
Under review as a conference paper at ICLR 2022

MODEL-EFFICIENT DEEP LEARNING WITH KERNEL-
IZED CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the possibility of using the embeddings produced by a lightweight
network more effectively with a nonlinear classification layer. Although conven-
tional deep networks use an abundance of nonlinearity for representation (embed-
ding) learning, they almost universally use a linear classifier on the learned embed-
dings. This could be suboptimal for a network with a limited-capacity backbone
since better nonlinear classifiers could exist in the same embedding vector space.
We advocate a nonlinear kernelized classification layer for deep networks to tackle
this problem. We theoretically show that our classification layer optimizes over
all possible radial kernel functions on the space of embeddings to learn an optimal
nonlinear classifier. We then demonstrate the usefulness of this layer in learn-
ing more model-efficient classifiers in a number of computer vision and natural
language processing tasks.

1 INTRODUCTION

A traditional classification deep network consists of two parts: a representation learner that maps
an input to a vector-valued representation called the embedding, and a classifier that classifies this
embedding into the correct class. For example, in the text classification setting, the input text may
be sent through a transformer encoder network with CLS-pooling (the representation learner) to
obtain an embedding vector for the text (Devlin et al., 2018). A fully-connected layer (the classifier)
is then operated on this embedding. A classifier learned in a usual fully connected layer with the
softmax loss is linear in the space of embeddings. Therefore, the representation learner has to learn
linearly-separable embeddings to do well in the classification task.

When the representation learner backbone is unable to learn linearly separable embeddings to satis-
factorily solve a given classification task, the usual fix is to use a deeper and/or wider backbone to
generate better embeddings (Turc et al., 2019; He et al., 2016). However, bigger backbones demand
more resources in terms of compute, memory, and model storage during both training and infer-
ence. Therefore, it is natural to ask whether it is instead possible to use embeddings produced by a
capacity-limited network more effectively by using a more sophisticated classification layer.

In this work we address this problem by proposing a nonlinear, kernelized classification layer. This
classification layer finds an optimal nonlinear classifier for the embeddings by mapping them into a
Reproducing Kernel Hilbert Space (RKHS) that optimally separates them into different classes. We
borrow the key idea from kernel methods in the classic machine learning literature (Cortes & Vapnik,
1995; Schölkopf & Smola, 2002): instead of running a classifier directly on the embeddings, they
are first mapped to much higher dimensional vectors in an RKHS using a positive definite kernel
function. A linear classifier is then run on this high-dimensional RKHS. Since the dimensionality
of the embeddings is dramatically increased via this mapping, a linear classifier in the RKHS cor-
responds to a powerful nonlinear classifier in the original embedding space. Such a classifier can
therefore utilize even linearly inseparable embeddings to satisfactorily solve a classification task as
demonstrated in Figure 1.

A common issue with traditional kernel methods is the choice of the kernel function used to obtain
the RKHS mapping. While a collection of well-known kernels such as the linear kernel, polynomial
kernels, and the Gaussian RBF kernel is available, it is often unclear which kernel would work best
for a given problem. We tackle this issue by sweeping over all possible kernel functions within the
deep network itself to find the optimal one via backpropagation and stochastic gradient descent.
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(a) Training data (b) Softmax classifier (b) Kernelized classifier
Figure 1: Benefits of kernelized classification. In the second and third images, regions identified by each
classifier are shown in blue and orange colors. Note that the usual softmax classifier can only separate cap-like
“linear” regions on the sphere, whereas our kernelized classifier can do more complex nonlinear classification
thanks to the higher dimensional RKHS embedding of the sphere. See § 6.1 for the experiment details.

There is a wealth of literature on making deep learning models more efficient by using techniques
such as pruning, quantization, low-rank factorization, and distillation (Cheng et al., 2017; Deng
et al., 2020). We approach the model efficiency from an orthogonal angle by asking whether it
is possible to utilize embeddings produced by a given representation learner more effectively by
doing nonlinear classification. Therefore, our approach is complementary to these existing model
compression techniques.

In summary, we propose a method for model-efficient classification in a deep network with three
contributions: (i) we introduce a kernelized classification layer with built-in kernel learning that can
utilize a given representation learning model more effectively. (ii) we theoretically establish that it
is possible to optimize, within the deep network itself, over all possible kernel functions we care
about to find the best RKHS that optimally separates embeddings. (iii) we empirically show that
the kernelized classification layer is a viable alternative to using a larger backbone to improve the
classification accuracy in a number of computer vision and natural language processing tasks.

2 RELATED WORK

There have been several explorations of loss functions other than the usual softmax crossentropy
loss in CNN settings, specially in the open-set classification setting (Wen et al., 2019; Cevikalp &
Saglamlar, 2021; Deng et al., 2019; Wang et al., 2018). An example is the Center Loss (Wen et al.,
2019), which encourages low intra-class variance in the feature vectors. Other methods such as
Deng et al. (2019) achieve higher performance by leaving additional margins in the softmax loss.
Our work differs from these since we work in the closed-set classification setting and employ an
automatically learned kernel to obtain nonlinear classification boundaries.

Second order pooling methods (Lin et al., 2015; Li et al., 2017; Wang et al., 2020) propose a way
to perform nonlinear classification in the embedding space. In has been shown that second order
pooling is equivalent to using a second-degree polynomial kernel (Gao et al., 2016; Cai et al., 2017).
Cui et al. (2017) extended second-order pooling to higher orders while learning the coefficients of
higher order interactions. Their method requires explicit calculation of feature maps, which they
tackle using Fast Fourier Transforms. Mahmoudi et al. (2020), use the kernel trick in the dense layer
along with the polynomial kernel. Our work differs from the above works in that we never calculate
explicit feature maps and we theoretically show that our method learns over the space of all possible
positive definite kernels on the hyper-sphere, which includes all polynomial kernels.

Some methods focus on extending the linear convolution in CNNs to a nonlinear operation. Con-
volutional kernel networks (Mairal et al., 2014) provide a kernel approximation to interpret convo-
lutions. Zoumpourlis et al. (2017) used Volterra series approximations to extend convolutions to a
nonlinear operation. Wang et al. (2019b) proposed a kernelized version of the convolution opera-
tion and demonstrated that it can learn more complicated features than the usual convolution. Our
work differs from theirs in a number of ways: Some kernels used in their work, such as the Lp-norm
kernels, are not positive definite (Berg et al., 1984) and therefore do not represent a valid RKHS map-
ping (Aronszajn, 1950). In contrast, we strictly work with positive definite kernels, which represent
valid mappings to an RKHS. Furthermore, learning of hyperparameters of pre-defined kernels advo-
cated in their work is principally different from the kernel learning method presented in this paper –
we theoretically show that our method optimizes over the space of all radial positive definite kernels
on the unit sphere to find the best kernel, instead of limiting the optimization to the hyperparameters
of pre-defined kernels.
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Prior to the dominance of deep learning methods, picking the right kernel for a given problem has
been studied extensively in works such as Howley & Madden (2005); Ali & Smith-Miles (2006);
Jayasumana et al. (2014); Gönen et al. (2011). In particular, Multiple Kernel Learning (MKL)
approaches (Gönen et al., 2011; Varma & Ray, 2007) were popular in conjunction with SVM. Un-
fortunately, these methods scale poorly with the size of the training dataset. In this work, we au-
tomatically learn the kernel within a deep network. This not only allows automatic representation
learning, but also scales well for large training sets. Kernels have also been considered for deep
learning to reduce the memory footprint of CNNs. This was accomplished by achieving an end-
to-end training of a Fastfood kernel layer (Yang et al., 2015), which uses approximations of kernel
functions using Fastfood transforms (Le et al., 2013). Other related methods involving both kernels
and deep learning include stochastic kernel machines (Dai et al., 2015), deep SimNets (Cohen et al.,
2015), scalable deep kernels (Wilson et al., 2015), KerNET (Lauriola et al., 2020), and deep belief
network based work of Le et al. (2016).

3 NONLINEAR SOFTMAX CLASSIFICATION

In this section we discuss the usual classification inside a deep network and its nonlinear extension.
Let us consider a classification problem with a training set {(xi, yi)}Ni=1, where each xi ∈ X , each
yi ∈ [L]

.
= {1, 2, . . . , L}, X is a nonempty set, L is the number of labels, and N is the number of

training examples. For instance, each training datum (xi, yi) can be an image with its class label.

A deep neural network that solves this task has two components: a representation learner and a
classifier. In the case of image classification, the representation learner consists of modules such as
convolution layers, max-pooling layers, and fully-connected layers. The classifier is the last fully-
connected layer operating on the learned representations (embeddings). This layer is endowed with
a loss function during training.

Let r(Θ) : X → Rd denote the representation learner, where d is the dimensionality of the embed-
dings and Θ represents all the parameters in this part of the network. The classifier is characterized
by a function g(Ω) : Rd → [L], where Ω denotes all the parameters in the last layer of the net-
work. Usually, Ω consists of weight vectors w1,w2, . . . ,wL with each wj ∈ Rd, and bias terms
b1, b2, . . . , bL with each bj ∈ R. The function g(Ω) then takes the form:

g(Ω)(z) = argmax
j

wT
j z, (1)

where z = r(Θ)(x) ∈ Rd is the embedding for input the x. Note that we have dropped the additive
bias term bj , with no loss of generality, to keep the notation uncluttered. During inference, the
deep network’s class prediction ŷ∗ for an input x∗ is the composite of these two functions: ŷ∗ =(
g(Ω) ◦ r(Θ)

)
(x∗).

Although conceptually there are two components of the deep network, their parameters Θ and Ω
are learned jointly during training. The de facto standard way of training a classification network is
minimizing the softmax loss applied to the classification layer. The softmax loss is the combination
of the softmax function and the cross-entropy loss. More specifically, for a single training example
(x, y) with the embedding z = r(Θ)(x), the softmax loss is calculated as:

l(y, z) = − log

(
exp(wT

y z)∑L
j=1 exp(wT

j z)

)
. (2)

Note that the classifier g(Ω) trained is this manner is completely linear in Rd, the space of the
embeddings zs, as is evident from (1).

From the classic knowledge in kernel methods, we are aware that more powerful nonlinear classifiers
on Rd can be obtained using the kernel trick. The key idea here is to first map the embeddings zs into
a high-dimensional RKHS H and perform classification there. Although the classification is linear
in the high-dimensional H, it is nonlinear in the original embedding space Rd. Let φ : Rd → H
represent this RKHS embedding. Performing classification in H is then equivalent to training the
neural network with the following modified version of the softmax loss:

lnl(y, z) = − log

(
exp

(
〈φ(wy), φ(z)〉H

)∑L
j=1 exp

(
〈φ(wj), φ(z)〉H

)) , (3)
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where 〈., .〉H denotes the inner product in the Hilbert space H. The key difference between (2) and
(3) is that the dot products between wjs and z have been replaced with the inner products between
φ(wj)s and φ(z). The more general notion of inner product is used instead of dot product because
the Hilbert spaceH can be infinite dimensional.

For a network trained with this nonlinear softmax function, predictions can be obtained using a
modified version of the predictor:

g
(Ω)
nl (z) = argmax

j
〈φ(wj), φ(z)〉H . (4)

Note that the Hilbert space embeddings φ(.)s can be very-high, even infinite, dimensional. There-
fore, computing and storing them can be problematic. We can use the kernel trick from classic
machine learning (Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004) to overcome this
problem: explicit computation of φ(.)s can be avoided by directly evaluating the inner product be-
tween them using a kernel function k : Rd × Rd → R. That is:

〈φ(w), φ(z)〉H = k(w, z). (5)

Intuitively, mapping d-dimensional embeddings into a much higher dimensional RKHS using a
kernel would help in finding complex, nonlinear patterns in the embeddings that the usual softmax
classification is unable to find due to its linear nature. We therefore expect kernelized classification
to use embeddings provided by a given representation learner more effectively.

4 KERNELS ON THE UNIT SPHERE

It was shown in the previous section that, given a kernel function on the embedding space, we
can obtain a nonlinear classifier in the last layer of a deep network by modifying the softmax loss
function during training and the predictor during inference. However, only positive definite kernels
allow this trick (Aronszajn, 1950; Berg et al., 1984). There are various choices for kernel functions
in the classic machine learning literature. Some popular choices include the polynomial kernel,
the Gaussian RBF kernel (squared exponential kernel), and the Laplacian kernel. Nevertheless,
it is often difficult to decide the optimal kernel for a given problem. Furthermore, many of the
kernels have hyperparameters that need to be manually tuned. The generally accepted solution to
this problem in classic kernel methods is the MKL framework (Gönen et al., 2011), where a better
kernel is learned as a linear combination of some pre-defined kernels. Unfortunately, like SVM,
MKL methods do not scale well with the train set size. Furthermore, usual MKL provides no
guarantee to explore all possible kernel functions to find the optimal one.

In this section, we present some theoretical results that will pave the way to define a neural network
layer that can automatically learn the optimal kernel from data. By formulating kernel learning as a
neural network layer, we inherit the desirable properties of deep learning, including scalability and
automatic representation learning. Importantly, we show that our method can sweep over the entire
space of positive definite kernels applicable to our problem setting to find the best kernel. We start
the discussion with the following definition of positive definite kernels (Berg et al., 1984).

Definition 4.1. Let U be a nonempty set. A function k : (U × U) → R is called a positive definite
kernel if k(u, v) = k(v, u) for all u, v ∈ U and

∑N
j=1

∑N
i=1 cicjk(ui, uj) ≥ 0, for all N ∈

N, {u1, . . . , uN} ⊆ U and {c1, . . . , cN} ⊆ R.

Properties of positive definite kernels have been studied extensively in mathematics (Berg et al.,
1984). The following summarizes some important closure properties of this class of functions.

Proposition 4.2. The family of all positive definite kernels on a given nonempty set forms a convex
cone that is closed under pointwise multiplication and pointwise convergence.

Proof. To intuitively understand this result, it is helpful to recall that the geometry of the family of
the all positive definite kernels on a given nonempty set is closely related to that of the space of the
d × d symmetric positive definite matrices, which forms a convex cone. The formal proof of this
proposition can be found in Remark 3.1.11 and Theorem 3.1.12 of Berg et al. (1984).

To simplify the problem setting, we assume that both the embeddings zs and the weight vectors
wjs are L2-normalized. Not only this simplifies the mathematics, but also it is a practice in use
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for stabilizing the training of neural networks (Yi et al., 2019; Liu et al., 2017; Hoffer et al., 2018).
Due to this assumption, we are interested in positive definite kernels on the unit sphere in Rd. From
now on, we use Sn, where n = d − 1, to denote this space. We also restrict our discussion to
radial kernels on Sn. Radial kernels, kernels that only depend on the distance between the two input
points, have the desirable property of translation invariance. Furthermore, all the commonly used
kernels on Sn, such as the linear kernel, the polynomial kernel, the Gaussian RBF kernel, and the
Laplacian kernel are radial kernels. The following theorem, origins of which can be traced back to
Schoenberg (1942), fully characterizes radial kernels on Sn.
Theorem 4.3. A radial kernel k : Sn×Sn → R is positive definite for any n if and only if it admits
a unique series representation of the form

k(u,v) = α−2J〈u,v〉 ∈ {−1, 1}K+ α−1(J〈u,v〉 = 1K−J〈u,v〉 = −1K)+

∞∑
m=0

αm 〈u,v〉m , (6)

where each αm ≥ 0 ,
∑∞

m=−2 αm <∞, and J.K depicts the Iversion bracket.

Proof. The kernel k1 : Sn × Sn → [−1, 1] : k1(u,v) = 〈u,v〉 is positive definite on Sn for any
n since

∑
j

∑
i cicj 〈ui,uj〉 = ‖

∑
i ciui‖2 ≥ 0. Therefore, from the closure properties in Propo-

sition 4.2, the kernel km : (u,v) 7→ 〈u,v〉m is also positive definite for any m ∈ N. Furthermore,
km is positive definite for m = 0 since

∑
j

∑
i cicj 〈ui,uj〉0 = ‖

∑
i ci‖

2 ≥ 0.

Let us now consider the two sequences of kernels sodd = k1, k3, . . . , k2m+1, . . . and seven =
k2, k4, . . . , k2m, . . . . Since −1 ≤ 〈u,v〉 ≤ 1, it is clear that sodd and seven converge pointwise
to kodd(u,v) = J〈u,v〉 = 1K − J〈u,v〉 = −1K and keven(u,v) = J〈u,v〉 ∈ {−1, 1}K, respec-
tively. From the last closure property of Proposition 4.2, both kodd and keven are positive definite
on Sn. Invoking Proposition 4.2 again, we conclude that any finite conic combination of the kernels
keven, kodd, k0, k1, . . . is positive definite on Sn for any n. This completes the forward direction of
the proof. The proof of the converse is found in Chapter 5 of Berg et al. (1984).

Equipped with a complete characterization of the positive definite radial kernels on Sn, we now dis-
cuss how we can combine this result with the nonlinear softmax formulation in § 3 to automatically
learn the best kernel classifier within a deep network.

5 THE KERNELIZED CLASSIFICATION LAYER

We now introduce a kernelized classification layer that acts as a drop-in replacement for the usual
softmax classification layer in a deep network. This new layer classifies embeddings in a high-
dimensional RKHS while automatically choosing the optimal positive definite kernel that enables
the mapping into the RKHS. As a result, we do not have to hand-pick a kernel or its hyperparameters.
Our nonlinear classification layer can utilize embeddings more efficiently than a softmax classifier,
which is linear in the embedding space. We also show that the kernelized classification layers comes
with negligible added cost during both training and inference.

5.1 MECHANICS OF THE LAYER

Our classification layer is parameterized by the usual weight vectors: w1,w2, . . . ,wL, and some
additional learnable coefficients: α−2, α−1, . . . , αM , where M ∈ N and each αm ≥ 0. During
training, this classifier maps embeddings zs into a high-dimensional RKHS Hopt that optimally
separates embeddings belonging to different classes, and learns a linear classifier in Hopt. During
inference, the classifier maps embeddings of previously unseen inputs to the RKHS it learned during
training and performs classification in that space. This is achieved by using the nonlinear softmax
loss defined in (3) during training and the nonlinear predictor defined in (4) during testing, with the
inner product in H given by:〈φ(w), φ(z)〉H = 〈φ(w), φ(z)〉Hopt

= kopt(w, z), where kopt(., .)

is the reproducing kernel of Hopt. The optimal RKHS Hopt for a given classification problem is
learned by finding the optimal kernel kopt during training as discussed in the following.

Theorem 4.3 states that any positive definite radial kernel on Sn admits the series representation
shown in (6). Therefore, the optimal kernel kopt must also have such a series representation. We
approximate this series with a finite summation by cutting off the terms beyond the order M :

kopt(w, z) ≈ α−2keven(w, z) + α−1kodd(w, z) +

M∑
m=0

αmkm(w, z), (7)
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where, keven, kodd, k0, k1, . . . , kM have meanings defined § 4 and α−2, α−1, . . . , αM ≥ 0. Using
Proposition 4.2 and the discussion in the proof of Theorem 4.3, one can easily verify that this ap-
proximation does not violate the positive definiteness of kopt. A rigorous analysis of the accuracy
of this approximation is provided in Appendix E.

With this, kopt is learned automatically from data by making the coefficients α−2, α−1, . . . , αM s
learnable parameters of the classification layer. Let α = [α−2, α−1, . . . , αM ]T . The gradient of the
loss function with respect to α can be calculated via the backpropagation algorithm using (3) and
(7). Therefore, it can be optimized along with w1,w2, . . . ,wL during the gradient descent based
optimization of the network. This procedure is equivalent to automatically finding the RKHS that
optimally separates the embeddings belonging to different classes.

The constraint α−2, α−1, . . . , αM ≥ 0 in (7) can be imposed with a ReLU function (see Ap-
pendix D.5 for more discussion). As shown later in § 7.3, the exact value of M is not critical as
long as it is sufficiently large. This is because, as discussed in the proof of Theorem 4.3, the higher
order terms that are truncated approach either kodd or keven, both of which are already included in
the finite summation. On the other hand, if the terms beyond some orderM ′ < M are not important,
the network can automatically learn to make the corresponding α coefficients vanish. We observed
that M = 10 works well enough in practice and stick to this number in all our experiments.

Importantly, the kernelized classification layer described above can pass on the loss gradients to its
inputs. Therefore, the kernelized classification layer is fully compatible with end-to-end training
and can act as a drop-in replacement for an existing softmax classification layer.

5.2 ADDITIONAL COMPLEXITY

Since we propose kernelized classification as a replacement for the usual softmax classification to
improve model efficiency, one might wonder about the added cost of the kernelized classification
layer. It uses (M + 3) extra learnable parameters. During both training and inference, the added
computational complexity is O(M + d) per datum, assuming a commonly-available constant-time
operation for taking powers. Additional memory footprint is O(M) during training to account for
cached gradients. Note thatM = 10 and d ranges from 64 to 768 in our experiments. Therefore, the
kernelized classification comes with a negligible added cost over the softmax classification in terms
of compute, memory, and trained model storage.

6 EXPERIMENTS

We now present experimental evaluation of our method. For all experiments, the main baseline is
the standard softmax classifier. Where appropriate, we show three additional baseline results based
on the linear kernel, second order pooling (Lin et al., 2015), and kervolutional networks (Wang
et al., 2019b). Note that the focus of our experiments is to demonstrate the benefits of kernelized
classification in efficiently utilizing embeddings learned with various representation learners, not
to claim state-of-the-art results on already well-explored benchmark datasets. Details about our
experimental setup is in Appendix A.

6.1 SYNTHETIC DATA

We first evaluate the kernelized classification layer as an isolated unit by demonstrating its capabil-
ities to learn nonlinear patterns on Sn. We train a softmax classifier and our kernelized classifier
on the synthetic dataset described in Appendix B. Results on the test set are shown in Table 1. We
also report the theoretical maximum accuracy, the accuracy of the Bayes optimal classifier. The
accuracy of our kernelized classification layer significantly outperforms the baseline and gets close
to theoretical best. This can be attributed to the layer’s capabilities to learn nonlinear patterns on the
sphere by embedding the data into an RKHS that optimally separates the classes.

We visualize the outcomes of the classifiers in Figure 1. Note that the softmax classifier can only
separate cap-like regions on S2, this is a result of its being a linear classifier with respect to the em-
beddings. Our kernelized classifier, on the other hand, can do a more complex nonlinear separation
of the embeddings.
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Method Accuracy
Softmax classifier (baseline) 85.51
Kernelized classifier (ours) 94.20
Bayes optimal classifier 95.06

Table 1: Classification results on the synthetic dataset.

Dataset Accuracy
Baseline Ours

CIFAR-10 76.06 79.85
CIFAR-100 44.38 46.48

Table 2: Results in the distillation setting.

6.2 IMAGE CLASSIFICATION

We now report results on CIFAR-10 and CIFAR-100 real world image benchmarks1 (Krizhevsky,
2009). To demonstrate better model-efficiency with the kernelized classification, we experiment
with several CIFAR-ResNet architectures (He et al., 2016) with increasing model capacity. We
consider four different baselines: (1) Softmax: the standard softmax loss, (2) LIN: normalized
embeddings and weights with only the linear kernel along with a learnable coefficient. This is similar
to the approach discussed in Hoffer et al. (2018), but with additional freedom to learn the weight
vectors, (3) SOP: second order pooling (Lin et al., 2015), which is also equivalent to Mahmoudi
et al. (2020) with a second degree polynomial, and (4) KERVO: kervolutional networks (Wang
et al., 2019b) with the best out of the Gaussian RBF kernel and the polynomial kernel.

Increased model-efficiency obtained with the kernelized classifier is evident from the accuracies
summarized in Table 3. For example, the same accuracy of ResNet-56 (540K parameters) with the
standard softmax classifier can be obtained with a much smaller ResNet-32 (300K parameters) when
the kernelized classifier is used. Our method significantly outperforms the other baselines as well.
This shows the benefits of optimizing over the entire space of positive definite kernels instead of
restricting ourselves to linear methods or pre-defined kernels.

Backbone # params Softmax LIN SOP KERVO Ours
ResNet-8 61K 83.73 / 53.82 82.45 / 54.00 84.03 / 55.80 85.15 / 56.92 86.93 / 58.27
ResNet-14 121K 89.87 / 63.85 90.16 / 63.67 90.47 / 63.53 90.43 / 64.14 91.48 / 66.67
ResNet-20 181K 91.14 / 65.99 91.01 / 65.79 91.75 / 67.97 91.34 / 67.31 92.88 / 69.33
ResNet-32 300K 92.22 / 68.96 92.21 / 69.16 92.31 / 70.39 92.42 / 69.40 93.70 / 71.30
ResNet-44 420K 92.10 / 70.16 93.10 / 70.54 92.42 / 71.13 92.88 / 71.09 94.05 / 73.20
ResNet-56 540K 93.01 / 71.23 93.13 / 72.11 93.33 / 73.12 93.10 / 72.39 94.15 / 74.10

Table 3: Results on the CIFAR-10/CIFAR-100 datasets.

6.3 NATURAL LANGUAGE UNDERSTANDING

In this section, we show the benefits of the kernelized classification layer in solving four different
text classification tasks in the GLUE benchmark (Wang et al., 2019a). We use mask-LM pretrained
BERT models of different capacities (Turc et al., 2019) and finetune them on each classification task.
Note that we do not use distillation and directly finetune the models with the dataset labels. Since
detailed analyses on GLUE test datasets are not allowed (Wang et al., 2019a), we tune hyperparam-
eters on subsets of train sets and report results on the validation sets in Table 4. More details about
the experiment setup are provided in Appendix A.

Table 4 provides evidence that kernelized classification layers helps in extracting more gains out of
a given representation learner. For example, across all the datasets, BERT-Mini (11.3M parameters)
with kernelized classification can get similar results as the BERT-Small (29.1M parameters) with
softmax classification. Therefore, using the nonlinear, kernelized classifier is an effective alternative
to using a bigger backbone for increasing classification performance.

6.4 KNOWLEDGE DISTILLATION

We now evaluate our method in the distillation setting to show that it is complementary to existing
model compression techniques. We used the CIFAR-10 and CIFAR-100 datasets, the softmax CI-
FAR ResNet-56 models from Tables 3 as the teacher models, and the LeNet-5 network (Lecun et al.,
1998) as the student model. Note that it is straightforward to utilize the kernelized classification
layer in the distillation setting described in Hinton et al. (2015) by replacing usual logits with their

1We use the standard data augmentation in CIFAR-10/100 (He et al., 2016). Some authors refer to these
datasets as CIFAR-10+/100+ when data augmentation is used. We omit the + to keep the text uncluttered.
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Dataset Method BERT-Tiny BERT-Mini BERT-Small BERT-Medium BERT-Base
# params 4.4M 11.3M 29.1M 41.7M 110.1M

MPRC (F1/Acc)

Softmax 82.77 / 74.50 85.20 / 79.25 88.41 / 83.75 89.72 / 85.50 92.58 / 89.50
LIN 82.00 / 73.78 84.99 / 79.10 88.51 / 83.79 89.88 / 85.62 92.34 / 89.48
SOP 83.81 / 76.21 86.21 / 80.42 89.21 / 84.38 89.99 / 85.78 92.68 / 89.73
Ours 84.97 / 78.25 88.89 / 84.50 90.12 / 85.75 91.60 / 87.75 93.24 / 90.50

QQP (F1/Acc)

Softmax 81.91 / 86.35 84.09 / 88.10 85.18 / 88.87 86.12 / 89.73 87.18 / 90.30
LIN. 81.07 / 86.11 84.05 / 88.09 85.19 / 88.87 86.05 / 89.69 87.20 / 90.31
SOP 82.01 / 87.00 84.50 / 88.56 85.99 / 90.00 86.15 / 89.99 87.21 / 90.34
Ours 82.78 / 87.13 85.00 / 88.84 85.83 / 89.46 86.83 / 90.17 87.97 / 91.04

RTE (Acc)

Softmax 63.53 65.74 66.01 66.84 71.46
LIN 62.32 65.69 65.97 66.02 71.50
SOP 63.59 65.78 66.00 68.02 72.96
Ours. 65.96 66.93 67.72 67.94 73.28

SST-2 (Acc)

Softmax 82.38 87.11 87.19 89.86 91.97
LIN. 82.04 86.92 87.29 89.50 91.72
SOP 82.89 87.19 88.52 90.12 91.98
Ours 84.07 87.14 89.42 90.83 92.69

Table 4: Results on several natural language understanding tasks in the GLUE benchmark.

kernelized counterparts. We use the cross-entropy loss with the teacher scores with the temperature
set to 20 in all cases. Results are shown in Table 2. Significant gains are observed with the kernel-
ized classification layer. This can be attributed to the layer’s capabilities to approximate complex
teacher probabilities even with weak embeddings due to the nonlinear classifier.

6.5 ACTIVE LEARNING

Active learning focuses on reducing human annotation costs by selecting a subset of images to label
that are more likely to yield the best model (Settles, 2009). We used different sampling methods such
as random, margin (Lewis & Gale, 1994; Scheffer et al., 2001), and k-center (Sener & Savarese,
2017; Wolf, 2011) to generate subsets of various sizes. The setup is detailed in Appendix C. As
shown in Table 5, our results on random subsets outperform the softmax ResNet-56 models on
margin and k-center based subsets, and we achieve even better results using improved sampling
methods. This demonstrates that the kernelized classification layer can produce better models in
limited-data settings as well.

7 ABLATION STUDIES

We now present ablation experiments using CIFAR-100 and the ResNet-56 backbone.

7.1 KERNEL LEARNING

To investigate the benefits of automatic kernel learning compared to using a pre-defined kernel in
the kernelized classification layer, we compare our kernel learning method with two pre-defined
kernels in the kernelized classification layer: the polynomial kernel of order 10 and the Gaussian
RBF kernel. We also show results with an MKL baseline with linear, 2nd order, and Gaussian

% Baseline Ours
rnd mgn k-ctr rnd mgn k-ctr

30 58.03 58.88 58.41 61.66 61.80 63.08
40 61.05 61.81 62.02 65.25 66.28 66.35
50 64.81 65.36 65.47 67.17 68.14 69.41
60 66.26 67.03 68.25 69.17 70.61 70.10
70 67.47 69.16 69.84 70.06 70.90 71.50
80 69.59 69.47 71.25 71.66 72.21 72.64
90 70.25 71.41 71.11 72.60 73.90 73.14

Table 5: Active learning on CIFAR-100. Terms rnd, mgn,
and k-ctr refer to random, margin, and k-center, respectively.

Figure 2: Accuracy versus the order of the
approximation (M ) on CIFAR-100.

8



Under review as a conference paper at ICLR 2022

kernels. Results are shown in Table 6. It is evident that sweeping over all possible kernels in light
of Theorem 4.3 to find the best kernel yields significant practical benefits. This is not surprising
because the polynomial and Gaussian kernels are members of the large search space of kernels that
we optimize over in our method.

Method Acc
Gaussian RBF with fixed σ 73.21
Gaussian RBF with learned σ 73.23
Polynomial kernel 73.16
MKL 73.25
Ours 74.10

Table 6: Benefits of learning the best kernel.

Method Acc
No normalization 71.16
Embeddings normalized 71.23
Embeddings & weights normalized with fixed T 71.19
Embeddings & weights normalized with learned T 72.11
Ours 74.10

Table 7: Effects of normalization.

7.2 EMBEDDING NORMALIZATION

As discussed previously, we L2-normalize both embeddings and weights in the classification layer.
We study the effect of this normalization for the baseline softmax loss in Table 7. Note the setting
where both embeddings and weights are normalized with an appropriate temperature T is equivalent
to the cosine softmax loss (Liu et al., 2017; Chen et al., 2019; Wang et al., 2020). Note also that the
LIN baseline considered in Tables 3 and 4 uses normalized embeddings and weights with an auto-
matically learned T , same as the fourth row in Table 7. In our softmax baselines we use normalized
embeddings since it works consistently better than the unnormalized version.

7.3 SENSITIVITY TO THE ORDER OF THE APPROXIMATION

As discussed in § 5.1, intuitively, the order M of the approximation should not matter as long as it
is large enough. We verify this in Figure 2 with the CIFAR-100 dataset, where we show the changes
in accuracy with increasing M . We use M = 10 in all our experiments.

7.4 DO MORE FULLY-CONNECTED LAYERS HELP?

One could wonder whether more fully-connected layers at the end of the network would improve
the classification. To address this, we added an additional fully-connected layer with d units to
ResNet-56. The accuracy improved only marginally from 71.23 to 71.29, as opposed to 74.10 with
our method. This observation is in-line with the discussion in Rendle et al. (2020): MLP scorers are
somewhat difficult to train. An explanation for this could be the common observation that, although
MLPs can theoretically approximate any function, learning one from data is difficult. This has
motivated inductive-bias based models such as CNNs and Transformers. Kernelized classification
can also be viewed as a way of presenting an inductive bias motivated by the classic kernel method
theory. Note also that, unlike the kernelized classification layer, added MLP layers come with a
significant increase in the model’s computational and memory complexity.

7.5 DIFFERENT LOSS FUNCTIONS, ACTIVATION FOR COEFFICIENT, ETC.

We also provide a number of other ablations studies on different loss functions, effects of embedding
rectification, kernel coefficient activation, and other settings in Appendix D.

8 CONCLUSION

We presented a kernelized classification layer for deep neural networks aiming to extract the best
possible classifier with embeddings produced by a given representation learner. This classification
layer classifies embeddings in a high dimensional RKHS while automatically learning the optimal
kernel that enables this high-dimensional mapping. We showed that a classification network with
a lightweight representation learning backbone can be made more effective by replacing the usual
softmax classifier with the kernelized classifier. We showed consistent and substantial accuracy im-
provements in image classification, natural language understanding, distillation, and active learning
settings. These accuracy improvements strongly support the usefulness of kernelized classification
layer in finding nonlinear patterns in the embeddings.

9
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A EXPERIMENTAL SETUP

In all experiments, we use M = 10 for the kernelized classification layer. As discussed in § 5.1 and
Appendix D.5, we use ReLU activation and a weight decay of 0.0001 on the α parameter vector.
This is the same amount of weight decay used in the other parts of the network, when applicable.
The α parameter vector is initialized with all ones.

For all image classification experiments, we use SGD with 0.9 momentum, linear learning rate
warmup (Goyal et al., 2017), cosine learning rate decay (Loshchilov & Hutter, 2017), and decide the
base learning by cross validation. When a better learning rate schedule is available for the baseline
(e.g. the CIFAR schedule in He et al. 2016), we experimented with both that and our schedule and
report the best accuracy of the two. The maximum number of epochs was 450 in all cases. Mini-
batch size was 128 for the synthetic and CIFAR datasets and 64 other datasets with larger images
used in Appendix D.2. We used the standard CIFAR data augmentation method in He et al. 2016
for CIFAR-10 and CIFAR-100 datasets, and the Imagenet data augmentation in the same paper for
other image datasets. Some ResNet models use ReLU activation on embeddings. We also remove
this activation to utilize the full surface of Sn. The same is done to the baseline models to enable a
fair comparison (see AppendixD.4 for more details).

For the natural language understanding tasks in § 6.3, we use the publicly-available, MLM-
pretrained BERT/Small-BERT models from TensorFlow Hub (Turc et al., 2019). Usual CLS pool-
ing is done at the end of the Transformer encoder to obtain an embedding for each input sen-
tence/sentence pair. We use the AdamW optimizer with linear ramp-up and decay as is standard
for BERT model finetuning. Note that we do not distill the final task from a bigger model and di-
rectly finetune with the one-hot labels in the original datasets. Hyperparameter search followed the
procedure described in Turc et al. (2019). Since detailed analysis of different methods on GLUE test
tests are not allowed, we tune hyperparameters on a 10% subset of the train set and report results on
the validation sets. Once the hyperparamers are decided, the full train set is used to train the final
model. Since GLUE validation sets are small, we report the average accuracy over 5 different runs
for each method. We do not however notice significant variance in accuracy across different runs.

B SYNTHETIC DATA GENERATION

We generated the binary classification dataset used in §6.1 using a mixture of Gaussians, inspired
by the blue-orange dataset in Hastie et al. (2001). More specifically, we first generated 10 cluster
centers for each class by sampling from an isotropic Gaussian distribution with covariance 0.5 I3 and
mean [1, 0, 0]T for the blue class and [0, 1, 0]T for the orange class. We then generated 5,000 train
observations for each class using the following method: for each observation, we uniform-randomly
picked a cluster center of the corresponding class and then generated a sample from an isotropic
Gaussian distribution centered at that cluster center with covariance 0.02 I3. All the observations
were projected on to S2 by L2-normalizing them. The test set was generated in the same manner
using the same cluster centers as the train set.

C ACTIVE LEARNING

The goal of the active learning experiment is to show that the kernelized classification layer can
produce accurate models even with less data. In order to study this, we produce subsets of datasets
under various budgets using several sampling techniques, and evaluate the models trained on this.
The simplest one is random sampling, where images are selected randomly under a given budget.
Other methods include margin (Lewis & Gale, 1994; Scheffer et al., 2001), and k-center (Sener &
Savarese, 2017; Wolf, 2011) where class prediction scores and embeddings from the images are used
in the subset selection.

We do not rely on the actual labels of the images in the dataset during the subset selection, since
active learning is driven toward reducing label annotation costs. We used a 10% random subset of
the original CIFAR-100 dataset with labels to first learn an initial seed model, which was then used
to generate predictions and embeddings. Note that only embeddings and class prediction scores from
this initial seed model are used in subset selection, and we do not access the original class labels of
the images. We use a batch setting where we do not incrementally update the model after selecting
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every image, and we directly select entire subsets under a given budget. In all our experiments,
we used the CIFAR ResNet-56 model. The learning rate, batch size and the number of epochs are
provided in Appendix A. The embeddings are of dimension 64. For the k-center method, we need
distances between the embeddings, and we used cosine distances computed using fast similarity
search of (Guo et al., 2020).

D ADDITIONAL EXPERIMENTS

We report a number of additional experimental results in this section.

D.1 ADDITIONAL BACKBONES

Image classification results with VGG-16 and DenseNet-40-12 backbones are reported in Table 8.
Since the original VGG-16 is designed for 224 × 224 images, we used a modified CIFAR version
with 256 dimensional hidden size at the end.

Backbone Softmax LIN SOP KER Ours
VGG-16 92.58 / 71.48 92.59 / 71.52 93.20 / 72.10 93.21 / 72.04 94.39 / 73.32
DenseNet 94.76 / 75.58 94.73 / 75.67 94.98 / 75.00 94.92 / 75.08 95.31 / 76.87

Table 8: Results on the CIFAR-10/CIFAR-100 datasets with different backbones.

D.2 IMAGE CLASSIFICATION TRANSFER LEARNING

Here, we evaluate our method in a image classification transfer learning setting. To this end, we take
a ResNet-50 network pre-trained on the Imagenet ILSVRC 2012 classification dataset (Deng et al.,
2009) and finetune it on Oxford-IIIT Pets (Parkhi et al., 2012) and Stanford Cars (Krause et al., 2013)
datasets. For each dataset, we use the train/test splits provided by the standard Tensorflow Datasets
implementation (Authors). Results are summarized in Table 9. Note that the KERVO baseline is not
possible in this setting as it involves changes to the backbone network. On both datasets, kernelized
classification layer results in significant gains over the baselines. This is intuitive to understand since
the embeddings learned from the source task (Imagenet) might not linearly separate the new classes
in the target task. We can therefore benefit from a nonlinear classifier in the transfer learning setting.

Dataset Accuracy
SM LIN SOP Ours

Oxford-IIIT Pets 92.06 91.99 92.28 93.56
Stanford Cars 90.78 90.83 91.04 92.60

Table 9: Results on the transfer learning datasets.

D.3 DIFFERENT LOSS FUNCTIONS

To evaluate the kernelized classification layer under a loss function other than the cross-entory loss,
we report CIFAR-10/100 results with the squared loss (Hui & Belkin, 2020) in Table 10. Note that
the application of squared loss to the kernelized classification layer’s outputs is straightforward since
it outputs logits in the usual sense.

D.4 EFFECT OF EMBEDDING RECTIFICATION

As discussed previously, different to the usual image classification networks in He et al. (2016), we
remove the ReLU activation from the embeddings. This is to utilize the full surface of Sn without
restricting ourselves to only the nonnegative orthant. As is evident from Table 11, removing ReLU
has only a marginal effect on the standard softmax baseline. It is however an important factor for
our method. We consistently used embeddings without the ReLU activation in all our experiments
in the previous sections.
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Backbone CIFAR-10 CIFAR-100
Sq. Loss Ours+Sq.Loss Sq. Loss Ours+Sq. Loss

ResNet-8 83.70 86.58 51.55 55.99
ResNet-14 89.86 91.67 62.94 65.06
ResNet-20 91.20 92.75 64.00 68.61
ResNet-32 92.19 93.65 68.10 71.35
ResNet-44 92.16 94.12 69.48 72.25
ResNet-56 93.19 94.22 70.34 73.13

Table 10: Results on the CIFAR-10/100 datasets with the square loss.

Method Accuracy
Softmax classifier with:

rectified embeddings 70.96
unrectified embeddings 71.23

Our classifier with:
rectified embeddings 71.61
unrectified embeddings 74.10

Table 11: Effect of rectification of the embeddings.

D.5 EFFECT OF ACTIVATION ON THE KERNEL COEFFICIENTS

Following the discussion in § 5.1, the constraint α−2, α−1, . . . , αM ≥ 0 is important to preserve
the positive definiteness of kopt. This can be imposed by using α = ReLU(α′), where α′ is the
learnable parameter vector. However, ReLU has no upper-bound and allowing the scale of α to grow
unboundedly causes issues in optimization: Assume we have an instantiation α0 of the vector α. By
replacing α0 with λα0, where λ > 1, we scale all the inner product terms in (3) and (4) by the same
λ. As a result, we improve the loss of the already correctly classified training examples, but without
making any effective change to the predictor. Therefore, under this setting, once the majority of
the training examples are correctly classified, the neural network can easily improve the loss just by
increasing the norm of α, which is not useful. We therefore advocate an L2-regularization term on
α when ReLU activation is used.

Alternatively, one could also use α = sigmoid(α′) or α = softmax(α′), both of which not only
guarantee α−2, α−1, . . . , αM ≥ 0, but also produce bounded α. Therefore, no regularization on α
is needed for these options. The softmax activation here should not be confused with the softmax
loss discussed in § 3. The usage of the softmax activation in this context is similar to that in the
self-attention literature (Vaswani et al., 2017), where it is used to normalize the coefficients of a
linear combination. We experimented with these different activations on α′ and summerized the
results in Table 12.

We used a weight decay of 0.0001 on the coefficient vector whenever ReLU activation is used.
Although sigmoid and softmax activations eliminate the need for weight decay, they put a hard
constraint on | 〈φ(w), φ(f)〉H |. To overcome this limitation, it is helpful to use a temperature hy-
perparameter in (3), where each inner product is divided by T before taking the exponential. We
used a temperature of 0.1 and 0.005, with sigmoid and softmax, respectively. Although sigmoid
gives the best performance in Table 12, we occasionally observed optimization issues with it, which
could be due to the vanishing gradient issue associated with this activation function. We therefore
stick to ReLU in all other experiments. We however note that, in most cases, competitive results can
be obtained with softmax as well, when used with a temperature of 0.005.

It is also interesting to note that using no activation function on α′ causes frequent divergence in
training. This is consistent with the theory: The summation in (7) is not guaranteed to be posi-
tive definite when ams are allowed to be negative (see Proposition 4.2). Therefore, the theory of
kernelized classification is not valid in this case.
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Activation function Accuracy
sigmoid 74.96
softmax 73.69
ReLU 74.10
None (linear) unstable

Table 12: Different activation functions on the coefficient vector. Note that the kernelized classifier
is unstable when no activation function is used, this agrees with the theoretical analysis.

E APPROXIMATION ERROR BOUNDS

In this section, we analyze error bounds for the approximation in Eq. (7). We start by proving the
following theorem, which establishes a rigorous upper bound for the approximation error.
Theorem E.1. Let k : Sn × Sn → R be any positive definite radial kernel on Sn with the series
expansion k(u,v) = α−2keven(u,v) + α−1kodd(u,v) +

∑∞
m=0 αm 〈u,v〉m, and kM : Sn ×

Sn → R be its M th partial sum. Define ψ : [−1, 1] → R as ψ(x) :=
∑∞

m=0 αmx
m. Then the

approximation error bound for the partial sum of the kernel is given by

|k(u,v)− kM (u,v)| ≤ 1

(M + 1)!
max

x∈(−1,1)
|ψ(M+1)(x)|,

for all (u,v) ∈ Sn × Sn.

Proof. Since k is positive definite, from Theorem 4.3, it has a series expansion of the form:

k(u,v) = α−2J〈u,v〉 ∈ {−1, 1}K + α−1(J〈u,v〉 = 1K− J〈u,v〉 = −1K) +

∞∑
m=0

αm 〈u,v〉m

= α−2J〈u,v〉 ∈ {−1, 1}K + α−1(J〈u,v〉 = 1K− J〈u,v〉 = −1K) + ψ(〈u,v〉).

Note that ψ is an analytic function. Furthermore,

kM (u,v) = α−2J〈u,v〉 ∈ {−1, 1}K + α−1(J〈u,v〉 = 1K− J〈u,v〉 = −1K) +

M∑
m=0

αm 〈u,v〉m

= α−2J〈u,v〉 ∈ {−1, 1}K + α−1(J〈u,v〉 = 1K− J〈u,v〉 = −1K) + ψM (〈u,v〉),

where ψM (x) :=
∑M

m=0 αmx
m. Therefore, ψM (x) is theM th order Maclaurin polynomial approx-

imation of ψ(x). Since ψ(x) is analytic, and therefore infinitely differentiable, we can obtain the
Lagrange form of the approximation error as:

ψ(x)− ψM (x) =
ψ(M+1)(ξ)

(M + 1)!
x(M+1),

for some ξ ∈ (−x, x), for all x ∈ [−1, 1], where ψ(M+1) is the (M + 1)th order derivative of ψ. It
follows that, for all (u,v) ∈ Sn × Sn,

|k(u,v)− kM (u,v)| ≤ max
x∈[−1,1]

|ψ(x)− ψM (x)|

≤ 1

(M + 1)!
max

x∈(−1,1)
|ψ(M+1)(x)|.

The above theorem states that the absolute error made by cutting off the terms beyond order M is
less than or equal to the maximum absolute value of the (M + 1)th order derivative of k, attenuated
by a factor of 1/(M + 1)!. To put this into context, since we use M = 10, the attenuation factor is
around 2.5 × 10−8. Therefore, to make the error significant, the 11th order derivative of the kernel
would have to be very high, suggesting a kernel function with abrupt changes looking almost like
discontinuities. Since such functions are unlikely to be useful to learn a generalizable model, we
believe that the error caused by this approximation is indeed negligible. Note also that, we set kM to
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be the Maclaurin polynomial in the proof of Theorem E.1 to make the derivations easier. However,
since we have the freedom to learn the coefficients of the summation, it is theoretically possible to
approximate k even better. In particular, even when k has abrupt changes causing a non-negligible
error in the Maclaurin approximation, it will be possible to capture some of the residuals using the
kernels kodd and keven in kM ’s expansion. This is because the higher order kernels reach one of these
kernels in the limit as discussed in the proof of Theorem 4.3.

F COMPARISON TO NON-PARAMETRIC KERNEL METHODS

We use a parametric model with kernels in our method. This is in contrast to the more popu-
lar usage of kernels with non-parametric models, such as support vector machines and Gaussian
processes. Non-parametric models are usually more flexible. They are also more interpretable
than deep network-based parametric models. However, unfortunately, non-parametric models scale
poorly with the train set size. For example, the number of support vectors grow linearly with the
train set size (Steinwart, 2003), and Gaussian processes methods scale with the cube of the train set
size, or linearly after some optimizations (Wilson & Nickisch, 2015).

In contrast, parametric models, such as the one proposed in this work, scale well with the training set
size since they use a constant number of parameters regardless of the number of training examples.
In fact, this is one of the main reasons why deep learning methods have become extremely popular
in the recent years. Non-parametric models also allow faster inference, making them suitable for
developing models for compute-limited scenarios, which is the primary focus of this work.
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