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“cook meals”“return home” “wash hands” “add firewood”

“A person goes to brush teeth.”

“A man feels hungry.”

“A thief enters the room.”

“A man pushes a chair to a bed.”

executer(“A person walks to something eatable.”)
executer(“A person picks up something eatable.”)
executer(“A person eats something in his hand.”)

Task
Planner

#Query: A person walks to something eatable.
target=parse_query_obj(“something eatable”)
avoidance_map=get_avoidance_map(‘anything’)
generate_motion(control_text, n_frames)

Subtask
Executor

Query=“A person feels hungry.”

Path
Planning

Scene
Aware

Figure 1: Different from previous methods that primarily focus on generating simple motions, our
approach is designed to handle more complex actions. It leverages a Large Language Model for
human action inference, task decomposition, and path planning. In combination with a 3D Visual
Grounding Model for scene perception, this enables the generation of intricate, extended motions
with complex scene and textual input.

ABSTRACT

To solve the problem of generating complex motions, we introduce GCML
(Grounding Complex Motions using a Large Language Model). This method sup-
ports complex texts and scenes as inputs, such as mopping the floor in a cluttered
room. Such everyday actions are challenging for current motion generation mod-
els for two main reasons. First, such complex actions are rarely found in exist-
ing HSI datasets, which places high demands on the generalization capabilities
of current data-driven models. Second, these actions are composed of multiple
stages, with considerable variation, making it difficult for models to understand
and generate the appropriate motions. Current methods in the HSI field can con-
trol the generation of simple actions under multiple constraints, such as walking
joyfully toward a door, but they cannot handle the complexity of tasks like the
one described above. By incorporating a Large Language Model and a 3D Visual
Grounding Model into the HSI domain, our approach can decompose a complex
user prompt into a sequence of simpler subtasks and identify interaction targets
and obstacles within the scene. Based on these subtask descriptions and spa-
tial control information, the Motion Generation Model generates a sequence of
full-body motions, which are then combined into a long motion sequence that
aligns with both the user’s input and the scene semantics. Experimental results
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demonstrate that our method achieves competitive performance for simple ac-
tion generation on the HUMANISE dataset and the generalization evaluation set.
For complex motion generation, we created a new evaluation set by automati-
cally generating possible behaviors of virtual humans in common indoor scenes,
where our method significantly outperforms existing approaches. Project Page:
https://anonymous.4open.science/w/GCML-4562/

1 INTRODUCTION

Research within Human-Scene Interaction (HSI) has advanced considerably in terms of modeling
the sophisticated interaction between people and their environments (Zhao et al., 2023); (Zhang
et al., 2022). It has also succeeded in synthesizing high-fidelity human motion in various
scenes (Hassan et al., 2021); (Zhang & Tang, 2022); (Wang et al., 2022a). However, two major
challenges exist:

(1) Generative models depend heavily on large amounts of high-quality paired data. The col-
lection of HSI datasets and their annotations is a time-consuming and labor-intensive task. Although
many efforts have been made (Hassan et al., 2019); (Wang et al., 2022b);(Jiang et al., 2024), chal-
lenges like limited diversity in actions, overly simplistic descriptions, and inadequate dataset sizes
still exist. On the other hand, existing datasets that only contain human motion, like AMASS (Mah-
mood et al., 2019) and HumanML3D (Plappert et al., 2016); (Guo et al., 2022b), are quite substantial
in terms of data scale and motion description. Diffusion-based methods trained on these datasets are
capable of generating high-quality human motions (Tevet et al., 2023) based on textual descriptions.
Recent works (Karunratanakul et al., 2023); (Xie et al., 2023) also enable users to manipulate the
style of generated actions via textual prompts and enhance precision using spatial constraints. In-
spired by this, we propose tackling scene awareness and motion generation separately. This strategy
helps mitigate the shortage of high-quality paired HSI data by maximizing the use of existing human
motion and 3D visual grounding datasets.

(2) Only Common and simple motions can be generated. Due to the lack of diversity in HSI
datasets, the majority of current research that generates human motions in scenes tends to focus
on producing common and simple movements such as walking, lying, and sitting (Wang et al.,
2022b); (Jiang et al., 2024); (Wang et al., 2024). However, industries with a need for human motion
generation often require more than these elementary motions. For instance, video game characters
should navigate to specified locations and interact with particular targets, while animated movie
characters need to perform everyday tasks such as brushing their teeth, cooking, or watering plants.
Such complex motions are rare in paired datasets, thus current data-driven methods for human mo-
tion generation typically fail to produce them. However, complex motions are often composed of
simpler ones, and a practical solution to this challenge is to utilize Large Language Models for task
decomposition and reasoning (Huang et al., 2023b); (Lin et al., 2024).

To alleviate these limitations, we propose a novel method called Grounding Complex Motions using
Large Language Models (GCML), depicted in Figure 1. Our method can generate complex actions
like washing hands or cooking meals, accommodating complex scene and textual input as well
as producing human motions of long sequences. Furthermore, by incorporating Large Language
Models and 3D Visual Grounding Models, our approach creatively generates motions consistent
with textual descriptions based on the objects and their layout within a scene. For example, a hungry
person in a scene, upon not finding available food, will attempt to open a refrigerator in search of
food.

Our method operates by taking both text and scene inputs. The text is first processed by the Task
Planner, which breaks it down into multiple sub-tasks, each corresponding to a simple motion se-
quence. Next, the Sub-task Executor identifies the target objects within the scene for interaction and
generates control descriptions for each sub-task with the help of the 3D Visual Grounding Model.
These control descriptions and spatial data are sent to the Motion Generation Model, which refines
them into whole-body motion sequences for each sub-task. Finally, these sequences are combined
into a complete, unified motion.

We have thoroughly evaluated GCML on a variety of benchmarks. Experimental results on the HU-
MANISE dataset reveal that even for simple tasks, without relying on HUMANISE training data, the
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performance of our method is comparable to the current state-of-the-art data-driven approaches. On
the generalization evaluation set proposed by (Wang et al., 2024), our method outperforms afford-
motion across most metrics. Additionally, to specifically evaluate GCML’s performance in complex
motion generation, we introduced a new evaluation set, the Complex Motion Evaluation Set. Our
method was the only one capable of producing satisfactory outcomes on this set.

Our key contributions are as follows:

• We introduce a new task along with a corresponding evaluation set: Complex Motion Gen-
eration. The gaming and animation industries increasingly require not just simple actions
like walking or sitting, but also the ability to think and interact with surrounding objects
like a human. We hope this new task will inspire the development of more methods for
generating realistic virtual humans.

• As an attempt to address the challenge of complex human motion generation, we present
the GCML framework. By integrating a Large Language Model and a 3D Visual Ground-
ing Model into the HSI domain, our approach circumvents the lack of high-quality paired
data, allowing for the generation of motions like brushing teeth and watering plants, which
previous methods could not achieve.

• We validated the effectiveness of our proposed method across three datasets. GCML
achieves comparable performance in simple motion generation, while in complex motion
generation, it consistently outperforms others across all metrics.

2 RELATED WORK

2.1 CONDITIONAL HUMAN MOTION GENERATION

Human-Scene Interaction can be seen as the generation of human motions conditioned on both lan-
guage descriptions and scene context. A wide range of conditions have been explored for controlled
motion generation, such as past motions (Yuan & Kitani, 2020); (Cao et al., 2020); (Xie et al., 2021),
music (Tseng et al., 2023); (Li et al., 2021), text (Petrovich et al., 2023); (Guo et al., 2022c); (Tevet
et al., 2022); (Chen et al., 2023); (Kim et al., 2023), objects (Ghosh et al., 2023); (Kulkarni et al.,
2024); (Xu et al., 2023), and scenes (Huang et al., 2023a); (Wang et al., 2022b);. Furthermore, recent
work has added spatial constraints to text-guided motion generation (Text2Motion). MDM (Tevet
et al., 2023) and priorMDM (Shafir et al., 2023) use motion inbetweening during the diffusion de-
noising process to replace key control frames, allowing for human motion generation that fits spa-
tial constraints without sacrificing motion quality. GMD (Karunratanakul et al., 2023) introduces
a two-stage motion diffusion model to handle sparse control signals, reducing jitter in controlled
frames. Omnicontrol (Xie et al., 2023), employing a ControlNet-inspired approach, applies spatial
constraints during motion generation and enables control over any key joint.

In the domain of Human Scene Interaction, language, and scene context are the two primary condi-
tioning factors. HUMANISE (Wang et al., 2022b) introduced a comprehensive dataset and devel-
oped a cVAE-based model capable of generating motions that respond to both textual descriptions
and scene interactions. TRUMANS (Jiang et al., 2024) proposed an even larger human-scene inter-
action dataset and used autoregressive conditional diffusion to generate HSI motions of any length.
AffordMotion (Wang et al., 2024) employed scene affordances as intermediate representations, com-
bining scene embeddings and language-guided motion generation in a two-stage approach. How-
ever, these methods are limited by their dependence on training data, generating only the common
motion types seen in the datasets. Our work resolves this by separating scene understanding from
motion generation, thus mitigating the reliance on specific datasets.

2.2 LARGE LANGUAGE MODELS FOR HUMAN MOTION GENERATION

Large Language Models have seen extensive research in the fields of intelligent agents (Wang
et al., 2023); (Lin et al., 2023); (Park et al., 2023) and robotics (Blukis et al., 2020); (Yang et al.,
2024); (Liu et al., 2024). The task planning and commonsense reasoning capabilities of pre-trained
language models have substantially improved the ability of embodied agents to interpret their envi-
ronment and tackle complex tasks in these domains.
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“A person feels
hungry.”

Text Prompt

Input Scene

Large Language Model

Task Planner “A person walks to something eatable.”

“A person picks up something eatable.”

“A person eats something in his hand.”

3D Visual Grounding Model
Query: “something eatable” Path Planning

Motion Generation Model

“A person walks.”
Motion Description

Spatial Control

Subtask Motion

Output Motion

Input

Subtask Executor

Figure 2: Overview of our method. To generate complex motions that align with text descriptions
and scene semantics, GCML first utilizes a Large Language Model to break the task down into
a sequence of simpler subtasks. Then, it uses the 3D Visual Grounding Model to extract scene
information and generate control data for certain human joints. Finally, the Motion Generation
Model produces the full-body motion frames.

In Human Motion Generation, MotionGPT (Jiang et al., 2023) introduced a general motion generator
capable of embedding multimodal signals as special input tokens in Large Language Models, allow-
ing it to handle various tasks related to human motion recognition and generation. UniHSI (Xiao
et al., 2023) leveraged Large Language Models to decompose language descriptions into a contact
chain—a sequence of interactions between human joints and object parts—enabling the continuous
generation of motions interacting with multiple objects.

However, both approaches have limitations. MotionGPT cannot perceive the scene, while UniHSI
requires fine-grained annotation of scene objects to generate accurate interaction motions. Addition-
ally, UniHSI is unable to generate motions that do not involve contact with fixed objects, such as
brushing teeth or eating, limiting its applicability.

2.3 3D VISUAL GROUNDING

3D scene understanding has been extensively researched, particularly in the fields of vision and
robotics. Core tasks include 3D object classification (Wu et al., 2015) , 3D object detection and lo-
calization (Caesar et al., 2020); (Chen et al., 2020), 3D semantic and instance segmentation (Behley
et al., 2019); (Liao et al., 2022), and 3D affordance prediction (Deng et al., 2021). A recent ap-
proach, OpenScene (Peng et al., 2023), extracts CLIP features for each 3D point, supporting open-
vocabulary queries and segmentation based on any text input, making it a versatile tool for scene
understanding in our work.

In Human Scene Interaction tasks, few approaches utilize existing 3D scene understanding models to
assist in generating motions that align with scene semantics. Instead, data-driven methods typically
train models by mapping specific 3D structures to actions, but this introduces two major limitations:
the reliance on the quantity and quality of paired data limits performance, and biases in the data may
restrict certain interactions. For example, interactions with chairs are typically confined to sitting,
ignoring other potential uses. Utilizing existing 3D Visual Grounding models provides distinct
advantages in overcoming these issues.

3 METHOD

As illustrated in Figure 2, GCML consists of three components. The Large Language Model is re-
sponsible for breaking down complex motion generation tasks into a combination of simpler ones, as
well as generating control data for certain human joints in each subtask. The 3D Visual Grounding
Model identifies navigable areas and locates the targets of interaction within the scene. The Mo-
tion Generation Model produces full-body motion sequences for each subtask based on the control
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information provided by the other modules and integrates these sequences into a complete output
motion.

This chapter begins by introducing the input and output formats of the task (Section 3.1). It then
discusses how the LLM Planner and Subtask Executer convert the text description and scene point
cloud into the control data necessary for the motion generation model (Section 3.2). Following
this, we explain how the Motion Generation Model synthesizes the control data into a full mo-
tion sequence (Section 3.3)and provide further details on the 3D Visual Grounding Model used in
our method (Section 3.4). Finally, we present the construction of the Complex Motion Evaluation
Set(Section 3.5).

3.1 PROBLEM FORMULATION AND NOTATIONS

The generation of complex motions can be viewed as a recursive process, where complex motions
are composed of simpler ones that follow the same input and output structure. Consequently, the
task of generating complex motions can be divided into generating multiple simple ones and linking
them together. Therefore, a method that can generate complex motions is inherently capable of
generating simple motions as well.

Specifically, the input to our task consists of a user text prompt T and a scene S, with the output being
a human motion sequence H . The user prompt T is a text description of the motion to be generated,
while S ∈ RN×6 represents a point cloud of N points, each with RGB color information. The
output motion sequence {Hi}Ni=1 is a series of human pose parameters over N frames. We use the
SMPL-X model (Pavlakos et al., 2019) to represent the human body’s pose and shape. The SMPL-
X body mesh M ∈ R10475×3 is parameterized as M = F (t, r, β, p), where t ∈ R3 is the global
translation, r ∈ R6 is the continuous representation of global orientation, β ∈ R10 defines the body
shape, and p ∈ RJ×3 represents joint rotations in axis-angle format. F is the differentiable linear
blend skinning function. In most cases, we do not generate the full set of SMPL-X shape parameters
directly; instead, we first generate the 3D world coordinates of 22 key body joints P ∈ R22×3,
which are then used to infer the complete SMPL-X parameters. The process can be summarized by
the following formula:

T + S −→ {Pi}22i=1 −→ M = F (t, r, β, p) −→ {Hi}Ni=1 (1)

3.2 LLM PLANNER AND SUBTASK EXECUTOR

Similar to VoxPoser (Huang et al., 2023b), our method leverages a Language Model Program (LMP)
to use a Large Language Model in generating human motion. Each LMP is responsible for a distinct
function—such as breaking down tasks or invoking perception modules—and can call upon other
LMPs as needed. The Large Language Model employed in our approach is GPT-4 (Achiam et al.,
2023) from OpenAI.

Figure 3 provides an example of the generation process. First, we instruct the Large Language Model
to learn from the provided code examples. For each LMP, we offer around 5-10 query samples along
with their corresponding responses.

Following the sequence of calls between LMPs, the user’s input motion description is first sent
to the Task Planner, where complex or abstract tasks are broken down into simpler ones for the
Subtask Executor. These tasks typically involve actions like walking to a location, interacting with
an object, or performing a motion while standing still. The Subtask Executor creates human-centric
motion descriptions based on the subtask, while object interaction information is provided by the
3D Visual Grounding model. Scene traversability data is directly obtained from the scene’s point
cloud. Spatial data is organized using a voxel map, with the Target Map and Avoidance Map values
combined to produce a cost map C ∈ R100×100×100, where lower values correspond to interaction
targets and higher values indicate obstacles. Finally, using the following formula, we generate the
trajectories of key human joints (such as the pelvis and hand), ensuring they avoid obstacles and
reach the interaction target.
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System: Write Python code to generate a set of parameters to control a
virtual human. Example code will be given below, please complete the
code every time when I give you new query.

executer(“A person walks to something eatable.” )
executer(“A person picks up something eatable.” )
executer(“A person eats something in his hand.” )

Task
Planner

#Query: A person walks to something eatable.
control_text=“A person walks.”
n_frames=180
target=parse_query_obj(“something eatable”)
target_map=get_target_map(f'a point at {target.position_voxel}’)
avoidance_map=get_avoidance_map(‘anything’)
specify_pelvis_trajectory(target_map, avoidance_map,
control_text, n_frames)
generate_motion(control_text, n_frames)Subtask

Executor

Query=“A person feels hungry.”

#Query: A person picks up something eatable.
control_joints=[“pelvis”, “right_hand”]
……
specify_joint_position(control_text, control_joints,
control_frames, control_hints,pelvis_height,n_frames )
generate_motion(control_text, n_frames)

#Query: A person eats something in his hand.
……

Object Places

Target Map

Avoidance Map

Generated Trajectory

Figure 3: Example of how the Large Language Model generates human motion based on task de-
scriptions and scene information. The Language Model Program (LMP) leverages provided ex-
amples to generate code that calls functions or other LMP instances from the user’s query. This
code then uses the perceived scene information to invoke the Motion Generation Model and produce
complete motion frames.

p = argmin
pi

n∑
i=1

[
C(pi)− winertia · ⟨pi − pi−1, d⟩+ wzpenalty · |pi,z − pi−1,z|

]
(2)

where p represents the generated trajectory of human keypoints, winertia is the inertia weight, which
helps prevent the trajectory from getting stuck in local minima, wzpenalty is the z-axis offset weight,
which ensures the human does not move over obstacles when controlling pelvis. As a result, we
obtain control data for the human joints h ∈ RN×22×3, along with a human-centric motion descrip-
tion in text form. These data are then passed to the Motion Generation Model to produce a complete
human motion sequence.

3.3 MOTION GENERATION MODEL

Our Motion Generation Model is built upon OmniControl (Xie et al., 2023), a diffusion-based gener-
ative model that conditions on both text and spatial keypoint positions. OmniControl was trained on
the HumanML3D dataset and supports control over any joints at any time. We adapted it to generate
motion sequences of arbitrary length.

In the previous steps, we obtained joint control data h ∈ RN×22×3. At each step of diffusion, we
calculate the L2 distance between the generated joints and the control data h, using the gradient to
guide the model in generating sub-motion sequences that align with both the action description T
and the spatial control signal h. To ensure smooth transitions between sub-sequences, we use the
motion inbetweening method from MDM (Tevet et al., 2023). In each diffusion step, we replace
the first frame of the generated motion with the last frame from the previous sequence. We also
compute a transformation matrix based on the movement from the first to the last frame of the
previously generated sequence. This matrix is applied to the subsequent sequences, merging the
sub-task sequences into a coherent long motion sequence.
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3.4 3D VISUAL GROUNDING MODEL

In the above generation process, we did not elaborate on how the positions of required objects were
obtained from the scene. While many well-established methods exist for detecting and localizing
3D objects (Caesar et al., 2020); (Chen et al., 2020), in the scenarios described in this paper, we
sometimes need to detect unconventional objects (e.g., “something eatable” in Figure 3). For this
reason, we chose OpenScene (Peng et al., 2023) as our scene perception module due to its support
for open vocabulary queries. Once OpenScene assigns object categories to each point in the scene’s
point cloud, we use the DBSCAN (Khan et al., 2014) clustering algorithm to filter out noise and
pinpoint object instance locations. Additionally, OpenScene’s ability to handle open-vocabulary
queries allows us to detect object parts as well. For example, when interacting with a door, we
can specifically locate the door handle rather than the entire door, which helps create more realistic
motions.

3.5 COMPLEX MOTION EVALUATION SET

In addition to controlling the behavior and style of the virtual human, we are also interested in
understanding how they would respond to environmental changes and perform everyday tasks. The
former requires the virtual human to simulate human thinking and react appropriately to external
stimuli, while the latter involves decomposing actions into subtasks that are easier to execute. These
complex actions are difficult to generate, even though they are quite common in everyday life. To
evaluate model’s ability to generate these intricate motions, we established the Complex Motion
Evaluation Set.

We gathered 16 scenes from ScanNet (Dai et al., 2017) and Replica (Straub et al., 2019) as en-
vironments for virtual human activities, annotating these scenes with their offsets from the origin.
We then provided the scene information and multi-view RGB images to a vision-language model
(VLM). By asking, “What could an advanced virtual human do in this scene?” we generated a se-
ries of possible behaviors. After part-of-speech tagging, these behaviors were transformed into HSI
descriptions that guide interactions between the virtual human and the environment. Compared to
manually designing interactions, this automated approach saves labor and ensures that the generated
descriptions are free from personal bias.

The generative model is tasked with producing complex human motions based on the scene mesh
and the aforementioned HSI descriptions. Its performance is evaluated using relevant metrics and
a human perceptual study. The HUMANISE dataset, Generalization Evaluation Set, and our newly
introduced Complex Motion Evaluation Set all use scenes and text as conditional inputs, generating
human motions that align with the semantic meanings of both the text and the scenes. Table 1
presents examples cases from each dataset. They show increasing difficulty levels and pose greater
challenges for motion generation methods.

4 EXPERIMENTS

We tested our method on the widely-used HUMANISE dataset for generating simple motions. For
more complex motions, we evaluated the method on Generalization Evaluation Set, which is specifi-
cally designed to assess the generalization ability of models to unseen cases. Additionally, we tested
our model’s capacity to generate difficult yet common human motions in our newly introduced
Complex Motion Evaluation Set.

4.1 EVALUATION METRICS

Generation Metrics: When evaluating on the Humanise dataset, we followed the evaluation proto-
cols of (Wang et al., 2022b) and (Zhang et al., 2020). Specifically, we used goal distance to measure
grounding accuracy, contact to assess the realism of contact between the generated motion and the
scene, and non-collision to quantify the proportion of actions that did not collide with the scene.
In the afford-motion Generalization Evaluation Set and our Complex Motion Evaluation Set, we
applied the same physical metrics but excluded goal distance, as these tasks did not have a clearly
defined target object for interaction. Additionally, in alignment with afford-motion evaluation, we
utilized the metrics proposed by (Guo et al., 2022a) to assess the quality of the generated motions.

7
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Table 1: Example cases of three datasets.
Evaluation Set Scene Control Text

HUMANISE

1. Walk to the desk.
2. Walk to the door.
3. Stand up from the chair.
4. Sit on the chair.
5. Lie down on the sofa.

Generalization
Evaluation

set

1. A person takes a rest on the sofa.
2. A person is shaking hands with someone.
3. A man jumps to the desk like a rabbit.
4. A man dances on the bed happily.
5. Someone sits on the edge of the bed.

Complex
Motion

Evaluation
Set

Human Centric Motions:
1. A tired person returns home.
2. A thief enters the room looking for something.
3. An earthquake is coming and a person feels it.
Object Maneuver Motions:
1. A person throws something into the dustbin.
2. A person moves the desk to the sofa.
3. A person arranges the room for a meeting.

Table 2: Experimental Results on HUMANISE dataset. Bold indicates the best result.

Method Goal
Distance↓ Contact↑ Non-

collision↑
Quality
score↑

Action
score↑

HUMANISE (Wang et al., 2022b) 0.422 0.8406 0.9977 2.25 3.66
Afford-motion (Wang et al., 2024) 0.156 0.9568 0.9970 3.46 4.47

Ours 0.115 0.9526 0.9979 3.85 4.20

These include the Fréchet Inception Distance (FID) for evaluating the naturalness of the generated
motions, R-Precision to gauge the alignment between the generated motions and the text prompts,
and a diversity metric to measure the variability in the generated actions.

Perceptual Study: We also conducted a human perceptual study to assess the quality of the gen-
erated motions and their consistency with the corresponding text and scene. Participants rated the
overall motion quality, including naturalness and collision levels, on a 1-5 scale, recorded as the
quality score. They also rated how well the generated motions performed the actions specified in
the text and interacted with target objects in the scene, recorded as the action score. Higher ratings
indicated better alignment with the text and scene. We enlisted 20 evaluators to score 180 generated
motion clips and recorded their average scores.

4.2 RESULTS ON HUMANISE DATASET

The HUMANISE dataset is considered the first widely adopted HSI dataset. It aligns motion se-
quences from the AMASS dataset with 3D scenes from ScanNet (Dai et al., 2017) and employs
an automated annotation method to synthesize paired data rich in human-scene interaction infor-
mation. However, HUMANISE is limited to simple actions like walking, sitting, and lying down,
which constrains its applicability. Table 2 shows the quantitative results of the HUMANISE base-
line, afford-motion, and our method for generating simple actions. Our method is primarily designed
for generating complex motions. As a result, the task planner typically decomposes HUMANISE
tasks into two steps: move to the interaction target and perform the interaction. Despite this, our
method surpasses others on metrics such as goal distance, non-collision rate, and the quality score

8
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Table 3: Experimental Results on Afford-Motion’s Generalization Evaluation Set. “Real” in-
dicates that these data are reference metrics from the HumanML3D test set. “→” indicates metrics
that are better when closer to “Real” distribution.

Method FID↓ R-precision
(Top-3)↑

Diversity
→ Contact↑ Non-

colllision↑
Quality
score↑

Action
score↑

Real 0.000 0.875 9.442 - - - -

Afford-Motion 7.887 0.478 7.935 0.7198 0.9983 2.06 2.63

Ours 8.215 0.687 7.677 0.9520 0.9972 4.03 4.22

Table 4: Experimental Results on Our Complex Motion Evaluation Set.

Method FID↓ R-precision
(Top-3)↑

Diversity
→ Contact↑ Non-

colllision↑
Quality
score↑

Action
score↑

Real 0.000 0.875 9.442 - - - -
Afford-Motion 10.97 0.300 8.087 0.7277 0.9961 2.24 1.72
Ours-text only 43.75 0.251 3.754 0.6955 0.9915 - -

Ours-w/o planner 12.57 0.362 8.219 0.9104 0.9973 2.09 2.41
Ours 9.31 0.365 7.987 0.8444 0.9979 3.15 3.17

based on human evaluations. Notably, our method excels in goal distance, demonstrating its ability
to precisely guide the virtual human to the target and initiate the interaction.

4.3 RESULTS ON GENERALIZATION EVALUATION SET

Researchers in the HSI field have increasingly sought to generate more than just routine actions like
walking or sitting. This set contains 16 scenes from ScanNet (Dai et al., 2017), PROX (Hassan et al.,
2019), Replica (Straub et al., 2019), and Matterport3D (Chang et al., 2017), along with 80 carefully
crafted HSI descriptions. These descriptions often specify multiple aspects of a single action, such
as ”a person jumps to the desk like a rabbit”, which not only requires the virtual human to jump in a
rabbit-like manner but also defines the target location as the desk. Such descriptions are rarely found
in existing training datasets, posing significant challenges for motion generation methods in terms
of generalization. Table 3 presents the performance metrics of afford-motion and our method on the
Generalization Evaluation Set. While our method scores slightly lower than afford-motion on FID
and Diversity, it significantly outperforms it on R-precision, indicating better adherence to the text
and scene constraints. This is further corroborated by a larger gain in both quality score and action
score.

4.4 RESULTS ON COMPLEX MOTION EVALUATION SET

Section 3.5 describes the details of our proposed Complex Motion Evaluation Set. We evaluated
the performance of Afford-Motion and GCML on this evaluation set. As shown in Table 4, our
method consistently outperforms afford-motion on all metrics in this new test set. In many cases,
afford-motion only generates irrelevant or meaningless actions, while our method can break down
complex action descriptions into sequences of subtasks and execute them accordingly. Our method
performs particularly well in R-precision and contact metrics, indicating that it closely follows tex-
tual instructions and exhibits rich interaction with the environment. The perceptual study shows that
our method achieves promising results in both overall generation quality and adherence to condi-
tions. Notably, our approach allows precise control of action duration based on the text, supporting
the generation of interaction sequences lasting up to several tens of seconds.

4.5 ABLATION STUDY

As shown in Table 4, firstly, we directly pass the text prompts to the motion generation model without
using the whole pipeline we proposed. In this case, the generated results were scene agnostic,
leading to a significant drop in physical metrics compared to others. Furthermore, a more critical
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“walk to the bed”

HUMANISE Dataset

“a person picks an object up
off the floor with his left hand”

Generalization Evaluation Set

“a personis startled by a
sudden mouse”

Complex Motion Evaluation Set

Afford-Motion

Ours

Figure 4: Comparison of the qualitative results between the Afford-Motion and our method on
various datasets. Brighter actions precede darker actions.

issue arose: the motion generation model struggled to comprehend the actual intent behind complex
user instructions, resulting in highly distorted human motions in most cases.

Next, we investigated the effect of task decomposition on motion generation outcomes. Here, we
skipped the planner stage and directly provided the executor with the text prompts and scene data
to produce control commands and spatial information for the motion generation model. The results,
shown in the fourth row of Table 4, reveal that the LLM planner plays a crucial role in enhancing
motion quality. Without the planner, the LLM Executor generates spatial control data that is chal-
lenging for the Motion Generation Model to interpret and follow, thereby diminishing the overall
quality of the generated motions.

4.6 QUALITATIVE RESULTS

Figure 4 illustrates the visualization results comparing our method with Afford-Motion across three
datasets. The left column shows the generation results for simple actions on the HUMANISE
dataset, where both methods produce satisfactory results. However, our method allows for the
specification of the character’s initial pose. The middle column presents the outcomes from the
Generalization Evaluation Set. In this example, the user prompt indicates that the target should be
grasped with the left hand, but Afford-Motion overlooks this instruction during the generation pro-
cess. The rightmost column presents the generation results from our Complex Motion Evaluation
Set. When text prompts do not explicitly specify the desired action, Afford-Motion generates ir-
relevant or distorted motions, while our method can infer the implicit motion directives. Here, our
approach establishes a connection between actions like ”avoiding with a lifted foot” and “a sudden
mouse”, enabling the generation of coherent character motions based on abstract prompts.

5 CONCLUSION

This paper introduces GCML, a novel method for generating complex human motions guided by
textual descriptions within a scene. By utilizing a Large Language Model for task decomposition
and subtask execution, and a 3D Visual Grounding Model for scene perception, our method produces
complete complex motion frames. We validated the effectiveness of our method across multiple
datasets, with experimental results showing that our approach performs well in generating simple
human motions. Moreover, on our newly introduced test set for complex human motion generation,
our method consistently outperformed existing methods across all evaluation metrics.
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