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Abstract001

Structured code comments in docstring for-002
mat are essential for code comprehension003
and maintenance, but existing machine004
learning models for their generation per-005
form poorly for Russian compared to En-006
glish. To bridge this gap, we present StRu-007
Com — the first large-scale dataset (153K008
examples) specifically designed for Rus-009
sian code documentation. Unlike machine-010
translated English datasets that distort011
terminology (e.g., technical loanwords vs.012
literal translations) and docstring struc-013
tures, StRuCom combines human-written014
comments from Russian GitHub reposi-015
tories with synthetically generated ones,016
ensuring compliance with Python, Java,017
JavaScript, C#, and Go standards through018
automated validation.019

1 Introduction020

The automated generation of structured code021

comments in docstring format, including de-022

tailed descriptions of functionality, parame-023

ters, return values, exceptions, and usage ex-024

amples, greatly improves codebase mainte-025

nance. Structured code comments provide de-026

velopers with quick and easy access to the027

required information, and can also be used028

to automatically generate project documenta-029

tion, for instance, in HTML format. However,030

modern language models, such as Qwen2.5-031

Coder (Hui et al., 2024) and DeepSeek-Coder032

(Guo et al., 2024), primarily focus on English-033

language data and therefore perform poorly034

for Russian-language comment, neglecting the035

needs of Russian-speaking developers. These036

developers, working on localized projects, who037

often encounter linguistic barriers, which can038

lead to code misunderstanding and a waste of039

time. In view of this, there is a strong need040

for a specialized model for this task, which re- 041

quires curated training data. 042

Unfortunately, existing datasets (English- 043

centric CodeSearchNet (Husain et al., 2019) or 044

multilingual MCoNaLa (Wang et al., 2023b)) 045

mostly focus on code summarization and re- 046

trieval tasks, not on function-level documen- 047

tation generation. The datasets that contain 048

both simple comments and docstrings in En- 049

glish (for example, the Vault (Nguyen et al., 050

2023)), firstly, require a tool for structure- 051

based filtration to check comments for ex- 052

istence of detailed functionality descriptions, 053

covering all function parameters, exceptions 054

and its return value. Secondly, machine trans- 055

lation of English comments cannot be straight- 056

forwardly used, as it introduces distortions 057

(e.g., translating “endpoint” as “конечная 058

точка” instead of the established loanword 059

“эндпоинт”) (Wang et al., 2023b) and disrupts 060

docstring structure. 061

In this work, we present StRuCom, the 062

first specialized dataset for generating struc- 063

tured Russian-language code comments. To 064

create it, we developed a tool for filtering 065

and validating comment structures, support- 066

ing five popular documentation styles: Python 067

- GoogleDoc1, JavaScript - JSDoc2, Java - 068

JavaDoc3, C# - XML4, and Go - GoDoc5. The 069

dataset combines real-world comments from 070

Russian repositories with synthetically gener- 071

ated examples. Using this data, we finetuned 072

the Qwen2.5-Coder model family (0.5B, 1.5B, 073

1https://google.github.io/styleguide/
pyguide.html

2https://jsdoc.app
3https://docs.oracle.com/javase/8/docs/

technotes/tools/windows/javadoc.html
4https://learn.microsoft.com/en-us/

dotnet/csharp/language-reference/xmldoc/
recommended-tags

5https://tip.golang.org/doc/comment
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3B, and 7B parameters), demonstrating sta-074

tistically significant improvements in genera-075

tion quality via chrf++ (Popović, 2017) and076

BERTScore (Zhang et al.) metrics compared077

to baseline versions.078

Our contributions: Filtering tool for079

structured comments. We developed an au-080

tomated tool to validate comment structures081

across five documentation standards (Python,082

Java, Go, C#, JavaScript). Dataset. We083

compiled a dataset of 153K Russian-language084

code-comment pairs, combining real-world ex-085

amples from GitHub repositories with synthet-086

ically generated annotations for five program-087

ming languages.088

2 Related Work089

The existing datasets for code-to-text tasks are090

mainly focused on English-language content.091

The Stack (Kocetkov et al., 2022) combines092

multilingual code from 658 programming lan-093

guages (67 TB in version 2.x), collected from a094

variety of sources: Software Heritage Archive,095

GitHub Issues, Stack Overflow, etc. Despite its096

scale, the set is not adapted for supervised fine-097

tuning (SFT) tasks and requires significant098

preprocessing. The Vault (Nguyen et al.,099

2023), derived from The Stack v1, includes 43100

million English-language code-text pairs from101

10 programming languages. The data was ob-102

tained by extracting docstrings and inline com-103

ments using the Code-Text parser 6. However,104

structured comments (with parameters and us-105

age examples) remain rare, which is partly ex-106

plained by the predominance of short functions107

in the source data. CodeSearchNet (Hu-108

sain et al., 2019), part of the CodeXGLUE109

benchmark (Lu et al., 2021), contains 1 mil-110

lion English-language code-text pairs for 6 lan-111

guages. The set is focused on code search:112

text descriptions are limited to the first para-113

graphs of the documentation, which simpli-114

fies comparison, but excludes complex descrip-115

tions. MCoNaLa (Wang et al., 2023b) offers116

limited multilingual support: 345 Russian, 341117

Spanish, and 210 Japanese intent-snippet pairs118

for Python. The focus on narrow “how-to” sce-119

narios and a small size limit the applicability120

of this dataset for structured documentation121

6https://github.com/FSoft-AI4Code/
CodeText-parser/tree/main

tasks. 122

3 StRuCom Dataset 123

Collection Process. To construct our 124

dataset, we crawled all existing Russian- 125

language repositories on GitHub for the se- 126

lected programming languages (Python, Java, 127

JavaScript (JS), C#, and Go). Since the 128

GitHub API does not provide a direct query to 129

identify the natural language used by reposi- 130

tory authors, we developed a novel approach to 131

address this limitation. Our program retrieved 132

repositories with Russian-language descrip- 133

tions and permissive licenses (allowing com- 134

mercial use or lacking licensing restrictions). 135

The crawled repositories contained comments 136

written in various languages. For details on 137

comment extraction see Appendix A. 138

Filtration Process. At the initial stage of 139

filtering, all comments were standardized to 140

follow a uniform style based on the conven- 141

tions established for each programming lan- 142

guage: Python - GoogleDoc, JavaScript - JS- 143

Doc, Java - JavaDoc, C# - XML, and Go - 144

GoDoc. Examples of these standardized for- 145

mats can be seen on Fig. 1. To further divide 146

comments into types by structure, we suggest 147

the following terminology: A structured com- 148

ment is a comment that can be parsed by the 149

docstring_parser library7 and contains ei- 150

ther parameter lists, return value descriptions, 151

or exception descriptions. A complete com- 152

ment is a structured comment that provides 153

a comprehensive description of all its compo- 154

nent parts, including types (if needed). An 155

incomplete comment is a structured comment 156

that lacks a description of any of its compo- 157

nent parts, which is why it cannot be called 158

complete. Unstructured comments are those 159

that do not correspond to a specific format 160

used in a given programming language. For 161

more information about filtration by structure 162

see Appendix D. Only structured and complete 163

comments were included in the final version of 164

the dataset. 165

Enhancement with LLM. Based on the 166

statistics on the structuredness of the col- 167

lected data from GitHub, many code com- 168

ments are incomplete or unstructured and gen- 169

7https://github.com/nmd2k/docstring_parser
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short description

long description

Args:
name1 (type1): description1
name2 (type2): description2

Returns:
type: description

Raises:
type: description

(a) Python Google docstring style

/**
* short description
*
* long description
*
* @param name1 description1
* @param name2 description2
* @return description
* @throws type description

*/

(b) JavaDoc comment style

/// <summary>
/// description
/// </summary>
///
/// <param name="name1">description1</param>
/// <param name="name2">description2</param>
///
/// <returns>description</returns>
///
/// <exception cref="type">description</exception>

(c) C# XML comment style

/**
* short description
*
* long description
*
* @param {type1} name1 - description1
* @param {type2} name2 - description2
* @return {type} description
* @throws {type} description

*/

(d) JSDOC comment style

// NameOfFunction description

(e) GoDoc comment style

Figure 1: Comparison of documentation styles in different programming languages

erally of poor quality. For some program-170

ming languages (for example, JavaScript and171

Python), there is very little data and this is172

not enough to finetune neural networks. To173

solve these problems, we used large language174

models (LLM), generating synthetic data using175

them in two ways: generating comments from176

scratch and improving existing comments. For177

additional information about comment’s en-178

hancement see Appendix E.179

Dataset Overview Tab. 1 presents the fi-180

nal statistical data of the final set, com-181

bining synthetic improved by the Miqu-70B182

model comments and generated from scratch183

by Qwen2.5-Coder-32B-Instruct ones with real184

comments from more than 150,000 Russian-185

language GitHub repositories of five program-186

ming languages: Python, Java, Go, C# and187

JavaScript. The total amount of data is188

153,181 examples, of which 79,548 are im-189

proved, 65,914 are synthetic, and 7,719 are real190

comments.191

Prog. lang. Enhanced From scratch Real
Python 14,625 10,078 359
Java 16,283 10,536 2,619
Go 7,278 20,339 232
C# 39,715 5,617 4,435

JavaScript 1,647 19,344 100∑︀
79,548 65,914 7,719

Table 1: Statistics of the collected Russian-
language data on programming languages and
methods of obtaining them. The table shows the
amount of improved (modification of existing com-
ments by the Miqu-70B model), generated from
scratch (synthetic data from Qwen2.5-Coder-32B-
Instruct) and real comments.

The uniqueness of the proposed dataset 192

is determined by several factors (see Ta- 193

ble 2). Firstly, this is the first large cor- 194

pus with Russian-language documentation for 195

functions. The only existing dataset with com- 196

ments in Russian, MCoNaLa, is designed to 197

solve a different problem - searching for a code 198

snippet based on the user’s intent and, there- 199
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Feature CSN Vault MCoNaLa Our dataset
#Pairs

«code-text» 6.5M 43K 341 - es, 210 - ja,
345 - ru 153K

Code
format Functions Functions, classes, snippets Code snippets Functions

Text
format

Unstr.,
1-2 sent.

Mixed (unstr. and str. w/o
filtration by structure)

Unstr.,
(1-2 sent.)

Str. complete
(>5 sent.)

Progr.
lang.

Go, Java, PHP,
JavaScript,

Python, Ruby

Java, JavaScript, Python,
Ruby, Rust, Golang,
C#, C++, C, PHP

Python, Java,
JavaScript

Java, Python, C#,
Go, JavaScript

Nat. lang. en en ru, ja, es ru
Data
source GitHub The Stack Stack Overflow GitHub

Table 2: Comparison of the characteristics of the proposed dataset with existing analogues (CSN, Vault,
MCoNaLa) by key parameters. The table shows the amount of data, the formats of code and text
representation, the coverage of programming languages, linguistic features and data sources. The dataset
we propose stands out with a strict focus on Russian-language structured comments on functions (153
thousand pairs), which contrasts with English-language counterparts operating with unstructured or
mixed comments.

fore, is not suitable for generating structured200

comments in the docstring style. Secondly,201

our dataset was strictly checked for structure202

and completeness: all comments were modi-203

fied to one of the formats used in the indus-204

try for each specific programming language. In205

other datasets, either there are no structured206

comments at all (MCoNaLa, CodeSearchNet),207

or they have not been filtered by structure208

(the Vault). Thirdly, as a result of the addi-209

tion of synthetic data, the proposed set, unlike210

MCoNaLa, has a sufficient size to train large211

language models for all five selected program-212

ming languages.213

4 Experimental Evaluation214

We conducted experiments, where we first215

benchmark existing open-source code-specific216

LLMs of different size (Qwen2.5-Coder (0.5B -217

7B) and DeepSeek-Coder (1.3B - 6.7B)), then218

finetune Qwen2.5-Coder (0.5B - 7B) on 7,500219

comments, sampled from a synthetic part of220

our dataset and evaluate all models on our test221

set, 500 comments, sampled from real com-222

ments.223

Evaluation We evaluated the models us-224

ing standard natural language generation met-225

rics, including ChrF++ (Popović, 2017) and226

a modified BERTScore (Zhang et al.). In-227

stead of the traditional BERT (Kenton and228

Toutanova, 2019), we employed E5-Mistral 7B229

(Wang et al., 2022, 2023a), which offers su- 230

perior performance for Russian, outperforming 231

BERT models. 232

Training and Results The additional in- 233

formation about training setup, hyperparame- 234

ters, etc. is located in Appendix F. Finetuning 235

on the proposed dataset significantly improves 236

the quality of comment generation using the 237

BERTScore metric for all model sizes and most 238

languages. For chrf++, significant improve- 239

ments are observed in small number of cases. 240

The results confirm that the proposed ap- 241

proach is effective for adapting language mod- 242

els to the task of generating Russian-language 243

comments, especially in terms of semantic cor- 244

rectness (BERTScore). 245

5 Conclusion 246

In this paper, we have developed a tool 247

for filtering structured comments, collected 248

a dataset of 153 thousand Russian-language 249

code-comment pairs (real and synthetic data 250

for 5 programming languages). We plan to 251

expand the dataset by adding other program- 252

ming languages, and develop and implement a 253

quality criterion for structured code comments 254

to automatically filter data and therefore im- 255

prove the quality of the dataset. 256
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6 Limitations257

The study has several limitations, including a258

specific commenting style limitation, an imbal-259

anced test dataset, and the assumption that260

code comments always contain useful infor-261

mation about code functionality, which is not262

always true. Additionally, code comments263

from GitHub may be redundant, uninforma-264

tive, or contain errors, negatively impacting265

the dataset’s quality.266
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For JavaScript and C#, we employed Code-363

Text. The GitHub data collection process con-364

sisted of several steps. First, code snippets365

from Python and JavaScript libraries with very366

few non-English comments were excluded. The367

formatting of comments in Java, JavaScript,368

and C# was then standardized. In C#, XML369

tags such as <summary> were corrected. For370

Java and JavaScript, redundant whitespaces,371

line breaks in block comments (delimited by372

/** and */), and HTML tags were removed.373

Next, automatically generated comments in374

C# and JavaScript were filtered out. Dupli-375

cate comments in the function and docstring376

columns were eliminated, along with dupli-377

cates based on function and docstring indepen-378

dently. The language of each comment was379

then identified using Lingua 9. More infor-380

mation about language identification methods381

that we used is in Appendix B. If Lingua failed382

to determine the language, the corresponding383

comments were excluded from the dataset. To384

improve language identification accuracy, Lin-385

gua was provided with short descriptions of386

comments, ensuring tags and identifier names387

that could degrade identification quality were388

removed. This process was applied to all pro-389

gramming languages except Go, which has a390

relatively simple comment structure.391

The final dataset, after filtering, is sum-392

marized in Table 3. The results show that393

JavaScript and Go are characterized by a sim-394

ilar trend: a high proportion of commented395

repositories (70.8% and 55.9%) and func-396

tions (70.2% and 25.8%) are combined with a397

low percentage of Russian-language comments398

(24.0% and 16.4%), which may indicate the399

predominance of English-language documen-400

tation in their ecosystems. On the contrary,401

Python and C# show an increased proportion402

of Russian—language comments (49.2% and403

36.4%), which is probably due to regional de-404

velopment practices - the active participation405

of Russian-speaking communities in projects406

in these languages, where comments are often407

written in their native language for the local408

context.409

9https://github.com/pemistahl/lingua-py

B Language identification 410

We applied two language identification meth- 411

ods to determine the language of the com- 412

ments: FastText (Joulin et al., 2017, 2016) 413

and Lingua. FastText uses a bag-of-n-grams 414

approach to capture partial word order infor- 415

mation, enabling efficient processing of large 416

datasets on consumer hardware. Its pretrained 417

models can classify text into one of 217 sup- 418

ported languages with high speed and effi- 419

ciency. Lingua, on the other hand, employs 420

a probabilistic n-gram model combined with 421

rule-based heuristics, focusing on achieving 422

high detection accuracy across 75 supported 423

languages. While FastText offers broad lan- 424

guage coverage and high efficiency, it demon- 425

strated high precision but low recall for identi- 426

fying Russian comments, frequently misclassi- 427

fying them as less popular languages. Lingua, 428

although slower and more memory-intensive, 429

excels at handling short text and mixed- 430

language inputs, which are common in code 431

comments where natural language often inter- 432

mixes with programming-specific syntax (e.g., 433

tags and identifier names). Lingua’s robust- 434

ness in these scenarios makes it a preferable 435

choice for detecting natural language within 436

code comments. 437

C Comment Structure 438

The examples of comment structure for five 439

selected programming languages are shown in 440

Figure 1. Notably, Python’s GoogleDoc and 441

JavaScript’s JSDoc are the only styles among 442

the selected ones that require explicit descrip- 443

tions of parameter types and return types, re- 444

flecting the dynamically-typed nature of these 445

languages. JSDoc shares stylistic similarities 446

with JavaDoc, emphasizing structured docu- 447

mentation. By contrast, C# utilizes XML for 448

comment formatting, providing a more tag- 449

based approach. GoDoc stands apart with its 450

flexible and descriptive style, as it imposes no 451

strict format requirements, allowing develop- 452

ers to use a nearly free-form commentary ap- 453

proach. 454

D Filtration by structure 455

For filtration-by-structure stage, we utilized 456

the fork of docstring_parser library 10 and 457

10https://github.com/rr-/docstring_parser
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Programming
language

#Repositories #Functions #Comments
With

comments Total % With
comments Total % in Russian Total % in

Russian
Python 18,535 64,440 28.8% 305,187 1,627,726 18.7% 150,255 305,187 49.2%
Java 13,525 42,271 32.0% 409,506 2,684,650 15.3% 98,622 409,506 24.1%
Go 2,592 4,639 55.9% 117,691 456,347 25.8% 19,276 117,691 16.4%
C# 8,858 26,329 33.6% 291,142 596,905 48.8% 106,058 291,142 36.4%

JavaScript 15,073 21,291 70.8% 129,767 184,871 70.2% 31,084 129,767 24.0%

Table 3: Statistics on data collection from GitHub, including analysis of repositories, functions, and
comments on programming languages, grouped into three categories: repositories (the total number of
repositories for each programming language, the number of at least one comment, and the percentage of
the latter), functions (the total number of functions, the number of functions with comments and their
relative proportion) and comments (the total number of comments, the number of Russian-language
comments and their percentage).

javalang 11 tools to extract information about458

comment structure and Code-Text to gather459

information about code structure. We also460

added missing types in Python comments461

where possible using Code-Text. The dataset’s462

collection showed significant differences in463

structured comments’ availability and com-464

pleteness across programming languages, as465

summarized in Table 4. The results demon-466

strate an inverse relationship between the467

complexity of the commenting standard and468

the proportion of complete structured com-469

ments. Go, with minimal requirements (only470

the function name at the beginning of the471

comment), shows the maximum percentage472

of full comments (56.4%, 10,880). On the473

contrary, Python and JavaScript, where stan-474

dards require specifying types and complex475

annotations, have an extremely low propor-476

tion of complete comments (1.5% and 1.4%),477

with unstructured ones dominating (94,968478

and 14,091). Java and C++ with moderately479

complex standards occupy an intermediate po-480

sition: 29.8% and 22.7% of full comments, re-481

spectively, but a significant number of unstruc-482

tured (48,347 and 30,188). The table con-483

firms that the simpler the syntax of a struc-484

tured comment, the higher the proportion of485

its compliance. The extremely high Go score486

is explained by the simplified standard, and487

the low Python/JavaScript values are due to488

the excessive complexity of the requirements,489

which leads to a preference for unstructured490

comments.491

11https://github.com/c2nes/javalang

E Enhancement of comments via 492

LLM 493

The final dataset includes only those data with 494

the length of both the code and the com- 495

ment ranging from 250 to 1, 000 characters. 496

Very short comments and functions were ex- 497

cluded, as the goal was to create a dataset 498

with detailed and comprehensive documenta- 499

tion. Very long comments or features are out- 500

liers and therefore were not considered. Com- 501

ments were generated from scratch using the 502

Qwen2.5-Coder-32B-Instruct model for func- 503

tions without comments (see Table 3) and for 504

functions, which comments were not success- 505

fully enhanced. To improve the dataset, the 506

MIQU 70B 12 model was used, which was fur- 507

ther trained in Russian. The goal of the im- 508

provement is to generate a complete and de- 509

tailed comment of the best quality based on 510

the function and the existing comment on it. 511

An example is illustrated in figure 2. Can- 512

didates for improvement were selected from 513

all the structuredness groups that were not 514

included in the dataset in the “real” group. 515

Comment is considered improved if it has be- 516

come complete as a result of the improve- 517

ment. Table 5 shows statistics on improving 518

the dataset. Go stands out for the maximum 519

efficiency of improvements (avg = 84.3%), es- 520

pecially for complete comments (91.5%), which 521

is explained by a simple commenting stan- 522

dard, where it is enough to specify the function 523

name. Python and JavaScript show the lowest 524

averages (31.9% and 33.5%), which is due to 525

the complexity of their standards, which re- 526

12https://huggingface.co/miqudev/miqu-1-70b
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Programming
language

Structured
Non-structured% complete out

of all Russian Complete Incomplete

Python 1.5% 2,176 30,115 94,968
Java 29.8% 29,367 12,221 48,347
Go 56.4% 10,880 - 8,396
C# 22.7% 24,017 41,898 30,188

JavaScript 1.4% 431 1,484 14,091

Table 4: The structure of Russian-language comments on programming languages. For each language,
the following are indicated: the percentage of complete structured comments out of the total number
of Russian-language comments (% of the total number), the absolute values of complete and incomplete
structured comments, as well as the number of unstructured ones. In Go, the dash in the “Incomplete”
column is due to a feature of the commenting standard: comments are considered complete if they begin
with the function name, which excludes the “incomplete” category.

38

Улучшение набора данных

Инициализирует приложение web.Application.

Возвращает объект приложения, настроенный
с middlewares и интеграциями, а также 
установленными маршрутами и настройками
APISpec.

Returns:
    web.Application: Объект приложения

Инизиализирует приложение
Returns:
 web.Application :

async def create_app() -> web.Application:
    app = web.Application(
        middlewares=MIDDLEWARES
    )
   app.cleanup_ctx.extend(INTEGRATIONS)
    setup_routes(app)
    setup_aiohttp_apispec(
        app, 
        **settings.APISPEC_CONF
    )
    return app

Figure 2: An example of improving a comment. On the left is a function and a comment on it before
improvement, which, firstly, has a typo, and secondly, contains a minimum of information about the code.
The comment after the improvement is devoid of these shortcomings.

quire specifying data types, which makes au-527

tomatic modification difficult. C# and Java528

occupy an intermediate position: C# shows529

a high average percentage of improvements530

(80.1%) with a peak in the full comments cat-531

egory (92.4%), while Java shows moderate re-532

sults (avg = 48.2%).533

F Training and Results534

The models were trained for 5 epochs with a535

context length of 2000, a learning rate of 1e-536

4, and a cosine scheduler with a weight decay537

of 0.1 and a warmup ratio of 0.01. We used538

LORA (Hu et al., 2021) adapters with a rank539

of 8, alpha of 16, and a dropout rate of 0.05540

for finetuning. From the synthetic part of the541

dataset, we sampled 1,500 examples for each542

programming language, resulting in 7,500 ex-543

amples. For calculating metrics on real data, 544

we sampled 100 examples for each program- 545

ming language. The comparison is made with 546

the base models to determine the extent to 547

which training on our synthetic dataset im- 548

proves the quality. Notably, with a batch size 549

of 1, the model takes approximately 20 hours 550

to train on 5 programming languages using 551

DeepSpeed Zero2 (Rasley et al., 2020) on a sin- 552

gle A100 GPU. The results are shown in Table 553

6. 554
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Programming
language Non-structured Incomplete Complete

Python #Enhanced comments 10 775 3 455 395
∑︀

= 14 625
% out of the original quantity 24.2% 23.2% 48.1% avg = 31.9%

Java #Enhanced comments 7 066 3 810 5 407
∑︀

= 16 283
% out of the original quantity 32.0% 57.6% 55.1% avg = 48.2%

Go #Enhanced comments 3 018 - 4 260
∑︀

= 7 278
% out of the original quantity 77.1% - 91.5% avg = 84.3%

C# #Enhanced comments 12 467 18 148 9 100
∑︀

= 39 715
% % out of the original quantity 74.8% 73.1% 92.4% avg = 80.1%

JS #Enhanced comments 1 386 164 97
∑︀

= 1 647
% % out of the original quantity 20.4% 20.4% 59.5% avg = 33.5%

Table 5: Statistics on the improvement of Russian-language comments on programming languages, divided
into categories: unstructured, incomplete and complete structured comments. For each language, the
absolute number of improved comments, the percentage of improvements relative to the initial number
in the category (from the Table 4), the total number of improvements (

∑︀
) and the average percentage

of improvements (avg) are indicated. The dash in the category of incomplete comments for Go reflects
their absence in the source data due to the simplified standard for documenting functions.

Model Python Java Go C# JavaScript
BERTScore chrf++ BERTScore chrf++ BERTScore chrf++ BERTScore chrf++ BERTScore chrf++

Baselines
DeepSeek-Coder 1.3B 0.837 18.3 0.827 19.2 0.811 10.4 0.812 18.4 0.839 24.7

±0.041 ±9.8 ±0.040 ±7.2 ±0.042 ±4.5 ±0.044 ±16.9 ±0.038 ±8.7
DeepSeek-Coder 6.7B 0.878 34.1 0.873 36.9 0.838 21.0 0.844 36.3 0.876 38.4

±0.043 ±10.5 ±0.044 ±14.2 ±0.047 ±11.1 ±0.052 ±18.2 ±0.033 ±10.9
Qwen2.5-Coder 0.5B 0.863 26.6 0.839 20.7 0.816 10.9 0.815 14.1 0.799 9.6

±0.052 ±9.8 ±0.056 ±9.3 ±0.052 ±5.6 ±0.052 ±8.5 ±0.035 ±6.1
Qwen2.5-Coder 1.5B 0.841 22.8 0.838 21.2 0.815 11.5 0.821 31.5 0.841 23.8

±0.045 ±10.8 ±0.045 ±10.5 ±0.039 ±5.0 ±0.051 ±14.9 ±0.035 ±7.9
Qwen2.5-Coder 3B 0.784 14.2 0.829 17.2 0.819 11.0 0.817 25.7 0.841 23.7

±0.061 ±8.4 ±0.039 ±6.0 ±0.041 ±4.4 ±0.046 ±15.5 ±0.033 ±6.2
Qwen2.5-Coder 7B 0.880 34.3 0.873 35.0 0.854 23.5 0.847 24.3 0.872 33.5

±0.040 ±7.7 ±0.039 ±9.8 ±0.039 ±9.1 ±0.037 ±12.2 ±0.031 ±7.9
Finetuned Models
Qwen2.5-Coder 0.5B 0.873 35.3 0.872 39.7 0.859 28.7 0.849 44.4 0.871 40.3

±0.042 ±9.0 ±0.040 ±9.8 ±0.038 ±6.8 ±0.041 ±10.2 ±0.035 ±0.03
Qwen2.5-Coder 1.5B 0.877 34.4 0.880 41.6 0.863 32.1 0.857 45.7 0.877 40.3

±0.040 ±7.5 ±0.036 ±8.8 ±0.035 ±6.3 ±0.038 ±9.3 ±0.031 ±0.03
Qwen2.5-Coder 3B 0.880 34.9 0.881 40.6 0.864 32.5 0.859 46.4 0.878 41.3

±0.040 ±7.5 ±0.035 ±8.3 ±0.035 ±6.2 ±0.037 ±9.7 ±0.031 ±8.5
Qwen2.5-Coder 7B 0.878 35.5 0.882 42.0 0.867 32.9 0.859 45.9 0.879 41.4

±0.039 ±7.3 ±0.036 ±8.9 ±0.035 ±6.2 ±0.034 ±9.5 ±0.032 ±7.6

Table 6: Comparison of base and finetuned models using BERTScore and chrf++ metrics with statistical
significance testing (Mann-Whitney criterion). Statistically significant improvements (p < 0.05) are
highlighted in bold when comparing the finetuned model with the corresponding sized base version. The
values are presented as the average ± standard deviation.
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