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Abstract

We develop a Bayesian median autoregressive (BayesMAR) model for time series forecast-
ing. The proposed method utilizes time-varying quantile regression at the median, favorably
inheriting the robustness of median regression in contrast to the widely used mean-based meth-
ods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression,
BayesMAR adopts a parametric model bearing the same structure of autoregressive models by
altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling
strategy for time series forecasting. We estimate model parameters by Markov chain Monte
Carlo. Bayesian model averaging is used to account for model uncertainty including the un-
certainty in the autoregressive order, in addition to a Bayesian model selection approach. The
proposed methods are illustrated using simulations and real data applications. An applica-
tion to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and
often superior predictive performance compared to the selected mean-based alternatives under
various loss functions that encompass both point and probabilistic forecasts. The proposed
methods are generic and can be used to complement a rich class of methods that build on the
autoregressive models.

1 Introduction

Time series forecasting is a long-standing problem in econometrics and statistics, where the over-
whelming focus has been on mean-based models (Prado & West, 2010; Hyndman & Athanasopoulos,
2018). Although conditional means are the optimal forecast under the squared error loss, complex
characteristics violating model assumptions that are present in real data may hamper the predictive
performance. Flexible nonparametric methods (Ferraty & Vieu, 2006; Fan & Yao, 2008) building
on minimal assumptions are an appealing remedy; however, they often have disadvantages in terms
of not only interpretability but also in involving large numbers of parameters that often lead to
daunting computation and communication issues. We were thus motivated by an attempt to pro-
pose a simple, interpretable, and principled strategy that can improve upon mean-based models in
real-world time series forecasting.

There is a rich literature on robust time series forecasting including categorizing outliers (Fox,
1972; Akouemo & Povinelli, 2014), adjusting autoregressive (AR) models to offset effects of out-
liers (Chen & Liu, 1993a,b), exponential smoothing and Holt-Winters seasonal methods to M-
estimation (Croux et al., 2008), weighted forecasts (Jose & Winkler, 2008), and detecting structural

1

ar
X

iv
:2

00
1.

01
11

6v
2 

 [
st

at
.A

P]
  5

 D
ec

 2
02

0



changes (Qu, 2008; Oka & Qu, 2011; Casini & Perron, 2019), just to name a few. As a nonlin-
ear alternative, the median is more robust than the mean. While the application of median-based
methods in time series at least dates back to 1974 when John Tukey introduced the running median
method (Tukey, 1974), there is surprisingly little work to comprehensively investigate the model-
ing, fitting, and uncertainty quantification of a median-based model in the context of time series
forecasting, and in particular, how it compares with state-of-the-art mean-based methods using real
data and under various loss functions.

In the quantile regression literature that encompasses the median as a special case (Koenker &
Bassett Jr, 1978), Koenker & Xiao (2006) proposes quantile autoregression (QAR) models which
depict the conditional distributions of the response more comprehensively at various quantile lev-
els. Engle & Manganelli (2004) proposed the conditional autoregressive value at risk (CAViaR)
model for risk management at extreme quantile levels, and this model has been followed by many
others (Giacomini & Komunjer, 2005; Chen & So, 2006; Geweke & Keane, 2007; Gerlach et al.,
2011). However, they were developed either for general quantile levels or extreme quantile levels
and have not been applied to time series forecasting. Moreover, QAR and CAViaR are semipara-
metric approaches, resorting to minimizing the check loss function for estimation and necessitating
non-trivial modifications to likelihood-based order selection criteria when the order is unknown.

In this paper, we propose a simple strategy by extending the traditional AR model to a median
AR model (MAR) for time series forecasting. The AR model is arguably one of the most popular
methods in time series, serving as the building block for other models such as generalized autore-
gressive conditional heteroskedasticity models (GARCH, Bollerslev, 1986) and time-varying vector
autoregressive models (TV-VAR Primiceri, 2005). The proposed method utilizes time-varying quan-
tile regression but focuses on the median, favorably inheriting the robustness of median regression
in contrast to the widely used mean-based methods. It relies on parametric assumptions, and this
aids interpretation and enables convenient uncertainty quantification and propagation through a
principled Bayesian framework. Numerical experiments using U.S. macroeconomic data show that
this simple MAR approach leads to favorable and often superior predictive performances compared
to selected state-of-the-art mean-based methods that are much more complicated in nature. It is
remarkable that the comparison is made not only under the absolute but also the squared error loss
for point forecasts and is extended to probablistic forecasts. The proposed methods are generic and
can be used to complement any methods that build on the AR models by altering the Gaussian
error assumption therein.

The MAR model has a close connection with the working asymmetric Laplace likelihood ap-
proach in Bayesian quantile regression. The working likelihood formalized by Yu & Moyeed (2001)
has recently gained increasing attention (Gerlach et al., 2011; Sriram et al., 2016; Youngman, 2018;
Liu et al., 2020). It provides a principled and convenient framework to quantify uncertainties in
the parameter estimation eliminating the challenging task of estimating the unknown conditional
density functions that are required by the conventional quantile regression for inference (Yang et al.,
2016). Although the asymmetric Laplace likelihood is generally not the true data generating like-
lihood, a pragmatic view to support its use is that the maximum a posterior estimates resemble
the usual quantile regression estimates which optimizes the check loss function. Theoretically, the
posterior distribution of parameters concentrates on what minimizes the Kullback-Leibler diver-
gence with respect to the true data-generating models (Kleijn & van der Vaart, 2006). Unlike
quantile regression where one may vary the quantile levels, the median is the primary quantile level
of interest in time series forecasting. Therefore, the MAR model uses the Laplace distribution as
the likelihood, alleviating the concern that the working likelihood is not a valid likelihood when
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considering multiple quantile levels. This fully parametric model enables routine posterior sam-
pling. We estimate model parameters by Markov chain Monte Carlo, and propose using a Bayesian
model averaging (BMA) approach (Hoeting et al., 1999) to propagate the model uncertainty in the
unknown autoregressive order in addition to a Bayesian model selection strategy.

The rest of the paper is organized as follows. Section 2 introduces the MAR model, estimation,
and forecasting procedure. In Section 3 we conduct simulations to compare the proposed approach
with other competitive methods to assess parameter estimation. Section 4 consists of a variety of
applications using real-world economic data. Section 5 concludes the paper.

2 Methods

2.1 Median Autoregressive (MAR) model

We propose a median autoregressive (MAR) model for time series forecasting, as an alternative to
the widely used mean-based models. Suppose we observe a vector of time series y = (y1, . . . , yT ).
A MAR model with order p, denoted as MAR(p), first assumes a time-varying quantile regression
structure

yt = β0 + β1yt−1 + β2yt−2 + ...+ βpyt−p + εt = y′t−1β + εt, (1)

where yt−1 = (1, yt−1, ..., yt−p)
′, β = (β0, β1, ..., βp)

′ is vector of unknown coefficient, and εt is
random error with median 0. Model (1) is semiparametric as the error distribution is left unspecified
other than the constraint of possessing a zero median. The classic AR model with a given order p,
denoted as AR(p), assumes a Gaussian error distribution with mean 0 and standard deviation σ,
i.e., εt ∼ N(0, σ2). The MAR model further assumes εt ∼ Laplace(0, 2τ) whose probability density
function is

f(x; 0, τ) =
1

4τ
exp

(
−|x|

2τ

)
, (2)

where τ > 0 is a scale parameter. The Laplace error assumption combined with the semiparametric
structure in Equation (1) yielding the following likelihood function for the MAR model

L(β, τ) = f(y|β, τ) ∝ τ−(T−p) exp

{
− 1

2τ

T∑
t=p+1

|yt − y′t−1β|

}
, (3)

which is parametric. The parametric assumption in (2) aids interpretation and enables convenient
uncertainty quantification and propagation through a principled Bayesian framework. In addition,
the autoregressive structure in the MAR model resembles the widely used AR model provides
enormous flexibility and potential to complement the rich literature that builds on the AR model.

The use of Laplace distributions is common in literature the Bayesian quantile regression where
the θth quantile of the error in Equation (1) is assumed to be 0. For general θ ∈ (0, 1), a working
likelihood method adopts the asymmetric Laplace distribution AL(µ, τ, θ) as the error distribution,
which has the probability density function

f(x;µ, τ, θ) = θ(1− θ)τ−1 exp
{
−τ−1(x− µ)(θ − 1[x < µ])

}
,

where µ is a location parameter and 1(·) is the indicator function. The asymmetric Laplace dis-
tribution reduces to the Laplace distribution at the median by setting µ = 0 and θ = 0.5. In view
of this intimate connection with Bayesian quantile regression as well as the subsequent Bayesian
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estimation and prediction, we also refer to the MAR model with Laplace errors given by (1) and (2)
as Bayesian MAR, or BayesMAR, and use it exchangeably with the MAR model.

2.2 Prior specification and posterior sampling at a given p

We use an uninformative prior for β and the Jeffreys prior for τ , namely,

π(β) ∝ 1, π(τ) ∝ τ−1.

The posterior distribution of (β, τ) is

π(β, τ |y) ∝ π(β, τ)f(y|β, τ) ∝ τ−(T−p+1) exp

{
−τ−1

T∑
t=p+1

1

2

∣∣yt − y′t−1β∣∣
}
,

which is proper (Choi & Hobert, 2013). The regression coefficients β are instrumental for time series
forecasting, and we derive their marginal posterior distributions by integrating out τ for efficient
sampling:

π(β|y) =

∫
π(β, τ |y)dτ ∝

∫
τ−(T−p+1) exp

{
−τ−1

T∑
t=p+1

1

2

∣∣yt − y′t−1β∣∣
}
dτ

∝

{
T∑

t=p+1

1

2

∣∣yt − y′t−1β∣∣
}−(T−p)

. (4)

The posterior sampling of β proceeds by Markov chain Monte Carlo (MCMC) via the Metropolis-
Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970):

1. At iteration i, draw a candidate sample from the proposal β∗j = βi−1j +a ·uj independently for

j = 1, . . . , p, where βi−1j is the value of βj at iteration i − 1, uj follows a Uniform(−0.1, 0.1)
distribution and the scalar a controls the step size of each move;

2. Accept β∗ as βi with probability p = min
{

1, π(β∗|y)/π(βi−1|y)
}

. Otherwise, set βi = βi−1.

We tune the parameter a in Step 1 such that the final acceptance rate is between 20% and 50% (Gel-
man et al., 1996). In addition, we have also implemented Gaussian and heavy-tailed student-t
proposals, which are recommended by Gerlach et al. (2011) when studying extreme quantile levels
under the CAViaR model. We did not observe empirical advantages of using such proposals over a
uniform proposal under the MAR model, suggesting that one may choose more flexible proposals
for median regression. For all experiments, we use 40,000 MCMC samples with 25,000 burn-ins,
initialize β randomly within the unit interval, and use the posterior mean as the Bayes estimate of
β. Trace plots indicate the MCMC samples converge quickly, mostly within thousands of iterations.

The proposed Bayesian approach provides a convinient method for density forecasting beyond
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point forecasts. The 1-step ahead predictive density conditional on y1:T = (y1, . . . , yT ) is

p (yT+1|y1:T ) =

∫ ∫
p (yT+1,β, τ |y1:T ) dβdτ

=

∫ ∫
p (yT+1|β, τ,y1:T ) · π (β, τ |y1:T ) dβdτ

∝
∫ ∫

τ−1 exp

(
− 1

2τ
|yT+1 − y′Tβ|

)
· τ−(T−p+1) exp

{
−τ−1

T∑
t=p+1

1

2
|yt − y′t−1β|

}
dβdτ

∝
∫
Rp+1

[
T+1∑
t=p+1

|yt − y′t−1β|

]−(T−p+1)

dβ.

For large T the integrand
[∑T

t=p+1 |yt − y′t−1β|
]−(T−p+1)

may quickly decay to zero, leading to

considerable numerical errors in direct evaluation of this integral. Alternatively, the MCMC samples
of (β, τ) allow a convenient sampling strategy to approximate the predictive density. In particular,
we draw samples of yT+1 from the Laplace likelihood p (yT+1|β, τ,y1:T ) conditional on each posterior
sample of (β, τ). This strategy easily generalizes to q-step ahead predictive densities for any q ≥ 2
by drawing samples jointly for (yT+1, . . . , yT+q) through iterative conditional distributions, which
are all Laplace distributions.

2.3 Order selection and Bayesian model averaging

The order p in MAR(p) is typically unknown. We address the problem of unknown p in the Bayesian
framework by putting a prior on p. In practice, we can usually specify a maximum order; otherwise,
a p that is too large hampers the interpretability. We endow the order p with a uniform prior on
{1, 2, . . . ,K} with K being the specified maximum order. Then the posterior distribution of p in
the prior support is

π(p | y) ∝ π(y | p) · π(p),

where π(y | p) =
∫
R+

∫
Rp+1 π(y,β, τ | p)π(β)π(τ)dβdτ is the marginal likelihood of p. The order p

can be selected by using the maximum a posteriori (MAP) estimate:

p̂ = argmax
p∈{1,...,K}

π(p | y).

For time series forecasting, a more appealing perspective is to use Bayesian model averaging (BMA)
to propagate uncertainties in the model space, i.e.,

ŷT+q =

K∑
p=1

π(p | y)ŷ
(p)
T+q and p(yT+q|y1:T ) =

K∑
p=1

π(p | y)p(y
(p)
T+q|y1:T ),

where ŷ
(p)
T+q and p(y

(p)
T+q|y1:T ) are the q-step ahead point prediction and predictive density of yT+q

under order p, respectively.
The main challenge in implementing MAP and BMA lies in prior specifications of model param-

eters and the evaluation of the marginal likelihood at given p. To date, a consensus on the default
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choice for prior specifications in the context of model selection is still lacking, and one needs to be
cautious about using improper priors—which are typically the default choice for a given model—in
view of prior sensitivity and the Jeffreys-Lindley paradox. We refer interested readers to the rich
literature on BMA, e.g., Cameron & Pettitt (2014); Robert (2001); Yao et al. (2018); Li & Dunson
(2020), to name a few. We here resort to an approximation to π(p | y) using the Bayesian infor-
mation criterion or BIC (Kass & Raftery, 1995; Neath & Cavanaugh, 2012), which is appealing as
it eliminates the need to deal with prior specification and approximates Bayes factors reasonably
well in certain cases (Kass & Wasserman, 1995). We observe that the BIC-based implementation
tends to choose the oracle order with large probability in simulations.

Letting (β̂MLE, τ̂MLE) be the maximum likelihood estimates (MLEs) of (β, τ), then the the BIC
of MAR(p) is

BICp = (p+ 2) log(n)− 2 log(L(β̂MLE, τ̂MLE)), (5)

where n is the sample size. We approximate π(p | y) by exp{−BICp/2} up to multiplicative
constants, leading to aggregated predictions

ŷ =

K∑
p=1

π(p | y)ŷ(p) ≈
K∑
p=1

exp{−BICp/2}∑K
i=1 exp{−BICi/2}

ŷ(p). (6)

It turns out that we can calculate the MLEs (β̂MLE, τ̂MLE) efficiently. To see this, first note

(β̂MLE, τ̂MLE) = argmax
β,τ

τ−(T−p) exp

{
−τ−1

T∑
t=p+1

1

2

∣∣yt − y′t−1β∣∣
}
.

For any τ > 0, the likelihood function L(β, τ ) in Equation (3) attains its maximum at

β̂MLE = argmax
β

{
T∑

t=p+1

1

2

∣∣yt − y′t−1β∣∣
}−(T−p)

= argmin
β

T∑
t=p+1

1

2

∣∣yt − y′t−1β∣∣ ,
provided T > p. This corresponds to the estimators of minimizing absolute error in median regres-
sion, which can be efficiently solved by linear programming (Koenker, 2005). An analytical solution
of τ̂MLE is available through a Gamma kernel:

τ̂MLE = argmax
τ

τ−(T−p) exp

{
−τ−1 1

2

T∑
t=p+1

∣∣∣yt − y′t−1β̂MLE

∣∣∣}

=

1
2

∑T
t=p+1

∣∣∣yt − y′t−1β̂MLE

∣∣∣
T − p+ 1

.

Before substituting β̂MLE and τ̂MLE into Equation (5), we notice that both the likelihood function
and sample size depend on the order p. To reconcile various sample sizes at different orders, we use
the last T −K samples to evaluate the likelihood function for any p. Consequently, BICp is given
by

BICp = (p+ 2) log(T −K)− 2 log

[
(4τ̂MLE)−(T−K) exp

(
− 1

2τ̂MLE

T∑
t=K+1

|yt − y′
t−1β̂MLE|

)]
.
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The same methods to approach the unknown order and provide predictive densities apply to AR,
where the likelihood function changes to Gaussian and the MLE of β that resembles the least square
estimates has a simple closed-form expression.

3 Simulation

In this section, we conduct simulations to assess the performances of BayesMAR with mean-
based methods, focusing on parameter estimation under various model assumptions. To this end,
we choose the AR model and the generalized autoregressive conditional heteroscedasticity model
(GARCH), and defer predictive comparisons and more recent mean-based methods to real data
application in Section 4.

We generate data according to the model

yt = β0 + β1yt−1 + β2yt−2 + εt,

where β = (β0, β1, β2) = (0.3, 0.75,−0.35). We consider two scenarios depending on the distribu-
tion of εt: Gaussian error where εt ∼ N(0, 1) and Laplace error where εt ∼ Laplace(0, 1), which
correspond to the model assumptions of the AR and BayesMAR models, respectively.

For each error assumption, we generate 200 observations and replicate such simulation 100
times. We estimate AR models via a Bayesian procedure with priors π(β) ∝ 1 and π(σ) ∝ σ−1. We
also conduct the maximum likelihood estimation (Gardner et al., 1980) for AR using the ‘arima’
function in the R package stats, which leads to almost identical performance and is thus not
reported here. As such, we use AR and BayesAR exchangeably throughout this paper. We use
AR(p)-GARCH(1,1) when implementing GARCH, i.e.,

yt = β0 + β1yt−1 + β2yt−2 + . . .+ βpyt−p + et;

et =
√
htηt, ηt ∼ N(0, 1);

ht = ω0 + α1e
2
t−1 + α2ht−1.

We fit the model using the R package fGarch, where all parameters are estimated by quasi-maximum
likelihood (Bollerslev & Wooldridge, 1992). In addition, we implement the Quantile Autoregression
(QAR) method proposed by Koenker & Xiao (2006) using the R package quantreg, to compare its
finite sample performance with BayesMAR.

We assess estimates of (β0, β1, β2) by each method based on mean squared error (MSE). For a

generic parameter θ, letting the estimate be θ̂i in the ith simulation and θ̄ = 1
100

∑100
i=1 θ̂i, then the

MSE and its standard error are

MSE =
1

100

100∑
i=1

(θ̂i − θ)2, SEMSE =
1

10

√
sample variance of {(θ̂i − θ)2}100i=1.

We first provide the true order p = 2 to all models and compare their performances. Table 1
reports the MSE of all methods. We can see that all methods benefit from a correctly specified error
distribution: AR and GARCH have the smallest MSEs under Gaussian error, while BayesMAR and
QAR have smaller MSEs when data are generated from Laplace distributions. However, BayesMAR
appears to suffer less than AR from model misspecification; for example, the increase of MSE of
β2 under Gaussian error from AR to BayesMAR is 0.13, which is within two standard errors, while
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Table 1: MSE of all methods under Gaussian error and Laplace error.
Standard errors are reported below MSEs. All summaries have been
multiplied by 102.

Models Error Gaussian Laplace

β0 β1 β2 β0 β1 β2

BayesMAR
MSE 1.07 0.56 0.63 0.73 0.27 0.19
SE 0.13 0.07 0.07 0.11 0.04 0.03

QAR
MSE 1.21 0.62 0.75 0.75 0.27 0.19
SE 0.15 0.08 0.08 0.11 0.05 0.02

AR
MSE 0.77 0.41 0.50 1.08 0.50 0.43
SE 0.09 0.05 0.08 0.16 0.06 0.06

GARCH
MSE 0.76 0.41 0.51 1.08 0.50 0.40
SE 0.09 0.05 0.08 0.16 0.06 0.05

AR doubles the MSE of β2, and so is beyond three standard errors of BayesMAR under Laplace
error. It is reassuring that BayesMAR gives either the same or better MSEs than QAR in all cases,
although all differences are within one standard error. This finite sample performance is consistent
with the findings in Gerlach et al. (2011) when comparing sampling-based Bayesian approaches
with optimization-based counterparts for extreme quantile levels.

We next investigate the selection of the unknown order p in BayesMAR using the BIC approach
described in Section 2.3. We provide a large upper bound K = 20 for the order p. Figure 1 plots the
distribution of p in both scenarios and suggest that the selected orders almost always concentrate
around the oracle value p = 2, even when the model is misspecified under Gaussian error. The
overall accuracy across all simulations to select p = 2 using MAP is 95% for normal errors and 98%
for Laplace errors.

Figure 1: Distributions of selected orders using BIC.
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4 Real Data Application

In this section, we compare the predictive performances of the proposed methods to that of mean-
based methods using various real-world data. We use three economic series from Federal Reserve
Economic Data: the quarterly data Producer Price Index for all commodities (FRED: U.S. Bureau
of Labor Statistics, 2018), 3-Month Treasury Bill: secondary market Rate (FRED: Board of Gover-
nors of the Federal Reserve System (US), 2018), and Unemployment Rate (FRED: Organization for
Economic Co-operation and Development, 2018), coded as PPI, TBR, and UR, respectively. Each
time, the series ranges from 1968Q3 to 2018Q2, containing 200 observations. The unemployment
rate data is seasonally adjusted by the method of seasonal-trend decomposition using Loess (Cleve-
land et al., 1990). The three time series (yt) and the lagged data of order one (yt − yt−1) are
plotted in Figure 2. These three data sets have distinct patterns: the lagged PPI tends to be
more stable before the crisis in the year of 2008, in contrast to the substantial fluctuation since
then; the lagged TBR has more dramatic changes in earlier periods than in later periods; and the
lagged UR appears to contain several extreme values, while a periodic pattern may still persist even
after seasonal adjustment. These complex characteristics of the data enable a comparison between
model-based methods when there is no guarantee for model assumptions to hold.

Figure 2: Three time series (PPI, TBR, and UR) and the lagged data. The blue line is t0 = 08Q3.

In addition to AR and GARCH, we implement selected methods proposed in research on the
dynamic linear model. In particular, we consider the time-varying vector AR (TV-VAR) model
proposed by Nakajima & West (2013), which links time-varying parameters to latent threshold
processes and achieves state-of-the-art predictive performance in selected applications. A vector

with a length of three that stacks the three time series y
(3)
t , expands the dynamic linear model by
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utilizing a latent threshold vector d = (d1, ..., dk) with di ≥ 0 for i = 1, . . . , k :

y
(3)
t = ct +B1ty

(3)
t−1 + · · ·+Bpty

(3)
t−p + ut, ut ∼ N(0,Σt), bt = (b1t, ..., bkt)

′,

bit = βitsit with sit = 1(|βit| ≥ di),
βt = µβ + Φβ(βt−1 − µβ) + ηβt

, ηβt
∼ N(0,Vβ),

where ct is the 3 × 1 vector of time-varying intercepts, Bjt is the 3 × 3 matrix of time-varying
coefficients at lag j, bt stacks ct and Bjt by rows and by order j from 1 to p, k = 3(1 + 3p), and
βt = (β1t, ..., βkt) is a latent time-varying parameter vector whose dynamic updates are specified by
(µβ,Φβ,Vβ) via a standard VAR model. The latent threshold vector d shrinks the time-varying
coefficients βt to zero, leading to dynamic sparsity and improved prediction. We implement two
versions of TV-VAR: TV-VAR without latent threshold (NT) and TV-VAR with latent threshold
(LT). Both methods are applicable to multivariate time series, and we adapt the OxMetrics code
provided in Nakajima & West (2013) to the vector observations consisting of the three time series.

For BayesMAR, we use BayesMAR-BMA to denote the Bayesian model averaging strategy and
BayesMAR-MAP when the MAP estimate of p is used, and we adopt the same convention for AR,
i.e., BayesAR-BMA and BayesAR-MAP, which are implemented similarly to BayesMAR but with
the Gaussian likelihood. GARCH(1,1) uses the same autoregressive order p as chosen in BayesAR-
MAP; although orders other than (1, 1) can be used, we observe that the GARCH(1,1) consistently
led to the best predictive performances of GARCH in our real data application. Since there are
no immediately available model selection methods for NT or LT, we run the order from 1 to 5,
and then choose the optimal results to favor NT and LT under each criterion. We observe that LT
considerably outperformed NT in all scenarios, and thus only present the results for LT.

We use recursive out-of-sample forecasting to assess each method after t0=2008Q3. In particular,
we fit each model with data up to quarter t and conduct an h-step-ahead prediction for h = 1, 2, 3, 4.
Then we move one period ahead and repeat the same procedure until we reach t = T . All methods
are applied to the lagged data of order one to remove local trends and forecast the changes that
lead to predictions of yt.

We calculate the root MSE (RMSE) and mean absolute error (MAE) from t0 to T to compare
performance of each method, i.e.,

RMSE =

√√√√ 1

35

35∑
i=1

(yt0+i − ŷt0+i)2, MAE =
1

35

35∑
i=1

|yt0+i − ŷt0+i|.

We additionally calculate the the relative change using BayesMAR-BMA as the reference to ease
comparison, that is,

Relative change =

[
RMSE (or MAE) of each method

RMSE (or MAE) of BayesMAR-BMA
− 1

]
× 100%.

Table 2 reports the RMSEs of all methods for the three data sets. The results indicate that
BayesMAR outperforms alternatives in nearly all scenarios. In particular, the RMSEs of BayesMAR-
BMA is uniformly smaller than its AR counterpart. Compared to BayesMAR-BMA, the methods
of AR, GARCH, and LT increase the RMSE by 10% to 89.2% for TBR, and 3.0% to 35.6% for
UR, with two exceptions for the UR when compared to GARCH at three- and four-steps-ahead
predictions where GARCH slightly reduces the RMSE by 0.3% and 2.8%, respectively. Although
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the gap in the prediction for PPI is smaller (between 0.8% to 8.9%), all competing methods have
a larger RMSE than BayesMAR-BMA. GARCH accounts for comprehensive variance structures
and LT dynamically updates regression coefficients, which are arguably powerful methods with
considerable complexity; it is remarkable that the proposed simple BayesMAR leads to favorable
and often superior performance using real-world data.

Table 3 reports the MAEs of all methods, suggesting similar observations as those made from
Table 2. The proposed BayesMAR methods give the smallest MAEs in nearly all scenarios, with
one exception for the UR when compared to GARCH.

The RMSEs of BayesMAR-BMA and BayesMAR-MAP are close to each other with at most 1.1%
(PPI), -0.6% (TBR), 2.3% (UR) relative differences, and similar observations hold for MAEs. This
is partly caused by highly concentrated weights of model orders when using BIC for order selection.
In particular, we find BayesMAR-BMA puts most weight on the order selected in BayesMAR-MAP,
leading to minimal differences between the two variants of BayesMAR. Comparing BayesAR-BMA
and BayesAR-MAP leads to the same conclusion for AR.

Figure 3 compares up to four-steps-ahead absolute predictive errors at each t from t0 to T given
by the three static models, MAR, AR, and GARCH, which provides insights into understanding
the performance of BayesMAR. We choose AR and GARCH and implement MAR and AR using
MAP such that all methods in the figure build on similar model structures. We can see that AR
yields a large prediction error at the beginning (PPI), which is substantially reduced by GARCH,
which incorporates heterogeneous variance structures. It is reassuring that the proposed BayesMAR
method, which uses a simple constant variance structure, achieves the same predictive gain (for PPI)
or even further improvements (for TBR and UR). At later time points when the time series stabilizes
without usually large deviations, BayesMAR tends to perform similarly to AR and GARCH. Since
BayesMAR is a parametric model bearing the same model structure as AR, these comparisons
suggest that further performance gains may be possible by following the rich literature that extends
AR to more advanced models such as GARCH and dynamic models, by simply altering the error
assumption from Gaussian to Laplace.

We plot the 95% credible intervals of AR and MAR in Figure 4, both using the BMA version.
For both AR and MAR, four-steps-ahead predictive intervals appear wider than one-step-ahead
predictive intervals. This makes sense, as more uncertainty propagates, and this is particularly the
case for the UR data. MAR is more robust than AR at the early stage of the PPI time series.
Since an informative comparison between MAR and AR through this visualization seems difficult,
we next turn to numerical comparisons.

The proposed method provides density forecasts in addition to point forecasts; see Section 2.
We evaluate the probabilistic forecasts produced by the proposed method and AR through the
continuous ranked probability score (CRPS) (Gneiting et al., 2007), which is implemented in the R
package scoringRules. We can see that the proposed MAR model produces a considerably smaller
CRPS than AR for the TBR and UR data, while being close to AR for PPI. This suggests that the
advantage of MAR may extend to probabilistic forecasts beyond point forecasts (see Table 4).
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Table 2: Forecasting Performance for U.S. macroeconomic data after 2007-2008 fi-
nancial crisis: RMSEs for h-step ahead prediction for h = 1, 2, 3, 4. The relative
change uses BayesMAR-BMA as the baseline. RMSEs for Treasury Bill Rate and
Unemployment Rate have been multiplied by 10.

Producer Price Index

Models
RMSE Relative change (%)

1 2 3 4 1 2 3 4
BayesMAR-BMA 3.18 5.94 7.74 9.24 - - - -
BayesMAR-MAP 3.21 5.94 7.69 9.13 0.7 0.1 -0.7 -1.1
BayesAR-BMA 3.37 6.24 8.04 9.39 6.0 5.1 3.8 1.6
BayesAR-MAP 3.38 6.26 8.07 9.43 6.0 5.4 4.2 2.1

GARCH 3.21 6.05 7.85 9.31 0.8 1.9 1.4 0.8
LT 3.47 6.06 7.94 9.45 8.9 2.0 2.5 2.3

Treasury Bill Rate

Models
RMSE Relative change (%)

1 2 3 4 1 2 3 4
BayesMAR-BMA 0.91 1.49 2.16 2.94 - - - -
BayesMAR-MAP 0.90 1.48 2.16 2.93 -0.9 -0.1 -0.1 -0.1
BayesAR-BMA 1.63 2.10 2.99 4.16 79.7 41.6 38.2 41.7
BayesAR-MAP 1.71 2.37 3.31 4.56 89.2 59.3 53.1 55.1

GARCH 1.66 2.02 2.63 3.4 83.6 35.9 21.7 18.5
LT 1.00 1.87 2.66 3.55 10.3 25.6 23.0 21.0

Unemployment Rate

Models
RMSE Relative change (%)

1 2 3 4 1 2 3 4
BayesMAR-BMA 1.76 3.07 4.34 5.85 - - - -
BayesMAR-MAP 1.77 3.11 4.42 5.94 0.5 1.2 1.8 1.6
BayesAR-BMA 1.88 3.37 4.88 6.88 7.2 9.5 12.3 17.6
BayesAR-MAP 1.88 3.42 5.11 7.18 6.8 11.3 17.5 22.8

GARCH 1.86 3.17 4.33 5.69 5.6 3.0 -0.3 -2.8
LT 2.40 4.17 5.53 7.17 36.7 35.6 27.4 22.7
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Table 3: Forecasting Performance for U.S. macroeconomic data after 2007-2008 fi-
nancial crisis: MAEs for h-step ahead prediction for h = 1, 2, 3, 4. The relative
change uses BayesMAR-BMA as the baseline. MAEs for Treasury Bill Rate and
Unemployment Rate have been multiplied by 10.

Producer Price Index

Models
MAE Relative change (%)

1 2 3 4 1 2 3 4
BayesMAR-BMA 2.50 4.44 5.90 7.26 - - - -
BayesMAR-MAP 2.50 4.44 5.84 7.18 0.2 0.1 -1.0 -1.1
BayesAR-BMA 2.69 4.49 6.05 7.33 7.8 1.2 2.5 1.0
BayesAR-MAP 2.70 4.54 6.05 7.37 8.0 2.2 2.5 1.6

GARCH 2.54 4.59 5.98 7.29 1.8 3.5 1.4 0.4
LT 2.72 4.47 6.29 7.45 8.9 0.8 6.6 2.6

Treasury Bill Rate

Models
MAE Relative change (%)

1 2 3 4 1 2 3 4
BayesMAR-BMA 0.56 1.05 1.56 2.10 - - - -
BayesMAR-MAP 0.56 1.05 1.56 2.10 -0.6 -0.1 0.0 0.0
BayesAR-BMA 1.09 1.61 2.25 3.04 95.5 52.7 44.2 44.6
BayesAR-MAP 1.14 1.80 2.52 3.43 103.2 70.5 61.6 63.1

GARCH 0.99 1.43 2.01 2.68 77.8 35.7 28.7 27.6
LT 0.65 1.23 1.78 2.37 16.0 16.2 13.9 13.0

Unemployment Rate

Models
MAE Relative change (%)

1 2 3 4 1 2 3 4
BayesMAR-BMA 1.24 2.30 3.49 4.85 - - - -
BayesMAR-MAP 1.26 2.34 3.57 4.95 1.2 1.4 2.3 2.1
BayesAR-BMA 1.47 2.61 3.91 5.73 18.1 13.1 12.2 18.2
BayesAR-MAP 1.49 2.69 4.16 5.94 19.8 16.9 19.2 22.4

GARCH 1.27 2.12 3.16 4.27 2.4 -8.1 -9.5 -11.9
LT 1.66 3.26 4.63 6.32 33.4 41.7 32.6 30.4
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Figure 3: Absolute h-step ahead predictive errors at each period from 2008Q3 for h = 1, 2, 3, 4.
Orders of BayesMAR and BayesAR are selected by the BIC.

Table 4: Forecasting Performance for U.S. macroeconomic data after 2007-2008 fi-
nancial crisis: CRPS for h-step ahead prediction for h = 1, 2, 3, 4. The relative
change uses BayesMAR-BMA as the baseline. CRPS for Treasury Bill Rate and
Unemployment Rate have been multiplied by 10.

Producer Price Index

Models
CRPS Relative change (%)

1 2 3 4 1 2 3 4

BayesMAR-BMA 1.93 2.12 2.02 2.01 - - - -

BayesMAR-MAP 1.95 2.13 2.00 2.00 1.1 0.8 -0.8 -0.8

BayesAR-BMA 1.93 2.08 2.13 2.05 0.1 -1.8 5.7 2.1

BayesAR-MAP 1.93 2.08 2.14 2.06 0.3 -1.5 6.1 2.6

Treasury Bill Rate

Models
CRPS Relative change (%)

1 2 3 4 1 2 3 4

BayesMAR-BMA 1.22 1.37 1.43 1.45 - - - -

BayesMAR-MAP 1.22 1.37 1.42 1.45 0.0 0.1 -0.3 0.0

BayesAR-BMA 1.80 1.89 1.92 1.97 48.4 37.5 34.2 35.6

BayesAR-MAP 1.81 1.88 1.91 1.97 48.5 37.3 33.8 35.7

Unemployment Rate

Models
CRPS Relative change (%)

1 2 3 4 1 2 3 4

BayesMAR-BMA 0.93 0.97 1.04 1.16 - - - -

BayesMAR-MAP 0.93 0.98 1.05 1.16 0.7 0.7 0.7 0.5

BayesAR-BMA 1.04 1.14 1.22 1.42 12.6 17.0 17.9 22.2

BayesAR-MAP 1.04 1.13 1.26 1.45 11.9 16.5 21.1 24.7
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Figure 4: 1-step ahead (the first two columns) and 4-step ahead (the last two columns) 95% credible
intervals of MAR and AR using BMA. True observations are points marked green, and predictions
are marked red. Blue bars are the 95% credible intervals.
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5 Concluding remarks

This article proposes a Bayesian median autoregressive (BayesMAR) model for robust time series
forecasting. The proposed method has close connections with time-varying quantile regression.
BayesMAR adopts a parametric model bearing the same structure as AR models by altering the
Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for
time series forecasting with principled uncertainty quantification through Bayesian model averaging
and Bayesian model selection. Real data applications using U.S. macroeconomic data show that
BayesMAR leads to favorable and often superior predictive performances compared to the selected
state-of-the-art mean-based alternatives under various loss functions that encompass both point
and probabilistic forecasts.

BayesMAR enjoys practical benefits as a technical tool to introduce robustness and improve
predictions. In addition, since the autoregressive structure in BayesMAR resembles the widely
used AR model, BayesMAR can be used to complement a rich class of methods that build on the
AR model. The AR model is arguably one of the most popular methods in time series, serving as
the building block for other models such as GARCH and TV-VAR in research on the dynamic linear
model. The proposed MAR model shows the potential for further performance gains by following
the rich literature that extends AR to more advanced models with Laplace error assumptions rather
than Gaussian ones.
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