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ABSTRACT

Reinforcement Learning (RL) has shown great potential to deal with sequential
decision-making problems. However, most RL algorithms do not explicitly con-
sider the relations between entities in the environment. This makes the policy
learning suffer from the problems of efficiency, effectivity and interpretability.
In this paper, we propose a novel deep reinforcement learning algorithm, which
firstly learns the causal structure of the environment and then leverages the learned
causal information to assist policy learning. The proposed algorithm learns a
graph to encode the environmental structure by calculating Average Causal Effect
(ACE) between different categories of entities, and an intrinsic reward is given to
encourage the agent to interact more with entities belonging to top-ranked cate-
gories, which significantly boosts policy learning. Several experiments are con-
ducted on a number of simulation environments to demonstrate the effectiveness
and better interpretability of our proposed method.

1 INTRODUCTION

Reinforcement learning (RL) is a powerful approach towards dealing with sequential decision-
making problems. Combined with deep neural networks, deep reinforcement learning (DRL) has
been applied in a variety of fields such as playing video games (Mnih et al., 2015; Vinyals et al.,
2019; Berner et al., 2019), mastering the game of Go (Silver et al., 2016) and robotic control (Ried-
miller et al., 2018). However, current DRL algorithms usually learn a black box policy approximated
by a deep neural network directly using the state transitions and reward signals, without explicitly
understanding the structure information of the environment.

Compared with DRL agents, an important reason why humans are believed to be better at learning
is the ability to build model on the relations between entities in the environment and then reason
based on it. This ability is an important component of human cognition (Spelke & Kinzler, 2007).
As the learning process continues, through interactions with the environment and observations of
it, human can gradually understand its actions’ causal effects on the entities as well as the relations
between entities and then reason based on them to figure it out the most important actions to take
in order to improve the efficiency. In scenarios that contain multiple entities with complicated rela-
tions, optimal policy may be obtained only when the structured relation information is captured and
exploited. However, most current DRL algorithms do not consider structured relation information
explicitly. The knowledge learned by an agent is implicitly entailed in the policy or action-value
function, which are usually unexplainable neural networks. Therefore, whether the relations are
well understood and exploited by the agent is unknown. When the environment is with high com-
plexity, blackbox learning of policies suffers from low efficiency, while policy learning over explicit
representation of entity relations can significantly boost the learning efficiency. Based on the fact
that entities in an environment are often not independent but causally related, we argue that disen-
tangling the learning task into two sequential tasks, namely relational structure learning and policy
learning, and leveraging an explicit environmental structure model to facilitate the policy learning
process of DRL agents are expected to boost the performance. With the learned relational structure
information, the agent performs exploration with a tendency of prioritizing interaction with critical
entities, which is encouraged by intrinsic rewards, to learn optimal policy effectively.

Taking this inspiration, we propose a deep reinforcement learning algorithm which firstly learns
the relations between entities and then recognize critical entity categories and develop an intrinsic
reward based approach to improve policy learning efficiency and explainability. The proposed algo-
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rithm learns a graph to encode the relation information between categories of entities, by evaluating
causal effect of one category of entities to another. Thereafter, intrinsic reward based on the learned
graph is given to an agent to encourage it to prioritize interaction with entities belonging to impor-
tant categories (the categories that are root causes in the graph). Previous works also use graphs to
provide additional structured information for the agent to assist policy learning (Wang et al., 2018;
Vijay et al., 2019). However, graphs leveraged by these works are provided by human and thus rely
heavily on prior knowledge. Compared with their methods, our algorithm overcomes the deficiency
that the graph can not be generated automatically. Our approach requires no prior knowledge and
can be combined with existing policy-based or value-based DRL algorithms to boost their learning
performance. The key contributions of this work are summarized as follows:

• We propose a novel causal RL framework that decomposes the whole task into the structure
learning and causal structure aware policy learning.

• The learned causal information is leveraged by giving causality based intrinsic reward to
an agent, to encourage it to interact with entities belonging to critical categories for accom-
plishing the task.

• We design two new game tasks which contain multiple entities with causal relations as
benchmarks to be released to the community. The new benchmarks are designed in such
ways that categories of objects are causally related. Experiments are conducted on our
designed simulation environments, which show that our algorithm achieves state-of-the-art
performance and can facilitate the learning process of DRL agents under other algorithmic
frameworks.

The paper is organized as follows. In Section 2, we introduce deep reinforcement learning and
Average Causal Effect (ACE), which are key components of this work. Then we illustrate our
algorithm in Section 3 in details. In Section 4, we show the experimental results on the designed
environment to demonstrate the effectiveness of our framework. In Section 5, we introduce previous
works that relate to our method. Finally, conclusions and future work are provided in Section 6.

2 BACKGROUND

2.1 DEEP REINFORCEMENT LEARNING

An MDP can be defined by a 5-tuple (S,A,P,R, γ), where S is the state space, A is the action
space, P is the transition function, R is the reward function and γ is the discount factor (Sutton &
Barto, 2018). A RL agent observes a state st ∈ S at time step t. Then it selects an action at from
the action space A following a policy π (at|st), which is a mapping of state space to action space.
After taking the action, the agent receives a scalar reward rt according toR(st, at). Then the agent
transits to the next state st+1 according to the state transition probabilityP (st+1|st, at). A RL agent
aims to learn a policy that maximizes the cumulative discount reward, which can be formulated as
Rt =

∑T
k=0 γ

krt+k where T is the length of the whole episode. In the process of learning an
optimal policy, a RL agent generally approximates the state-value function Vπ(s) or the action value
function Qπ(s, a). The state value function is the expected cumulative future discounted reward
from a state with actions sampled from a policy π:

Vπ(s) = Eπ

[
T∑
k=0

γkrt+k|St = s

]
. (1)

Deep Reinforcement Learning (DRL) which combines Deep Neural Networks (DNNs) with RL
can be an effective way to deal with high-dimensional state space. It benefits from the representa-
tion ability of DNNs, which enable automatic feature engineering and end-to-end learning through
gradient descent.

Several effective algorithms have been proposed in the literature and we use A2C in this paper as
our basic algorithm, which is a synchronous version of A3C (Mnih et al., 2016). A2C consists of a
variety of actor-critic algorithms (Sutton et al., 2000). It directly optimizes the policy πθ parameter-
ized by θ to maximize the objective J(θ) = Eπ[

∑T
k=0 γ

krt+k] by taking steps in the direction of
∇θJ(θ). The gradient of the policy can be written as:

∇θJ(θ) = Eπ[∇θ log πθ(a|s)Aπ(s, a)], (2)
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where Aπ(s, a) = Qπ(s, a) − V π(s) is the advantage function. The advantage function can be
estimated by one-step TD-error Âπ(st, at) = rt + γVφ(st+1)− Vφ(st), where Vφ(s) is the approx-
imation of the state-value function V π(s) parameterized by φ.

2.2 CAUSAL NEURAL NETWORK ATTRIBUTIONS

Attributions are defined as the effect of an input feature on the prediction function’s output (Sun-
dararajan et al., 2017) and Chattopadhyay et al. (2019) propose a neural network attribution method-
ology built from first principles of causality. Chattopadhyay et al. (2019) views the neural network
as a Structural Causal Model (SCM), and proposes a new method to compute the Average Causal
Effect of an input neuron on an output neuron based on the do(.) calculus (Pearl, 2009).
Definition 1. (Average Causal Effect). The Average Causal Effect (ACE) of a binary random vari-
able x on another random variable y is commonly defined as E[y|do(x = 1)]− E[y|do(x = 0)].

While the above definition is for binary-valued random variables, the domain of the function learnt
by neural networks is usually continuous. Given a neural network with input layer l1 and output
layer ln, we hence measure the ACE of an input feature xi ∈ l1 with value α on an output feature
y ∈ ln as:

ACEydo(xi=α) = E[y|do(xi = α)]− baselinexi . (3)

Definition 2. (Causal Attribution). The causal attribution of input neuron xi for an output neuron
y is defined as ACEydo(xi=α).

In Equation 3, an ideal baseline would be any point along the decision boundary of the neural
network, where predictions are neutral. However, Kindermans et al. (2019) showed that when a
reference baseline is fixed to a specific value (such as a zero vector), attribution methods are not
affine invariant. Therefore, Chattopadhyay et al. (2019) proposed the average ACE of xi on y as the
baseline value for xi:

baselinexi = Exi [Ey[y|do(xi = α)]] (4)

In this paper, we use causal attribution method to infer the relations between entities.

3 METHOD

In this section, we present a novel DRL framework named CARE (CAusal RElation) that enables
the agent to infer the causal relationship between entities. Figure 1 illustrates the overall framework
of CARE. CARE adopts a two-stage training paradigm. In the first stage, the agent learns a model of
the environment by minimizing the prediction error of the state transition. Then, we calculate ACE
values between categories of entities, which are used for constructing a causal graph G. When G is
at hand, we are able to obtain the causal ordering of all categories, that is, a permutation such that
nodes ranked lower cannot cause nodes ranked higher. This order is used to measure the importance
of the categories, and intrinsic reward is given based on the causal ordering. Specifically, the agent
receive a one-step “enhanced” reward rt where:

rt = rGt + rextt , (5)

where rextt is the original extrinsic reward given by the environment, and rGt is the intrinsic reward,
designed by the learning algorithm to encourage the agent to maximize the effect of its behaviour
on the change of states of critical entities. We describe the details in later sections.

This section is organized as follow. In section 3.1, we first introduce category-oriented state factor-
ization. In section 3.2, we describe how to get the relation graph G and in section 3.3, we show how
to calculate the intrinsic reward rGt .

3.1 CATEGORY-ORIENTED STATE FACTORIZATION

We focus on environments which contain multiple categories of entities. The category of entity
is the acting rules that govern the actions of the entity. Each entity is within one category, and
the entities within one category share the same acting rules. An example of the category of entity
appears in the experimental section. Consider an environment consisting of two kinds of sheep:
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Figure 1: The Overall framework of CARE. CARE firstly learns a model of the environment which takes the
states of different categories of entities as input and predicts the next step states of all categories. Then we
perform causal relation analysis on the model to get a relation graph among all categories. Finally, intrinsic
reward based on the graph and the effect of agent behavior on entities is given to the agent to assist policy
learning.

one is the ewe that takes random walk. The other is the lamb that always follow the ewe. Then
there are two categories of entities in the environment. In this paper, we infer the causal relations
among categories. Another view is to infer the causal graph among all entities in the environment.
However, certain abstraction of entities is beneficial and simplifies the learning because quite often
in a dynamic and interactive environment, entities could pop up or disappear as the result of actions
taken by the agent or the environmental evolution. Therefore, maintaining a graph with changing
nodes could be quite challenging, rendering the learning algorithm unnecessarily complicated. We
thus choose category-level casuality inference for scalability. The category of each entity is given
as a prior, or generated by applying computer machine vision technology such as unsupervised or
pretrained object segmentation models (Agnew & Domingos, 2020), shape and color analysis (Ren
et al., 2015; He et al., 2017). We introduce a factored space to represent the states. The factored
state space S consisting of entities of K categories is S = S1 × ... × SK , where Si is the state
space of the ith category. At time t, the state of the entities of ith category is sit ∈ Si, and the
state st ∈ S of all entities is composed of local states of all category st = [s1t , s

2
t , ..., s

K
t ]. This

factorization ensures that each category of entities is independently represented. In this paper, the
state is represented using a K-channel feature map, each corresponding to one category of entities.
More details can be found in the Appendix.

3.2 CAUSAL RELATION ANALYSIS

Figure 2: Architecture of the environmental
model. The model contains one encoder and K de-
coders each corresponding to one category. The en-
coder takes current state as input and the decoders
predict the next step state of each category.

In this section, we demonstrate how to obtain the
casual graph. Firstly, we learn a model of the envi-
ronment, which predicts the next step state of each
category of entities. Thereafter, we perform av-
erage causal effect analysis between each pair of
categories. Namely, conditioning on all other cate-
gories, we compute a measurement quantifying the
influence of one category on the other. Based on
this, we are able to recover the whole causal graph,
and the causal ordering of categories. In hypoth-
esis, vertices with higher ranking are more impor-
tant in the environment, and we will give intrinsic
rewards based on the influence of the agent’s action
on different categories of entities.

Environment Model Learning

To learn the environment model, we first use a ran-
dom agent to interact with the environment to col-
lect a buffer of experienceB = {(st, at, st+1)}Tt=1.
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It contains T tuples of states st ∈ S, actions at ∈ A, and follow-up states st+1 ∈ S, which is
reached after taking action at. Our goal is to predict next step state of each category of entities to
understand the environment, without agent’s policy training. It should be noted that our model is
only used to analyze the relations between category of entities, i.e. the causal ordering of all entity
categories, instead of using the model for planning like model-based RL. Therefore, our method
does not require extremely high model accuracy.

Our model employs an encoder-decoder architecture (See Figure 2). The encoder is a CNN operating
directly on observations from the environment, and the output of the encoder zt = Enc(st, at) is
flattened to a vector. The decoder is composed of several deconvolutional layers. There are K
decoders Dec1...DecK , each corresponding to a category of entities, which take the encoded vector
as input and predict the next state of each category of entities.

ŝkt+1 = Deck(zt) (6)

The model is trained by minimizing the following loss:

L =

K∑
k=1

d(skt+1, ŝ
k
t+1) (7)

where d(skt+1, ŝ
k
t+1) denotes the distance between the predicted next state ŝkt+1 and the true one.

Calculating ACE

After getting the environment model trained, we can calculate ACE values of each pair of categories
following the method described in Section 2.2, which computes ACE by intervening the states of
each category of entities. Specifically, the ACE of a category i on another category j can be calcu-
lated by:

ACE
sjt+1

do(sit=s
i
τ )

= E[sjt+1|do(sit = siτ )]− baselinesit (8)

Here siτ ∈ Si is the interventional state. do(sit = siτ ) means that we manually control sit to another
state siτ , known as do calculus in causal analysis. The baselinesit is calculated by:

baselinesit = Esit [Esjt+1
[sjt+1|do(sit = siτ )]] (9)

By definition, the interventional expectation E[sjt+1|do(sit = siτ )] is written as

E[sjt+1|do(sit = siτ )] =

∫
sjt+1p(s

j
t+1|do(sit = siτ )) ds

j
t+1 (10)

Computing the integral is intractable because the exact distribution of sjt+1 is unknown. Thus, we
approximate Equation 10 by empirical historical distribution sampling:

E[sjt+1|do(sit = siτ )] ≈
1

N

∑
(sm,am,sm+1)∈BN

ŝjm+1 (11)

where ŝjm+1 = Decj(Enc(ṡ
(i)
m , am)) is the predicted next state of category j and ṡ

(i)
m =

[s1m, ..., s
i
τ , ..., s

K
m] is the interventional state which sets sim = siτ while leaves other categories

unchanged. BN ⊆ B is a batch of experience sampled from the buffer with sample size N . The
maximal ACE value is used as the final effect of category i on category j:

ACEi→j = max
siτ∈Si

(ACE
sjt+1

do(sit=s
i
τ )
) (12)

In practice, it is also computed by sampling from the historical states set of the category i.

After getting pairwise ACE values, we are able to get the causal graph G = (V, E) of all categories
of entities. V is the set of all vertices and each vertex represents a category of entities. E is the set of
all edges and eij ∈ E represents that category i causes category j. Let H be the K ×K adjacency
matrix of G, which is obtained by the edge directing rule:

Hij =

{
1, if ACEi→j > ACEj→i

0, otherwise
(13)
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Since G is assumed to be a directed acyclic graph (DAG), there are no feedback loops or any path
starting from category i and then back to itself. Consequently, there exists a causal ordering of
all vertices. Causal ordering is a permutation µ of all index of vertices {1, ...,K}, where vertices
ranked higher cannot be caused by ones ranked lower. The nodes ranked higher are hypothetically
more critical entity categories for the task. This will be used for designing intrinsic reward. Based
on this, we define the criticality of entity category.
Definition 3. (Criticality of Entity Category). The criticality of entity category is defined as the
ranking of the category in the causal ordering µ.

3.3 INTRINSIC REWARD

We adopt the tendency to prioritize critical entities by giving intrinsic rewards to the agent in addition
to the original extrinsic reward for policy learning. The basic idea is that actions that have a relatively
large effect on entities whose category ranks higher in the causal ordering are rewarded. Based on
the learned model as described in Section 3.2, we define the effect Ii(st, at) of the agent’s behavior
on the ith category of entities, similar to ACE as:

Ii(st, at) = fi(st, at)−
1

|A|
∑
a∈A

fi(st, a) (14)

Here fi(st, at) = Deci(Enc(st, at)) denotes the learned model and |A| is the size of the action
space. This method calculates the effect of the agent’s action on the a certain category of entities
and the second term 1

|A|
∑
a∈A fi(st, a) in equation 14 serves as the baseline when calculating

ACE.

The intrinsic reward is defined as rGt =
∑K
i=1 r

G,i
t . For each category, the intrinsic reward is:

rG,it =

{
βi, if Ii(st, at) > δ

0, otherwise
(15)

Here βi and δ are hyperparameters. It is constrained that the rewards of categories along the causal
ordering are non-increasing βµ1 ≥ βµ2 ≥ ... ≥ βµK , where µi corresponds to position i in the
causal ordering.

4 EXPERIMENTAL RESULTS

In this section, we evaluate CARE on two test domains (see Figure 3), Shepherd and Ant, where
an agent is required to have the ability of relational reasoning to learn an ideal policy. We com-
pare CARE with flat DRL method (A2C) and Relational DRL (Zambaldi et al., 2018), which is an
A2C based algorithm and uses multi-head attention to extract relation between entities. Experiment
details can be found in the Appendix.

Figure 3: The Shepherd game (left) and the Ant game (right).

4.1 SHEPHERD

In the Shepherd game (Figure 3, left), a shepherd is expected to drive all of the ewe and lambs,
which are randomly distributed in the ranch at the beginning, back into the sheepfold. The agent’s
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Figure 4: Experimental results on the two test games.(a) Learning curves of the Shepherd game. (b)
Learning curves of the Ant game. All experiments are averaged over 5 random seeds.

objective is to finish the task using as little time as possible. Unless the shepherd gets close and
drives the sheep, the ewe will walk around the ranch and the lambs follow the ewe. The shepherd
is viewed as the agent here and it has five actions: up, down, left, right and drive. Each action
makes the agent move to the corresponding direction with one step size except for drive. If the
agent takes the drive action, sheep near the agent will be driven to move towards the sheepfold. The
game ends when all sheep are in the sheepfold or the time exceeds a fixed period. At every step,
the agent receives a reward equal to the negative sum of distance from each sheep to the sheepfold.
Here we have K = 2 categories of entities.

We firstly evaluate our algorithm in this game. The experimental result is shown in Figure 4(a). The
result shows that our method converges to a better policy with higher mean episode return than other
methods. Flat A2C agent can also learn a relatively good policy with slightly worse performance
compared with our method, but it takes a longer time. This result shows that understanding the
causal relations and leveraging the learned relational information can significantly boost the learning
process of DRL agents. The performance of the Relational DRL algorithm is not to our expectation,
possibly because the attention mechanism does not capture correct relations of the entities in the
environment.

The causal graph learned by CARE is in Figure 6 (left). Here E, L and A denote Ewe, Lamb and
Agent respectively. The edge from Ewe to Lamb represents that lambs are attracted by the ewe.
The two edges from the Agent to Ewe and Lamb means that the ewe and lambs are driven by the
agent. Although the agent is also considered a node, it is not ranked in the causal ordering. The
ACE values for getting this graph are listed in Table 1.

Figure 5: Visualization of the Iewe(s, drive) in the Shepherd
game. The heatmap is generated by intervening the position of
the agent to every grid in the field to get Iewe(s, drive) using
Equation 14.

We also evaluate the effect Ii(s, a) cal-
culated by Equation 14, which is the
cornerstone of the intrinsic reward. We
firstly sampled a state from the historical
trajectories, and then manually set the
agent to every grid in the field. At each
grid, we calculate the agent’s effect on
the category of ewe using Equation 14.
Finally we visualize the calculated ef-
fect in Figure 5. The value of coordinate
(x, y) in the heatmap corresponds to ef-
fect of the agent on the ewewhen it is on
position (x, y) and taking action drive.
As shown in the Figure 5, the calcu-
lated Iewe(s, drive) is high only when
the agent is near the ewe. This is be-
cause the ewe will be driven to move towards the sheepfold only when the shepherd and sheep are
close enough. This result shows that the effect of the agent on the target category of entities is well
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modeled. Moreover, this result also shows that we can choose the hyperparameter δ easily, because
there is a large gap between the calculated Ii(s, a) when the agent’s behavior affects ith category of
entities or not.

Table 1: ACE values in the Shepherd game.

ACE ewe lamb agent
ewe − 1.52e-03 1.03e-06
lamb 5.14e-05 − 1.06e-06
agent 3.65e-05 6.44e-06 −

Table 2: ACE values in the Ant game.

ACE queen worker food agent
queen − 2.97e-03 7.71e-04 1.45e-06
worker 4.33e-05 − 2.42e-03 4.13e-06
food 1.22e-06 3.72e-03 − 2.72e-07
agent 1.76e-06 2.12e-04 3.86e-05 −

4.2 ANT

In the Ant game (Figure 3, right), the agent is expected to kill all ants in the field. There are two
queen ants and four worker ants at the beginning. Queen ants move around the field. Worker ants
will firstly go to the nearest food and then bring it to a queen ant. The queen ant obtains some energy
by eating the food. If the queen ant’s energy exceeds a threshold, it will generate a new worker ant.
Food will continue to be produced in the fixed positions. For this environment, there are K = 3
categories of entities. The agent has five actions: up, down, left, right, each of which makes the
agent move one step towards the corresponding direction and attack, which kill the ant around the
agent if there exists. The game ends when all ants are killed or the time span exceeds a fixed period.
The agent will receive a reward of +1 if it kill one ant, whether it is a worker ant or a queen ant. At
the end of the episode, the agent will receive a reward of −(10 × n + 100 ×m), where n and m
denote the number of left worker ants and queen ants respectively.

Figure 6: Learned graphs of the
Shepherd game (left) and the Ant
game (right).

An optimal policy should prioritize the task of killing the
queen ant. Otherwise, worker ants will be continuously pro-
duced by the queen ants and the number of ants grows up
very fast. We evaluate our algorithm in this game, compar-
ing to flat A2C and Relational DRL. The experimental results
are given in the Figure 4(b). In this game, we observe that
our method learns a policy that kills the queen ants first and
then other ants. However, flat A2C and Relational DRL both
learn a policy that keeps the queen ants alive but stays at a
certain position around the food to wait for and kill worker
ants coming for food.

We show the learned causal graph in Figure 6 (right). Q, W ,
F and A denote Queen, Worker, Food and Agent respec-
tively. The causal ordering is [Q,F,W ] and the calculated ACE values can be found in the Table 2.

Since our algorithm has a graph learning procedure, we also record the running time of the algo-
rithms in Table 3. Our algorithm takes longer time than A2C when the training step is the same.
However, given the performance gain, we think the cost in time is reasonable: our algorithm learns
a better policy, which is not obtainable by other algorithms. The performance gap is especially
obvious in Ant game.

Table 3: Running time (seconds) in the Shepherd and Ant games.

Shepherd Ant
Method Graph learning RL policy learning Graph learning RL policy learning
CARE 1002 1149 3201 5136
A2C − 779 − 4516

Relational − 2251 − 9919

5 RELATED WORK

Our framework learns a graph and the graph entails the relationship between entities in the environ-
ment. Compared with model-based reinforcement learning algorithms (Sutton, 1991; Silver et al.,
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2008; Heess et al., 2015; Nagabandi et al., 2018), which usually learn environment dynamics and
plan or learn on the learned dynamics to reduce the interaction with the real environment, our method
focuses on learning relations of entities but not environment dynamics. The learned causal graph
is used to order the category of entity. Mahadevan & Maggioni (2007); Mabu et al. (2007); Met-
zen (2013); Shoeleh & Asadpour (2017); Sanchez-Gonzalez et al. (2018) also use graphs to learn
a representation of the environment. However, these methods still focus on learning environment
dynamics and thus these problems are usually solved via model-based RL.

The learned graph could be viewed as a structure description of the environment. Applying structure
knowledge of environments in RL has been studied in previous works. Wang et al. (2018) explicitly
models the structure of an agent as a graph and uses a GNN to approximate a policy. Vijay et al.
(2019) builds a knowledge graph as prior for the agent, which illustrates different relations between
entities in the environment. However, graphs leveraged by these two works are priors provided by
human. Compared with these works, our algorithm supports automatic graph learning and requires
no human prior knowledge. Ammanabrolu & Riedl (2019) proposed KG-DQN, which constructs a
knowledge graph to represent the environment and uses Graph Neural Networks to extract features
of the graph. This work nevertheless only adapts to Text-Adventure Game, because their knowledge
graph can be only generated from natural language. Zambaldi et al. (2018) use multi-head attention
to extract relation between entities. However, their method solves problem from the aspect of entity
instead of category. Notice that our model deploys a encoder-decoder structure for processing the
input signals. This is used by Shi et al. (2020) known as self-supervised interpretable network for
extracting task-relevant attention masks which are interpretable features for agent’s decisions. Ag-
new & Domingos (2020) uses object-centric state representations and exploits the object interactions
and dynamics for identifying task-relevant object representations.

6 CONCLUSIONS

In this paper, we propose a novel deep reinforcement learning algorithm, which firstly learns en-
vironmental causal structure and then leverages the learned relational information to assist policy
learning. Experimental results show that our algorithm has good performance, indicating that incor-
porating the environmental structure for reasoning is a promising research direction. Future work
includes studying environments with dynamical graphs, and improving the training efficiency of the
framework.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

State Representation

In both the Shepherd game and the Ant game, the whole game field is a grid world with size 18×18.
The game state is represented by a tensor of size K × 18× 18. Each channel represents the state of
one category of entities.

Environmental model

The encoder is composed of three convolutional layers. The first, second and third layer have 64, 128
and 256 3 × 3 filters with stride 2 respectively, each followed by a Batch Normalization layer. The
output of the encoder is flatten to a vector and then enter two fully connected layers both with 512
hidden units. The action is encoded into a vector of size 32 by three FC layers with 100 hidden units
and then is concatenated with the output of the encoder. Each decoder takes the output of encoder as
input and pass it into four fully connected layers, with 900, 300, 512, 512 hidden units respectively.
Then the output of the FC layers is taken as input of three deconvolutional layers. The first two
layers have 128 and 64 3 × 3 filters with stride 2 respectively. The last layer has num categories
4×4 filters also with stride 2. Each deconvolutional layer is also followed by a Batch Normalization
layer.

When training the model, we collect a buffer with 5000 episodes. We use the Adam optimizer to
train the model with a learning rate of 1e− 4 and a batch size of 32.

Parameter Setting of RL

CARE and flat A2C use the same network architecture. The actor and critic share the same first
two convolutional layers and a FC layer. The two convolutional layers have 64 and 32 3 × 3 filters
with stride 2 respectively. The FC layer has 128 hidden units. The critic and the actor both take the
output of the share part and pass it into two FC layers with 512 hidden units. Finally they output
the value and the action distribution. For the Relational DRL algorithm, we use an open source
implementation1. Other parameters are listed as follow:

1https://github.com/mavischer/DRRL
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Table 4: Shepherd

− CARE A2C Relational
Number of process 16 16 16

Discount factor 0.99 0.99 0.99
Optimizer RMSProp RMSProp RMSProp

Learning rate 7e− 4 7e− 4 7e− 4
Entropy term coefficient 0.01 0.01 0.01

δ 1e− 3 − −
βs (10, 0) (decays to 0 at 3000th update) − −

Table 5: Ant

− CARE A2C Relational
Number of process 16 16 16

Discount factor 0.99 0.99 0.99
Optimizer RMSProp RMSProp RMSProp

Learning rate 7e− 4 7e− 4 7e− 4
Entropy term coefficient 0.5 0.1 0.1

δ 8e− 4 − −
βs (100, 0, 0) − −
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