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ABSTRACT

Uncertainty evaluation is a core technique when deep neural networks (DNNs) are
used in real-world problems. In practical applications, we often encounter unex-
pected samples that have not seen in the training process. Not only achieving the
high-prediction accuracy but also detecting uncertain data is significant for safety-
critical systems. In statistics and machine learning, Bayesian inference has been
exploited for uncertainty evaluation. The Bayesian neural networks (BNNs) have
recently attracted considerable attention in this context, as the DNN trained using
dropout is interpreted as a Bayesian method. Based on this interpretation, several
methods to calculate the Bayes predictive distribution for DNNs have been devel-
oped. Though the Monte-Carlo method called MC dropout is a popular method
for uncertainty evaluation, it requires a number of repeated feed-forward calcu-
lations of DNNs with randomly sampled weight parameters. To overcome the
computational issue, we propose a sampling-free method to evaluate uncertainty.
Our method converts a neural network trained using dropout to the corresponding
Bayesian neural network with variance propagation. Our method is available not
only to feed-forward NNs but also to recurrent NNs including LSTM. We report
the computational efficiency and statistical reliability of our method in numeri-
cal experiments of language modeling using RNNs, and the out-of-distribution
detection with DNNs.

1 INTRODUCTION

Uncertainty evaluation is a core technique in practical applications of deep neural networks (DNNs).
As an example, let us consider the Cyber-Physical Systems (CPS) such as the automated driving
system. In the past decade, machine learning methods are widely utilized to realize the environment
perception and path-planing components in the CPS. In particular, the automated driving system has
drawn a huge attention as a safety-critical and real-time CPS (NITRD CPS Senior Steering Group,
2012; Wing, 2009). In the automated driving system, the environment perception component is built
using DNN-based predictive models.

In real-world applications, the CPS is required to deal with unexpected samples that have not seen
in the training process. Therefore, not only achieving the high-prediction accuracy under the ideal
environment but providing uncertainty evaluation for real-world data is significant for safety-critical
systems (Henne et al., 2019). The CPS should prepare some options such as the rejection of the
recommended action to promote the user’s intervention when the uncertainty is high. Such an in-
teractive system is necessary to build fail-safe systems (Varshney & Alemzadeh, 2017; Varshney,
2016).

On the other hand, the uncertainty evaluation is useful to enhance the efficiency of learning algo-
rithms, i.e., samples with high uncertainty are thought to convey important information for training
networks. Active data selection based on the uncertainty has been studied for long time under the
name of active learning (David et al., 1996; Gal et al., 2017; Holub et al., 2008; Li & Guo, 2013;
Shui et al., 2020).

In statistics and machine learning, Bayesian estimation has been commonly exploited for uncertainty
evaluation (Bishop, 2006.). In the Bayesian framework, the prior knowledge is represented as the
prior distribution of the statistical model. The prior distribution is updated to the posterior distribu-
tion based on observations. The epistemic model uncertainty is represented in the prior distribution,
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and upon observing data, those beliefs can be updated in the form of a posterior distribution, which
yields model uncertainty conditioned on observed data. The entropy or the variance is represen-
tative of uncertainty measures (Cover & Thomas, 2006). For complicated models such as DNNs,
however, a direct application of Bayesian methods is prohibited as the computation including the
high-dimensional integration highly costs.

In deep learning, Bayesian methods are related to stochastic learning algorithms. This relation is
utilized to approximate the posterior over complex models. The stochastic method called dropout
is a powerful regularization method for DNNs (Srivastava et al., 2014). In each layer of the DNN,
some units are randomly dropped in the learning using stochastic gradient descent methods. Gal
& Ghahramani (2016a) revealed that the dropout is interpreted as the variational Bayes method.
Based on this interpretation, they proposed a simple sampling method of DNN parameters from the
approximate posterior distribution. Furthermore, the uncertainty of the DNN-based prediction is
evaluated using the Monte-Carlo (MC) method called MC dropout.

While the Bayesian DNN trained using dropout is realized by a simple procedure, the computational
overhead is not ignorable. In the MC dropout, dropout is used also at the test time with a number of
repeated feed-forward calculations to effectively sample from the approximate posterior. Hence, the
naive MC dropout is not necessarily relevant to the system demanding the real-time response.

In this work, we propose a sampling-free method to evaluate the uncertainty of the DNN-based
prediction. Our method is computationally inexpensive comparing to the MC dropout and provides
reliable uncertainty evaluation. In the following, we will first outline related works. Section 3
is devoted to show the detailed formulae of calculating the uncertainty. In our method, an upper
bound of the variance is propagated in each layer to evaluate the uncertainty of the output. We show
that the our method alleviates the overconfident prediction. This property is shared with scaling
methods for the calibration of the class-probability on test samples. In Section 4, we study the
relation between our method and scaling methods. In Section 5, we demonstrate the computational
efficiency and statistical reliability of our method through some numerical experiments using both
DNNs and RNNs.

2 RELATED WORKS

The framework of Bayesian inference is often utilized to evaluate the uncertainty of DNN-based pre-
dictions. In Bayesian methods, the uncertainty is represented by the predictive distribution defined
from the posterior distribution of the weight parameters. MacKay (1992) proposed a simple approxi-
mation method of the posterior distribution for neural networks, and demonstrated that the Bayesian
method improves the prediction performance on classification tasks. Graves (2011) showed that
the variational method efficiently works to approximate the posterior distribution of complex neural
network models.

There are many approaches to evaluate the uncertainty of modern DNNs (Alex Kendall & Cipolla,
2017; Choi et al., 2018; Lu et al., 2017; Le et al., 2018). We briefly review MC-based methods and
sampling-free methods.

Monte-Carlo methods based on Stochastic Learning: The randomness in the learning process
can be interpreted as a prior distribution. In particular, the dropout is a landmark of stochastic reg-
ularization method to train DNNs (Srivastava et al., 2014). Gal & Ghahramani (2016a) proposed
a simple method to generate weight parameters from the posterior distribution induced from the
prior corresponding to the dropout regularization. The predictive distribution is approximated by
the MC dropout, which compute the expected output over the Monte-Carlo sampling of the weight
parameters. Gal & Ghahramani (2016b) reported that the MC dropout efficiently works not only for
feed-forward DNNs but for recurrent neural networks (RNNs). Another sampling based method is
the ensemble-based posteriors with different random seeds (Lakshminarayanan et al., 2017). How-
ever, the computation cost is high as the bootstrap method requires repeated training of parameters
using resampling data.

Sampling-free methods: Though the MC dropout is a simple and practical method to evaluate
the uncertainty, a number of feed-forward computations are necessary to approximate the predic-
tive distribution. Recently, some sampling-free methods have been proposed for the uncertainty
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evaluation. Probabilistic network is a direct way to deal with uncertainty. The parameters of the
probabilistic model, say the mean and the variance of the Gaussian distribution, are propagated in
probabilistic neural networks. Then, the uncertainty evaluation is given by a single feed-forward
calculation. Choi et al. (2018) used the mixture of Gaussian distributions as a probabilistic neu-
ral network and Wang et al. (2016) proposed natural-parameter networks as a class of probabilistic
neural networks based on exponential families. For a given input vector, the network outputs the
parameters of the distribution. For the recurrent neural networks, Hwang et al. (2019) proposed
a variant of the natural-parameter networks. Instead of parameters of statistical models, Wu et al.
(2019) developed a sampling-free method to propagate the first and second order moments of the
posterior distribution.

Sampling-free methods can evaluate the uncertainty with a one-pass computation for neural net-
works. However, specialized learning algorithms are required to train the probabilistic networks.
Our method is applicable to DNNs and RNNs trained by common learning methods with the
dropout. Postels et al. (2019) and Shekhovtsov & Flach (2019) proposed similar methods that prop-
agate the uncertainty of the network to the output layer. Differently from the past works, our method
takes the upper limit of the correlations among the inputs at the affine layer into account when the
uncertainty is evaluated. In addition, we show that our method efficiently works even for RNNs.

3 UNCERTAINTY EVALUATION WITH VARIANCE PROPAGATION

In this work, we assume that we can access to the weight parameters in the DNN and the dropout
probability in the training process. As the variance is a common measure of uncertainty, we propose
a variance propagation algorithm for the trained DNN.

Implementation of our method called nn2vpbnn is presented in Section A in the appendix. In our
method, we need only the DNN or RNN trained using dropout. Unlike various kinds of probabilistic
NNs, we do not need any specialized training procedure to evaluate the uncertainty. This is a great
advantage for our implementation. Furthermore, the representative values of the predictive distribu-
tion, i.e. the mean and variance, are obtained by a one-path feed-forward calculation. Hence, we
can circumvent iterative Monte-Carlo calculations.

3.1 UNCERTAINTY IN AFFINE LAYER

Let us consider the output of the affine layer y = Wx + b for the random input x, where W =
(Wij) ∈ R`×m and b = (bi)

`
i=1 ∈ R`. Suppose that the random vector x has the mean vector

E[x] and the variance covariance matrix (Σx)i,j = Cov(xi, xj) for i, j = 1, . . . ,m. Then, the
mean vector E[y] and the variance covariance matrix Σy of y are given by E[y] = WE[x] + b and
Σy = WΣxW

T .

As the estimation of the full variable-covariance matrix is not necessarily reliable, we use only
the variances of each xi and an upper bound of the absolute correlation coefficient to evalu-
ate the uncertainty. For W = (Wij), the variance Var[yi] is Var[yi] =

∑
jW

2
ijVar[xj ] +∑

j,j′:j 6=j′WijWij′Cov(xj , xj′). Suppose the absolute correlation coefficient among x1, . . . , xm
is bounded above by ρ, 0 ≤ ρ ≤ 1. Using the relation between the correlation and variance, we
have

Var[yi] ≤
∑
j

W 2
ijVar[xj ] + ρ

∑
j,j′:j 6=j′

|Wij ||Wij′ |
√

Var(xj)
√

Var(xj′)

= (1− ρ)
∑
j

|Wij |2Var[xj ] + ρ

(∑
j

|Wij |
√

Var(xj)
)2

, i = 1, . . . , `. (1)

Under the independent assumption, i.e., ρ = 0, the minimum upper bound is obtained. The predic-
tion with a small variance leads to overconfident decision making. Hence, the upper bounding of
the variance is important to build fail-safe systems. A simple method of estimating ρ is presented in
Section 3.5.

Using the above formula, the mean and an upper bound of the variance of y are computed using the
mean and an upper bound of the variance of x. In this paper, such a computation is referred to as
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the Variance Propagation or VP for short. Let us define the variance vector of the m-dimensional
random vector x = (x1, . . . , xm) ∈ Rm by Var[x] = (Var[x1], . . . ,Var[xm]) ∈ Rm. Furthermore,
we denote the concatenated vector of the mean and variance of z or its approximation as U(z), i.e.,
U(z) = (E[z],Var[z]). The VP at the affine layer is expressed by the function Taff ,

U(y) = (m,v) = Taff(U(x)), (2)

where m = WE[x] + b ∈ Rm and each element of v ∈ Rm is defined by equation 1.

The average pooling layer, global average pooling layer (Lin et al., 2013), and the batch normaliza-
tion layer (Ioffe & Szegedy, 2015) are examples of the affine layer. Hence, the VP of the affine layer
also works to evaluate the uncertainty of these layers.

The distribution of yi is well approximated by the univariate Gaussian distribution if the correlation
among x is small (Wang & Manning, 2013; Wu et al., 2019). Based on this fact, the uncertainty of
yi can be represented by the univariate Gaussian distribution N(E[yi],Var[yi]). In our method, the
variance Var[yi] of the approximate Gaussian is given by the variance v in equation 2.

3.2 OUTPUT OF DROPOUT LAYER

Let us consider the uncertainty induced from the dropout layer (Srivastava et al., 2014). The dropout
probability is denoted by p. In the dropout layer, the m-dimensional random input vector x =
(x1, . . . , xm) is transformed by the element-wise product z = xd, where d = (d1, . . . , dm) is
the i.i.d. Bernoulli random variables, i.e., Bernoulli(p). As x and d are independent, the VP in
the dropout layer is given by (E[z],Var[z]) = Tdrop(U(x)), where E[z] = pE[x] and Var[z] =
pVar[x] + p(1− p)E[x]2.

According to the Bayesian interpretation of the dropout revealed by Gal et al. (2017), the approx-
imate posterior distribution of the output from the affine layer trained using dropout is given by
the distribution of the random variable yi =

∑m
j=1Wijxjdj + bi, d1, . . . , dm ∼ Bernoulli(p). The

mean and the variance of yi satisfy E[y] = pWE[x]+b and Var[yi] ≤ (1−ρ)
∑
j |Wij |2Var[xjdj ]+

ρ(
∑
j |Wij |

√
Var[xjdj ])2. Since the stochastic input and the weight parameter in the dropout layer

are independent, one can exactly calculate the variance of the product using each expectation and
variance. The VP at the affine layer with the dropout is given by the composite function,

(m,v) = Taff ◦ Tdrop(U(x)).

The uncertainty of yi is then represented by the Gaussian distribution N(mi, vi). A similar formula
is found in the uncertainty evaluation of the LSTM unit in Section 3.4 with the explicit expressions.

3.3 UNCERTAINTY VIA ACTIVATION FUNCTIONS

The nonlinear activation function is an important component of neural network models in order to
achieve high representation ability and accurate prediction (Cybenko, 1989). The ReLU, sigmoid
function, and their variants are common activation functions. In several works, the expectation and
the variance of the output from activation functions have been calculated (Frey & Hinton, 1999;
MacKay, 1992; Daunizeau, 2017). Let us introduce the transformed distribution by the ReLU and
sigmoid function.

The ReLU function is defined by y = max(x, 0). For xi ∼ N(E[xi],Var[xi]), the ex-
act expectation and variance of y are expressed by the probability density φ and the cu-
mulative function Φ of the standard Gaussian distribution (Frey & Hinton, 1999; Wu et al.,
2019): E[y] = E[x]Φ(E[x]/

√
Var[x]) +

√
Var[x]φ(E[x]/

√
Var[x]) and Var[y] = (E[x]2 +

Var[x])Φ(E[x]/
√

Var[x]) + E[x]
√

Var[x]φ(E[x]/
√

Var[x])− E[y]2 using the element-wise opera-
tions for the two vectors E[x] and Var[x].

The sigmoid function is defined by yi = s(xi) = 1/(1 + e−xi). For xi ∼ N(E[xi],Var[xi]),
MacKay (1992) and Daunizeau (2017) derived the approximate expectation and variance of y,
E[y] ≈ s( E[x]√

1+cVar[x]
), Var[y] ≈ s( E[x]√

1+cVar[x]
)(1 − s( E[x]√

1+cVar[x]
)(1 − 1√

1+cVar[x]
), where the

constant c depends on the approximation method. The common choice is c = π/8 ≈ 0.393, while

4



Under review as a conference paper at ICLR 2021

Daunizeau (2017) found c = 0.368 based on numerical optimization. In the same way, one can cal-
culate approximate expectation and variance of tanh(y). The VP at the activation layer is expressed
by U [y] = Tact(U [x]), where the operation Tact depends on the activation function. The output
U [y] is defined by the above expectation and variance.

In the multiclass classification problems, the softmax function is commonly used at the last layer
in DNNs. However, the expectation of the softmax function does not have analytic expression
under the multivariate Gaussian distribution. Daunizeau (2017) utilized the approximate expectation
of the sigmoid function to approximate the expected softmax output. However, the variance of
the softmax function was not provided. In this paper, we interpret the multiclass classification
problem as the multi-label problem and at the last layer, we use the sigmoid functions as many
as the number of labels. Given the transformations zk 7−→ s(zk), k = 1, . . . , G at the last layer
for the classification with G labels, the prediction is given by the label that attains the maximum
value of s(zk). The advantage of this replacement is that the reliable evaluation of the uncertainty
is possible for the sigmoid function as shown above. In numerical experiments, we show that the
multi-label formulation with several sigmoid functions provides a comparable prediction accuracy
as the standard multi-class formulation using the softmax function, while it also gives a reliable
uncertainty evaluation.

3.4 LSTM UNIT WITH DROPOUT

The uncertainty evaluation of the Recurrent Neural Networks (RNNs) is an important task as the
RNNs are widely used in real-world problems. This section is devoted to the uncertainty propagation
in the LSTM unit when the dropout is used to train the weight parameters (Gal & Ghahramani,
2016b). According to Greff et al. (2017), the standard form of the LSTM unit is defined by

(i f g o) = (s s tanh s) ◦ (ht−1 xt)

(
Ũi Ũf Ũg Ũo

W̃i W̃f W̃g W̃o

)
,

ht = o tanh(ct), ct = fct−1 + ig

using the sigmoid function s, where the multiplication of two vectors is the element-wise operation
and ◦ is the composition of the linear layer and the activation function, i.e., i = s(ht−1Ũi + xtW̃i),
g = tanh(ht−1Ũg + xtW̃g), etc. The matrices W̃ ’s and Ũ ’s are the input weights and recurrent
weights, respectively. The vectors, i, f ,g, and o, denote the input gate, forget gate, new candidate
vector, and output gate. The cell state ct and the hidden state ht retain the long and short term
memory.

Here, Ũ∗ and W̃∗ are regarded as random matrices distributed from the posterior distribution in-
duced from the dropout using Bernoulli(p). Hence, each row of Ũ∗ and W̃∗ are set to the null row
vector with probability 1 − p. When the tied dropout is used for LSTM, the same rows of all Ũ∗
are randomly dropped and the same rule is applied to W̃∗. On the other hand, in the untied dropout
layer, the dropout is separately executed for each Ũ∗ and W̃∗. Detail of the tied and untied dropout
is found in Gal & Ghahramani (2016b).

Let us consider the map from U(ht−1, ct−1) to U(ht, ct). The map depends on the data xt. Since
the computation in the LSTM with the dropout is expressed as the composite function of the dropout
layer, affine layer and the activation function, we have

U(i, f ,g,o) = Tact ◦ Taff ◦ Tdrop(U(ht−1,xt)).

Hence, the mean and variance vectors of ht and ct are obtained from those of i, f ,g,o and ct−1.
This computation is shown below. We need an appropriate assumption to calculate E[ct] and Var[ct]
as we do not use the correlations. The simplest assumption is the independence of random vectors.
When f , ct−1, i and g are independent, we obtain

E[ct] = E[fct−1] + E[ig] = E[f ]E[ct−1] + E[i]E[g], (3)

Var[ct] = Var[f ]Var[ct−1] + Var[f ]E[ct−1]2 + E[f ]2Var[ct−1]

+ Var[i]Var[g] + Var[i]E[g]2 + E[i]2Var[g]. (4)
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This is the VP for the cell state vector ct−1 in the LSTM. Likewise, the VP for ht is obtained. The
above update function to compute the uncertainty of ht and ct from i, f ,g,o and ct−1 is denoted by
Tcell. As a result, we have

U(ht, ct) = Tcell(U(i, f ,g,o),U(ct−1)) = Tcell(Tact ◦ Taff ◦ Tdrop(U(ht−1,xt)),U(ct−1)).

This is the VP formula from (ct−1,ht−1) to (ct,ht). Repeating the above computation with the
observed sequence {xt}Tt=1, one can evaluate the uncertainty of the cell state vectors and the outputs
{yt}Tt=1, where yt = ht, t = 1, . . . , T .

Let us consider the validity of the above independence assumption. For given ht−1, the conditional
independence of i, f ,g,o and ct−1 holds when the untied dropout is used to train the LSTM unit, i.e.,
the equality p(i, f ,g,o, ct−1|ht−1) = p(ct−1|ht−1)

∏
s∈{i,f ,g,o} p(s|ht−1) holds for the posterior

distribution. The randomness comes from the Bayesian interpretation of the untied dropout. Here,
the observation xt is regarded as a constant without uncertainty. Then, equation 3 and 4 exactly hold
by replacing the mean and variance with conditional expectation and the conditional variance under
the condition of ht−1. If the variance of ht−1 is small, the independence assumption is expected
to be approximately valid. When the uncertainty of ht−1 is not ignorable, the sampling from the
Gaussian distribution representing the uncertainty of ht−1 is available with the formulae E[ct] =
Eht−1

[E[ct|ht−1]] and Var[ct] = Eht−1
[Var[ct|ht−1]] to compute E[ct] and Var[ct] approximately.

3.5 ESTIMATION OF CORRELATION PARAMETER

When we evaluate the uncertainty in the affine layer, we need to determine the correlation param-
eter ρ in equation 1. If the correlation of input to the affine layer is not ignored, the upper bound
of the variance with an appropriate ρ is used to avoid overconfidence. Hence, the estimation of the
parameter ρ is important. A simple method of estimating an appropriate ρ is to use the validation set
as follows.

1. For each candidate of ρ, execute the following steps.

(a) For each data (xi,yi) in the validation set, compute the mean vector mi and variance
vector vi of the output of the network for given xi using VPBNN.

(b) Compute the predictive log-likelihood on the validation set,

LLρ =
∑

i:validation set

log p(yi;mi,vi),

where p(y;m,v) is the probability density of the uncorrelated normal distribution
with the mean mj and variance vj for each element.

2. Choose ρ that maximizes LLρ.

Though we need to prepare several candidates of the correlation parameter, the computation cost
is still lower than MC dropout. To evaluate the uncertainty on Ntest test samples, MC dropout
with T samplings requires NtestT feed-forward calculations. The VPBNN with adaptive choice
of ρ needs approximately 2NvalKcor + 2Ntest feed-forward calculates, where Nval is the number
of the validation set and Kcor is the number of candidates of ρ. The factor 2 comes from the
computation of both mean and variance. Usually,Kcor is much less than T andNval is not extremely
large in comparison to Ntest. In practice, we do not need a large validation set to estimate ρ, as
shown in numerical experiments. Hence, VPBNN with adaptive ρ is computationally efficient than
MC dropout. If distinct correlation parameters are used in each affine layer, the computation cost
becomes large. In numerical experiments, we find that the uncertainty evaluation using the same ρ
in all the affine layers works well.

4 SCALING METHODS FOR CALIBRATION AND VARIANCE PROPAGATION

The variance propagation is regarded as a calibration based on the uncertainty. There are some
scaling methods for the calibration. Platt scaling (Platt, 1999) is a classical calibration method for
multiclass classification problems, and the temperature scaling (Guo et al., 2017; Ji et al., 2019) is a
simplified method of the Platt scaling.
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Let us consider the conditional probability function Pr(y|z) = ezy/
∑m
j=1 e

zj for z =

(z1, . . . , zm) ∈ Rm and y = 1, . . . ,m. The temperature scaling of Pr(y|z) is given by Pr(y|z/T ),
where T > 0 is the temperature parameter. Usually T is greater than one, and it softens the class
probability. The Platt scaling of Pr(y|z) is defined by the scaling of z such that Pr(y|Wz + b),
where W is a diagonal matrix and b is a m-dimensional vector. The Platt scaling is the coordinate-
wise calibration, while the temperature scaling is the homogeneous scaling for the feature vector z.
Another expansion of the temperature scaling is the bin-wise temperature scaling (Ji et al., 2019).
In the bin-wise scaling, the sample space are divided into K bins. The label probability is calibrated
by Pr(y|z/Tk(z)) in which k(z) is the index of the bin including the sample z, and Tk > 0 is the
temperature for the calibration at the k-th bin. Each Tk is determined from validation data in the
k-th bin. Intuitively, an extremely large label probability tends to yield an overconfident prediction.
At the point z having the large maximum probability, the large scaling parameter Tk is introduced
to soften the overconfidence at the region including z.

The calculation of the VP at the sigmoid activation layer for the multi-label classification is given
by s(zj) 7−→ s(E[zj ]/

√
1 + cVar[zj ]), j = 1, . . . ,m. When the uncertainty of the random vector

z is not taken into account, the prediction using s(E[zj ]), j = 1, . . . ,m is apt to be overconfident.
Comparing to s(E[zj ]), the uncertainty defined by the variance Var[zj ] works as a coordinate-wise
calibration like the Platt scaling. If the variance is isotropic, the scaling does not change the ranking
of the label probability like the temperature scaling.

In the variance propagation using the Taylor approximation (Postels et al., 2019), the class prob-
ability is calculated as the standard manner without calibration, while the variance is propagated
along the layers in DNNs in order to evaluate the uncertainty. Hence, the calibration effect is not
incorporated into the naive Taylor approximation method.

5 EXPERIMENTS

5.1 NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

We assess the uncertainty computed by the VPBNN and the Taylor approximation using synthetic
data. Let us consider the uncertainty evaluation for regression problems. The target function is
the real-valued function on one-dimensional input space shown in Figure 1. We compared three
methods; MC dropout with 1000 samples from the posterior distribution associated with the dropout,
Taylor approximation, and VPBNN with adaptive ρ and several fixed ρ’s. The architecture of the
NN model is shown in Figure 4 of the Appendix. The results are presented in Figure 1. The
Taylor approximation and the VPBNN with ρ = 0 tends to be overconfident and the VPBNN with
ρ = 0.15 gives a similar result to the MC dropout. We find that the adaptive choice of ρ can avoid
the overconfidence, while providing a meaningful result.

In Section C in the appendix, we present the uncertainty evaluation for RNNs. Likewise, we find
that the appropriate choice of ρ relaxes the overconfident prediction and that the adaptive ρ provides
a meaningful result as well as MC dropout.

Overall, the VPBNN with appropriate ρ provides similar results to the MC dropout. As the VPBNN
needs only the one-path calculation as well as the VP using Taylor approximation, the computation
cost is much less than the MC dropout. The adaptive choice of ρ using the validation set efficiently
works to produce a similar result as MC dropout.

Further numerical results are presented in Section B of the appendix. The Taylor approximation for
the uncertainty evaluation proposed by Postels et al. (2019) also leads to a computationally efficient
single-shot method to compute the uncertainty. However, we find that Taylor approximation tends
to lead overconfident result compared to our method in the present experiments.

5.2 RNN FOR LANGUAGE MODELING

We report numerical experiments of language modeling problem. The problem setup is the same
as the problem considered by Zaremba et al. (2014) and Gal & Ghahramani (2016b). We use Penn
Treebank, which is a standard benchmark in this field. In the experiments, the LSTM consisting of
two-layers with 650 units in each layer is used. The model architecture and most of hyper parameters
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Figure 1: The uncertainty for feed-forward NNs is evaluated. The solid line is the target function and
the training samples (×) are plotted. For each method, the uncertainty is depicted as the confidence
interval.

Table 1: Single model perplexity for the Penn Treebank language modeling task is presented. The
asterisk (∗) denotes the best perplexity on the test set for each dropout setting. The asterisk (◦)
means the perplexity reported in (Gal & Ghahramani, 2016b).

untied weights
Validation Test

MC dropout◦ – 78.6± 0.1
standard dropout approx.◦ 81.9± 0.2 79.7± 0.1
Taylor approx. 82.65 79.34
VPBNN: ρ = 0 81.30 78.05∗

tied weights
Validation Test

– 79.0± 0.1
81.8± 0.2 79.7± 0.1

82.63 79.67
81.09 78.20∗

are set to those used by Gal & Ghahramani (2016b). Figure 7 in the appendix shows the RNN and
the converted VPBNN. The weight decay parameter is set to 10−7 according to the code in Github
provided by the authors of Gal & Ghahramani (2016b), as the parameter was not explicitly written
in their paper.

The results are shown in Table 1. The prediction performance is evaluated by the perplexity on the
test set. In the table, the standard dropout approximation propagates the mean of each approximat-
ing distribution as input to the next layer (Gal & Ghahramani, 2016b). As the Taylor approximation
computes the mean of the output without using the variance, it must provide the same result as the
standard dropout approximation. In our experiment, both methods produced almost identical per-
plexity scores. This result means that we approximately reproduced the numerical results reported
in the past papers. The MC dropout and the VPBNN with ρ = 0 achieved a lower perplexity than
the others. Our method using only a one-path calculation can provide almost the same accuracy as
the MC dropout that requires more than 1000 times feed-forward calculations of the output values.

Note that the VPBNN is not the approximation of MC dropout. Both MC dropout and VPBNN are
an approximation of the posterior distribution, though MC dropout with a sufficient number of feed-
forward calculations tends to provide a satisfactory result. The numerical experiments indicates that
the number of feed-forward calculations in MC dropout is not sufficient for this task.

5.3 OUT-OF-DISTRIBUTION DETECTION

Let us consider the out-of-distribution detection problem. The task is to find samples whose distri-
bution is different from that of the training samples. The uncertainty of samples is evaluated for this
task. First of all, the neural network is trained using Fashion-MNIST dataset (Xiao et al., 2017).
Then, several methods for uncertainty evaluation are used to detect samples from non-training

8
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Table 2: Results of out-of-distribution detection are presented. “Test accuracy” is the prediction
accuracy computed on the test set of Fashion-MNIST. For each pair of training domain (Fashion-
MNIST) and non-training domain (MNIST, EMNIST, Kannada or Kuzushiji), the averaged AUC
score computed using 30 random seeds is shown with the standard deviation. The asterisk ∗∗ (resp.
∗) denotes the highest (the second-highest) AUC for each non-training dataset.

AUC score for each non-training domain
Test accuracy MNIST EMNIST Kannada Kuzushiji

MC100 0.923± 0.002 0.904± 0.019 0.928± 0.012 0.897± 0.015 0.965± 0.006
MC2000 0.923± 0.002 0.916± 0.022∗ 0.937± 0.013∗ 0.909± 0.015∗ 0.971± 0.006∗

Taylor approx. 0.923± 0.002 0.775± 0.028 0.833± 0.017 0.766± 0.023 0.860± 0.017
VPBNN:adaptive 0.923± 0.002 0.923± 0.026∗∗ 0.946± 0.016∗∗ 0.916± 0.020∗∗ 0.981± 0.005∗∗

datasets. In this experiments, we use MNIST (Lecun et al., 1998), EMNIST-MNIST (Cohen et al.,
2017), Kannada (Prabhu, 2019), and Kuzushiji (Clanuwat et al., 2018) as non-training datasets. The
detection accuracy of each method is evaluated by the AUC measure on the test dataset.

We compared MC dropout with 100 sampling (MC100) or 2000 sampling (MC2000), Taylor ap-
proximation, and VPBNN with adaptive ρ. The network architecture is the CNN shown in Figure 8
of the Appendix. At the output layer, the multi-label sigmoid function is used. Numerical results
for the softmax function are reported in Section E of the appendix. In the training process, Adam
optimizer with early stopping on validation dataset is used. The 60k training data was divided into
50k training data for weight parameter tuning and 10k validation data for hyper-parameter tuning.

We confirmed that all methods achieve almost the same prediction accuracy on the test data of
Fashion-MNIST. The result is shown in the “Test accuracy” column in Table 2. The prediction is
done by using the top-ranked labels. Though MC dropout and VPBNN tend to relax the overcon-
fident prediction, the calibration does not significantly affect the label prediction accuracy of this
problem.

For the uncertainty evaluation, we used two criteria. One is the entropy computed from the
mean value of the output, H[y] = − 1

m

∑m
i=1 {E[yi] logE[yi] + (1− E[yi]) log(1− E[yi])}, for

the output y = (yi, . . . , ym) of the NN, and the other is the mean-standard deviation (mean-
std) (Kampffmeyer et al., 2016; Gal et al., 2017) that is the averaged standard deviation, i.e.,
σ(y) = 1

m

∑m
i=1

√
Var[yi]. In Section E of the appendix, we report the results of other uncer-

tainty measure using not only sigmoid function but the softmax functions. Overall, we find that
the mean-standard deviation outperforms the entropy measure in the out-of-distribution detection.
This is because the uncertainty is rather related to the variance than expectation of the output value.
Table 2 shows the results of the mean-standard deviation. In the adaptive VPBNN of this task,
the estimated correlation parameter ρ approximately ranges from 0.0 to 0.0005. Hence, VPBNN
with the independent assumption, i.e., ρ = 0, also works well. Taylor approximation method fails
to detect the sample from non-training distribution, This is because the estimation accuracy of the
variance is not necessarily high as shown in Section B of the appendix.

Let us consider the computation cost. In our experiments, the computation time of MC dropout with
100 sampling is 15.6[sec]± 28.3[ms] on average for the uncertainty evaluation of 10K test samples.
For MC dropout with 2000 sampling, the computation cost is approximately 20 times higher since
it is proportional to the number of sampling. For the adaptive VPBNN, the computation time is
175[ms] ± 31.7[ms] including the adaptive choice of ρ from 10 candidates when 10K validation
samples are used. VPBNN with adaptive ρ provides comparable performance to MC dropout using a
sufficient number of sampling while keeping much less computation cost. As discussed in language
modeling, the number of feed-forward calculations in MC dropout is considered not sufficient for
this task.

6 CONCLUSION

We developed a sampling-free method for uncertainty evaluation. Our method requires only a one-
path calculation of DNNs or RNNs, while the MC-based methods need thousands of feed-forward
calculations to evaluate the uncertainty. In the numerical experiments, we show that our method
provides more reliable results than existing sampling-free methods such as the Taylor approximation.
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LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems,
28(10):2222–2232, 2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On Calibration of Modern Neural
Networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1321–1330, International Convention Centre, Sydney, Australia, feb 2017. PMLR.

10

https://github.com/fchollet/keras
https://arxiv.org/abs/1812.01718
https://arxiv.org/abs/1702.05373


Under review as a conference paper at ICLR 2021

Maximilian Henne, Adrian Schwaiger, and Gereon Weiss. Managing Uncertainty of AI-based Per-
ception for Autonomous Systems. In Proceedings of the Workshop on Artificial Intelligence
Safety 2019 co-located with the 28th International Joint Conference on Artificial Intelligence,
AISafety@IJCAI 2019, Macao, China, August 11-12, 2019., 2019.

Alex Holub, Pietro Perona, and C. Michael Burl. Entropy- based active learning for object recogni-
tion. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work-
shops, pp. 1–8, 2008.

Seong Jae Hwang, Ronak Mehta, Hyunwoo J. Kim, Sterling C. Johnson, and Vikas Singh.
Sampling-free uncertainty estimation in gated recurrent units with applications to normative mod-
eling in neuroimaging. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, pp. 296, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR.

Byeongmoon Ji, Hyemin Jung, Jihyeun Yoon, Kyungyul Kim, and Younghak Shin. Bin-wise Tem-
perature Scaling (BTS): Improvement in Confidence Calibration Performance through Simple
Scaling Techniques. aug 2019.

Michael Kampffmeyer, Arnt Borre Salberg, and Robert Jenssen. Semantic Segmentation of Small
Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolu-
tional Neural Networks. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, pp. 680–688. IEEE Computer Society, 12 2016. ISBN 9781467388504.
doi: 10.1109/CVPRW.2016.90.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 30, pp. 6402–6413. Curran Associates, Inc., 2017.

M. T. Le, F. Diehl, T. Brunner, and A. Knol. Uncertainty estimation for deep neural object detectors
in safety-critical applications. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pp. 3873–3878, 2018.
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A IMPLEMENTATION OF NN2VPBNN

Using Keras (Chollet et al., 2015), we implemented nn2vpbnn that converts the DNN or RNN
trained using dropout to the corresponding Bayesian neural network with variance propagation, i.e.,
VPBNN. Each layer of the VPBNN propagates the mean and the variance from the input layer to
the output layer. The dropout layer in the VPBNN is the operation defined by Tdrop. The output
of VPBNN provides the mean and variance of the predictive distribution for the original BNN. In
each layer, the VPBNN with zero variance provides the output without uncertainty. Figure 2 is an
example of the VPBNN for the LSTM model. In the VPBNN, the input and output size is doubled
after the dropout layer. This is because information on the uncertainty is added as the variance.
Similarly, nn2vpbnn works to convert CNN models to the corresponding VPBNN.
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At the affine layer, our method allows the users to tune the degree of the dependence among input
variables by setting the parameter ρ. This parameter is determined according to the balance between
the validity of the independence assumption and the safety required to the system. On the numerical
experiments shown in Figure 6, setting ρ = 0 tends to produce an over-confident prediction, while
the parameter setting with ρ = 1 corresponds to the least-confident prediction.

In the BNN, the dropout layer is the main source of the uncertainty. Besides the dropout layer, the
batch normalization layer also has a Bayesian interpretation (Teye et al., 2018). Gaussian Dropout
layer and Gaussian Noise layer also yield the uncertainty to the output of the layer, while these
layers do not necessarily have the Bayesian interpretation. One can easily implement the variance
propagation for these layers as a part of nn2vpbnn.

In our method, we utilize neural networks trained with dropout. Unlike various kinds of probabilistic
NNs, we do not need any specialized training procedure to evaluate the uncertainty. This is a great
advantage for our implementation. Furthermore, the representative values of the predictive distri-
bution, i.e. the mean and variance, are obtained by the one-path feed-forward calculation. Hence,
we can circumvent iterative Monte-Carlo calculations. These advantages are shared with the Taylor
approximation method by Postels et al. (2019).
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Figure 2: Left: LSTM. Right: the corresponding VPBNN.

B SUPPLEMENTARY ON APPROXIMATION ACCURACY

Let us consider the numerical accuracy of VPBNN and Taylor approximation. The target is to
compute the mean and variance of output value y = f(Wx + b) for random input vector x. The
ReLU or sigmoid function is used as the activation function f . These two methods are compared
with the Monte-Carlo method with sufficiently many samples. The distribution of input variable is
the Gaussian distribution or the uniform distribution. The mean (resp. the standard deviation) of
input variable varies in the interval [−10, 10] (resp. [0.1, 10]) for both Gaussian distribution and the
uniform distribution.

The absolute error of VPBNN and Taylor approximation from the MC method is shown in Figure 3.
The horizontal axis and vertical axis denote the variance and mean of the input distribution, respec-
tively. In numerical experiments, VPBNN achieved higher accuracy than Taylor approximation. We
find that Taylor approximation tends to yield extremely large variance even when the sigmoid func-
tion is used as the activation function. Overall, VPBNN has a preferable property compared to the
Taylor approximation.

The architectures of the NN and RNN used in Section 5.1 are shown in Figure 4 and 5.

C NUMERICAL EXPERIMENTS ON SYNTHETIC DATA: RNN

Numerical experiments of RNNs using synthetic data are also conducted. The RNN model is shown
in Figure 5 of the Appendix. We evaluated the uncertainty of Bayesian RNN trained with dropout,
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Figure 3: The mean and variance of the output from the ReLU or sigmoid function for the Gaus-
sian or uniform inputs are computed using VPBNN and Taylor approximation. Absolute errors of
VPBNN and Taylor approximation to the MC method are presented.
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Figure 4: The architecture of NN to learn the regression function in Section 5.1. ReLU is used at
the Dense of the middle layer and the identify function is used at the Dense in the last layer.
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Figure 5: The architecture of RNN used in Section 5.1. The sigmoid function and tanh function are
used as the activation function.
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Figure 6: The uncertainty of Bayesian RNN is evaluated. The solid line is the target function. For
each method, the uncertainty is depicted as the confidence interval. Upper panels: the target and
estimated regression function with its uncertainty. Lower panels: the standard deviation of output
value at each input value.

where the input is 30 length sequence. The results are shown in Figure 6. Again the Taylor approxi-
mation and the VPBNN with the independent assumption (ρ = 0) tend to yield overconfident results
compared to the MC dropout. We find that the VPBNN with adaptive ρ provides a similar results to
the MC dropout.

D SUPPLEMENTARY OF RNN FOR LANGUAGE MODELING

The architectures of RNN used in Section 5.2 is shown in Figure 7.

E SUPPLEMENTARY OF OUT-OF-DISTRIBUTION

Let us consider the out-of-distribution detection. First of all, the neural network is trained using
Fashion-MNIST (Xiao et al., 2017). Then, several methods for uncertainty evaluation are used to
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Figure 7: The architecture of RNN used for Language Modeling in Section 5.2. The sigmoid
function and tanh function are used as the activation function.
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Figure 8: Neural networks to train Fashion MNIST in Section 5.3. ReLU is used in the middle dense
layer, and the softmax or sigmoid function is used at the output layer.

detect samples from non-training datasets, MNIST (Lecun et al., 1998), EMNIST-MNIST (Cohen
et al., 2017), Kannada (Prabhu, 2019), and Kuzushiji (Clanuwat et al., 2018). The detection accuracy
of each method is evaluated by the AUC measure on the test dataset.

The network architecture used in Section 5.3 is the CNN in Figure 8 of the Appendix. In addition
to the CNN with the softmax function provided in Keras, we implemented an another CNN with
multi-label sigmoid functions at the output layer.

In the training process of the NNs, Adam optimizer with early stopping on validation dataset is
exploited. The 60k training data was divided into 50k training data for the weight parameter tuning
and 10k validation data for hyper-parameter tuning. For the uncertainty evaluation, we used two
criteria; one is the entropy computed from the mean value of the output, and the other is the mean-
standard deviation (mean-std) (Kampffmeyer et al., 2016; Gal et al., 2017) that is computed from
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the variance. More precisely, the entropy defined from the softmax output is

H[y] = −
m∑
i=1

E[yi] logE[yi],

and the entropy defined from the sigmoid function for multi-label setting is given by

H[y] = − 1

m

m∑
i=1

{E[yi] logE[yi] + (1− E[yi]) log(1− E[yi])} .

The mean-std is defined by

σ(y) =
1

m

m∑
i=1

√
Var[yi].

The results are presented in Table 3 in the appendix. For the out-of-distribution detection, we find
that the mean-std based method outperforms the other methods using entropy criterion. More-
over, our method provides the uncertainty by only one-path feed-forward calculation, while the MC
dropout needs more than hundreds of feed-forward calculations. The Taylor approximation fails to
detect the sample from non-training distribution. This is because the approximation accuracy of the
Taylor approximation is not necessarily high as shown in Section B.

On the other hand, all the methods considered here achieve almost the same prediction accuracy on
the test data of Fashion MNIST as shown in Table 4. The prediction is done by using the top-ranked
labels. In this experiment, the calibration of the label probability does not significantly affect the
ranking of the label probability.
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Table 3: AUC score of Out-of-Distribution detection for MC dropout using 2000 sampling, Taylor
approximation, and VPBNN. The standard deviation of the AUC score is calculated using 30 differ-
ent random seeds. The asterisk ∗∗ (resp. ∗) denotes the highest (the second-highest) AUC for each
pair of training and non-training dataset.

Training→ non-training dataset Method Uncertainty Activation func. AUC
Fashion→MNIST MC dropout Entropy softmax 0.866± 0.019

sigmoid 0.796± 0.024
Mean-std softmax 0.934± 0.014**

sigmoid 0.916± 0.022
Taylor approx. Entropy softmax 0.718± 0.026

sigmoid 0.682± 0.028
Mean-std softmax 0.728± 0.025

sigmoid 0.775± 0.028
VPBNN Entropy sigmoid 0.806± 0.025

(adaptive ρ) Mean-std sigmoid 0.923± 0.026*
Fashion→ EMNIST MC dropout Entropy softmax 0.893± 0.013

sigmoid 0.846± 0.016
Mean-std softmax 0.941± 0.011*

sigmoid 0.937± 0.013
Taylor approx. Entropy softmax 0.791± 0.019

sigmoid 0.755± 0.021
Mean-std softmax 0.777± 0.017

sigmoid 0.833± 0.017
VPBNN Entropy sigmoid 0.856± 0.016

(adaptive ρ) Mean-std sigmoid 0.946± 0.016**
Fashion→ Kannada MC dropout Entropy softmax 0.867± 0.017

sigmoid 0.785± 0.020
Mean-std softmax 0.931± 0.013**

sigmoid 0.909± 0.015
Taylor approx. Entropy softmax 0.725± 0.027

sigmoid 0.672± 0.023
Mean-std softmax 0.738± 0.024

sigmoid 0.766± 0.023
VPBNN Entropy sigmoid 0.796± 0.020

(adaptive ρ) Mean-std sigmoid 0.916± 0.020*
Fashion→ Kuzushiji MC dropout Entropy softmax 0.913± 0.014

sigmoid 0.879± 0.014
Mean-std softmax 0.964± 0.008

sigmoid 0.971± 0.006*
Taylor approx. Entropy softmax 0.800± 0.025

sigmoid 0.766± 0.017
Mean-std softmax 0.809± 0.023

sigmoid 0.860± 0.017
VPBNN Entropy sigmoid 0.893± 0.013

(adaptive ρ) Mean-std sigmoid 0.981± 0.005**

Table 4: Test accuracy on the test set of Fashion-MNIST.
Method activation func. Test accuracy

MC dropout softmax 0.923± 0.003
sigmoid 0.923± 0.002

Taylor approx. softmax 0.923± 0.003
sigmoid 0.923± 0.002

VPBNN (adaptive ρ) sigmoid 0.923± 0.002
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