensive. During
search, we freeze and do not further update the MetaPredictor parameters θ.

Algorithm 1: MODNAS
Data: Dtrain; Dvalid; Supernetwork; device features

{dt}Tt=1; MetaHypernetwork HΦ; nr. of objectives
M ; Architect Λ; learning rates ξ1, ξ2.

1 while not converged do
2 for t ∈ {1, . . . , T} do
3 Sample scalarization r ∼ Dir(β)
4 Set arch params α̃Φ ← HΦ(r, dt)
5 Sample αΦ ∼ Λ(α̃Φ) from Architect

6 gtΦ ←
∑M

m=1 rm∇ΦLm
t (Dvalid;w, αΦ)

7 γ ← FrankWolfeSolver(g1Φ, . . . , g
T
Φ) ; // see Alg.4

8 g∗Φ ←
∑T

t=1 γt · gtΦ
9 Φ← Φ− ξ1 · g∗Φ ; // update MetaHypernetwork

10 for t ∈ {1, . . . , T} do
11 Sample scalarization r ∼ Dir(β)
12 Set arch params α̃Φ ← HΦ(r, dt)
13 Sample αΦ ∼ Λ(α̃Φ) from Architect

14 gtw ←
∑M

m=1 rm∇wLm
t (Dtrain;w, αΦ)

15 g∗w ← 1
T

∑T
t=1 g

t
w

16 w ← w − ξ2 · g∗w ; // update Supernetwork

17 return HΦ

Supernetwork. For expensive
objectives like neural network
classification accuracy, we use a
Supernetwork that encodes the
architecture space and shares pa-
rameters between architectures,
providing a best response func-
tion w∗(αΦ) for the scalarized
loss in (5). While any parametric
model could estimate this func-
tion, such as performance predic-
tors (Lee et al., 2021a), this re-
quires an expensive prior step of
creating the training dataset for
the predictor, by training archi-
tectures from scratch. To reduce
memory costs of Supernetwork
training, we: (1) use a one-hot
encoding of αΦ for differentiable
architecture sampling (Cai et al.,
2018; Dong & Yang, 2019; Xie
et al., 2019), activating only one
architecture per step, and (2) en-
tangle operation choice parameters in the Supernetwork, further increasing memory efficiency
beyond weight sharing (Sukthanker et al., 2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Architect. The Architect Λ(α̃) samples discrete architectural configurations from the un-
normalized distribution α̃Φ = HΦ(r, dt) and enables gradient estimation through discrete variables
for∇ΦLt(·, αΦ). Methods such as GDAS (Dong & Yang, 2019) utilize the Straight-Through Gumbel-
Softmax (STGS) estimator (Jang et al., 2017), that integrates the Gumbel reparameterization trick
to approximate the gradient. Here we employ the recently proposed ReinMax estimator (Liu et al.,
2023), that yields second-order accuracy without the need to compute second-order derivatives. See
Appendix B.1 for more details on these discrete samplers. Similar to the findings in Liu et al. (2023),
in our initial experiments, ReinMax outperforms the GDAS’ STGS estimator (see Figure 15 in the
Appendix), therefore, we use ReinMax in all experiments that follow.

3.3 OPTIMIZING THE MetaHypernetwork VIA MGD

We denote the gradient of the scalarized loss in (5) with respect to the MetaHypernetwork
parameters Φ, shared across all devices t ∈ 1, . . . , T , as: gtΦ = rT∇ΦLt(·, αΦ) =∑M

m=1 rm∇ΦLm
t (·, αΦ), where αΦ is the discrete architectural sample from the Architect Λ(α̃Φ).

0.72
0.86

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN

CMA-ES+LaMOO
CMA-ES
LS

MO-ASHA
RS-BO
LS-BO

qEHVI
NSGA-II
Global opt.

Figure 3: Hypervolume (HV) of MODNAS and
baselines across 19 devices on NAS-Bench-201.
For every device, we optimize for 2 objectives,
namely latency (ms) and test accuracy on CIFAR-
10. For each method, metric and device we report
the mean of 3 independent search runs. Higher
area in the radar plot indicates better HV. Test
devices are colored in red around the plot.

Multiple Gradient Descent (MGD) (Désidéri,
2012; Sener & Koltun, 2018) provides a plausible
approach to estimate the update directions for ev-
ery task simultaneously by maximizing (2). Via
the Lagrangian duality, the optimal solution to
equation 2 is g∗Φ ∝

∑T
t=1 γ

∗
t g

t
Φ, where {γ∗

t }Tt=1
is the solution of the following minimization
problem:

min
γ1,...,γT

{∥∥∥∥∥
T∑

t=1

γtg
t
Φ

∥∥∥∥∥
2

2

∣∣∣∣ T∑
t=1

γt = 1, γt ≥ 0,∀t
}

The solution to this problem is either 0 or, given
a small step size ξ, a descent direction that mono-
tonically decreases all objectives at the same
time and terminates when it finds a Pareto sta-
tionary point, i.e. gtΦ = 0,∀t ∈ {1, . . . , T}.
When T = 2, the problem above simplifies
to minγ∈[0,1]

∥∥γg1Φ + (1− γ)g2Φ
∥∥2
2
, which is a

quadratic function of γ with a closed form solu-
tion:

γ∗ = max

(
min

((g2Φ − g1Φ)
Tg2Φ

∥g1Φ − g2Φ∥
2

2

, 1
)
, 0

)
.

When T > 2, we utilize the Frank-Wolfe
solver (Jaggi, 2013) as in Sener & Koltun (2018),
where the analytical solution in for T = 2 is used
inside the line search. We provide the full algorithm to compute γ∗ in Algorithm 4 in Appendix B.2.
In Algorithm 1 and Figure 1 we provide the pseudocode and an illustration of the overall search phase
of MODNAS. For every mini-batch sample from Dvalid, we iterate over the device features dt (line
2), sample one scalarization r and condition the MetaHypernetwork on both r and dt to generate
the un-normalized architectural distribution α̃Φ (lines 3-4). We then compute the device-specific
gradient in line 6 which is used to estimate the γ coefficients (line 7) used from MGD to update Φ
(lines 8-9). Similarly to Liu et al. (2019), we use the first-order approximation to obtain the best
response function in the lower level (lines 10-14) and repeat the same procedure for the upper-level
(lines 2-6), except now the Supernetwork weights w are updated with the mean gradient (line 15),
over devices.

4 EXPERIMENTS

In this section, we firstly demonstrate the scalability and generalizability of our MODNAS approach
on a NAS tabular benchmark (Section 4.1). Then, we validate MODNAS on larger search spaces for
Machine Translation (Section 4.2), Image Classification and Language Modeling (Section 4.3).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The trained MetaHPN approximates the Pareto front by generating architectures given:

1) preference vectors

2) device type

Figure 4: Illustration of MODNAS inference.

Search Spaces and Datasets. We
evaluate MODNAS on 4 search
spaces: (1) NAS-Bench-201 (Dong
& Yang, 2020; Li et al., 2021) with
19 devices and CIFAR-10 dataset;
(2) MobileNetV3 from Once-for-All
(OFA) (Cai et al., 2020) with 12
devices and ImageNet-1k dataset;
(3) Hardware-Aware-Transformer
(HAT) (Wang et al., 2020b) on the machine translation benchmark WMT’14 En-De across 3 different
hardware devices; (4) HW-GPT-Bench (Sukthanker et al., 2024) – a GPT-2 based search space used
for language modeling on the OpenWebText (Gokaslan & Cohen, 2019) across 8 devices. We refer to
Appendices F and G for more details on these search spaces.
Evaluation. At test time, in order to profile the Pareto front with MODNAS on unseen devices, we
sample 24 equidistant preference vectors r from the M -dimensional probability simplex and pass
them through the pretrained MetaHypernetwork HΦ(r, dt) to get 24 architectures. Here the test
device feature dt is obtained similarly as for the train devices. See Figure 4 or an illustration.

10 20 30 40 50
Num. evaluations

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

titan_rtx_256

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

Figure 5: HV over number of evalu-
ated architectures on NAS-Bench-201
of MODNAS and the blackbox MOO
baselines on a test device. For MOD-
NAS we only do 24 full evaluations.

Baselines. We compare MODNAS against several base-
lines2, such as Random Search (RS), Local Search (LS) and
various Evolutionary Strategy and Bayesian Optimization
MOO methods. Please refer to Appendix C for a more
comprehensive description of each of them. Furthermore,
we also evaluate the MetaHypernetwork with randomly
initialized weights (RHPN).
Metrics. To assess the quality of the Pareto set solu-
tions, we use the hypervolume (HV) indicator, which
is a standard metric in MOO. Given a reference point
ρ = [ρ1, . . . , ρm] ∈ RM

+ that is an upper bound for all ob-
jectives {fm(·;w, α)}Mm=1, i.e. supαf

m(·;w, α) ≤ ρm,
∀m ∈ [M], and a Pareto set Pα ⊂ A, HV(Pα) measures
the region of non-dominated points bounded above from ρ:

λ
({

q ∈ RM
+ | ∃α ∈ Pα : q ∈

M∏
m=1

[fm(·;w, α), ρm]
})

,

where λ(·) is the Euclidean volume. HV can be interpreted as the total volume of the union of the
boxes created by the Pareto front.

4.1 SIMULTANEOUS PARETO SET LEARNING ACROSS 19 DEVICES AND ABLATIONS

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

fpga

MGD
MC Sampling
Sequential
Mean

Figure 6: HV over search epochs of dif-
ferent gradient schemes in MODNAS.

We firstly validate the scalability and learning capability
of MODNAS by evaluating on the NAS-Bench-201 (Dong
& Yang, 2020) cell-based convolutional space. Here we
want to optimize both latency and classification accuracy
on all devices. We utilize the same set of 19 heterogeneous
devices as Lee et al. (2021b), from which we use 13 for
search and 6 at test time. For the latency predictor, we use
the one from HELP, namely a graph convolutional network
(GCN), which we pretrain for 3 GPU hours on the ground
truth latencies on the 13 search devices as described in Sec-
tion 3. We run the MODNAS search (see Appendix E for
more details on the search hyperparameters), as described
in Algorithm 1, for 100 epochs (22 GPU hours on a single
NVidia RTX2080Ti) and show the HV in Figure 3 of the
evaluated Pareto front in comparison to the baselines, for which we allocate the same search time
budget across all devices equivalent to the MODNAS search + evaluation.

2We use the implementations from SyneTune (Salinas et al., 2022): https://github.com/awslabs/
syne-tune

7

https://github.com/awslabs/syne-tune
https://github.com/awslabs/syne-tune

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

gold_6226
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP 0.77

0.88

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

Figure 7: Pareto front on Eyeriss (left) and HV across
devices (right) of MODNAS ran with various latency
constraints on NAS-Bench-201. See Fig. 21 in Ap-
pendix I for all results.

Glob
al

op
t.

MODNAS RS

MO-A
SHA

NSGA-II

RHPN
qE

HVI

MO-R
E

RS-B
O

LS
-B

O
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
yp

er
vo

lu
m

e

0.96

0.92

0.83 0.82
0.81

0.77

0.73 0.73
0.71

0.65

FPGA

error0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

fpga_latency

0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

fpga_energy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Global opt.
RS
RHPN
MODNAS
LS-BO
MO-RE
MO-ASHA
NSGA-II
RS-BO
qEHVI

Figure 8: HV (left) and Pareto front (right) of
MODNAS and baselines on FPGA with 3 nor-
malized objectives: error, latency and energy
usage. HV is computed using the (1, 1, 1) refer-
ence point on the right 3D plot. See Fig. 16 for
results on Eyeriss.

Most notably, MODNAS consistently outperforms all other baselines across every device. For the
baselines, we conduct 19 separate search runs (one for each device), whereas MODNAS leverages
meta-learning to generate the Pareto set on each device using the same MetaHypernetwork in a single
search run. Interestingly, the trained MODNAS attention-based MetaHypernetwork significantly
outperforms the RHPN baseline in profiling the Pareto front, demonstrating its effectiveness in
optimizing across multiple devices and conflicting objectives simultaneously. In Figure 20a in the
Appendix, we compare MODNAS with additional baselines, running them at double the budget used
for the experiments in Figure 3. Figure 5 (see Figure 23 in the appendix for all devices) shows that
most baselines require more than twice the number of architecture evaluations to reach the same HV
as MODNAS. Results show that MODNAS remains the top performer across hardware devices on
average. Furthermore, in the appendix, Figure 20 presents radar plots for four additional metrics, and
Figure 18 and 17 results on NB201 when optimizing CIFAR-100 accuracy and device latency.
Reliably learnt embeddings for hardware devices. To demonstrate the effectiveness of our
MetaHypernetwork in learning hardware device similarities, Figure 12 in the appendix shows
K-means clustering of original and MetaHypernetwork embeddings, reduced via t-SNE. The
MetaHypernetwork successfully clusters similar devices, confirming its efficacy.
MetaHypernetwork update schemes: robustness of MGD. We compare the MGD update scheme
for the MetaHypernetwork Φ (line 9 in Alg. 1) against (1) the mean gradient over tasks: Φ ←
Φ−ξ 1

T

∑T
t=1 g

t
Φ; (2) sequential updates with all single tasks’ gradients: Φ← Φ−ξgtΦ, ∀t; (3) single

updates using gradients of MC samples over tasks: Φ ← Φ − ξgtΦ, t ∼ {1, . . . T}. Figure 6 (see
Figure 24 in Appendix I for more results) shows the HV over search epochs for these schemes. MGD,
by accounting for inter-task dependencies, achieves higher final HV, better anytime performance, and
faster convergence than the other schemes.
Scalability to three objectives. We show the scalability of MODNAS to 3 objectives, namely,
accuracy, latency and energy consumption. For this experiment we use the FPGA and Eyeriss tabular
energy usage values from HW-NAS-Bench (Li et al., 2021). In addition to the MetaPredictor for
latency, we pretrain a second predictor on the energy usage objective. We then run MODNAS and the
MOO baselines with the same exact settings as for 2 objectives. Results shown in Figure 8 indicate
that MODNAS can scale to M > 2 without additional search costs or hyperparameter tuning and yet
achieves HV close to the global optimum front of the NAS-Bench-201 space.

MODNAS

qE
HVI

NSGA-II

MO-A
SHA LS

MO-R
E RS

RHPN
LS

-B
O

HAT

RS-B
O

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

H
yp

er
vo

lu
m

e

0.72

0.69 0.69 0.69

0.68
0.67

0.65

0.64 0.64 0.64

0.61

RaspberryPi-CPU

3000 4000 5000 6000 7000 8000 9000
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
BL

EU

RaspberryPi-CPU
RS
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RHPN
MODNAS
HAT

Figure 9: HV and Pareto fronts of MODNAS and
baselines across devices on the HAT space.

MODNAS vs. constrained single-objective
optimization. To compare against single-
objective NAS with hardware constraints in
the objective, we run MetaD2A+HELP (Lee
et al., 2021b). Since MetaD2A + HELP is not
able to profile the Pareto front directly, we
run the NAS search 24 times with different
constraints, which we compute by denormal-
izing the same 24 equidistant preference vec-
tors we use to evaluate MODNAS. We also
extend MODNAS to incorporate user prior
constraints over the multiple objectives being
optimized during search. Namely, we add a

normalized constraint cm, such that if the predicted value from the MetaPredictor during search

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

satisfies this constraint, i.e. pmθ (αΦ, d
m
t) ≤ cm, we remove the gradient w.r.t. to that objective in lines

6 and 14 of Algorithm 1. In Figure 7 (other devices in Figure 21) we can see that when increasing
the latency constraint to 1 (only cross-entropy optimized), though the HV decreases, MODNAS
returns Pareto sets with more performant architectures. MetaD2A+HELP, despite multiple search
runs, prioritizes performance over diversity, resulting in less varied solutions.

4.2 PARETO FRONT PROFILING ON TRANSFORMER SPACE

MODNAS
LS-

BO

MO-ASH
A

RS-B
O

qE
HVI

MO-RE

NSG
A-I

I RS
RHPN HELP LS

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Hy
pe

rv
ol

um
e

0.76

0.74
0.73 0.73 0.73

0.72
0.71

0.67 0.67

0.65
0.64

Average HV (12 devices) for OFA

Figure 10: Average HV
of MODNAS and baselines
across 12 devices on OFA
space. For every device we op-
timize for 2 objectives, namely
latency (ms) and test accuracy
on ImageNet-1k.

To demonstrate its effectiveness beyond image classification and
CNN spaces, we apply MODNAS to the hardware-aware Trans-
former (HAT) search space from Wang et al. (2020b) on the WMT’14
En-De (Jean et al., 2015; Macháček & Bojar, 2014) machine transla-
tion task. We pretrain the MetaPredictor (details in Appendix E.1)
for 5 GPU hours on 2000 architecture samples from the search space
and then conduct the search for 110 epochs (6 days on 8 NVIDIA
RTX A6000 GPUs) using 2 search devices, adhering to the same
hyperparameters as Wang et al. (2020b) to optimize for latency and
validation cross entropy loss. We allocate to each baseline 2.5×
more runtime budget than MODNAS, resulting in 1300 (RS-BO)
to 6000 (MO-ASHA) total architecture evaluations, whereas MOD-
NAS evaluates only 24 generated architectures. Details on the HAT
search space and search hyperparameters are in Appendix F. We
evaluate MODNAS on all 3 devices (2 search and 1 test) using the
BLEU score, and results in Figure 9 show that MODNAS outper-
forms all baselines, achieving a higher hypervolume (left plot) of
the generated Pareto fronts (right plot). For HAT, we evaluate the
architectures provided in their paper. Additional results on other training devices and evaluation
metrics are presented in Figures 26, 27 and 28 in the Appendix.

4.3 EFFICIENT DIFFERENTIABLE MOO STARTING FROM PRETRAINED SUPERNETWORKS

Image Classification on ImageNet-1k. We now evaluate MODNAS on ImageNet-1k using the
MovileNetV3 search space from Once-for-All (OFA) (Cai et al., 2020). For this experiment, we
run MODNAS using 11 search (and 1 test) devices starting with the pretrained OFA supernetwork
and run the search further for 1 day on 8 RTX2080Ti GPUs. During the search, we only update the
MetaHypernetwork weights and keep the pretrained Supernetwork weights frozen. Details on the
search space and hyperparameters are in Appendices F and E.3. We use the simple MLP from Lee
et al. (2021b) as our MetaPredictor, pretraining it for 6 hours on 5000 sampled architecture-latency
pairs. To evaluate the 24 points generated by our MetaHypernetwork and baselines, we use the
OFA pretrained Supernetwork. Results in Figure 10 show that MODNAS achieves a higher average
HV across all devices compared to baselines, which we run for 192 hours using the OFA pretrained
accuracy predictor (see Figure 31 for all results and Figure 30 for the Pareto fronts).
Comparison to Zero-Cost Proxies. We also compare the HV of the Pareto front obtained by
MODNAS to that produced by NSGA-II (Deb et al., 2002), which uses a zero-cost proxy (ZCP) (Ab-
delfattah et al., 2021) for performance estimation instead of the actual accuracy. We select Zico (Li
et al., 2023) since it is one of the few ZCPs evaluated in the MobileNetV3 search space and on large
datasets like ImageNet-1k. Table 1 presents the results of this experiment on two devices. As shown,
despite its improved runtime efficiency, the ZCP-guided search underperforms compared to both the
existing baselines and MODNAS, which optimize for accuracy directly.

Table 1: HV of MODNAS and baselines on the OFA search space. For every device we optimize for
2 objectives: latency (ms) and validation accuracy on ImageNet-1k.

Device Name RS RHPN HELP EHVI LS LS-BO MO-ASHA RS-BO MO-REA NSGA-II Zico-NSGA-II MODNAS
v100_64 0.677 0.683 0.638 0.748 0.697 0.749 0.740 0.747 0.750 0.744 0.689 0.757
titan_rtx_64 0.722 0.698 0.663 0.751 0.734 0.755 0.736 0.753 0.752 0.744 0.690 0.763

Language Modeling with GPT-2. With the rapid growth of language model sizes, it is crucial to iden-
tify transformer variants that are efficient during inference (latency) while maintaining competitive

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.2 0.3 0.4 0.5
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

A100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

Figure 11: Pareto front of MOD-
NAS and baselines on the HW-
GPT-Bench, A100 GPU.

performance. We apply MODNAS to the GPT-S space from
HW-GPT-Bench (Sukthanker et al., 2024), which features a non-
convex Pareto front between perplexity and hardware metric ob-
jectives. Using pretrained Supernetwork weights from HW-
GPT-Bench, we conduct a single 6-hour search on 4 Nvidia A100
GPUs, optimizing for energy consumption (Wh) and perplexity
across 8 different GPU devices. See Appendix E for details on
the MetaHypernetwork architecture and search hyperparame-
ters. The Supernetwork weights are kept frozen while updating
the MetaHypernetwork. Figure 11 shows that, with the same
time budget, MODNAS matches or surpasses other MOO base-
lines, demonstrating its effectiveness in optimizing beyond con-
vex Pareto fronts.

4.4 COMPUTATIONAL COMPLEXITY

Table 2: Cost of MODNAS in comparison to other
methods. N is the number of trained architectures during
search, T the number of devices and C the number of
constraints.

Method Search Cost Pareto Set Build Cost

LEMONADE (Elsken et al., 2019a) O(NT) O(1)
Blackbox MOO (Daulton et al., 2020; Zhao et al., 2022) O(NT) O(1)
ProxylessNAS (Cai et al., 2018) O(CT) O(1)
MetaD2A + HELP (Lee et al., 2021a;b) O(N) O(CT)
OFA (Cai et al., 2020) + HELP (Lee et al., 2021b) O(1) O(CT)
MODNAS (Ours) O(1) O(1)

Ignoring the cost to train final architectures
in the Pareto set, methods like MetaD2A +
HELP (Lee et al., 2021a;b) have a worst-
case time complexity of O(CT) to build
the Pareto set, where T is the number of
devices and C is the number of constraints.
MODNAS reduces this to O(1) by con-
ditioning a single MetaHypernetwork on
both device types and constraints. Methods
like LEMONADE (Elsken et al., 2019a)
and ProxylessNAS (Cai et al., 2018) apply constraints during the search phase, requiring an indepen-
dent search per device. Black-box methods such as LEMONADE, NSGA-II (Deb et al., 2002), or
qEHVI (Daulton et al., 2020) train O(NT) architectures or a surrogate based on O(N) architectures in
the case of MetaD2A + HELP. In contrast, MODNAS and OFA have a cost of O(1) as they train a
single supernetwork. Although MODNAS iterates over T devices to compute g∗Φ and g∗w, Figure 25
in Appendix I.2 shows that MODNAS generalizes well on 17 test devices with only 2 search devices
due to its meta-learning capabilities. See Tables 2 and 5 in the Appendix for more details.

5 BROADER IMPACT AND LIMITATIONS

Broader Impact. In an era of large-scale models (e.g. foundation models), speeding up the search
and training cost for inference-optimal neural architectures is an important aspect of responsible
research (Cai et al., 2024; Muralidharan et al., 2024; Zhang et al., 2024a). The main goal of this work
is to improve the search costs, as well as the efficiency of the found architectures in terms of various
hardware metrics, therefore reducing the energy consumption and CO2 footprint.The energy savings
of these architectures will be amplified as they might be deployed on a large number of devices.
Limitations. While our differentiable multi-objective search method shows promising results, there
are potential limitations. MODNAS inherits challenges common to gradient-based search, such as
the risk of failure without proper tuning or regularization (Zela et al., 2020). For example, gradients
may favor one objective, leading to local optima that hinder exploration of the full Pareto front.
Additionally, the method relies on differentiable proxies for objectives, which may not always align
with ground truth values.

6 CONCLUSION

In this paper, we propose a novel hardware-aware differentiable NAS algorithm for profiling the
Pareto front in multi-objective problems. In contrast to constraint-based NAS methods, ours can
generate Pareto optimal architectures across multiple devices with a single hypernetwork that is
conditioned on preference vectors encoding the trade-off between objectives. Experiments across
various hardware devices (up to 19), objectives (accuracy, latency and energy usage), search spaces
(CNNs and Transformers), and applications (classification, machine translation, language modeling)
demonstrate the effectiveness and efficiency of our method.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

M. Abdelfattah, A. Mehrotra, L. Dudziak, and N. Lane. Zero-cost proxies for lightweight NAS.
In Proceedings of the International Conference on Learning Representations (ICLR’21), 2021.
Published online: iclr.cc. 9

Ibrahim Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in shape:
Scaling laws for compute-optimal model design. Thirty-seventh Conference on Neural Information
Processing Systems, 2023. 1

G. Bender, P-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le. Understanding and simplifying
one-shot architecture search. In Proceedings of the 35th International Conference on Machine
Learning (ICML’18), volume 80. Proceedings of Machine Learning Research, 2018. 3, 4, 17

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. Hardware-aware neural architecture search: Survey and taxonomy. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4322–4329,
8 2021. Survey Track. 17

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13:281–305, 2012. 19

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations, 2018. 4

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-All: Train one network and specialize it
for efficient deployment. In International Conference on Learning Representations (ICLR), 2020.
1, 7, 9, 10, 19, 24, 40

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2018. 3, 5, 10, 17

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and
Pavlo Molchanov. Flextron: Many-in-one flexible large language model. arXiv preprint
arXiv:2406.10260, 2024. 10

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 12270–12280, 2021a. 1, 19

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization. In International conference on machine learning, pp. 1554–1565. PMLR,
2020. 40

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. DrNAS:
Dirichlet neural architecture search. In International Conference on Learning Representations,
2021b. 3, 5

Richeek Das and Samuel Dooley. Fairer and more accurate tabular models through nas. Algorithmic
Fairness through the Lens of Time Workshop at NeurIPS, 2023. 17

S. Daulton, M. Balandat, and E. Bakshy. Differentiable expected hypervolume improvement for
parallel Multi-Objective Bayesian optimization. In Advances in Neural Information Processing
Systems, volume 33, pp. 9851–9864. Curran Associates, Inc., 2020. 10, 20

Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective bayesian
optimization over high-dimensional search spaces. In Uncertainty in Artificial Intelligence, pp.
507–517. PMLR, 2022. 17

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In Parallel Problem Solving
from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000
Proceedings 6, pp. 849–858. Springer, 2000. 17

11

iclr.cc

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197,
2002. 9, 10, 17, 19

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350:313–318, 2012. 2, 3, 6, 17, 40

X. Dong and Y. Yang. Searching for a robust neural architecture in four gpu hours. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 3, 5,
6, 27, 29, 40

X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In Proceedings of the International Conference on Learning Representations (ICLR’20),
2020. Published online: iclr.cc. 7, 20, 24

Samuel Dooley, Rhea Sanjay Sukthanker, John P Dickerson, Colin White, Frank Hutter, and Micah
Goldblum. Rethinking bias mitigation: Fairer architectures make for fairer face recognition. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. 17

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane.
Brp-nas: Prediction-based nas using gcns. Advances in Neural Information Processing Systems,
33:10480–10490, 2020. 17, 20

T. Elsken, J. Metzen, and F. Hutter. Efficient multi-objective neural architecture search via lamarckian
evolution. In International Conference on Learning Representations, 2019a. 10

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2019b.
1, 17

Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang Wang.
AutoGAN-distiller: Searching to compress generative adversarial networks. In Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 3292–3303. PMLR, 13–18 Jul 2020. 3, 17

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019. 7, 24

Nyoman Gunantara. A review of multi-objective optimization: Methods and its applications. Cogent
Engineering, 5(1):1502242, 2018. 17

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16,
pp. 544–560. Springer, 2020. 17

D. Ha, A. Dai, and Q. Le. Hypernetworks. In Proceedings of the International Conference on
Learning Representations (ICLR’17), 2017. 1, 3, 4

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search
via mixed-level reformulation. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11990–11999, 2020. 17, 29

Long P Hoang, Dung D Le, Tran Anh Tuan, and Tran Ngoc Thang. Improving pareto front learning
via multi-sample hypernetworks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 7875–7883, 2023. 3, 17

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Laurent Sifre.
An empirical analysis of compute-optimal large language model training. In Advances in Neural
Information Processing Systems, volume 35, pp. 30016–30030. Curran Associates, Inc., 2022. 1

12

iclr.cc
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh
Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas: Multi-objective neural
architecture search using reinforcement learning. arXiv preprint arXiv:1806.10332, 2018. 17

C. Igel, Nikolaus Hansen, and Stefan Roth. Covariance matrix adaptation for multi-objective
optimization. Evolutionary Computation, 15:1–28, 2007. 19

Rafael C Ito and Fernando J Von Zuben. Ofa 2: A multi-objective perspective for the once-for-all
neural architecture search. arXiv preprint arXiv:2303.13683, 2023. 17

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
Conference on Machine Learning, 2013. 6, 18

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In Proceedings of the International Conference on Learning Representations (ICLR’17), 2017.
Published online: iclr.cc. 6, 18

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. Montreal
neural machine translation systems for wmt’15. In Proceedings of the tenth workshop on statistical
machine translation, pp. 134–140, 2015. 9

Qian Jiang, Xiaofan Zhang, Deming Chen, Minh N Do, and Raymond A Yeh. Eh-dnas: End-to-end
hardware-aware differentiable neural architecture search. arXiv preprint arXiv:2111.12299, 2021.
3, 17

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020. 1

Sunghoon Kim, Hyunjeong Kwon, Eunji Kwon, Youngchang Choi, Tae-Hyun Oh, and Seokhyeong
Kang. Mdarts: Multi-objective differentiable neural architecture search. In 2021 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 1344–1349. IEEE, 2021. 17

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to
generate graphs from datasets. In International Conference on Learning Representations, 2021a.
5, 10

Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Hardware-adaptive efficient latency
prediction for nas via meta-learning. In Advances in Neural Information Processing Systems,
volume 34, pp. 27016–27028. Curran Associates, Inc., 2021b. 4, 5, 7, 8, 9, 10, 20, 21, 22, 24, 27

Jaeseong Lee, Duseok Kang, and Soonhoi Ha. S3nas: Fast npu-aware neural architecture search
methodology. arXiv preprint arXiv:2009.02009, 2020. 17

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
Wang, and Yingyan (Celine) Lin. Hw-nas-bench: Hardware-aware neural architecture search
benchmark. In International Conference on Learning Representations, 2021. 7, 8, 24

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. Zico: Zero-shot NAS via
inverse coefficient of variation on gradients. In The Eleventh International Conference on Learning
Representations, 2023. 9

L. Li and A. Talwalkar. Random search and reproducibility for neural architecture search. In J. Peters
and D. Sontag (eds.), Proceedings of The 36th Uncertainty in Artificial Intelligence Conference
(UAI’20), pp. 367–377. PMLR, 2020. 17, 19

Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. Massively parallel hyperparameter tuning. ArXiv, abs/1810.05934, 2018. 19

X. Lin, H. Zhen, Z. Li, Q. Zhang, and S. Kwong. Pareto multi-task learning. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. 3, 17

Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Tak Wu Kwong. Controllable pareto multi-task
learning. ArXiv, abs/2010.06313, 2020. 3, 4, 17, 22

13

iclr.cc

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In International
Conference on Learning Representations, 2019. 3, 4, 6, 17

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, and Jianfeng Gao. Bridging discrete and
backpropagation: Straight-through and beyond. Thirty-seventh Conference on Neural Information
Processing Systems, 2023. 3, 6, 18, 40

Suyun Liu and Luís Nunes Vicente. The stochastic multi-gradient algorithm for multi-objective
optimization and its application to supervised machine learning. Annals of Operations Research,
pp. 1572–9338, 2021. 3, 17

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti.
Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part I 16, pp. 35–51. Springer, 2020. 17

Matouš Macháček and Ondřej Bojar. Results of the WMT14 metrics shared task. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, pp. 293–301, Baltimore, Maryland, USA,
June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-3336. 9, 24

D. Mahapatra and V. Rajan. Multi-task learning with user preferences: Gradient descent with
controlled ascent in pareto optimization. In Proceedings of the 36th International Conference on
Machine Learning (ICML’20), pp. 6597–6607. Proceedings of Machine Learning Research, 2020.
3, 17

Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax pareto fairness: A multi objective
perspective. In International Conference on Machine Learning, pp. 6755–6764. PMLR, 2020. 17

Michinari Momma, Chaosheng Dong, and Jia Liu. A multi-objective/multi-task learning framework
induced by pareto stationarity. In International Conference on Machine Learning, pp. 15895–15907.
PMLR, 2022. 17

Sajad Movahedi, Melika Adabinejad, Ayyoob Imani, Arezou Keshavarz, Mostafa Dehghani, Azadeh
Shakery, and Babak N Araabi. λ-darts: Mitigating performance collapse by harmonizing operation
selection among cells. The Eleventh International Conference on Learning Representations, 2022.
3

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.
10

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. Learning the pareto front with
hypernetworks. International Conference on Learning Representations, 2021. 3, 4, 17

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
objective bayesian optimization using random scalarizations. In Uncertainty in Artificial Intelli-
gence, pp. 766–776. PMLR, 2020. 19

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via parameter
sharing. In International Conference on Machine Learning, 2018. 3, 4, 17

Hoang Phan, Ngoc Tran, Trung Le, Toan Tran, Nhat Ho, and Dinh Phung. Stochastic multiple target
sampling gradient descent. Advances in neural information processing systems, 35:22643–22655,
2022. 3, 17

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI’19. AAAI Press, 2019. ISBN 978-1-57735-809-1. 19

Binxin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. Speedy perfor-
mance estimation for neural architecture search. In Advances in Neural Information Processing
Systems, 2021. 20

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Michael Ruchte and Josif Grabocka. Scalable pareto front approximation for deep multi-objective
learning. In 2021 IEEE international conference on data mining (ICDM), pp. 1306–1311. IEEE,
2021. 3, 23

David Salinas, Valerio Perrone, Olivier Cruchant, and C. Archambeau. A multi-objective perspective
on jointly tuning hardware and hyperparameters. ArXiv, abs/2106.05680, 2021. 19

David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, and Cedric Archam-
beau. Syne tune: A library for large scale hyperparameter tuning and reproducible research. In
International Conference on Automated Machine Learning, AutoML 2022, 2022. 7

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. Advances in neural information
processing systems, 29, 2016. 17

Robin Schmucker, Michele Donini, Muhammad Bilal Zafar, David Salinas, and C. Archambeau.
Multi-objective asynchronous successive halving. ArXiv, abs/2106.12639, 2021. 19

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Neural
Information Processing Systems, 2018. 3, 6, 17

Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy Sidhu. Squeezenas: Fast neural architecture
search for faster semantic segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pp. 0–0, 2019. 17

Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regularization
in stochastic gradient descent. In International Conference on Learning Representations, 2021. 40

Rhea Sanjay Sukthanker, Arjun Krishnakumar, Mahmoud Safari, and Frank Hutter. Weight-
entanglement meets gradient-based neural architecture search. arXiv preprint arXiv:2312.10440,
2023. 5, 40

Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Joerg K.H. Franke, and Frank Hutter.
Hw-gpt-bench: Hardware-aware architecture benchmark for language models. arXiv preprint
arXiv:2405.10299, 2024. 7, 10, 21, 24, 27, 43

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. Le. Mnasnet: Platform-
aware neural architecture search for mobile. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019. 17

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12965–12974, 2020. 3

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra. Attentivenas: Improving neural
architecture search via attentive sampling. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 6418–6427, 2021. 3, 17

H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware transformers for
efficient natural language processing. arXiv:2005.14187[cs.CL], 2020a. 24

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. HAT:
Hardware-aware transformers for efficient natural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7675–7688, Online, July
2020b. Association for Computational Linguistics. 1, 7, 9, 21, 24

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022. 4, 22

Colin White, Mahmoud Safari, Rhea Sanjay Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela,
Debadeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. ArXiv,
abs/2301.08727, 2023. 1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10734–10742, 2019. 3, 17

Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Sukthanker, Radu Timofte, and Luc Van Gool.
Trilevel neural architecture search for efficient single image super-resolution. arXiv preprint
arXiv:2101.06658, 2021. 3, 17

S. Xie, H. Zheng, C. Liu, and L. Lin. SNAS: stochastic neural architecture search. In International
Conference on Learning Representations, 2019. 3, 5

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020a. 3

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen Shi, Qi Tian, and Hongkai Xiong.
Latency-aware differentiable neural architecture search. arXiv preprint arXiv:2001.06392, 2020b.
3, 17

Xinmin Yang, Wei Yao, Haian Yin, Shangzhi Zeng, and Jin Zhang. Gradient-based algorithms for
multi-objective bi-level optimization. Science China Mathematics, 2024. 40

Feiyang Ye, Baijiong Lin, Xiaofeng Cao, Yu Zhang, and Ivor W. Tsang. A first-order multi-gradient
algorithm for multi-objective bi-level optimization. In ECAI, volume 392 of Frontiers in Artificial
Intelligence and Applications, pp. 2621–2628. IOS Press, 2024. 40

Mao Ye and Qiang Liu. Pareto navigation gradient descent: a first-order algorithm for optimization
in pareto set. In Uncertainty in Artificial Intelligence, pp. 2246–2255. PMLR, 2022. 17

A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter. Understanding and robustifying
differentiable architecture search. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=H1gDNyrKDS. 10, 40

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022. 1

Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and Haonan Lu. Laptop-diff: Layer pruning
and normalized distillation for compressing diffusion models. arXiv preprint arXiv:2404.11098,
2024a. 10

Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. Fast hardware-aware
neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 692–693, 2020. 17

Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang, Ehsan Abbasnejad, and Reza Haffari. idarts:
Differentiable architecture search with stochastic implicit gradients. In International Conference
on Machine Learning, 2021. 3

Qi Zhang, Peiyao Xiao, Shaofeng Zou, and Kaiyi Ji. Mgda converges under generalized smoothness,
provably. 2024b. 40

Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. Multi-
objective optimization by learning space partition. In International Conference on Learning
Representations, 2022. 10, 19

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings of the
International Conference on Learning Representations (ICLR’17), 2017. 17

16

https://openreview.net/forum?id=H1gDNyrKDS

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

Multi-objective optimization. Multi-objective optimization (MOO) (Gunantara, 2018) is a crucial
field in optimization theory, tackling decision-making scenarios with multiple conflicting objectives.
MOO techniques can be categorized into gradient-based and gradient-free approaches. Gradient-free
MOO approaches, such as evolutionary algorithms and dominance-based methods like NSGA-II
(Deb et al., 2000), often suffer from sample inefficiency and are typically unsuitable for deep
learning applications. On the other hand, gradient-based MOO methods leverage gradients. The
foundational work by Désidéri (2012) has been significantly extended in multi-task learning contexts,
demonstrating considerable potential (Lin et al., 2019; Liu & Vicente, 2021; Mahapatra & Rajan,
2020; Sener & Koltun, 2018). However, these methods are primarily applied to fixed architectures,
and adapting them to architecture search spaces is complex. This adaptation would require retraining
each architecture with multiple objectives, which is impractically expensive for large search spaces.
Another major challenge in MOO is balancing the different objectives. To address this, preference
vectors have been proposed to guide the prioritization of objectives on the Pareto Front (Momma
et al., 2022; Ye & Liu, 2022). An emerging approach to mitigate the retraining issue involves
hypernetworks, which determine the weights of the main network in MOO scenarios (Lin et al.,
2020), often incorporating preference vector (Hoang et al., 2023; Navon et al., 2021; Phan et al.,
2022).
Neural Architecture Search. A major challenge in the automated design of neural network architec-
tures is the efficient exploration of vast search spaces. Early NAS methods relied on Reinforcement
Learning (Zoph & Le, 2017), evolutionary algorithms (Deb et al., 2002; Elsken et al., 2019b; Lu
et al., 2020), and other black-box optimization techniques (Daulton et al., 2022) to train and evalu-
ate numerous architectures from scratch. The advent of one-shot NAS introduced weight sharing
among architectures by training an over-parameterized network, known as a supernet, to expedite
the evaluation of individual networks within the search space (Bender et al., 2018; Liu et al., 2019;
Pham et al., 2018; Saxena & Verbeek, 2016). Differentiable one-shot NAS methods (Cai et al., 2018;
Fu et al., 2020; He et al., 2020; Wu et al., 2019; 2021) further improved efficiency by applying a
continuous relaxation to the search space, enabling the use of gradient descent to identify optimal
sub-models within the supernet. In contrast, two-stage NAS methods initially train a supernet, often
through random sampling of subnetworks, and subsequently employ black-box optimization to
identify optimal subnetworks (Bender et al., 2018; Guo et al., 2020; Li & Talwalkar, 2020).
Hardware-aware and Multi-objective Neural Architecture Search. Early NAS methods primarily
focused on maximizing accuracy for a given task. In contrast, hardware-aware NAS aims to optimize
architectures for efficient performance on specific hardware devices (Benmeziane et al., 2021; Lee
et al., 2020; Shaw et al., 2019; Zhang et al., 2020), naturally leading to multi-objective NAS (Hsu
et al., 2018; Kim et al., 2021; Tan et al., 2019). Two-stage NAS methods can be adapted to this context
by incorporating a multi-objective search in the second stage (Cai et al., 2018; Ito & Von Zuben,
2023). However, most two-stage methods depend on random sampling during supernet training,
which doesn’t prioritize promising architectures. Differentiable NAS methods, such as those in Cai
et al. (2018); Fu et al. (2020); Jiang et al. (2021); Wang et al. (2021); Wu et al. (2019; 2021); Xu et al.
(2020b), use latency proxies like layer-wise latencies and FLOPS (Dudziak et al., 2020) to evaluate
hardware performance, combining task and hardware objectives with fixed weighting to find a single
optimal solution. However, changing the objective weighting requires a complete search rerun, which
is computationally demanding.
In contrast, our proposed search algorithm offers the entire Pareto Front of objectives in a single run,
making it more efficient. While our focus is on multi-objective NAS for hardware constraints, our
technique is applicable to other objectives such as fairness (Das & Dooley, 2023; Dooley et al., 2023;
Martinez et al., 2020), suggesting promising avenues for future research.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B ALGORITHMIC COMPONENTS

In this section, we provide the pseudocodes for some of the algorithmic components we use in
MODNAS.

B.1 DISCRETE SAMPLERS

Given the architecture parameters α̃Φ from the MetaHypernetwork, we obtain a differen-
tiable discrete architecture sample from the Architect as αΦ ← π − stop_g(π) + αΦ, where
αΦ ∼ Cat

(
softmax1(~αΦ)

)
and

π ← 2 · softmax1
(
stop_g

(
ln(

αΦ + softmaxτ (~αΦ)

2
)− ~αΦ

)
+ ~αΦ

)
− softmax1(~αΦ)

2
.

Here, Cat is the categorical distribution, τ is the temperature in the tempered softmax
softmaxτ (α)i =

exp(αi/τ)∑|O|
j=1 exp(αj/τ)

, and stop_g(·) duplicates its input and detaches it from backprop-

agation. Refer to the ReinMax paper (Liu et al., 2023) for more details. The algorithm pseudocode
on how a one-hot encoded (discrete) architecture is sampled given an unnormalized architectural
distribution α̃ is given in Algorithm 2 and Algorithm 3, for the Straight-Through (Jang et al., 2017)
and ReinMax (Liu et al., 2023) gradient estimators, respectively.

Algorithm 2: Straight− Through (Jang
et al., 2017)
Data: α̃: softmax input, τ : temperature
Result: α: one-hot samples

1 π0 ← softmax1(α̃)
2 α ∼ Cat(π0)
3 π1 ← softmaxτ (α̃)
4 α← π1 − stop_g(π1) + α
5 return α

Algorithm 3: ReinMax (Liu et al., 2023)
Data: α̃: softmax input, τ : temperature
Result: α: one-hot samples

1 π0 ← softmax1(α̃)
2 α ∼ Cat(π0)

3 π1 ← α+softmaxτ (α̃)
2

4 π1 ← softmax1
(
stop_g

(
ln(π1)−α̃

)
+α̃
)

5 π2 = 2 · π1 − 1
2 · π0

6 α← π2 − stop_g(π2) + α
7 return α

B.2 FRANK-WOLFE SOLVER

In this section, we provide the pseudocode of the Frank-Wolfe solver (Jaggi, 2013) used to compute
the gradient coefficients used for the MGD updates. To solve the constrained optimization problem,
the Frank-Wolfe solver uses analytical solution for the line search with T = 2 (Algorithm 5).

Algorithm 4: FrankWolfeSolver (Jaggi, 2013)

Data: g1Φ, . . . , gTΦ
Result: γ = (γ1, . . . , γT)

1 Initialize γ ← (1
T , . . . , 1

T)
2 PrecomputeM s.t.Mi,j = (giΦ)

T(gjΦ)
3 repeat
4 t̂← argminr

∑T
t=1 γtMrt

5 et̂ ←Mt̂,· ; // t̂-th row of M
6 δ̂ ← argminδ

(
(1− δ)γ + δet̂

)TM((1− δ)γ + δet̂
)

; // using Algorithm 5

7 γ ← (1− δ̂)γ + δ̂et̂
8 until δ̂ ∼ 0 or Number of Iterations Limit;
9 return γ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 5: Solver minδ∈[0,1] ||δθ + (1− δ)θ̄||22
1 if θTθ̄ ≥ θTθ then
2 δ ← 1

3 else if θTθ̄ ≥ θ̄Tθ̄ then
4 δ ← 0
5 else
6 δ ← (θ̄−θ)Tθ̄

||θ−θ̄||22
7 return δ

C MULTI-OBJECTIVE NAS ALGORITHMS

This section elaborates on the multi-objective NAS methods we utilize as baselines in Section 4.

• Random Search (RS) is a robust baseline for both single-objective (Bergstra & Bengio, 2012; Li
& Talwalkar, 2020) and multi-objective (Cai et al., 2020; Chen et al., 2021a) architecture searches.
This baseline involves randomly sampling architectures from the search space and computing the
Pareto front from these samples. While RS is computationally efficient and often effective, it may
not always find the optimal architectures, especially in larger search spaces.

• Local Search (LS) is adapted to refine solutions near Pareto-optimal points in multi-objective
optimization, iteratively improving solutions within defined neighborhoods.

• Multi-objective Asynchronous Successive Halving (MO-ASHA) (Schmucker et al., 2021) is a
multi-fidelity method that utilizes an asynchronous successive halving scheduler (Li et al., 2018) and
non-dominating sorting for budget allocation. MO-ASHA uses the NSGA-II selection mechanism
and the ϵ-net (Salinas et al., 2021) exploration strategy that ranks candidates in the same Pareto
set by iteratively selecting the one with the largest Euclidian distance from the previous set of
candidates.

• Multi-Objective Regularized Evolution (MO-RE) builds on Regularized Evolution (RE) (Real
et al., 2019), which evolves a population of candidates through mutation and periodically removes
the oldest individuals, thus regularizing the population. MO-RE adapts this by using multi-objective
non-dominated sorting to score candidates, with parents sampled based on these scores.

• Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) is a multi-objective
evolutionary algorithm designed to find a Pareto set of architectures. It ranks architectures using non-
dominated sorting and maintains diversity with crowding distance. Through selection, crossover,
and mutation, NSGA-II evolves populations towards the Pareto front, although it is known for
being sample inefficient.

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Igel et al., 2007) is an evolu-
tionary algorithm particularly effective in continuous optimization problems. In a multi-objective
context, it adapts its covariance matrix to the shape of the search space, iteratively updating its sam-
pling distribution to favor promising regions. This method efficiently handles complex, non-linear
optimization landscapes and can be adapted to multi-objective scenarios by using techniques such
as Pareto-based selection to maintain a diverse set of solutions.

• Latent Action MOO (LaMOO) (Zhao et al., 2022) uses a parametric model and Monte Carlo Tree
Search (MCTS) to learn to partition the objective space based on the dominance number, which
indicates the vicinity of a point to the Pareto front relative to the other samples. qEHVI+LaMOO
and CMA-ES+LaMOO use the original qEHVI and CMA-ES, respectively, as an inner routine in
the learned subspaces.

• Bayesian Optimization with Random Scalarizations (RS-BO) (Paria et al., 2020) uses an
acquisition function based on random linear scalarizations of objectives across multiple points to
find the Pareto-optimal set that minimizes Bayesian regret.

• Bayesian Optimization with Linear Scalarizations (LS-BO) is similar to RS-BO but optimizes
a single objective derived from a fixed linear combination of two objectives instead of using
randomized linear scalarizations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Expected Hypervolume Improvement (qEHVI) (Daulton et al., 2020) is a Bayesian optimization
acquisition function that explores the Pareto front by quantifying potential hypervolume improve-
ment. This approach measures the volume dominated by Pareto-optimal solutions and guides
the search towards regions likely to offer better trade-offs, aiding in the discovery of diverse
Pareto-optimal solutions.

D EVALUATION DETAILS

D.1 OTHER METRICS

For NAS-Bench-201, in addition, we evaluate the generational distance (GD) and inverse generational
distance (IGD) (see Appendix D). See Figure 20 for the results complementary to the hypervolume
radar plot in Figure 3 of the main paper.

Generational Distance (GD) and Inverse Generational Distance (IGD). Given a reference set
S ⊂ A and a Pareto set Pα ⊂ A with dim(A) = K, the GD indicator is defined as the distance
between every point α ∈ Pα and the closest point in s ∈ S, averaged over the size of Pα:

GD(Pα,S) =
1

|Pα|

(∑
α∈Pα

min
s∈S

d(α, s)2
)1/2

,

where d(α, s) =
√∑K

k=1(αk − sk)2 is the Euclidean distance from α to its nearest reference point
in S .
The inverted generational distance (IGD) is computed as IGD(Pα,S) = GD(S,Pα).

Generational Distance Plus (GD+) and Inverse Generational Distance Plus (IGD+).
GD+(Pα,S) = IGD+(S,Pα) replaces the euclidean distance d(α, s) in GD with:

d+(α, s) =

√√√√ K∑
k=1

(max{αk − sk, 0})2

D.2 MODNAS-SOTL

On the NAS-Bench-201 search space, since the architectures evaluated with the supernetwork weights
are not highly correlated to the ones trained independently from scratch, we employ the Sum of
Training Losses (SoTL) proxy from Ru et al. (2021). To profile the Pareto front with SoTL, we firstly
evaluate the 24 architectures using the exponential moving average of the sum of training losses for
the initial 12 epochs of training as

∑12
e=1 0.9

12−eLtrain(w, α), and then train from scratch only the
subset of architectures in the Pareto set built using the SoTL evaluations. We present the results of
MODNAS-SoTL in Figure 20, where we compare to the other baselines as well. As we see, we can
further decrease the evaluation cost via MODNAS-SoTL, by trading off the number of solutions in
the Pareto set with HV.

E EXPERIMENTAL DETAILS

E.1 MetaPredictor ARCHITECTURES

For all search spaces we set the dimensionality of the hardware embedding to 10. This corresponds
to latency evaluations on a set of 10 reference architectures, which are the same used by Lee et al.
(2021b).

NAS-Bench-201. For the NAS-Bench-201 (Dong & Yang, 2020) search space we use a Graph
Convolutional Network (GCN) as proposed in Dudziak et al. (2020). Furthermore, in addition to
the one-hot operation encoding and adjacency matrix corresponding to the architecture cells, we
also input the hardware embedding to this predictor, as done by Lee et al. (2021b). The number
of nodes in the GCN is 8 and the dimensionality of the layers is set to 100 following HELP (Lee
et al., 2021b). In order to show the effectiveness of our MetaHypernetwork to learn the hardware

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

device similarities, in Figure 12 we cluster the original device embedding vectors and the learned
MetaHypernetwork embeddings using K-means clustering after reducing their dimensionality using
t-SNE. As we can see, the MetaHypernetwork learns to cluster similar devices together in latent
space, demonstrating the efficacy of our algorithm.

MobileNetV3 (OFA). Following HELP (Lee et al., 2021b), we employ a simple feedforward neural
network in the MobileNetV3 search space. The input dimension of the MetaPredictor is set to 160,
matching the concatenated architecture encoding dimension. We set the size of the hidden layers to
100. Specifically, the MetaPredictor comprises 2 linear layers with ReLU activation for processing
the 160-dimensional one-hot architecture encoding and 2 linear layers for processing the hardware
embedding. The outputs from these two paths are concatenated and passed through a final linear
layer to predict the latency.

600 400 200 0 200 400
TSNE Dimension 1

200

100

0

100

200

TS
NE

 D
im

en
sio

n
2

silver_4210r

pixel3

essential_ph_1

gold_6240

fpga

pixel2

1080ti_1

1080ti_32 samsung_s7
titanx_1

titanx_32

gold_6226

silver_4114samsung_a50

titan_rtx_256raspi4

eyeriss

1080ti_256
titanx_256

TSNE Projection for Hardware Embeddings

Cluster 0
Cluster 1
Cluster 2
Cluster 3

(a) Original hardware embeddings

300 250 200 150 100 50 0 50 100
TSNE Dimension 1

400

300

200

100

0

100

200

300

TS
NE

 D
im

en
sio

n
2

1080ti_1

1080ti_32
titanx_1

titanx_32
gold_6226

1080ti_256

samsung_a50

pixel3

titanx_256

titan_rtx_256
pixel2

raspi4
samsung_s7
eyeriss

silver_4114

silver_4210r

essential_ph_1
gold_6240

fpga

TSNE Projection for Device Pool Similarities
Cluster 0
Cluster 1
Cluster 2
Cluster 3

(b) MetaHypernetwork embeddings

Figure 12: K-means clustering on the t-SNE projections of the original hardware device embeddings
and learned embeddings from the MetaHypernetwork on NB201.

Seq-Seq Transformer (HAT). HELP 3 does not release the architecture or the meta-learned
pretrained predictor for HAT(Wang et al., 2020b). However, HAT 4 releases code and pretrained
models for each of the devices and tasks trained independently. Hence, we build our single per-task
MetaPredictor based on the architecture of the HAT predictor, i.e. a simple feedforward neural
network. The input dimension corresponds to the one-hot architecture encoding of the candidate
Transformer architecture. Additionally, to condition on the hardware embedding, we include 2
extra linear layers for processing the hardware embedding, which is then concatenated with the
processed architecture encoding to produce the final latency prediction. The hidden dimension of the
MetaHypernetwork is set to 400, with 6 hidden layers. The predictor’s input feature dimension is
130.

HW-GPT-Bench. We utilize the raw energy observations released in (Sukthanker et al., 2024)
to train a single hardware-aware meta-predictor across energy observations from eight GPU types.
Our meta-predictor is a simple MLP, similar to the one in HAT, with 4 hidden layers, 2 layers for
processing the hardware embedding (which the network is conditioned on). The MLP’s hidden
dimension is 256, and the input feature dimension matches the one-hot encoded architecture feature
map for this space, i.e., 80.

E.2 MetaHypernetwork ARCHITECTURE

Given a preference vector r ∈ RM , we use the hypernetwork hϕ(r) : RM → A, parameterized
by ϕ ∈ Rn, to generate an un-normalized architecture distribution α̃ that is later used to compute
the upper-level updates in (4). In our experiments, hϕ is composed of M − 1 5 embedding layers

3https://github.com/HayeonLee/HELP
4https://github.com/mit-han-lab/hardware-aware-transformers
5m = 1 (CE loss) does not have an hardware embedding.

21

https://github.com/HayeonLee/HELP
https://github.com/mit-han-lab/hardware-aware-transformers

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

em, m ∈ {2, . . . ,M} with nm possible learnable vectors of size dim(A)
M−1 . The output of hϕ is the

concatenation of all M − 1 outputs of em, such that its size matches dim(A). See Figure 13 for
details.

*

Figure 13: MetaHypernetwork architecture
overview in the case of M objectives. Note that
m = 1 is reserved for the accuracy objective,
which we model through the cross-entropy loss
in the Supernetwork. The initial linear layer eϕ0

gets the dt hardware embedding and outputs a
weight that scales each of the K hypernetworks’
(orange boxes) outputs from the hypernetwork
bank. The scaled architectural parameters are then
summed up element-wise. All individual hyper-
network hϕk

get as input the same scalarization
r. Each of them has M − 1 embedding layers
with dimensions nm× dim(A)

M−1 , ∀m ∈ {2, . . . ,M}
that gets as input the scalarizations for objectives
m = 2, . . . ,m = M , and yields a vector of size
dim(A)
M−1 . The output from the M − 1 embedding

layers are concatenated to give the architecture en-
coding α̃.

In order to enable the hypernetwork to generate
architectures across multiple devices, inspired
by Wang et al. (2022) and Lin et al. (2020),
we propose a MetaHypernetwork HΦ(r, dt) :
RM×HM−1 → A that can meta-learn across T
different hardware devices (see Figure 1). The
input to HΦ is a concatenation of device feature
vectors across all metrics, i.e. dt = ⊕M

m=2d
m
t .

Similar to Lee et al. (2021b), dmt ∈ H is a
fixed-size feature vector representative of device
t ∈ {1, . . . , T} and objective m ∈ {2, . . . ,M},
that is obtained by evaluating a fixed set of ref-
erence architectures for a given metric. The
MetaHypernetwork, with Φ = ∪Kk=0ϕk pa-
rameters, contains a bank of K > T hyper-
networks {hϕk

(r)}Kk=1 and an additional linear
layer eϕ0

(dt) : HM−1 → RK at the beginning,
that learns a similarity map for every device fea-
ture to the hypernetworks’ bank. If we denote by
hϕ1:k

= (hϕ1 · · ·hϕk
)T the vector of all hyper-

networks in the bank, then, given a preference
vector r, to obtain α̃ for device t, we compute a
weighted mixture of predictions of all hϕ in the
hypernetwork bank as follows:

α̃Φ = HΦ(r, dt) =

K∑
k=1

eϕ0(dt)[k] · hϕk
(r)

= eϕ0
(dt) · hϕ1:k

(r).

We keep the MetaHypernetwork architecture
similar across search spaces. The only thing
we adapt is the output dimensionality of the
hypernetwork (in the hypernetwork bank of
MetaHypernetwork), which corresponds to the
dimensionality of the architecture parameters of
the respective search space. We set the size of
the initial hardware embedding layer and the hy-
pernetwork bank to 50 for all search spaces. Fur-
thermore, each hypernetwork has 100 possible
learnable embeddings em, for every objective
m ∈ {2, . . . ,M}, to map the scalarization vec-
tor to an architecture. We quantize the continuous sampled rm ∈ [0, 1] to the discrete [0, 1, . . .100]
interval before indexing the respective embedding layers. See Figure 2 for an illustration of the
MetaHypernetwork architecture.
For the NAS-Bench-201 search space, we use a single embedding layer of dimensionality 30, corre-
sponding to the dimensionality of the architecture space: 6× 5 (6 edges and 5 operation choices on
each edge). For the 3-objective experiment, we include an additional embedding for the energy usage
objective, concatenated with the latency embedding before passing it to the MetaHypernetwork. The
individual hypernetworks in the MetaHypernetwork bank have 2 embedding layers with dimension-
ality 15, whose outputs are concatenated to match the architecture space dimensions.
In the MobileNetV3 space, we use 4 embedding layers – for depth, expansion ratio, kernel size, and
resolution. The space comprises 5 blocks, each with 3 depth choices, making the depth embedding
layer dimensionality 5× 3. The kernel and expansion embedding layers have dimensions 5× 4× 3,
corresponding to 5 blocks with a maximum depth of 4 and 3 possible kernel size or expansion ratio

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

choices. The resolution embedding layer has a dimension of 25, representing 25 possible resolution
choices.
In the Seq-Seq Transformer (HAT) space, the individual hypernetworks of the MetaHypernetwork
utilize 9 embedding layers (the encoder layer count is fixed; see Table 3):

• 2 embedding layers of size 2 for the encoder and decoder blocks to map the scalarization to the
embedding dimension architecture parameter, held constant throughout the encoder or decoder
block.

• 2 embedding layers with dimensions 6× 3 (6 encoder/decoder layers, 3 choices) for the linear
layer size in every attention block for both encoder and decoder.

• 2 embedding layers with dimensions 6× 2 for the number of heads in each attention block.
• 1 embedding layer of size 6 to encode the 6 possible choices for the number of layers in the

decoder.
• 1 embedding layer of size 6 × 3 (6 encoder layers, 3 choices) for the arbitrary encoder layer

choice for attention.
• 1 embedding layer of size 6 × 2 (6 encoder layers, 2 choices) for the number of heads in the

encoder-decoder attention.

For the HW-GPT-Bench space, the individual hypernetworks of the MetaHypernetwork contain 5
embedding layers:

• 1 embedding layer of dimension 1× 3 for mapping the scalarization to the embedding dimension
architecture parameter of the language model, with 3 choices.

• 1 embedding layer of dimension 1×3 for mapping the scalarization to the layer number dimension
architecture parameter of the language model, with 3 choices.

• 1 embedding layer of dimension 12× 3 for mapping the scalarization to the mlp_ratio dimension
architecture parameter of the language model, with 12 layers and 3 mlp_ratio choices per layer.

• 1 embedding layer of dimension 12×3 for mapping the scalarization to the num_heads dimension
architecture parameter of the language model, with 12 layers and 3 choices per layer.

• 1 embedding layer of dimension 2 for toggling the bias in linear layers on or off.

E.3 MODNAS HYPERPARAMETER CONFIGURATIONS

In Table 6, we show the search hyperparameters and their corresponding values we use to conduct
our experiments with MODNAS. For the convolutional spaces we subtract a cosine similarity penalty
from the scalarized loss following (Ruchte & Grabocka, 2021):

gtΦ ← rT∇ΦLt(Dvalid,w, αΦ)− λ∇Φ
rTLt(Dvalid,w, αΦ)

||r|| ||Lt(Dvalid,w, αΦ)||
, (6)

where || · || is the l2 norm. We set λ to 0.001. Empirically we did not observe significant differences
on disabling the cosine penalty term.

E.4 NORMALIZATION OF OBJECTIVES

Since our method relies on a scalarization of different objectives, it is important that the objectives
being optimized are on the same scale. For simplicity, lets consider the scenario where the two
objectives of interest are the cross-entropy loss and latency. Since we pretrain and freeze our
MetaPredictor, the latency-scale remains constant throughout the search, while the cross-entropy
loss of the Supernetwork (likely) decreases over time. To this end, we use the following max-min
normalization to normalize the objectives:

Lm
t (·, αΦ) =

Lm
t (·, αΦ)−min(L̄)

max(L̄)−min(L̄)
, (7)

where L̄ =
⋃N

i=1 stop_g
(
Lm
t (·, αi)

i
)

is the set of losses evaluated on N architectures and potentially
N previous steps. For the latency objective, we precompute these sample-statistics using N samples
(ground-truth for NAS-Bench-201 and predicted for OFA and HAT spaces) from the search space,
whilst for the cross-entropy loss we compute them throughout the search. Furthermore, to take into
account the decreasing cross-entropy, we reset the cross-entropy loss statistics after every epoch.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F DETAILS ON SEARCH SPACES

Table 3: Encoder-Decoder Search Space
for HAT.

Module Searchable Dim Choices
Encoder No. of Layers [6] (fixed)

Embedding dim [640, 512]
No. of heads [8, 4]
FFN dim [3072, 2048, 1024]

Decoder No. of layers [6, 5, 4, 3, 2, 1]
Embedding dim [640, 512]
No. of heads [8, 4]
FFN dim [3072, 2048, 1024]
Arbitrary-Encoder-Layer [-1, 1, 2]
Enc-Dec attention num heads [8, 4]

NAS-Bench-201 (Dong & Yang, 2020) is a convolutional,
cell-based search space. The search space consists of
3 stages, each with number of channels 16, 32 and 64,
respectively. Each stage contains a convolutional cell re-
peated 5 times. Here, every cell is represented as a di-
rected acyclic graph (DAG) which has 4 nodes, densely
connected with 6 edges. Each edge has 5 possible op-
eration choices: a skip connection, a zero operation, a
3×3 convolution, a 5×5 convolution or an average pool-
ing operation. NAS-Bench-201 is a tabular benchmark
exhaustively constructed, where the objective is finding
the optimal cell for the given macro skeleton.
MobileNetV3 proposed in OFA (Cai et al., 2020) is a macro convolutional search space. The
different searchable dimensions in the search space are the depth (per block), the kernel size (for
every layer in every block) and the channel expansion ratio (for every layer in every block). There
are a total of 5 blocks, each with 3 possible depth choices and every layer in this block has 3 possible
kernel sizes and channel expansion ratio choices. This amounts to a total search space size of
((3×3)2+(3×3)3+(3×3)4)5 ≈ 2×1019. Additionally, every architecture has 25 possible choices
for the size of the input resolution. The 3 possible choices for depth, kernel size and expansion ratio
are {2, 3, 4}, {3, 5, 7} and {3, 4, 6}, respectively. The input resolution choices are {128, 132, 136,
140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216,
220, 224}. We use a width factor of 1.2 similar to OFA (Cai et al., 2020).
Seq-Seq Encoder-Decoder Transformer (HAT) (Wang et al., 2020a) for the En-De machine
translation task has a searchable number of layers, embedding dimension, feedforward expansion
layer dim per-layer, number of heads per-layer for both the encoder and the decoder sub-modules. In
addition to this, the number of encoder layers the decoder attends to, and the number of attention
heads in the encoder-decoder attention is also searchable. We present the details of the search space
in Table 3.
HW-GPT-Bench (Sukthanker et al., 2024) is a decoder-only transformer space designed for autore-
gressive language modeling. The search space includes choices for embedding dimensions {768, 384,
192}, the number of layers from {10, 11, 12}, the MLP expansion ratio per layer from {2,3,4}, the
number of heads per layer from {12,8,4}, and the option to toggle the bias parameter on or off in the
layers.

G DATASETS AND DEVICES

This section describes the hardware devices and tasks used to evaluate MODNAS and the MOO
baselines throughout the paper. We assess our methods across small- and large-scale image clas-
sification datasets, including CIFAR-10 and ImageNet-1K. For the machine translation task, we
evaluate our method on the WMT’14 En-De dataset (Macháček & Bojar, 2014), and we use the
OpenWebText (Gokaslan & Cohen, 2019) dataset for language modeling. Furthermore, we evaluate
MODNAS across 19 devices on NAS-Bench-201, 12 devices on MobileNetV3, three devices on Seq-
Seq Transformer, and eight devices from HW-GPT-Bench (Sukthanker et al., 2024), with zero-shot
generalization to test devices. Table 4 lists the devices used. For more details on the devices, we refer
readers to Lee et al. (2021b), Cai et al. (2020), Wang et al. (2020b), Li et al. (2021), and Sukthanker
et al. (2024).

H RUNTIME COMPARISON

In Table 5 we provide the number of GPU hours we ran MODNAS and baselines on every search space.
We ran the search on NAS-Bench-201, OFA, together with the evaluations on Nvidia RTX2080Ti,
while for HAT we used NVidia A6000. For both OFA and HAT, we used 8 GPUs in parallel. Similar
as in Sukthanker et al. (2024), on the HW-GPT-Bench space we ran the MODNAS search and
evaluations on 4 Nvidia A100 GPUs.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 4: Search-test split for hardware devices and datasets for different search spaces.

Search Space Train-devices Test devices Dataset

NAS-Bench-201
1080ti_1, 1080ti_32, 1080ti_256, silver_4114, titan_rtx_256, gold_6226,

CIFAR10silver_4210r, samsung_a50, pixel3, essential_ph_1, fpga, pixel2,
samsung_s7, titanx_1, titanx_32, titanx_256, gold_6240 raspi4, eyeriss

MobileNetV3 (OFA)
2080ti_1, 2080ti_32, 2080ti_64, titan_xp_1, titan_rtx_64

ImageNet-1ktitan_xp_32, titan_xp_64, v100_1, v100_32,
v100_64, titan_rtx_1, titan_rtx_32

Seq-Seq Transformer (HAT) titanxp gpu, cpu xeon cpu raspberrypi WMT14.en-de

HW-GPT-Bench a40, v100, rtx2080, rtx3080 a100, h100, P100, a6000 OpenWebText

Table 5: Total amount of GPU hours required to run MODNAS’ and baselines’ search on every
search space.

Search Spaces Method Lat/En/Mem Pred. Supernet Acc./Ppl Pred. Search Total Time

NASBench201
MetaD2A+HELP 25 - 8629 0.3 8654.3

MOO Baselines - - - 370.5 370.5

MODNAS 3 22 - 0.05 25.25

Once-For-All
OFA+HELP 6 1200 356 10 1572

MOO Baselines 6 1200 356 192 1754

MODNAS 6 1392 - 0.05 1398.25

HAT

HAT 15 346.7 - 210.9 572.6

MOO Baselines 15 346.7 - 576 937.7

MODNAS 5 576 - 0.05 581.25

HW-GPT-Bench MOO Baselines 1 192 - 48 241

MODNAS 1 216 - 0.05 217.25

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters used on different search spaces

Search Space Hyperparameter Type Value

NAS-Bench-201

MetaHypernetwork

learning rate 3e-4
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 0.025
momentum 0.9
weight decay 0.0027
learning rate scheduler cosine
epochs 100
batch size 256
gradient clipping 5
cutout true
cutout length 16
initial channels 16
optimizer SGD
train portion 0.5

MobileNetV3 (OFA)

MetaHypernetwork

learning rate 1e-5
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 1e-3
momentum 0.9
weight decay 3e-5
learning rate scheduler cosine
epochs 50
batch size 32
bn_momentum 0.1
bn_eps 1e-5
dropout 0.1
width 1.2
optimizer SGD
train portion 1.0

Seq-Seq Transformer (HAT)

MetaHypernetwork

learning rate 3e-4
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 1e-7
momentum 0.9
weight decay 0.0
learning rate scheduler cosine
epochs 110
batch size/max-tokens 4096
criterion label_smoothed_cross_entropy
attention-dropout 0.1
dropout 0.3
precision float32
optimizer Adam
train portion 1.0

HW-GPT-Bench

MetaHypernetwork

learning rate 1e-5
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 0.000316
momentum -
weight decay 0.1
learning rate scheduler cosine
steps 800k
batch size/max-tokens 32768
criterion cross_entropy
attention-dropout 0.0
dropout 0.0
precision bfloat16
optimizer AdamW
train portion 1.0

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

I ADDITIONAL EXPERIMENTS

I.1 PREDICTED V/S GROUND-TRUTH LATENCIES

In Figure 8, we present the scatter plots of the predictions of our hardware-aware MetaPredictor vs.
the ground-truth latencies of different architectures. In the figure title we also report the kendall-tau
correlation coefficient for every device. As observed, our predictor achieves high kendall-τ correlation
coefficient across all devices.

I.2 ADDITIONAL RESULTS ON NAS-BENCH-201

In Figure 19, we present the Pareto fronts obtained by our method in comparison to different baselines
on the NAS-Bench-201 search space. In Figure 20, we present different additional metrics, such as
GD and IGD (see Section D), to evaluate the quality of the Pareto fronts obtained on NAS-Bench-201.
Figure 21 presents the Pareto front MODNAS yields when applying different latency constraints
during the search phase. Figure 15a compares our method using the ReinMax gradient estimator to
the GDAS estimator (Dong & Yang, 2019). As we can see, ReinMax obtains a qualitatively better
hypervolume coverage compared to GDAS. Figure 16 presents the 3D Pareto front and hypervolume
obtained by MODNAS compared to other baselines when optimizing for accuracy, latency and
energy usage on NAS-Bench-201. Figure 24 presents the comparison of MODNAS with MGD to
other gradient aggregation schemes, such as mean, sequential and MC sampling (see Section 4.1),
across multiple hardware devices. Finally, in Figure 25 we present the robustness of MODNAS to
the fraction of devices used for the predictor training and the search phase. In addition, in Figure 18
and Figure 17, we compare MODNAS against different MO baselines on the CIFAR-100 dataset on
two different devices.

I.3 ADDITIONAL RESULTS ON HARDWARE-AWARE TRANSFORMERS (EN-DE)

We show the Pareto fronts of MODNAS compared to baselines for the Transformer space in Figure 26,
as well as their comparison with respect to hypervolume for the SacreBLEU metric in Figure 28.
These results demonstrate the superior performance of our method compared to the other baselines
on this benchmark. All evaluations are done by inheriting the weights of a pretrained supernet.

I.4 ADDITIONAL RESULTS ON THE HW-GPT SPACE

In figure 29, we present the Pareto fronts on all the 8 GPU types for MODNAS and different baselines.
The Pareto fronts are obtained using the perplexity and energy predictors trained on data collected in
the HW-GPT-Bench (Sukthanker et al., 2024).

I.5 ADDITIONAL RESULTS ON MOBILENETV3

In Figure 30, we present the Pareto fronts of our method compared to different baselines for
12 different hardware devices on the MobileNetV3 space. We show as well the Pareto front of
OFA+HELP (Lee et al., 2021b), ran with the original setting.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
True Latency

1

2

3

4

5

6

7

8
P
re

d
ic

te
d
 L

a
te

n
cy

Device: fpga, Kendall Tau: 0.983

2 4 6 8 10
True Latency

10

15

20

25

30

35

40

45

P
re

d
ic

te
d
 L

a
te

n
cy

Device: eyeriss, Kendall Tau: 0.749

4 6 8 10 12 14 16 18
True Latency

4

6

8

10

12

14

16

18

P
re

d
ic

te
d
 L

a
te

n
cy

Device: gold_6226, Kendall Tau: 0.924

5 10 15 20 25 30 35 40
True Latency

5

10

15

20

25

30

P
re

d
ic

te
d
 L

a
te

n
cy

Device: pixel2, Kendall Tau: 0.678

0 20 40 60 80
True Latency

0

20

40

60

80

P
re

d
ic

te
d
 L

a
te

n
cy

Device: raspi4, Kendall Tau: 0.899

10 15 20 25 30 35
True Latency

10

15

20

25

30

35

P
re

d
ic

te
d
 L

a
te

n
cy

Device: titan_rtx_256, Kendall Tau: 0.981

4 6 8 10 12 14 16
True Latency

3

4

5

6

7

8

9

10

11

P
re

d
ic

te
d
 L

a
te

n
cy

Device: 1080ti_1, Kendall Tau: 0.894

4 6 8 10 12 14 16 18
True Latency

4

6

8

10

12

14

16

P
re

d
ic

te
d
 L

a
te

n
cy

Device: 1080ti_32, Kendall Tau: 0.900

10 15 20 25 30 35
True Latency

10

15

20

25

30

35

P
re

d
ic

te
d
 L

a
te

n
cy

Device: 1080ti_256, Kendall Tau: 0.975

5 10 15 20 25 30
True Latency

5

10

15

20

25

30

P
re

d
ic

te
d
 L

a
te

n
cy

Device: essential_ph_1, Kendall Tau: 0.822

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
True Latency

4

6

8

10

12

14

16

18

P
re

d
ic

te
d
 L

a
te

n
cy

Device: gold_6240, Kendall Tau: 0.842

0 5 10 15 20 25 30
True Latency

0

5

10

15

20

25

30

P
re

d
ic

te
d
 L

a
te

n
cy

Device: pixel3, Kendall Tau: 0.890

10 20 30 40 50 60 70
True Latency

10

20

30

40

50

P
re

d
ic

te
d
 L

a
te

n
cy

Device: samsung_s7, Kendall Tau: 0.830

10 20 30 40 50
True Latency

10

20

30

40

P
re

d
ic

te
d
 L

a
te

n
cy

Device: samsung_a50, Kendall Tau: 0.939

5 10 15 20 25 30 35 40
True Latency

5

10

15

20

25

30

35

40

P
re

d
ic

te
d
 L

a
te

n
cy

Device: silver_4114, Kendall Tau: 0.846

5 10 15 20 25 30
True Latency

5

10

15

20

25

30

P
re

d
ic

te
d
 L

a
te

n
cy

Device: silver_4210r, Kendall Tau: 0.960

4 6 8 10 12 14 16
True Latency

4

6

8

10

12

14

P
re

d
ic

te
d
 L

a
te

n
cy

Device: titanx_1, Kendall Tau: 0.890

4 6 8 10 12 14
True Latency

4

6

8

10

12

14

P
re

d
ic

te
d
 L

a
te

n
cy

Device: titanx_32, Kendall Tau: 0.893

10 15 20 25 30 35
True Latency

10

15

20

25

30

35

P
re

d
ic

te
d
 L

a
te

n
cy

Device: titanx_256, Kendall Tau: 0.958

Figure 14: Scatter plots of predicted latencies from our pretrained MetaPredictor vs. ground-truth
latencies (test devices in red).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.85
0.93

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS (Reinmax) MODNAS (GDAS) MODNAS (MiLeNAS)

(a) Hypervolume

0.2
0.1

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS (Reinmax) MODNAS (GDAS) MODNAS (MiLeNAS)

(b) GD+

0.07
0.03

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS (Reinmax) MODNAS (GDAS) MODNAS (MiLeNAS)

(c) IGD+

Figure 15: Hypervolume, GD+ and IGD+ of MODNAS with Reinmax as gradient estimator in the
Architect vs. the one from GDAS (Dong & Yang, 2019) and MiLeNAS (He et al., 2020) across 19
devices on NAS-Bench-201. Higher area in the radar indicates better performance for every metric.
Test devices are colored in red around the radar plot.

Glob
al

op
t.

MODNAS

MO-A
SHA

RS-B
O

LS
-B

O

NSGA-II

RHPN RS

qE
HVI

MO-R
E

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
yp

er
vo

lu
m

e

0.97

0.94
0.91 0.91 0.9

0.88

0.67
0.65 0.64 0.64

Eyeriss

error0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

eyeriss_latency

0.0

0.1

0.2

0.3

0.4
0.5

0.6
0.7

eyeriss_energy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Global opt.
RS
RHPN
MODNAS
LS-BO
MO-RE
MO-ASHA
NSGA-II
RS-BO
qEHVI

Figure 16: HV (left) and Pareto front (right) of MODNAS and baselines on Eyeriss with 3 normalized
objectives: error, latency and energy usage. HV was computed using the (1, 1, 1) reference point on
the right 3D plot.

MODNAS
LS-

BO
RS-B

O LS

MO-ASH
A

NSG
A-I

I
qE

HVI

MO-RE RS
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

0.9

0.87 0.85
0.84

0.81
0.78 0.76

0.73 0.73

edgegpu_latency

Figure 17: Hypervolume on CIFAR-
100 and edgegpu device.

LS-
BO

MODNAS

MO-ASH
A

RS-B
O

NSG
A-I

I LS
qE

HVI RS
MO-RE

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

0.91 0.91 0.9 0.89 0.89 0.88 0.87 0.86 0.86

pixel3_latency

Figure 18: Hypervolume on CIFAR-
100 and Pixel3 device.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

pixel2

0.0 0.1 0.2 0.3 0.4
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

raspi4

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

eyeriss

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

fpga
Global opt.
RHPN
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
RS
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

gold_6226

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

titan_rtx_256

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_1

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_32

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_256

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d
la

te
nc

y

essential_ph_1

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

gold_6240

0.0 0.1 0.2 0.3 0.4
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

pixel3

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
la

te
nc

y

samsung_s7

0.0 0.2 0.4 0.6 0.8
Normalized error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

No
rm

al
ize

d
la

te
nc

y

samsung_a50

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

silver_4114

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

silver_4210r

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_1

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_32

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
la

te
nc

y

titanx_256

Figure 19: Pareto fronts of MODNAS and baselines on NAS-Bench-201. MODNAS-SoTL is not
shown for better visibility.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.72
0.86

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE
qEHVI

NSGA-II
MODNAS-SoTL
Global opt.

(a) HV

0.13
0.06

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE

qEHVI
NSGA-II
MODNAS-SoTL

(b) GD

0.15
0.08

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE

qEHVI
NSGA-II
MODNAS-SoTL

(c) IGD

0.13
0.06

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE

qEHVI
NSGA-II
MODNAS-SoTL

(d) GD+

0.15
0.08

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
RHPN
qEHVI+LaMOO

CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA

RS-BO
LS-BO
MO-RE

qEHVI
NSGA-II
MODNAS-SoTL

(e) IGD+

Figure 20: HV, GD, GD+, IGD and IGD+ of MODNAS and baselines across 19 devices on NAS-
Bench-201. For every device we optimize for 2 objectives, namely latency (ms) and test accuracy
on CIFAR-10. For method, metric and device we report the mean of 3 independent search runs.
Higher area in the radar indicates better performance for every metric. Test devices are colored in red
around the radar plot. Here we allocate double the budget to baselines, i.e. we run all baselines for 50
function evaluations.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

eyeriss
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

gold_6226
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d
la

te
nc

y

pixel2
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

raspi4
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

fpga
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

titan_rtx_256
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_1
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.1 0.2 0.3 0.4 0.5
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

1080ti_32
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

1080ti_256
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
la

te
nc

y

essential_ph_1
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.1 0.2 0.3 0.4 0.5
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

gold_6240
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

pixel3
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.1 0.2 0.3 0.4 0.5
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

samsung_s7
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d
la

te
nc

y

samsung_a50
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.1 0.2 0.3 0.4 0.5
Normalized error

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
la

te
nc

y

silver_4114
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
la

te
nc

y

silver_4210r
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_1
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_32
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

0.0 0.2 0.4 0.6 0.8
Normalized error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
la

te
nc

y

titanx_256
Latency constraint

MODNAS
MODNAS (0.2)
MODNAS (0.4)
MODNAS (0.6)
MODNAS (0.8)
MODNAS (1.0)
MetaD2A+HELP

Figure 21: Pareto fronts of MODNAS ran with different latency constraints during search.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0.09
0.04

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
MODNAS (0.2)
MODNAS (0.4)

MODNAS (0.6)
MODNAS (0.8)

MODNAS (1.0)
MetaD2A+HELP

(a) GD

0.11
0.06

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
MODNAS (0.2)
MODNAS (0.4)

MODNAS (0.6)
MODNAS (0.8)

MODNAS (1.0)
MetaD2A+HELP

(b) IGD

0.09
0.04

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
MODNAS (0.2)
MODNAS (0.4)

MODNAS (0.6)
MODNAS (0.8)

MODNAS (1.0)
MetaD2A+HELP

(c) GD+

0.11
0.06

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
MODNAS (0.2)
MODNAS (0.4)

MODNAS (0.6)
MODNAS (0.8)

MODNAS (1.0)
MetaD2A+HELP

(d) IGD+

Figure 22: GD, GD+, IGD and IGD+ of MODNAS with different latency constraints during search
across 19 devices on NAS-Bench-201. Higher area in the radar indicates better performance for every
metric. Test devices are colored in red around the radar plot.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

fpga

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Hy

pe
rv

ol
um

e
eyeriss

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

gold_6226

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

pixel2

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Hy
pe

rv
ol

um
e

raspi4

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

titan_rtx_256

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

1080ti_1

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

1080ti_32

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.5

0.6

0.7

0.8

0.9

Hy
pe

rv
ol

um
e

1080ti_256

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

essential_ph_1

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

gold_6240

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Hy
pe

rv
ol

um
e

pixel3

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

samsung_s7

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Hy
pe

rv
ol

um
e

samsung_a50

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

silver_4114

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

silver_4210r

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

titanx_1

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

titanx_32

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

10 20 30 40 50
Num. evaluations

0.5

0.6

0.7

0.8

0.9

Hy
pe

rv
ol

um
e

titanx_256

RS
qEHVI+LaMOO
CMA-ES+LaMOO
CMA-ES
LS
MO-ASHA
RS-BO
LS-BO
MO-RE
qEHVI
NSGA-II
MODNAS

Figure 23: HV over number of evaluated architectures on NAS-Bench-201 of MODNAS and the
blackbox MOO baselines. Note that for MODNAS we only have 24 evaluations in the end.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

fpga

MGD
MC Sampling
Sequential
Mean

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

eyeriss

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

gold_6226

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

pixel2

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

raspi4

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titan_rtx_256

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

1080ti_1

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

1080ti_32

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

1080ti_256

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

essential_ph_1

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

gold_6240

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

pixel3

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

samsung_s7

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

samsung_a50

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

silver_4114

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Hy
pe

rv
ol

um
e

silver_4210r

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_1

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_32

0 20 40 60 80 100
Search Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_256

Figure 24: HV over time on NAS-Bench-201 of MODNAS with different gradient update schemes.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Hy
pe

rv
ol

um
e

fpga

Search Devices
2
4
8
13

0 20 40 60 80 100
Search Epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975
Hy

pe
rv

ol
um

e

eyeriss

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

gold_6226

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Hy
pe

rv
ol

um
e

pixel2

0 20 40 60 80 100
Search Epochs

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Hy
pe

rv
ol

um
e

raspi4

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

titan_rtx_256

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Hy
pe

rv
ol

um
e

1080ti_1

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

1080ti_32

0 20 40 60 80 100
Search Epochs

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

1080ti_256

0 20 40 60 80 100
Search Epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Hy
pe

rv
ol

um
e

essential_ph_1

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

gold_6240

0 20 40 60 80 100
Search Epochs

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Hy
pe

rv
ol

um
e

pixel3

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Hy
pe

rv
ol

um
e

samsung_s7

0 20 40 60 80 100
Search Epochs

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Hy
pe

rv
ol

um
e

samsung_a50

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

silver_4114

0 20 40 60 80 100
Search Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Hy
pe

rv
ol

um
e

silver_4210r

0 20 40 60 80 100
Search Epochs

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_1

0 20 40 60 80 100
Search Epochs

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_32

0 20 40 60 80 100
Search Epochs

0.70

0.75

0.80

0.85

0.90

Hy
pe

rv
ol

um
e

titanx_256

Figure 25: HV over time on NAS-Bench-201 of MODNAS with different number of devices during
search. For number of devices less than 13 (default one) we randomly select a subset from these 13
devices.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

3000 4000 5000 6000 7000 8000 9000
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
BL

EU

RaspberryPi-CPU
RS
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RHPN
MODNAS
HAT

50 100 150 200 250
Latency (ms)

0.037

0.038

0.039

0.040

0.041

0.042

0.043

1/
BL

EU

GPU-TitanXP
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RS
RHPN
MODNAS
HAT

100 150 200 250 300 350 400
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
BL

EU

CPU-Xeon
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RS
RHPN
MODNAS
HAT

3000 4000 5000 6000 7000 8000 9000
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
Sa

cr
eB

LE
U

RaspberryPi-CPU
RS
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RHPN
MODNAS
HAT

50 100 150 200 250
Latency (ms)

0.038

0.039

0.040

0.041

0.042

0.043

1/
Sa

cr
eB

LE
U

GPU-TitanXP
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RS
RHPN
MODNAS
HAT

100 150 200 250 300 350 400
Latency (ms)

0.038

0.040

0.042

0.044

0.046

1/
Sa

cr
eB

LE
U

CPU-Xeon
MO-RE
LS
NSGA-II
LS-BO
RS-BO
MO-ASHA
qEHVI
RS
RHPN
MODNAS
HAT

Figure 26: Pareto fronts of MODNAS and baselines on the HAT space for the WMT’ En-De task.
All performance metrics are obtained from the inherited supernet weights.

MODNAS
qE

HVI

NSG
A-I

I

MO-ASH
A LS

MO-RE RS
RHPN

LS-
BO

RS-B
O

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Hy
pe

rv
ol

um
e

0.72

0.69 0.69 0.69

0.68

0.67

0.65

0.64 0.64

0.61

RaspberryPi-CPU

MODNAS RS
RHPN

LS-
BO

NSG
A-I

I

MO-RE
HAT

MO-ASH
A

qE
HVI LS

RS-B
O

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Hy
pe

rv
ol

um
e

0.82

0.81 0.81
0.8

0.8 0.8 0.79 0.79 0.79

0.77

0.74

TitanXP-GPU

NSG
A-I

I

MODNAS

MO-ASH
A
MO-RE

qE
HVI RS

RHPN
RS-B

O LS
LS-

BO HAT
0.70

0.72

0.74

0.76

0.78

0.80

0.82
Hy

pe
rv

ol
um

e
0.81

0.8

0.79
0.79

0.78 0.78 0.78
0.78 0.77

0.73 0.73

Xeon-CPU

Figure 27: Hypervolume (HV) of MODNAS and baselines across devices on the HAT space. The
objectives used to compute the HV are latency and BLEU score. Leftmost plot is for the test device.

MODNAS
qE

HVI

NSG
A-I

I

MO-ASH
A LS

MO-RE RS
LS-

BO
RHPN

RS-B
O

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Hy
pe

rv
ol

um
e

0.71

0.68 0.68 0.68

0.66
0.66

0.64

0.63 0.63

0.61

RaspberryPi-CPU

MODNAS LS
qE

HVI RS
RHPN

LS-
BO

NSG
A-I

I

MO-RE
HAT

RS-B
O

MO-ASH
A

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Hy
pe

rv
ol

um
e

0.81 0.8
0.8 0.79 0.79 0.79

0.78 0.78
0.78

0.74 0.74

TitanXP-GPU

NSG
A-I

I

MODNAS

MO-ASH
A
MO-RE

qE
HVI RS

RHPN
RS-B

O LS
LS-

BO HAT
0.70

0.72

0.74

0.76

0.78

0.80

0.82

Hy
pe

rv
ol

um
e

0.79
0.79

0.78
0.77 0.77

0.77 0.77 0.76
0.76

0.73

0.72

Xeon-CPU

Figure 28: Hypervolume (HV) of MODNAS and baselines across devices on the HAT space. The
objectives used to compute the HV are latency and SacreBLEU score. Leftmost plot is for the test
device. MODNAS is the best or on par to the baselines across all three devices.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty
A40

RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.5 1.0 1.5 2.0
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

RTX3080
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.3 0.4 0.5 0.6 0.7 0.8
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

V100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

1 2 3 4
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

RTX2080
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.6 0.8 1.0 1.2
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

A6000
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.3 0.4 0.5 0.6
Energy (Wh)

22.8

27.3

31.8

36.3

40.8
Pe

rp
le

xi
ty

H100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0.2 0.3 0.4 0.5
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

A100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

0 5 10 15 20
Energy (Wh)

22.8

27.3

31.8

36.3

40.8

Pe
rp

le
xi

ty

P100
RS
MOREA
LS
NSGA2
LSBO
RSBO
MOASHA
EHVI
MODNAS

Figure 29: Pareto fronts of MODNAS and baselines optimizing for GPU energy consumption (Wh)
and perplexity on the HW-GPT-Bench space.

8 10 12 14 16
Latency

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

2080ti_1

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

8 10 12 14
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

v100_1

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 15 20
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

v100_32

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 20 30 40
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78
Ac

cu
ra

cy

v100_64

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 15 20 25
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

2080ti_32

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 20 30 40 50
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

2080ti_64

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

8 10 12 14 16
Latency

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Ac
cu

ra
cy

titan_xp_1

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

10 20 30 40 50
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_xp_32

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

20 40 60 80 100
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_xp_64

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

4 5 6 7 8
Latency

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_rtx_1

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

5 10 15 20 25
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_rtx_32

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

5 10 15 20 25 30
Latency

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

titan_rtx_64

RS
RHPN
HELP
MODNAS
NSGA-II
qEHVI
LS
LS-BO
MO-ASHA
RS-BO
MO-RE

Figure 30: Pareto fronts of MODNAS and baselines on the MobileNetV3 space.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

LS-
BO

MODNAS
RS-B

O
MO-RE

qE
HVI LS

MO-ASH
A

HELP RHPN

NSG
A-I

I RS
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.74 0.74 0.73
0.72

0.7

0.67 0.66

0.59
0.58

0.57

0.52

titan_rtx_1

LS

MODNAS
LS-

BO
qE

HVI
RS-B

O
NSG

A-I
I

MO-ASH
A
MO-RE

RHPN RS
HELP

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76 0.76 0.75 0.75 0.75 0.75 0.74 0.74

0.69 0.69

0.63

titan_rtx_32

MODNAS
LS-

BO
RS-B

O
MO-RE

qE
HVI

NSG
A-I

I

MO-ASH
A LS RS

RHPN HELP
0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Hy
pe

rv
ol

um
e

0.76
0.76 0.75 0.75 0.75

0.74
0.74 0.73

0.72

0.7

0.66

titan_rtx_64

NSG
A-I

I
qE

HVI

MODNAS
LS-

BO
RHPN HELP

MO-RE

MO-ASH
A

RS-B
O RS LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.78

0.76
0.75

0.74

0.7

0.68 0.68
0.67 0.66 0.66

0.59

2080ti_1

MODNAS LS

MO-ASH
A

qE
HVI RS

MO-RE

NSG
A-I

I
RHPN

RS-B
O

LS-
BO HELP

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Hy

pe
rv

ol
um

e

0.77
0.75 0.75 0.75 0.74 0.74 0.74 0.73

0.71

0.67

0.64

2080ti_32

MODNAS
MO-RE

qE
HVI

LS-
BO

MO-ASH
A

NSG
A-I

I
RS-B

O RS LS
RHPN HELP

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76 0.76 0.75 0.75 0.75 0.74

0.71

0.69
0.68

0.66

0.64

2080ti_64

MODNAS
RS-B

O

MO-ASH
A

qE
HVI

LS-
BO RS

HELP
MO-RE

NSG
A-I

I
RHPN LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76
0.75 0.75 0.74

0.71 0.71
0.7 0.69

0.63
0.62

0.53

titan_xp_1

MODNAS
LS-

BO
qE

HVI

MO-ASH
A

NSG
A-I

I

MO-RE RS
RS-B

O
RHPN HELP LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.75 0.75 0.75
0.74 0.74 0.74

0.72
0.71

0.69

0.66 0.66

titan_xp_32

RS-B
O

MODNAS
qE

HVI

MO-RE

MO-ASH
A

NSG
A-I

I
LS-

BO RS
RHPN HELP LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76 0.75 0.75 0.75 0.75 0.74
0.73

0.71

0.69

0.62

0.56

titan_xp_64

LS-
BO

MODNAS
RS-B

O

MO-ASH
A

HELP

NSG
A-I

I
RHPN

qE
HVI

MO-RE RS LS
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.78 0.77
0.76

0.75

0.7

0.61
0.59

0.58 0.58

0.54
0.53

v100_1

MODNAS

NSG
A-I

I
LS-

BO

MO-ASH
A
MO-RE

RS-B
O

qE
HVI

RHPN RS
HELP LS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.77 0.76 0.76 0.76
0.75

0.72
0.7

0.69
0.68

0.68

0.57

v100_32

MODNAS
MO-RE

LS-
BO

qE
HVI

RS-B
O
NSG

A-I
I

MO-ASH
A LS

RHPN RS
HELP

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Hy
pe

rv
ol

um
e

0.76 0.75 0.75 0.75 0.75 0.74 0.74

0.7
0.68 0.68

0.64

v100_64

Figure 31: Hypervolume across devices on the MobileNetV3 search space of MODNAS and baselines.
Here the Nvidia Titan RTX is the test device.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

J ADDITIONAL DISCUSSION ON THE ROBUSTNESS OF MODNAS

Initially observed by (Zela et al., 2020), differentiable NAS methods can be very sensitive to their
hyperparameter choices, especially the regularization ones responsible for the loss landscape in the
upper level problem. In our experiments, there were three crucial components that made MODNAS
robust and to work reliably across benchmarks:

1. Choice of MetaHypernetwork update scheme: this played a pivotal role in the performance
of MODNAS. Although other gradient update strategies underperformed or started diverging
(Figure 6), MGD converged relatively quickly to a hypervolume close to that of the global
Pareto front. The convergence of MGD to a pareto stationary point is discussed in Désidéri
(2012) and more recently in Zhang et al. (2024b). The convergence of MGD in bilevel
optimization is an open research topic (see recent results from Ye et al. (2024) and Yang et al.
(2024)). One potential scenario when MGD could fail is when the gradient directions of
the objectives it is optimizing point in different opposing directions; however, this becomes
practically unlikely, especially as the number of objectives grows (in our case we use it to
find the common gradient across devices, which is for instance 13 on NAS-Bench-201).

2. Choice of gradient estimation method in the Architect: In Section 3, we discuss our
choice for the method that enables gradient estimation through discrete variables (since
architectures are discrete variables). We noticed that the ReinMax (Liu et al., 2023) estimator
always outperformed previous estimators such as the one in GDAS (Dong & Yang, 2019)
(Figure 15a), so we believe this choice is crucial.

3. Weight entanglement vs. weight sharing in the Supernetwork: In early experiments on
NB201 we noticed that weight sharing in the Supernetwork, was not only more expensive,
but much more unstable as well when compared to weight entanglement (Cai et al., 2020;
Sukthanker et al., 2023), even yielding diverging solutions quite often (common pattern
seen in differentiable NAS with shared weights as you mention; see Zela et al. (2020) for
instance).

We hypothesize that all design choices mentioned above play an implicit regularization effect on the
upper level optimization in the bi-level problem, leading to a faster convergence and robustness (Chen
& Hsieh, 2020; Smith et al., 2021; Zela et al., 2020).

K ALIGNMENT OF PREFERENCE VECTORS WITH PARETO FRONT

Figure 32: Pareto front and preference vectors on the normalized Eyeriss latency and test error of
NAS-Bench-201.

In this section, we provide empirical evidence that the solutions generated using the
MetaHypernetwork align well with the preference vectors. To this end, we utilize one of our

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

runs on the NAS-Bench-201 test devices, namely Eyeriss. In Figure 32, we show the Pareto front
of the normalized test error and latency on Eyeriss. Note that of the 24 sampled preference vectors,
17 generate solutions that are in the Pareto set. Each point in the Pareto front with a certain color
corresponds to the preference vector with the same color. In the figure, there are actually 17 points
in the Pareto front; however, some of them are really close to each other or are the same, since the
function mapping preference vectors to architectures is a many-to-one function. Nevertheless, we can
visually notice that the preference vectors starting from the origin align very well with the generated
solutions. The missing vectors are mainly in the center, where there are not many solutions available
for this particular device.

L TRAINING AND VALIDATION LOSS CURVES

In addition to the hypervolume indicator, in this section, we provide the training and validation loss
curves in Figure 33. At each mini-batch iteration we plot the average cross entropy loss across all
devices. As expected both training and validation cross-entropy go down and we do not notice any
overfitting. The high noise is common for sample-based NAS optimizers, since a sampled different
architecture is activate at each mini-batch iteration. In the plot, for visualization purposes, we have
used a running average with a window size of 100 to smooth out the noise.

M MULTI-OBJECTIVE OPTIMIZATION BASELINES WITH MORE BUDGET

102 103

Steps

1.90

1.95

2.00

2.05

2.10

2.15

Lo
ss

 (R
un

ni
ng

 A
vg

)

Training Loss
Validation Loss

Figure 33: Average training and validation cross-
entropy loss across devices during the MODNAS
search on NAS-Bench-201.

Black-box multi-objective optimizers can po-
tentially reach the global Pareto front if the
compute resources are not a concern and given
enough time. However, it is not practical to
train or even evaluate these architectures, espe-
cially for larger model sizes (e.g. Transformer
spaces from HW-GPT-Bench). Sometimes in
practice, the user wants to get a quick estima-
tion of the Pareto front instead the global opti-
mum, and this is the use-case where MODNAS
shines. Given enough budget, even a random
search (RS) will find a near-optimal solution.
For example, in NAS-Bench-201, the size of
the search space is K = 15625 architectures.
The optimal theoretical number of RS steps n
to achieve a success probability α is approxi-
mately: n ≥ Kln(1/1− α), therefore, for ran-
dom search to have a success probability higher
than 0.5 it requires n ≥ 10781 iterations in theory. For the other guided search methods, this number
is even smaller, though similar to MODNAS, they have the same limitation that they can converge
to a local minimum. We conducted the same experiment as the one in Figure 3, but this time with
baselines given 4 times more budget than MODNAS. We show the result in Figure 34. As we can see,
some of the methods such as LS-BO can reach results closer to the global Pareto front compared to
MODNAS.

N ADDITIONAL DETAILS ON THE Architect

In this section, we provide additional details on how the Architect utilizes the Straight-Through
Estimator (STE) to backpropagate through the sampling of discrete architectural parameters.
Forward pass:

1. The MetaHypernetwork parameterizes the unnormalized architectural distribution: α̃ =
HΦ, where Φ are the MetaHypernetwork parameters.

2. α̃ is passed to Architect and it does the following steps:

(a) Normalizes α̃ and samples a one-hot (discrete) α: α ∼ Categorical(Softmax(α̃)).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0.81
0.91

1080ti_1

1080ti_32

1080ti_256

silver_4114

silver_4210r
samsung_a50

pixel3

es
se

nt
ia

l_p
h_

1

sa
m

su
ng

_s
7

titanx_1
titanx_32

titanx_256

gold_6240
titan_rtx_256 gold_6226

fpga

pixe
l2

ra
sp

i4
ey

er
is

s

MODNAS
RS
LS

MO-ASHA
RS-BO
LS-BO

MO-RE
qEHVI

NSGA-II
Global opt.

Figure 34: HV of MODNAS and baselines across 19 devices on NAS-Bench-201. For every device
we optimize for 2 objectives, namely latency (ms) and test accuracy on CIFAR-10. For method,
metric and device we report the mean of 3 independent search runs. Higher area in the radar indicates
better performance for every metric. Test devices are colored in red around the radar plot. Here we
allocate 4 times the budget to baselines, i.e. we run all baselines for 100 function evaluations.

(b) Sets the Supernetwork architectural parameters to the one-hot α, i.e. resulting in a
single subnetwork by masking the Supernetwork.

(c) Passes α as input to MetaPredictor.
3. The Supernetwork and MetaPredictor do a forward pass using the training data (e.g.,

images) and hardware embedding, respectively.
4. Compute the scalarized loss function.

The main problem now is that we cannot directly backpropagate the gradient computation through
the Architect to update the MetaHypernetwork parameters Φ. This is due to the sampling from
the Categorical distribution in step 2/(a) above being non-differentiable. The STE approximates the
gradient for the discrete architectural parameters by ignoring this actual non-differentiable sampling
operation.
Backward pass:

1. Calculate the gradient of the scalarized loss with respect to the discrete architectural param-
eters α: ∂L/∂α.

2. Propagate this gradient back to Φ (MetaHypernetwork parameters) via the probability
distribution:

∇ΦL =
∂L
∂α

∂α

∂Softmax
∇ΦSoftmax(HΦ).

STE backpropagates "through" a proxy that treats the non-differentiable function (sampling
of α) as an identity function (as a result ∂α

∂Softmax = 1) and computes the gradient w.r.t. to
the MetaHypernetwork parameters:

∇ΦL =
∂L
∂α
∇ΦSoftmax(HΦ)

.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

To recap, during the forward pass the Architect samples a discrete architecture from an architecture
distribution parameterized by the MetaHypernetwork, and during backpropagation the STE is
utilized to propagate back through the sampling operation and update the MetaHypernetwork
parameters, hence the distribution from which the discrete architectures in the next iteration will be
sampled.

O EXPERIMENTS ON PERPLEXITY AND MEMORY USAGE OBJECTIVES

Figure 35: MODNAS vs. baselines
on optimizing memory usage and per-
plexity on GPT-L (774M) of HW-GPT-
Bench.

In this section, we showcase the application of MODNAS
for optimizing memory usage (using Bfloat16 precision and
context size of 1024) and perplexity on OpenWebtext within
the HW-GPT-Bench (Sukthanker et al., 2024) GPT-L search
space, featuring Transformer models up to 774M parame-
ters. Since memory usage does not depend on the device
type, our approach does not utilize the MGD updates in
Algorithm 1 for computing the common gradient descent
direction, instead leveraging only preference vectors to cal-
culate the scalarized objective. This highlights once again
the flexibility of MODNAS across diverse settings, even
the ones it was not designed for. Despite this adjustment,
MODNAS remains competitive, delivering a Pareto front
comparable to leading black-box MOO baselines. We show
the results in Figure 35.

43

