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Abstract

Video sequences offer valuable temporal information, but existing large multimodal models
(LMMs) fall short in understanding extremely long videos. Many works address this by
reducing the number of visual tokens using visual resamplers. Alternatively, in this paper, we
approach this problem from the perspective of the language model. By simply extrapolating
the context length of the language backbone, we enable LMMs to comprehend orders of
magnitude more visual tokens without any video training. We call this phenomenon long
context transfer and carefully ablate its properties. To effectively measure LMMs’ ability
to generalize to long contexts in the vision modality, we develop V-NIAH (Visual Needle-
In-A-Haystack), a purely synthetic long vision benchmark inspired by the language model’
s NIAH test. Our proposed Long Video Assistant (LongVA) can process 2000 frames or
over 200K visual tokens without additional complexities. With its extended context length,
LongVA achieves state-of-the-art performance on Video-MME and MLVU among 7B-scale
models by densely sampling more input frames.

∗Equal contribution.
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1 Introduction

Driven by the progress of Large Language Models (LLMs) (Brown et al., 2020; Team, 2023; Touvron et al.,
2023; Gemini, 2024; Ormazabal et al., 2024; Mistral, 2024; Cohere, 2024), multiple studies are conducted
to extend their capability to understand images and videos (Li et al., 2023b; Dai et al., 2023; Qwen, 2024;
Liu et al., 2023c). With modality alignment and visual instruction tuning, these Large Multimodal Models
(LMMs) have shown impressive abilities such as captioning and visual question-answering. While current
LMMs have demonstrated promising performance on tasks involving single images and short videos (Song
et al., 2024b; Lin et al., 2023a; Maaz et al., 2023; Zhang et al., 2023), effectively processing and understanding
extremely long videos remains a significant challenge (Wang et al., 2024b).

One primary reason for this challenge is the excessive number of visual tokens generated by the vision encoder.
For instance, LLaVA-1.6 (Liu et al., 2024b) can produce 576 to 2880 visual tokens for a single image. The
number of visual tokens increases significantly with the addition of more frames. To address this problem,
numerous methods have been proposed to reduce the number of visual tokens. One popular direction is to
modify the visual resampler that connects the vision encoder and LLM, aiming to extract fewer tokens (Li
et al., 2023b;d; Cai et al., 2024; Cheng et al., 2024). Alternative approaches (Chen et al., 2024a; Shang et al.,
2024; Jin et al., 2024; Zhou et al., 2024b) employ heuristic techniques to prune or merge the visual features.
However, despite these efforts, Table 1 demonstrates that the majority of current LMMs are still limited in
their ability to process a large number of frames effectively.

Another issue hindering the development of high-performance long video LMMs is the lack of high-quality
long video datasets. In Table 2, we list the average video length of existing video instruction tuning data.
Most datasets consist of video clips within 1 minute. Even if some datasets do contain longer videos, the
corresponding text pairs are generated by annotating only several frames within that video, lacking long and
dense supervision signals.

Given the circumstance, in this paper, instead of reducing the visual tokens, we identify the more critical
issue limiting the visual context length in existing LMMs: the context length of the language model backbone.
Given a language model, we first extend its context length by training on longer text data. We then use this
context-extended LM as the backbone to perform modality alignment and visual instruction tuning without
any long video text pairs. By training this way, the context length of the language model is directly transferred
to that of the LMMs. We further propose UniRes, a unified encoding scheme that represents videos as
extended images, enhancing the capability fusion between images and videos. To facilitate benchmarking and
accurately assess the context length in the visual domain, we created V-NIAH, a synthetic visual benchmark
based on the Needle-in-a-haystack test (Gregory, 2024) used in language models. Our model, Long Video
Assistant (LongVA), is capable of accurately retrieving visual information from 2000 frames or more than
200K visual tokens. Experiments show that additional frames during inference lead to improved performance
on long video question-answering benchmarks, and LongVA achieves state-of-the-art performance among
7B models on the Video-MME (Fu et al., 2024a) and MLVU (Zhou et al., 2024a) dataset. In summary, our
paper makes the following contributions:

(1) Long Context Transfer: We discovered the long context transfer phenomenon where the context of the
language model can be directly transferred to the modality-aligned multi-modal models.

(2) Visual Needle-In-A-Haystack (V-NIAH): We propose the V-NIAH benchmark to test LMMs ability
in locating and retrieving visual information over extremely long contexts.

(3) Long Video Assistant (LongVA): With long context transfer and UniRes, we developed LongVA that
can perceive more than 200K visual tokens, achieving SoTA performance on the Video-MME and MLVU
dataset.

2 Related Work

Vision Language Connector in Large Multimodal Models Existing studies explore different archi-
tectures to extract and inject visual features into LLMs. One line of work (Alayrac et al., 2022; Li et al.,
2023a; Awadalla et al., 2023; Laurençon et al., 2023), pioneered by Flamingo (Alayrac et al., 2022), adopts a
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Model Tokens/Frames* Training Max Frames* LM Backbone LM Context Length
MPLUG-Owl-video (Ye et al., 2024) 256 4 LLaMA 4K
MovieChat (Song et al., 2024b) 32 8 Vicuna-v0 2K
Video-LLaVA (Zhang et al., 2023) 49 8 Vicuna-1.5 4K
VideoChat (Li et al., 2024b) 32/196 8 Vicuna-v0 2K
LLaVA-NeXT-Video (Zhang et al., 2024b) 144 16 Vicuna-1.5 4K
ST-LLM (Liu et al., 2024c) 256 16 Vicuna-1.1 2K
Video-LLaMA (Cheng et al., 2024) 32 32 LLaMA-2 4K
Chat-UniVi (Jin et al., 2023) 112 64 Vicuna-1.5 4K
TimeChat (Ren et al., 2024) 4 96 LLaMA-2 4K
Video-ChatGPT (Maaz et al., 2023) 256 100 Vicuna-1.1 2K
LLaMA-VID (Li et al., 2023d) 2 300 Vicuna-1.5 4K
LongVA (Ours) 144 - Qwen2-Extended 224K+

Table 1: To enable longer video inputs, previous works train fewer visual tokens to increase the maximum
frames during training. Our LongVA, on the other hand, enables long video capability by extending the
backbone language model. *We report it based on the best available information from their paper or released
codebase.

Table 2: Existing Video SFT Datasets
Dataset Name Video Length (sec.) Text Length
VideoChatGPT-100K (Maaz et al., 2023) 123.4 068.0
LLaVA-Hound-255K (Zhang et al., 2024a) 052.4 037.6
ShareGPT4Video(Chen et al., 2024b) 026.6 273.3
TimeIT (Ren et al., 2024) 190.8 052.5
VideoChat (Li et al., 2024b) 009.5 059.0

Table 3: Video Benchmarks
Benchmark Name Video Length (sec.)
VideoChatGPT (Maaz et al., 2023) 0108.0
NexTQA (Xiao et al., 2021b) 0042.9
EgoSchema (Mangalam et al., 2023) 0179.8
VideoMME (Fu et al., 2024a) 1017.0
V-NIAH (Ours) 000.∞

resampler to compress the visual feature and inserts cross-gated attention layers into the LLM. Some other
works still use a reampler (Li et al., 2023b; Zhu et al., 2023; Qwen, 2024) while directly feeding the image
feature into the input layer of the language model. The LLaVA series (Liu et al., 2024b; 2023b;c) use a
simple and scalable design to directly project the image features into language model without any pooling or
resampling. When the field moves from image-only models to include multi-image and video inputs, more
modifications to the visual language connector were proposed. Zhang et al. (2024b) and Cai et al. (2024) use
a simple average pooling. Jin et al. (2024) dynamically drop the visual tokens. Cheng et al. (2024) adopt
a spatial-temporal convolution to better capture the dynamics of video data and reduce feature size. Our
proposed context transfer from text to image is orthogonal to those works and can further enable LMMs to
understand more frames.

Context Extrapolation in Transformer Transformer does not directly work on sequences longer than
its training length. To alleviate that, various RoPE-based (Su et al., 2023) extension techniques (Chen et al.,
2023a; bloc97, 2024; Rozière et al., 2024; Peng et al., 2023; Ding et al., 2024) have been proposed to allow for
training-free context extrapolation. Efforts have also been made on data curation (Fu et al., 2024b; Xiong
et al., 2023; Bai et al., 2024) and system optimization (Li et al., 2023c; Liu et al., 2023a; Jacobs et al., 2023)
during long context training. There has been limited exploration of the context extrapolation in the domain
of LMMs. Liu et al. (2024a) are closest to our work and train LMM with long context language models, but
they do not benchmark the effective visual context length of their model.

Video Language Benchmarks Recent years have witnessed significant progress in Video Question-
AnsweringAntol et al. (2015). To accurately measure the progress of the video LMMs’ performance, researchers
have developed various benchmarks encompassing a broad spectrum of tasks. These range from fundamental
visual perception tasks such as activity recognitionYu et al. (2019a), concept detection (Xu et al., 2017),
and counting (Jang et al., 2017), to more complex visual reasoning tasks including compositional (Grunde-
McLaughlin et al., 2021), causal (Xiao et al., 2021a; Yi et al., 2019; Xu et al., 2021), and situated reasoning (Wu
et al., 2021). However, most of those benchmarks focus on short videos, lacking data and metrics to test
LMMs’ capability over a long context. Inspired by the NIAH test (Gregory, 2024) in the language model
community, we propose V-NIAH to benchmark LMMs’ ability over long visual inputs with the minimum
overhead of data collection and human annotation. Several concurrent works also developed multimodal
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Figure 1: Left: to develop long vision models, previous studies proposed better visual resamplers to reduce
the number of visual tokens. Right: LongVA approaches this problem from the angle of the language model.
We leverage image data (short visual input) to align long-context LLM with vision. During the test time,
LongVA can zero-shot process extremely long videos, thanks to the property of long context transfer.

versions of the Needle-in-a-haystack test (Wang et al., 2024c; Zhou et al., 2024a; Song et al., 2024a; Wang
et al., 2024a). However, they only measure on several hundreds of frames and lack a strong baseline to
properly analyze the properties of visual context length.

3 Long Video Assistant

As in Figure 1, this paper centers around the hypothesis that if the modality of vision and language can be
truly aligned, the capability to handle long contexts could also transfer from text to vision, and this could
happen even without explicit long video training. Our methodology is thus very straightforward. Given a
language model, we first perform long context training purely on language to extend its text context (Section
3.1). We then detail how we augment this language model with long visual capabilities by training solely on
short image data in Section 3.2.

3.1 Training Long Language Model

We use Qwen2-7B-Instruct (Team, 2024) as the backbone language model and perform continued pretraining
with a context length of 224K1 over a total of 900M tokens. We follow Xiong et al. (2023) to increase
RoPE (Su et al., 2023) base frequency during the continued pertaining and specifically set it to 1B. A constant
learning rate of 1e-5 is maintained for a batch size of one million tokens across 1,000 training steps. Following
Fu et al. (2024b), we construct the dataset used for long context training from Slimpajama (Cerebras, 2023)
by upsampling documents longer than 4096 and keeping the domain mixture ratio unchanged. Multiple
documents are packed into a single sequence separated by a BOS token.

We employed several optimization strategies to perform training on such long sequences. These includes
FlashAttention-2 (Dao, 2023), Ring Attention (Liu et al., 2023a; Li et al., 2023c), activation checkpointing,
and parameter offload (Rajbhandari et al., 2020). To balance the load across different GPUs, we shard the

1224K is the maximum we can fit with 8×A100-80G for Qwen-2-7B. We find that the embedding size significantly impacts
the maximum sequence length in our optimized codebase. Qwen2 has a huge vocabulary of 152K tokens. For LLaMA2 with 32K
vocabulary, we can train it with 700K context length.
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Encoding Strategy Used By Number of Grids Max Tokens Video support Rope
AnyRes LLaVA-NeXT 4 2880 No 1D
UniRes Ours 49 7056 Yes 1D
Native Res Qwen2-VL NA NA Yes 3D

Table 4: Comparison of UniRes with existing encoding strategies. Unlike AnyRes and Native Res, our method
compresses tokens via pooling, enabling higher token capacity and supporting video input.

sequence in a zigzag way (Zhu, 2024) in ring attention. The resulting training framework is memory efficient
and maintains very high GPU occupancy. Note that we do not use any parameter-efficient methods such as
LoRA (Hu et al., 2021) or approximate attention (Child et al., 2019). With those optimizations, the compute
used in long context training is minimal compared to that of language model pretraining, making it feasible
for academic budgets. The long context training can finish in 2 days with 8 A100 GPUs.

In Figure 7, we evaluate the extended Qwen2 with the Needle-in-a-haystack (NIAH) test (AI, 2023; Gregory,
2024). It achieves perfect results within the training context length (224K) and generalizes even further. We
find the vanilla NIAH to be a relatively trivial benchmark and further test it with 5 distractors randomly
inserted into the documents. The detailed configuration can be found in Section 9.

3.2 Aligning Long Language Model Using Short Vision Data

Inspired by the AnyRes encoding scheme in LLaVA-NeXT (Liu et al., 2024b; Li et al., 2024a), we designed
UniRes that provides a unified encoding scheme for both images and videos, as shown in Figure 2. Unlike
AnyRes which retains a small base image and flattens ViT patches across the grids, UniRes removes the
base image, flattens patches within each grid, and 2x2 pool the visual features by default (Section 10). This
approach allows us to maintain consistent representation when extending image data into videos where
multiple frames are viewed as multiple grids in a row.

Specifically, UniRes divides an input image of resolution a × b into smaller grids, each with a resolution of
336 × 336 pixels. This results in (a//336) × (b//336) grids. For very high-resolution images, we limit the
maximum number of grids to 49, resizing images larger than this threshold. Each grid is separately encoded
using CLIP-ViT-L-336px (Radford et al., 2021) and then projected through a 2-layer MLP to match the LM’s
input dimension, resulting in 576 features per grid. We then apply 2x2 average pooling, finally converting an
a× b image into (a//336)× (b//336)×144 tokens. During inference, this visual encoding scheme allows videos
to be represented as very long images (even though we do not train on videos). An N -frame video is treated
as an image of size 336 × (336 × N), divided into N grids where each grid corresponds to a video frame. Using
CLIP encoding, MLP projection, and average pooling, an N -frame video is encoded into 144N visual tokens.
To clearly ablate the long context transfer phenomenon from language to vision, we adopt a train short, test
long protocol where we only use image-text data during training, but test on long videos. We trained our
model using the same data recipe and two-stage training approach as LLaVA-1.6. Our experiments show
that compared to AnyRes, UniRes has slightly lower scores on low-resolution image benchmarks (Table 9)
but performs better on V-NIAH (Figure 4) and Video-MME (Table 6). We believe the unified encoding
scheme for images and videos is crucial, thus choosing this as the encoding scheme of LongVA. The image-text
alignment can be finished in 1.5 days. With 2 days for long context training on text, the total training cost
of LongVA is 3.5 days on 8×A100-80G. Compared to approaches such as LLaVA-NeXT-Video(Zhang et al.,
2024b) that is trained on 128 H100, LongVA requires far less compute. In Table ??, we compare the training
token counts of various video-language models, highlighting the efficiency of LongVA.

It is worth noting previous work largely inspired the design choice of LongVA. For example,Xiong et al. (2023)
first demonstrates the effectiveness of long context continued pretraining with increased RoPE base frequency
(thus decreasing the rotation angles). We sample the long text data following the guidance of (Fu et al.,
2024b). We adopt the same vision encoder and training data as that of LLaVA-1.6 (Liu et al., 2024b). We try
to keep our methods as simple as possible to clearly show the phenomenon of long context transfer without
other confounders.
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Model Dataset Tokens Training Max Frames
MPLUG-Owl-video 104B 4
VideoChat 5B 8
LLaVA-Video 8B 16
VideoLLaMA 10B 32
LongVA 2B –

Table 5: A comparison of video-language models in terms of estimated training tokens and maximum training
frames, based on data reported in their original publications.

Figure 2: UniRes’s unified encoding scheme of images and videos. During training, images are divided into
multiple grids. During inference, videos are treated as extended images with each frame considered as a grid.

4 V-NIAH

To measure the context length of language models on extremely long input, earlier works calculate perplexity
scores over long documents. Recently, many have started using the Needle-in-a-Haystack (NIAH) test to
benchmark LLMs’ ability to retrieve long context information precisely. We note that there is so far no
benchmark to measure the visual context length of LMMs. To evaluate LongVA’s capacity to locate and
retrieve long-range visual information, we extend the NIAH test from text to video and propose V-NIAH.

As shown in Table 11, we designed 5 video question-answering problems as the needle and inserted each
as a single frame into hours-long videos. We sampled the videos at 1 FPS as the visual input. The image
of the needle is sourced from existing VQA benchmarks or AI-generated to avoid any contamination. The
AI-generated images and questions are purposely chosen to be "counterfactual" or "counter-commonsense",
ensuring the model cannot answer based on language knowledge alone. Each question includes a "locating
prompt" so that a capable system or human can locate the needle frame from the video haystack and answer
the question.

When testing LongVA with visual inputs of up to 3000 frames, one difficulty we encountered was that
processing a 200K-token input requires up to 100GB of GPU memory for the KV cache for a 7B LM like
LLaMA. Even with advanced LM serving systems like vLLM (Kwon et al., 2023) with tensor parallelism
to shard the KV cache across multiple GPUs, the sampling process remains extremely slow due to limited
memory and batchsize. To address this, we used "perplexity-based" evaluation to measure the correctness of
the model output. We first encode all frames and save their corresponding visual embeddings. During the
evaluation, we only load the language model from LongVA and concatenate the visual embeddings, question
tokens, and answer tokens for a single forward pass with ring attention. This approach makes the workload
compute-bound and eliminates the need to cache the KV state. The model’s output is considered correct
only if the highest output logits index of all tokens in the answer span matches the correct answer.
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Question: Find the frame of a couple in a wedding. Inside 
the frame there is a balloon on the bridegroom's head. 
What is the color of that balloon?
Answer the question using a single word or phrase.
Answer: Yellow

Needle
(various positions)

Figure 3: V-NIAH consists of a haystack video, a needle image, and a question related to the needle. The
needle is inserted at various positions in the haystack video.

Figure 4: The V-NIAH results of LongVA and its baselines. The x-axis represents the total number of frames
in the video haystack. The y-axis shows the position where the needle image is located. For instance, a frame
depth of 0% would place the needle image at the very beginning of the video. The black dotted line denotes
the training length of the backbone language model, with each frame corresponding to 144 tokens.

5 Experiments

Model Qwen2-224K UniRes
LLaVA-Next-Qwen2 × ×
LongVA (AnyRes) ✓ ×
LongVA ✓ ✓

Table 7: LongVA and its baselines.

We primarily assess the long visual capability of LongVA
on two benchmarks: V-NIAH (Section 5.1 and Video-
MME (Fu et al., 2024a) (Section 5.2). V-NIAH provides
quick signals about the visual context length of LongVA.
However, it only tests the model’s ability to retrieve infor-
mation and does not cover other abilities necessary for a
real-world long video assistant. Therefore, we also include
LongVA’s performance on Video-MME, a comprehensive
evaluation suite for video LMMs that includes diverse data
types and qualitative annotations. Video-MME is an ideal benchmark for assessing LMMs’ ability to handle
long videos in real-world scenarios, given its average video duration of 1017 seconds and the inclusion of
short, medium, and long subsets. We further include the benchmark results on MLVU(Zhou et al., 2024a) in
Table 10.
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Model LLM Params Frames Short Medium Long Overall
InternVL-Chat-V1.5 (Chen et al., 2023b) 20B 010 60.2 46.4 45.6 50.7
LLaVA-NeXT-Video-34B (Zhang et al., 2024b) 34B 032 61.7 50.1 44.3 52.0
VILA-1.5 (Lin et al., 2023b) 34B 008 68.1 58.1 50.8 59.0
Qwen-VL-Chat (Qwen, 2024) 07B 004 46.9 38.7 37.8 41.1
Video-LLaVA (Lin et al., 2023a) 07B 008 45.3 38.0 36.2 39.9
ST-LLM (Liu et al., 2024c) 07B 064 45.7 36.8 31.3 37.9
VideoChat2-Mistral (Li et al., 2024b) 07B 016 48.3 37.0 33.2 39.5
Chat-UniVi-V1.5 (Jin et al., 2023) 07B 064 45.7 40.3 35.8 40.6
VideoLLaMA2 (Cheng et al., 2024) 08B 016 56.0 45.4 42.1 47.9
LLaVA-NeXT-Qwen2 07B 032 59.8 48.2 44.7 50.9

LongVA 07B

008 55.6 46.0 41.7 47.7
016 59.9 47.0 43.8 50.2
032 61.7 49.1 45.9 52.2
064 61.8 51.7 44.6 52.7
128 61.6 50.6 47.1 53.1
384 60.9 49.9 46.1 52.3

Table 6: Performance comparison of various LMMs on Video-MME (Fu et al., 2024a) without subtitles.
LongVA achieves state-of-the-art results among 7B models. Its performance also increases with denser
sampling of video frames.

We mainly compare LongVA against other image and video LMMs. To validate the phenomenon of long
context transfer, we trained LLaVA-Next-Qwen2, a baseline model based on Qwen2-7B-Instruct using the
LLaVA-NeXT (Liu et al., 2023b; Li et al., 2024a) training recipe. Additionally, we trained LongVA (AnyRes)
to showcase the advantages of our UniRes encoding scheme. The difference between LongVA and our baselines
can be found in Table 7.

5.1 V-NIAH Results

Long context transfers from language to vision Figure 4 shows the V-NIAH performance of LongVA
and other LMMs. Specifically, Figure 4 (iii) demonstrates that the visual context length of LLaVA-NeXT-
Video-32K (Zhang et al., 2024b) is constrained by the 32K context length of its language backbone, Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023), equivalent to approximately 200 frames. Beyond this limit, the V-NIAH
accuracy drops significantly. As a stronger baseline, we include the results of LLaVA-NeXT-Video-32K
enhanced with a training-free length extrapolation algorithm (bloc97, 2024) by increasing its RoPE base
frequency. We empirically determine the optimal extrapolation frequency by choosing from [3M, 10M, 30M,
100M, 300M, 1B]. As indicated in Figure 4 (iv), although this training-free extrapolation allows the model
to process information across an extended context, the improvement is marginal. These findings led us to
develop LongVA, a model that unlocks the visual context by extending the language model purely on text.
As shown in Figure 4 (i), LongVA can almost perfectly retrieve information and answer the needle question
for input frames fewer than 2000. Although we only trained LongVA’s language backbone on a context length
of 224K (equivalent to 1555 frames), it generalizes well beyond that, maintaining satisfactory performance
within 3000 frames. Those results clearly corroborate of hypothesis of long context transfer.

Unified encoding enables better visual context extrapolation We also present the V-NIAH heatmap
of LongVA trained with AnyRes encoding scheme, keeping all other factors unchanged in Figure 4 (ii).
LongVA-AnyRes demonstrates strong retrieval capabilities. However, its performance still lags behind
LongVA trained with UniRes. We believe that the unified representation of images and videos in UniRes,
where a video is encoded in the same way as a long image, enhances the long context transfer from language to
vision. This approach also facilitates effective training with short vision data (images) and enables zero-shot
understanding of long videos during inference.

5.2 Video Evaluation

V-NIAH is synthetic by design to allow controlled and scalable probing of the length of the visual context.
To further illustrate that LongVA is capable of handling long and realistic videos, we evaluated LongVA on
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Model NeXTQA ActivityNetQA VideoChatGPT Video-DD
frames MC OE Score Consistency Correctness Detail Context Temporal Score

LLaVA-NeXT-Video 32 57.93 26.90 3.20 3.12 3.39 3.29 3.92 2.60 3.32
LongVA 08 50.78 27.71 2.73 3.73 3.09 3.14 3.72 2.39 3.19
LongVA 16 61.61 27.87 2.78 3.61 3.13 3.15 3.75 2.40 3.22
LongVA 32 67.08 27.87 2.80 3.65 3.08 3.10 3.74 2.28 3.19
LongVA 64 68.27 27.81 2.84 3.64 3.05 3.09 3.77 2.44 3.14
LongVA-DPO 32 69.26 28.02 2.80 4.07 3.55 3.32 4.09 2.86 3.58

Table 8: Video evaluation results for LongVA on various short video benchmarks with comparison to 7B
scale models.

real-world benchmarks such as Video-MME(Fu et al., 2024a) and MLVU(Zhou et al., 2024a) which cover
diverse realistic video scenarios. LongVA achieves state-of-the-art performance among 7B models on both,
despite lack of video training.

On Video-MME (Table 6), LongVA achieves state-of-the-art performance among LMMs under 10B parameters,
rivaling much larger ones such as LLaVA-NeXT-Video-34B (Zhang et al., 2024b) and InternVL-Chat-
V1.5 (Chen et al., 2023b). Notably, LongVA is trained without any video data, so its performance on
video can be considered zero-shot. As the number of sampled frames increases, LongVA shows improved
performance on the long subset, handling up to 384 frames2. Even though LongVA’s score slightly drops when
we upsample from 128 to 384 frames, it maintains a competitive performance. To our knowledge, LongVA is
the only open-source model that can handle such large input frames on Video-MME. These findings highlight
the long context transfer effect, where LongVA, originating from a long context language model, can process
significantly more frames than its baseline, despite being trained on the same multimodal data. While 384
frames may not capture all long-term dependencies, but it’s a significant step up from prior work, which is
less than 64 frames. While more frames are generally better, our choice is limited by hardware and budget
constraints.

We also tested LongVA on shorter benchmarks with average video durations under 120 seconds. As indicated in
Table 8, although LongVA scores higher with more densely sampled frames on datasets such as NeXTQA (Xiao
et al., 2021b) and ActivityNetQA (Yu et al., 2019b), the gains quickly plateau and are not as significant
as those observed in Video-MME, which can be attributed to the shorter duration of these datasets. On
the VideoChatGPT (Maaz et al., 2023) and Video Detailed Description (Video-DD) (Maaz et al., 2023)
benchmarks, increasing frames does not lead to better performance, and LongVA generally achieves lower
scores compared to LLaVA-NeXT-Video-7B. Since both benchmarks use OpenAI’s GPT API as a judge, we
believe their metrics are closely related to the answering format. To address this, we perform a lightweight
Direct Preference Optimization (DPO) on the LLaVA-Hound-DPO (Zhang et al., 2024a) dataset. We observe
significantly improved performance for LongVA-DPO, confirming the findings in Zhang et al. (2024a).

5.3 Image Evaluation

Model AI2D ChartQA DocVQA InfoVQA RealworldQA MMMU
LLaVA-1.6-Vicuna 66.6 54.8 74.4 37.1 57.8 35.1
LLaVA-NeXT-LLaMA3 71.6 69.5 78.2 37.6 60.0 41.7
LLaVA-NeXT-Qwen2 73.5 74.0 81.3 42.0 61.6 41.9
LongVA (AnyRes) 73.1 74.4 81.5 43.3 62.4 42.1
LongVA (UniRes) 70.7 70.4 80.8 49.4 60.0 42.6

Table 9: Image evaluation results for LongVA on multiple benchmarks. Compared to other image multimodal
models, our methods maintain high performance and achieve better scores on InfoVQA(Mathew et al., 2020).
We further evaluate our model on various image benchmarks to investigate the image performance of LongVA
(Table 9). Compared to the LongVA (AnyRes) baseline, LongVA with UniRes achieves significantly increased
performance on InfoVQA (Mathew et al., 2020), while the scores drop to some extent on AI2D (Kembhavi

2We limited our analysis to 384 frames due to computational and memory constraints as detailed in Section 4.
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Figure 5: The 2D-histogram of the image width and height of different image benchmarks. InfoVQA(Mathew
et al., 2020) consists of many high-resolution images compared to other benchmarks.

et al., 2016) and ChartQA (Masry et al., 2022). On DocVQA (Mathew et al., 2020), RealworldQA (xAI, 2024),
and MMMU (Yue et al., 2023), LongVA is able to match its baseline’s performance. To better understand
this phenomenon, we recorded and analyzed the image size of those datasets, as shown in Figure 5. We found
that InfoVQA consists of higher-resolution images, while many images in AI2D and ChartQA are smaller
than 768×768. Compared to Anyres, UniRes operate 2×2 average pooling on each image, reducing to 1/4
visual tokens per image grid. However, the grid upper bound is set to 49 for UniRes while 4 for AnyRes, so
UniRes may produce more image grids if the input images are of higher resolution. By using more grids per
image, UniRes allocates more visual tokens on datasets such as InfoVQA, achieving superior performance
compared to the previous 7B LLaVA model. However, most of the images in ChartQA and AI2D require
fewer than 4 grids to represent. This may explain why the image performance decreases on those benchmarks.

6 Qualitative Results
The qualitative results of LongVA-DPO are illustrated in Figure 6. The short video example comes from (Xie
et al., 2023) and the two long videos are sourced from link1 and link2, respectively. In the figure, LongVA
accurately describes the short, humorous video involving individuals playfully interacting with condiments. It
also identifies specific details in long videos, such as the color of a train and the colors of umbrellas used in a
scene, showcasing its proficiency in retrieving and interpreting visual information over extended video contexts.
These capabilities highlight LongVA’s potential to overcome the challenges associated with processing and
understanding extremely long videos.

7 MLVU Results

Methods Input Holistic Single Detail Multi Detail Averages
TR AR VS NQA ER PQA SSC AO AC M-Avg G-Avg

GPT-4o (OpenAI, 2024) 0.0.5 fps 87.4 74.5 4.90 64.8 57.1 65.1 6.69 56.7 46.3 64.6 5.80
LLaVA-1.6 (Liu et al., 2024b) 0016 frm 60.6 41.0 2.11 43.1 38.4 41.0 4.35 25.5 25.7 39.3 3.23
InternVL-1.5 (Chen et al., 2023b) 0016 frm 78.8 67.0 3.16 52.7 43.5 54.4 4.88 32.8 23.8 50.4 4.02
MovieChat (Song et al., 2024b) 2048 frm 29.5 25.0 2.33 24.2 24.7 25.8 3.23 28.6 22.8 25.8 2.78
TimeChat (Ren et al., 2024) 0096 frm 23.1 27.0 2.54 24.5 28.4 25.8 4.29 24.7 32.0 30.9 3.42
LLaMA-VID (Li et al., 2023d) 0001 fps 50.8 34.5 3.22 30.1 32.7 32.5 5.22 23.9 27.8 33.2 4.22
MA-LMM (He et al., 2024) 1000 frm 51.9 35.5 2.12 43.1 38.9 35.8 4.80 25.1 24.3 36.4 3.46
ShareGPT4Video (Chen et al., 2024b) 0016 frm 75.8 51.5 2.52 47.6 43.2 48.4 5.02 34.0 23.3 46.4 3.77
VideoChat2_HD (Li et al., 2024b) 0016 frm 77.3 60.5 3.38 46.2 48.9 50.1 4.59 23.2 29.1 47.9 3.99
VideoLlaMA2 (Cheng et al., 2024) 0016 frm 74.6 64.5 2.79 49.9 43.8 45.1 5.18 34.0 27.4 48.5 3.99
LongVA (ours) 0256 frm 83.3 58.5 3.39 69.3 50.0 67.2 5.26 38.6 27.2 56.3 4.33

Table 10: Evaluation results by the authors of MLVU (Zhou et al., 2024a). The highest scores excluding
GPT-4o are bolden. TR: Topic Reasoning. AR: Anomaly Recognition. VS: Video Summary; NQA: Needle
QA; ER: Ego Reasoning; PQA: Plot QA; SSC: Sub-Scene Captioning; AO: Action Order; AC: Action Count;
M-Avg: the average performance of multiple-choice tasks; G-Avg: the average performance of generation
tasks.
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The video depicts a lively and animated social scene where a group of people are enjoying a meal together. The setting
appears to be a casual, indoor space with comfortable seating, possibly a living room or a lounge area adorned with some
artwork or paintings on easels in the background.
In the foreground, there's a central figure who seems to be playfully doling out condiments, likely ketchup or another
type of sauce, from bottles onto the faces or hands of other individuals in the group. This activity is causing laughter
and amusement as the participants react with expressions of surprise and delight, or sometimes annoyance. The
individuals involved have expressive faces and are engaged in the moment…

Please describe the funny video in detail.

7 seconds

34 min 51 seconds

The train in the video is red.

What is the color of the train in the video?

27 min 13 seconds

The colors of the two umbrellas in the video are blue and green.

In this video, two umbrellas were used. What are the colors of the two umbrellas?

Figure 6: Qualitative Result of the LongVA-DPO. Our model demonstrates superior capability in under-
standing both short and long videos.
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Table 10 includes the evaluation results by the authors of MLVU (Zhou et al., 2024a) on their benchmark.
LongVA achieves state-of-the-art results among open-source models and is only second to GPT-4o.

8 Visual Needle In A Haystack Test

Table 11 lists the five VQA needles we used for V-NIAH. The 5 visual questions and answers are the only
places where human annotation is involved in the construction of V-NIAH, making it an ideal testbed to
benchmark LMMs’ long context capability.

V-NIAH Needles

Question: Find the frame of the ’While You Were Out’ note.
What is the name of the university on that note?
A. University of California, Los Angeles
B. University of California, San Diego
C. University of California, Berkeley
D. University of California, Santa Barbara
Answer with the option’s letter from the given choices directly.

Answer: B

Question: Find the frame of a couple in a wedding. Inside the
frame, there is a balloon on the bridegroom’s head. What is the
color of that balloon?
Answer the question using a single word or phrase.

Answer: Yellow

Question: Find the frame with the image of Selenium tablets.
How many mg does each tablet contain?
Answer the question using a single word or phrase.

Answer: 200

Question: Find the frame of a scientist. The scientist is a...
A. Bird
B. Elephant
C. Panda
D. Dog
Answer with the option’s letter from the given choices directly.

Answer: C

Question: Find the frame of a teddy bear. Where is this teddy
bear?
A. Times Square
B. Eiffel Tower
C. Taj Mahal
D. Sydney Opera House
Answer with the option’s letter from the given choices directly.

Answer: A

Table 11: The design of the 5 visual question-answering problems used as the needle in V-NIAH.
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Figure 7: The NIAH results of Qwen-7B-Instruct after long context training.

9 Needle In A Haystack Test

When evaluating the Needle In A Haystack task (Gregory, 2024), we focus specifically on an easier-to-evaluate
variant (AI, 2023) that involves identifying and retrieving random numbers associated with various randomly
assigned cities from the context. The input to the language model has below template:� �
This is a very long story book: <book > { haystack + needle + haystack } </book >.\n

Based on the content of the book , Question : What is the special magic Singapore
number ? Answer : The special magic Singapore number is:� �

We insert a needle with the key Singapore and a 7-digit randomly sampled magic number as the value into
the haystack of Paul Graham’s Essays. The needle has the following format:� �
\nThe special magic {City} number is: { XXXXXXX }.\n� �
We iterate over various document depths (where the needle is placed) and context lengths to measure the
performance. For each depth and context length, we conducted the test 5 times, each time with a different
7-digit needle. We also come up with a harder version where we also insert several (3 or 5) other needles with
the same format but different city name as distractors. The results are shown in Figure 7.

10 UniRes Encoding Scheme

Figure 8: The difference between AnyRes and UniRes, assuming the image is divided into 2x2 grids and the
video has 4 frames. The number indicates the flattening order. Additionally, UniRes applies 2x2 average
pooling to both images and videos after the MLP projector between the vision encoder and the language
model.

Figure 8 indicates the difference between AnyRes and UniRes. Given a high-resolution image and assuming
we use CLIP-ViT-L-336px as the vision encoder, both AnyRes and UniRes will divide it into multiple grids,
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each with the size 336x336. However, AnyRes will have a smaller version of the full image as the base image
and prepended before the high-resolution image grids. Additionally, UniRes flattens the encoded image
feature in a raster-order within each grid, while AnyRes combines all the grids as a big feature map and
flattens them across the border of the grid. UniRes also apply 2x2 average pooling on the image feature. As
shown in the rightmost part of Figure 8, the design of UniRes allows us to unifiedly encode videos as well. A
video is treated as an extended image where each frame is considered as an image grid.

11 Conclusion
This work addresses the challenges of understanding long videos in Large Multimodal Models. By extending
the language model on text and then aligning this extended model with visual inputs, we significantly
improved the capability of LMMs to handle long videos thanks to the long context transfer phenomenon. Our
model, LongVA, shows improved performance with more input frames and achieves state-of-the-art results on
Video-MME. Additionally, we introduce a synthetic benchmark, V-NIAH, to effectively measure the visual
context length of video LMMs. We hope this work inspires further research in the field of long video LMMs
and multimodal agents.

12 Limitations
Evaluation of V-NIAH Our current setup varies the position of the correct needle frame and measures the
model’s retrieval accuracy, but it does not yet evaluate whether the model can identify the correct timestamp
of the needle frame. We will explore this feature in future versions of V-NIAH.
Temporal Understanding We represent the video as 144×N visual tokens (where N is the number of
frames), without introducing additional tokens to explicitly delimit the frame boundaries. In our preliminary
experiments, adding such delimiters did not lead to performance improvements. We believe that this may
reflect an inherent limitation of the vision encoder, for example, is known to behave similarly to a bag-of-words
model in spatial understanding Yuksekgonul et al. (2023), and recent works suggest that this bag-of-words
behavior may also extend to VLMs in both spatial and temporal reasoning Li et al. (2024c). We plan to
explore more structured temporal representations in future work.

13 Broader Impact
We believe that understanding long videos can introduce privacy, bias, and ethical concerns. Specifically, we
acknowledge that techniques such as visual needle search could raise surveillance or misinformation risks if
misused. However, we argue that our benchmark, V-NIAH, provides a safer and more controlled environment
for studying these challenges, as it is fully synthetic and designed to minimize exposure to sensitive or
real-world data. Additionally, we commit to releasing all datasets and code with appropriate licenses and
clear usage guidelines to discourage unethical applications.

Hallucination remains a common challenge for models, particularly in long-video question answering. When a
model fails to retrieve accurate details or is overly influenced by the text prompt, it may produce incorrect
or misleading responses. Promising approaches, such as Sparse AutoEncoder (SAE) and advances in the
internal mechanisms of LLMs, offer potential pathways to steer model behavior toward greater reliability
and eventually enable more controllable outputs. Provenance concerns, such as the potential misuse of
video understanding models to support generative techniques like deepfakes, are also relevant as technology
advances. Although it may be difficult to fully control end-user behavior, we believe watermarking techniques
could play a critical role in addressing these risks by allowing the identification of generated content and
distinguishing it from authentic media.
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