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Abstract

We show that an arbitrary lower bound of the maximum achievable value can be1

used to improve the Bellman value target during value learning. In the tabular case,2

value learning using the lower bounded Bellman operator converges to the same3

optimal value as using the original Bellman operator, at a potentially faster speed.4

In practice, discounted episodic return in episodic tasks and n-step bootstrapped5

return in continuing tasks can serve as lower bounds to improve the value target.6

We experiment on Atari games, FetchEnv tasks and a challenging physically7

simulated car push and reach task. We see large gains in sample efficiency as8

well as converged performance over common baselines such as TD3, SAC and9

Hindsight Experience Replay (HER) in most tasks, and observe a reliable and10

competitive performance against the stronger n-step methods such as td-lambda,11

Retrace and optimality tightening. Prior works have already successfully applied a12

special case of lower bounding (using episodic return), but are limited to a small13

number of episodic tasks. To the best of our knowledge, we are the first to propose14

the general method of value target lower bounding (with possibly bootstrapped15

return), to demonstrate its optimality in theory, and effectiveness in a wide range16

of tasks over many strong baselines.17

1 Introduction18

The value function is a key concept in dynamic programming approaches to Reinforcement Learning19

(RL) (Bellman, 1957). It estimates the sum of all future rewards (usually time-discounted) of a given20

state. In temporal difference (TD) learning, the value function is adjusted toward its Bellman target21

which adds the reward of the current step with the (discounted) value of the next state (Sutton &22

Barto, 2018). This forms the basis of many state of the art RL algorithms such as DQN (Mnih et al.,23

2013), DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018).24

The value of the next state is typically estimated using a “bootstrapped value” based on the value25

function itself, which is being actively learned during training. The bootstrapped values can be26

random and far from the optimal value, especially at the initial stage of training, or with sparse reward27

tasks where rewards can only be achieved through a long sequence of actions. Consequently, the28

Bellman value targets as well as the learned values are usually far away from the optimal value (the29

value of the optimal policy).30

Naturally, this leads to the following idea: If we can make the value target closer to the optimal value,31

we may speedup TD learning. For example, we know that the optimal value is just the expected32

discounted return of the optimal policy, which always upper bounds the expected return of any policy.33

For episodic RL tasks, we could use the observed discounted return up to episode end from the34

training trajectories to lower bound the value target. This makes the new value target closer to the35

optimal value, when the empirical return is higher than the Bellman target.36
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Algorithm 1 Value iteration with value target lower bounding

Input: Finite MDP p(s′, r|s, a), convergence threshold θ, a lower bound f(s) of the maximum
achievable value Ḡv(s)
Output: State value v(s)
v(s)← 0
repeat
∆← 0
vp(s)← v(s)
for each state s do
v̂(s)← maxa

∑
s′,r p(s

′, r|s, a)[r + γvp(s
′)]

v̂f (s)← max(f(s), v̂(s))
v(s)← v̂f (s)
∆← max(∆, |v(s)− vp(s)|)

end for
until ∆ < θ

The case for continuing or non-episodic tasks is less clear though. When a continuing task can37

return negative rewards, any safe lower bound of the optimal value can be too low to be useful. One38

could take the risk and use n-step bootstrapped return as a lower bound, which is unsafe because39

bootstrapped return can overestimate and be greater than the optimal value. Can we still use them as40

lower bounds to improve TD value targets?41

2 Theoretical Results for the Tabular Case42

Our results show that for the tabular case, arbitrary functions below a certain bootstrap bound can be43

used to lower bound the value target to still converge to the same optimal value.44

2.1 Background45

In finite MDPs with a limited number of states and actions, a table can keep track of the value of46

each state. Using dynamic programming algorithms such as value iteration, values are guaranteed to47

converge to the optimum through Bellman updates (Chapter 4.4 (Sutton & Barto, 2018)).48

The core of the value iteration algorithm (Algorithm 1) is the Bellman update of the value function,49

B(v), where v(s′) is the bootstrapped value:50

B(v)(s) := max
a

∑
s′,r

p(s′, r|s, a)[r + γv(s′)] (1)

It is well known that the Bellman operator, B, is a contraction mapping over value functions (Denardo,51

1967). That is, for any two value functions v1 and v2, ||B(v1)− B(v2)||∞ ≤ γ||v1 − v2||∞ for the52

discount factor γ ∈ [0, 1) and ||x||∞ := maxi |xi| (the L∞ norm). This guarantees that any value53

function under the algorithm converges to the optimal value B∞(v) = v∗.154

2.2 Convergence of value target lower bounding55

Definition 2.1. The expected n-step bootstrapped return for a given policy π and value function v(s)56

is defined as the expected bootstrapped return of taking n steps according to policy π:57

Gπ,v
n (s0) := Eπ{r1 + ...+ γn−1rn + γnv(sn)} (2)

Here, the step rewards ri and the resulting n-th step state sn are random variables, with the expectation58

Eπ taken over all possible n-step trajectories under the policy π and the given MDP.59

1For the gist of the proof, see for example page 8 of https://people.eecs.berkeley.edu/~pabbeel/
cs287-fa09/lecture-notes/lecture5-2pp.pdf
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Definition 2.2. Given the current learned value function v(s), policy class Π, the maximum achievable60

value of a state s is defined as:61

Ḡv(s) := max
π∈Π,n∈[1,+∞)

Gπ,v
n (s) (3)

This is a more relaxed definition of maximum because for each state s, a different policy π(s) and a62

different number of steps n(s) can be used to achieve the maximum Ḡv(s). And the theorem below63

says any function not exceeding the maximum achievable value can be used to lower bound the value64

target, and still achieve the optimal value in convergence.65

Theorem 2.3. Under the same assumptions for Bellman value contraction, for any function f that66

lower bounds the maximum achievable value, i.e. ∀s, f(s) ≤ Ḡv(s), if we define the lower bounded67

Bellman operator as Bf (v) := max(B(v), f), then B∞f (v) = B∞(v).68

Note, the value v(s) and the bootstrapped value can be inaccurate, and even above the optimal value.69

As a consequence, when n is finite, the maximum achievable value Ḡv(s) (and f ) can be above the70

maximum expected return (i.e. the optimal value). On the other hand, when n is sufficiently large,71

the effect of the bootstrap value v(sn) diminishes (see Equation 2), and the maximum achievable72

value becomes the maximum expected return (i.e. the optimal value). Therefore, ∀s, Ḡv(s) is no73

smaller than the optimal value B∞(v)(s). As a special case of the theorem, as long as f is below the74

optimal value, value target lower bounding converges correctly:75

Corollary 2.4. If function f lower bounds the optimal value, i.e. ∀s, f(s) ≤ B∞(v)(s), then76

B∞f (v) = B∞(v).77

A few things to note about the proof of Theorem 2.3 (included in Appendix 1.1).78

First, this only proves convergence, not contraction under the original ||v1 − v2||∞ metric. In the79

case of the Bellman operator, contraction shows that ∀v1, v2 value functions, ||B(v1)− B(v2)||∞ ≤80

γ||v1 − v2||∞. Here, for value target lower bounding, what’s proved is convergence to v∗ at a rate81

of γ, not contraction. There can be counter examples where the distance between v1 and v2 under82

one application of Bf can increase in the original L∞ metric space, even though v1 and v2 are both83

getting closer to v∗ at a rate of γ. One difficulty caused by convergence instead of contraction is that84

the stopping criterion in Algorithm 1 (∆ < θ) no longer works, due to the inaccessible v∗ during85

learning. In practice, this may not be a serious concern, as people often train algorithms for a fixed86

number of iterations or time steps.87

Second, based on the proof, the new algorithm is at least as fast as the original. When the lower88

bound actually improves the value target, i.e. f(s) > B(v1)(s), there is a chance for the convergence89

to be faster. Convergence is strictly faster when the lower bound f has an impact on the L∞ distance90

between the current value and the optimal value, i.e. it increases the value target for the states where91

the differences between the current value and the optimal value are the largest.92

Third, the lower bound function doesn’t have to be static during training. As long as there is a single93

f during each training update, convergence is preserved.94

The following sections detail how to compute lower bounds of the maximum achievable value95

(Section 3), how to integrate the lower bounds into state of the art RL algorithms (Section 4), and96

provide an illustration of how this method may benefit value learning in practice (Section 4.3).97

3 Example Lower Bound Functions98

We show a few cases where lower bound functions can be readily obtained from the training99

experience. Future work may investigate alternatives.100

3.1 Episodic tasks101

In episodic tasks, discounted return is accumulated up to the last step of an episode. In this case, we102

can wait until an episode ends, and compute future discounted returns of all time steps up to the end103

of the episode. This episodic return is a lower bound of the optimal value when the environment is104
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deterministic, because the reward sequence can be repeated using the same sequence of actions2. To105

make training efficient, we can compute and store such discounted returns into the replay buffer for106

each time step, and simply read them out during training, which adds very little computation to the107

baseline one-step TD computation.108

f(s0) =
∑

i=0,..,∞
γir(si, ai) (4)

We call this variant “lb-DR”, short for lower bounding with discounted return.109

3.1.1 Episodic with hindsight relabeled goals110

In goal conditioned tasks, one helpful technique is hindsight goal relabeling (Andrychowicz et al.,111

2017). It takes a future state that is d time steps away from the current state as the hindsight / relabeled112

goal for the current state. When the goal is reached, a reward of 0 is given, otherwise a -1 reward is113

given for each time step.114

In this case, we know it took d steps to reach the hindsight goal, so the discounted future return is:115

f(s0) =
∑

i=0,..,d−1

−1γi

=− 1(1− γd)/(1− γ)

(5)

This calculation can be done on the fly as hindsight relabeling happens, requiring no extra space and116

very little computation.117

We call this variant “lb-GD”, short for lower bounding with goal distance based return.118

Additionally, we can also apply lb-DR and lb-GD together, with discounted episodic return (lb-DR)119

on the original experience and goal distance based return (lb-GD) on the hindsight experience, giving120

the “lb-DR+GD” variant, which was used in Fujita et al. (2020).121

3.2 In general (including non-episodic tasks)122

If the task is continuing, without an episode end3, discounted return needs to be accumulated all the123

way to infinity. When rewards are always non-negative, one can still use the accumulated discounted124

reward of the future n-steps to lower bound the value. But accumulated n-step discounted reward is no125

longer a lower bound when rewards can be negative, in which case, the more general lower bounding126

with bootstrapped value can be used: given a trajectory of training experience τ :=< s0, ..., sn >:127

Gv
n(τ) := r1 + γr2 + ...+ γn−1rn + γnv(sn) (6)

Assuming the rewards and the state sn can be repeated with the same action sequence, Gv
n(τ) lower128

bounds the maximum achievable value Ḡv(s0) (Equation 3).129

Two variations are possible: Given a trajectory of length n,130

1. compute v(si) for all i ∈ [1, n] and take the maximum of all Gv
i (τ) to obtain a tighter lower131

bound. We call this variant “lb-b-nstep”:132

f(s0) = max
i∈[1,n]

Gv
i (τ) (7)

2. only evaluate v on the last (nth) step and use the nth-step bootstrapped return as the lower133

bound, which involves less compute but results in a looser bound. (When n is large enough,134

this becomes the lb-DR variant.) We call this variant “lb-b-nstep-only”.135

f(s0) = Gv
n(τ) (8)

2Note that the behavior policy can be stochastic, as long as the policy class contains the optimal policy, value
learning will converge to the optimal.

3Chapter 3.3 of Sutton & Barto (2018) has more details on episodic vs continuing tasks.
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4 Integration into RL algorithms136

4.1 Background137

The value target lower bounds can be readily plugged into RL algorithms that regresses value to a138

target, e.g. DQN, DDPG or SAC.139

In these algorithms, the action value q(s, a) is learned through a squared loss with the target value y.140

In one step TD return, for a batch B of experience {s, a→ r, s′}, the loss is:141

Lq :=
∑

(s,a,r,s′)∈B

|q(s, a)− y|2 (9)

In one step TD return, y is the one step TD return q̂(s, a, r, s′):142

q̂(s, a, r, s′) := r(s, a) + γq′(s′, µ′(s′)) (10)

Here, q′ and µ′ are the bootstrap value and policy functions, typically following the value and policy143

functions in a delayed schedule during training. (They are also called “target value” and “target144

policy”, and are very different from the “value target” y in this paper.)145

4.2 Value target lower bounding146

With lower bounding, we replace the value target y with the lower bounded target:147

y ← max(f, q̂(s, a, r, s′)) = max(f, r + γq′(s′, µ′(s′))) (11)

This way of lower bounding the value target is the same as was done by Fujita et al. (2020) (confirmed148

via personal communication), but is subtly and importantly different from lower bounding the q149

value directly (Oh et al., 2018; Tang, 2020): q(s, a)← max(f, q(s, a)), which stays overestimated if150

q(s, a) initially overestimates.151

To the best of our knowledge, value target lower bounding with bootstrapped values is a novel152

contribution of this work.153

4.3 An Illustrative Example154

Figure 1 includes a fairly general example showing how value target lower bounding would improve155

value learning. Suppose we enhance an off policy algorithm such as DDPG with value target lower156

bounding (lb-DR), when there is no training experience hitting the target state, no meaningful training157

happens for the baseline or lb-DR. However, when there is one trajectory hitting the target state, all158

states along the trajectory will soon be propagated with meaningful return, and nearby states will also159

enjoy faster learning. As the state space becomes larger and the time horizon longer, a successful160

trajectory will speed up learning quite a bit.161

5 Experiments162

The goal is to demonstrate the sample efficiency of lower bounding the value target over baseline such163

as DDPG, TD3, SAC and HER. Because the lower bounded value target can now look potentially164

many steps into the future, we suspect it to be best suited for long horizon, sparse reward tasks.165

Hence, we choose to experiment on a sampled subset of Atari games, the goal conditioned FetchEnv166

tasks and the harder goal conditioned Pioneer Push and Reach tasks. See details of the experiment167

setup in Appendix 1.2.168

5.1 Baselines169

Baselines include DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al.,170

2018) and HER (Andrychowicz et al., 2017; Plappert et al., 2018). Implementations are based on171
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Figure 1: Illustration of value target lower bounding speeding up value learning as training progresses
from stages 0 to 3. The task is to navigate in the state space from start state S to end state T, with
sparse reward 1 at T and 0 elsewhere. The curve from S to T denotes a training experience that reaches
the target. The shaded areas denote roughly states whose value has been significantly improved
during training up to that stage.

open sourced repositories, and baseline performance is verified against published results under similar172

settings. The Appendix 1.6 and 1.5 include results on more baselines such as DDQN (van Hasselt173

et al., 2015), td-labmda (Sutton & Barto, 2018) and Retrace (Munos et al., 2016).174

5.2 Hyperparameters175

Value target lower bounding is applied on top of these baselines without any additional hyperparameter176

(Section 4). The only hyperparameters come from the baselines. These hyperparameters follow177

published work as much as possible. When baseline hyperparameters need to be tuned for an178

environment, e.g. Atari games or Pioneer tasks, we search for the best performance in total episode179

reward averaged across all tasks for that environment on one set of random seeds, then the optimal180

hyperparameters are fixed and evaluated on a separate set of random seeds never seen during181

development. Value target lower bounding simply uses the the parameter values optimal for the182

baselines. Details are in Appendix 1.3.183

5.3 Results184

We report results on both episodic and continuing/non-episodic tasks. We report evaluation per-185

formance averaged across several runs of the algorithms (five for the less stable Atari games and186

three for the others). Each run uses a random seed never seen during development. Due to space187

constraints, the main paper only reports performance aggregated across all tasks for each environment.188

During each run, we take one task and one random seed, run baseline and treatment algorithms, and189

record whether treatment agent evaluates strictly above the baseline agent as training progresses. We190

average across all the runs of the same environment, and plot the fraction of times where treatment is191

above baseline and the standard deviation of that fraction in Figure 2. Appendix 1.4 contains per task192

evaluation curves.193

Overall, value target lower bounding is a simple, effective, efficient, carefree (no hyperparameter)194

and theoretically justified approach. Although the example lower bounds are limited to deterministic195

environments, the theory is generally applicable to stochastic environments. A similar prior work196

to compare would be Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), which is197

simple, effective, efficient, and also limited to deterministic environments (Blier & Ollivier, 2021).198

However, unlike our work, HER relies on the task being goal conditioned with full knowledge of the199

reward function, has one hyperparameter to tune (the proportion of hindsight experience), and is not200

justified in theory for stochastic environments. Our work shows further significant gains on top of201

HER on hard continuous control tasks.202
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Figure 2: Aggregated evaluation performance: The fraction of times where treatment performs strictly
above baseline, plotted along the number of time steps used for training. The solid curve is the sample
mean of the fraction across all runs, and the shaded area is +/- one standard deviation. We use, for
Atari (lb-DR), 85 runs – 17 games each with 5 seeds, for Atari (bootstrapped), 20 runs – 4 games 5
seeds, for FetchEnv, 9 runs – 3 tasks 3 seeds, and for Pioneer, 6 runs – 2 tasks 3 seeds.
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(c) FetchEnv
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Figure 3: Average fraction of training experience where lower bounding improves Bellman value
target, plotted along the number of iterations of training. The solid curve is the average of the fraction
across all runs – number of tasks times number of seeds, and the shaded area is +/- one standard
deviation. Other setups are the same as Figure 2.

5.3.1 Lower bounding vs baselines SAC/DDPG/HER203

Figure 2 compares the lower bounding treatment with SAC, DDPG or HER baseline on 17 sampled204

Atari games, the FetchEnv tasks and the Pioneer tasks. For all the environments, value target lower205

bounding is not only more sample efficient, but also enjoys a higher converged performance. After206

training starts, it quickly gains ground and outperforms the baseline for 70% to 100% of the runs. It207

keeps that advantage even at the end of the training, outperforming baseline in converged performance.208

These plots show how frequently treatment is above baseline, but is insensitive to the magnitude of209

change.210

Appendix 1.4 shows the magnitude of change with total episode return plotted for each task, often211

with large gains in sample efficiency and sometimes much higher converged performance. Among all212

the 22 tasks, only one task (Atari Breakout) shows lb-DR underperforming the baseline.213

Investigations show that the loss on Atari Breakout is likely due to the mismatch between training214

objective and evaluation metric. During training, raw rewards are clipped to [-1, 1] and step discounted215

at γ = 0.99 to compute value, while in evaluation, total reward is the unclipped and undiscounted216

cumulative sum of episode rewards. The discount and clipping together severely penalizes large217

rewards earned later in the episode, which is what’s happening for Breakout, because hitting a top218

layer block produces a reward of 7 while hitting a bottom layer block produces 1. When we use219

non-clipped rewards or a higher γ in training, the lower bounding method performs much better in220

total reward. Note, this train-test discrepancy as well as an additional training bias (Thomas, 2014) is221

likely present in all of the prior works using policy gradient methods on Atari games.222

5.3.2 Value target improvement223

The lb-DR method is mostly effective, but is it really due to improvements to the value targets?224

Figure 3 looks at the fraction of training experience where lower bounding actually improves the225
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Bellman value target over the course of training. Overall, improved value target roughly coincides226

with performance gains. Appendix 1.4 shows the plots per each task.227

The Appendix also has more results, comparing with baselines such as n-step methods, DDQN and228

optimality tightening, and more analyses such as ablations and robustness to hyperparameter choices.229

6 Related Work230

Prior works (Fujita et al., 2020; Hoppe & Toussaint, 2020; He et al., 2017; Oh et al., 2018; Tang,231

2020) employed several different ways of computing future returns and using that as a lower bound232

to improve value learning. It is quite easy to introduce biases and inefficiencies into the process and233

end up with a suboptimal or inefficient algorithm. Our work is the first to propose the general form of234

value target lower bounding (possibly with bootstrapping), to show its convergence to the optimal235

value in the tabular case, and to demonstrate its effectiveness in illustrative examples and extensive236

experiments on a wide range of tasks.237

Fujita et al. (2020)’s method is similar to a special case (the lb-DR+GD variant) of the general238

method. They used it as a part of a large system and showed that it improved sample efficiency for a239

robotic grasping task. Hoppe & Toussaint (2020) also bounded the value target. But instead of using240

empirical return, they used a simplified MDP with a subset of actions. Although without theoretical241

proof and only experimented on a limited set of robotic manipulation tasks, both works show that242

value target lower bounding increased sample efficiency. This work, in addition to the theory and the243

more general method, shows that lower bounding improves both sample efficiency and converged244

performance in a wide range of tasks.245

He et al. (2017) used empirical return with bootstrap to improve value learning. They formulated value246

learning as a constrained optimization problem with the empirical bootstrapped value being the lower247

(and upper) constraints of the value function. In their experiments, the Lagrangian multiplier was248

fixed, which would likely lead to suboptimal solutions. Our lb-b-nstep method also uses bootstrapped249

value. But we lower bound the value target directly, which is simpler, more efficient, and likely more250

optimal. Our work points out that for episodic tasks, even more efficient and effective methods like251

lb-DR exist. Appendix 1.5 offers more discussion and results related to this.252

Our work is subtly but importantly different from the prior works on lower bound Q learning or Self253

Imitation Learning (SIL) (Oh et al., 2018; Tang, 2020). SIL uses empirical return R to lower bound254

the value function itself (instead of the value target). This is achieved by adding an off policy value255

loss during on-policy (AC or PPO) training (Lsil
value =

1
2 |v(s)−max(v(s), R)|2). When the value256

function overestimates, the SIL value loss becomes zero, and keeps overestimating. Mixing the SIL257

loss with the loss from the baseline algorithms probably helped to correct the overestimation, but no258

theoretical guarantee was given. In evaluation, SIL was often compared to on-policy Actor Critic or259

PPO baselines, so it was not clear how much of the gain was due to lower bounding and how much260

due to off-policy value learning. In this work, we bound the Bellman value target (Equation 11), so261

overestimates are automatically corrected via Bellman updates, and convergence is guaranteed in the262

tabular case. We also use off-policy algorithms as baselines for a cleaner comparison.263

N-step return methods such as td-lambda (Sutton & Barto, 2018) and Retrace (Munos et al., 2016)264

also look a few steps ahead, but to obtain more accurate value of the behavior policy. Traditionally,265

this requires careful off-policy correction, and the value can still be far from the optimal value due266

to the often suboptimal behavior. This work shows that value target lower bounding efficiently and267

effectively looks ahead much further without the need for off-policy correction, due to aiming at the268

optimal value. Appendix 1.5 has more detailed observations and discussions.269

Planning methods can look into the future to achieve higher value targets and better control. Examples270

include Monte Carlo Tree Search (MCTS) (Schrittwieser et al., 2019; Ye et al., 2021) and Model271

Predictive Control (MPC) or receding horizon planning with raw actions (Chua et al., 2018; Hafner272

et al., 2019; Zhang et al., 2022), options (Silver & Ciosek, 2012), or subgoals (Nasiriany et al.,273

2019; Nair & Finn, 2020; Chane-Sane et al., 2021). Planning methods use either a dynamics model274

together with the learned value or just the learned value (in the case of goal conditioned tasks)275

(Nasiriany et al., 2019) to improve policy or value estimates. Planning typically happens during roll276

out (Nasiriany et al., 2019), but can also be used to improve the value target, as in Reanalyze of277

MuZero (Schrittwieser et al., 2019; Ye et al., 2021). During value improvement, if planning takes278
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the maximum over a set of possible future values (e.g. from different trajectories as in the case279

of MPC), and if this set includes the one step Bellman value target, then the planner is essentially280

using alternative trajectories and their values to lower bound the Bellman value target. In this sense,281

the theory developed here can potentially justify and improve Reanalyze. In general, planning is282

orthogonal to value target lower bounding, and typically requires additional components and a lot283

more compute than the basic TD learning does. Therefore, we leave it to future work to explore the284

synergy between the two.285

Interestingly, it is common practice to lower and upper bound the returns to the possible region,286

e.g. Andrychowicz et al. (2017) bounds value between [− 1
1−γ , 0]. Similar to lower bounding with287

episodic return (Section 3.1), such strict bounds of the actual value can be thought of as admissible288

heuristics (bounds) used during search of the optimal solution (Russell & Norvig, 2020). What’s new289

in this work is that lower bounding with bootstrapped values (which can overestimate the value) still290

converges to the optimal value.291

Kumar et al. (2020) (DisCor) also recognized that bootstrapped value targets can be inaccurate. This292

bias impacts learning adversely under function approximation. DisCor uses distribution correction to293

sample experience with accurate bootstrap targets more frequently, while value target lower bounding294

aims to directly reduce the bias.295

While in theory using empirical return to lower bound the value target is only correct for deterministic296

environments, in practice, it seems as long as the environment is not heavily impacted by random fluc-297

tuations, they still perform well. In fact, with function approximation, the agents cannot distinguish298

between two slightly different states, making the problem partially observable (Sutton & Barto, 2018)299

and appear slightly random. Prior methods such as SIL (Oh et al., 2018), Optimality Tightening (He300

et al., 2017), and even Hindsight relabeling (Andrychowicz et al., 2017) and MuZero (Schrittwieser301

et al., 2019) require the environment to be deterministic. Despite this theoretical limitation, the lower302

bounding methods and the prior methods can still be very useful, outperforming baselines often by303

large margins and when deploying to the real world (Fujita et al., 2020).304

7 Conclusions305

We propose a general form of lower bounding the value target using possibly bootstrapped return. In306

theory, value target lower bounding converges to the same optimal solution as the original Bellman307

operator. In practice, several ways of finding value lower bounds are examined.308

For episodic tasks, discounted episodic return is an efficient and effective method involving very309

little extra computation. Precomputing the episodic return and storing it into the replay buffer310

allows efficient lower bound computation. It achieves much higher sample efficiency and converged311

performance than one-step baselines such as SAC, DDPG or TD3 in most tasks, and is competitive312

among n-step baselines. Simple goal distance based return uses even less compute and achieves large313

gains in certain long horizon tasks over Hindsight relabeling (HER).314

For non-episodic tasks or in general, lower bounding with n-step bootstrapped return outperforms315

one-step baselines and is a strong competitor to the n-step methods such as (truncated) td-lambda and316

Retrace.317

7.1 Future Work318

There are probably better ways of finding value lower bounds that improve training even more. One319

direction may be to use planning (e.g. Monte Carlo Tree Search, the Cross Entropy Method or using320

subgoals) to achieve tighter lower bounds given a model of the task.321

Estimating value lower bound for stochastic tasks may be possible, e.g. by learning a reward322

function and a dynamics model and using imagined rollouts to obtain bootstrapped returns without323

overestimation.324

Other ways of bounding the value target, e.g. upper bounding (He et al., 2017), may be worth325

investigating as well, e.g. to reduce overestimation in regions of poor reward.326
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