
Disentangled Motion Modeling for Video Frame Interpolation

Jaihyun Lew1, Jooyoung Choi2, Chaehun Shin2, Dahuin Jung3,†, Sungroh Yoon1,2,4,†

1Interdisciplinary Program in AI, Seoul National University
2Department of Electrical and Computer Engineering, Seoul National University

3School of Computer Science and Engineering, Soongsil University
4AIIS, ASRI and INMC, Seoul National University

{fudojhl, jy choi, chaehuny}@snu.ac.kr, dahuin.jung@ssu.ac.kr, sryoon@snu.ac.kr

MoMo (Ours)

ABME (Park, Lee, and Kim 2021)

LDMVFI (Danier, Zhang, and Bull 2024)

IFRNet-Large (Kong et al. 2022)

FILM-ℒ! (Reda et al. 2022)

AMT-G (Li et al. 2023)

Figure 1: Video frame interpolation results of our proposed method called MoMo with comparison to state-of-the-art methods.
MoMo produces the most visually pleasant result, owing to proper modeling of the intermediate motion.

Abstract

Video Frame Interpolation (VFI) aims to synthesize inter-
mediate frames between existing frames to enhance visual
smoothness and quality. Beyond the conventional methods
based on the reconstruction loss, recent works have employed
generative models for improved perceptual quality. However,
they require complex training and large computational costs
for pixel space modeling. In this paper, we introduce dis-
entangled Motion Modeling (MoMo), a diffusion-based ap-
proach for VFI that enhances visual quality by focusing on in-
termediate motion modeling. We propose a disentangled two-
stage training process. In the initial stage, frame synthesis and
flow models are trained to generate accurate frames and flows
optimal for synthesis. In the subsequent stage, we introduce a
motion diffusion model, which incorporates our novel U-Net
architecture specifically designed for optical flow, to generate
bi-directional flows between frames. By learning the simpler
low-frequency representation of motions, MoMo achieves
superior perceptual quality with reduced computational de-
mands compared to the generative modeling methods on the
pixel space. MoMo surpasses state-of-the-art methods in per-
ceptual metrics across various benchmarks, demonstrating its
efficacy and efficiency in VFI.

† Corresponding authors
Code available at: https://github.com/JHLew/MoMo

1 Introduction

Video Frame Interpolation (VFI) is a crucial task in com-
puter vision that aims to synthesize absent frames between
existing ones in a video. It has a wide spectrum of applica-
tions, such as slow motion generation (Jiang et al. 2018),
video compression (Wu, Singhal, and Krahenbuhl 2018),
and animation production (Siyao et al. 2021). Its ultimate
goal is to elevate the visual quality of videos through en-
hanced motion smoothness and image sharpness. Motions,
represented by optical flows (Sun et al. 2018; Teed and Deng
2020) and realized by warping, have been central to VFI’s
development as recent innovations in VFI have mostly been
accomplished along with advances in intermediate motion
estimation (Xu et al. 2019; Chi et al. 2020; Park et al. 2020;
Park, Lee, and Kim 2021; Sim, Oh, and Kim 2021; Reda
et al. 2022; Jin et al. 2023).

However, these approaches often result in perceptually
unsatisfying outcomes due to their reliance on L1 or L2 ob-
jectives, leading to high PSNR scores yet poor perceptual
quality (Ledig et al. 2017; Zhang et al. 2018). To address this
matter, recent advancements (Choi et al. 2020; Jiang et al.
2018; Niklaus and Liu 2020; Chen and Zwicker 2022) have
explored the use of deep feature spaces to achieve improved
quality in terms of human perception (Johnson, Alahi, and

ar
X

iv
:2

40
6.

17
25

6v
2

 [
cs

.C
V

]
 1

9
D

ec
 2

02
4

Fei-Fei 2016; Zhang et al. 2018). Additionally, the integra-
tion of generative models into VFI (Danier, Zhang, and Bull
2024; Wu et al. 2024) has introduced novel pathways for
improving the visual quality of videos but has primarily fo-
cused on modeling pixels or latent spaces directly, which
demands high computational resources.

We introduce disentangled Motion Modeling (MoMo), a
perception-oriented approach for VFI, focusing on the mod-
eling of intermediate motions rather than direct pixel gen-
eration. Here, we employ a diffusion model (Ho, Jain, and
Abbeel 2020) to generate bi-directional optical flow maps,
marking the first use of generative modeling for motion in
VFI. We propose to disentangle the training of frame syn-
thesis and intermediate motion prediction into a two-stage
process: the initial stage includes the training of a frame syn-
thesis model and fine-tuning of an optical flow model (Teed
and Deng 2020). The frame synthesis model is designed to
correctly synthesize an RGB frame given a pair of frames
and their corresponding flow maps. In the subsequent stage
of training, we train our motion diffusion model, which gen-
erates the intermediate motions the frame synthesis model
uses to create the final interpolated frame during inference.
In this stage of training, the optical flow model fine-tuned in
the first stage serves as a teacher to provide pseudo-labels
for the motion diffusion model. We also propose a novel ar-
chitecture for our motion diffusion model, inspired by the
nature of optical flows, enhancing both computational effi-
ciency and performance.

Our experiments validate the effectiveness and efficiency
of our proposed training scheme and architecture, demon-
strating superior performance across various benchmarks
in terms of perceptual metrics, with approximately 70×
faster runtime compared to the existing diffusion-based VFI
method (Danier, Zhang, and Bull 2024). By prioritizing the
generative modeling of motions, our approach enhances vi-
sual quality, effectively addressing the core objective of VFI.

Our contributions can be summarized as follows:

• We introduce MoMo, a diffusion-based method focusing
on generative modeling of bi-directional optical flows for
the first time in VFI.

• We propose to disentangle the training of frame synthe-
sis and intermediate motion modeling into a two-stage
process, which are the crucial components in VFI.

• We introduce a novel diffusion model architecture suit-
able for optical flow modeling, boosting efficiency and
quality.

2 Related Work
2.1 Flow-based Video Frame Interpolation
In deep learning-based Video Frame Interpolation (VFI), op-
tical flow-based methods have recently become prominent,
typically following a common two-stage process. First, the
flows to or from the target intermediate frame is estimated,
which involves warping of the input frame pair with the es-
timated flows. Then, a synthesis network merges the warped
frames to produce the final frame. Recent advances in VFI
quality have progressed with enhancements in intermediate

flow predictions (Huang et al. 2022b; Kong et al. 2022; Lu
et al. 2022; Zhang et al. 2023; Li et al. 2023), sparking spe-
cialized architectures to improve flow accuracy (Park et al.
2020; Park, Lee, and Kim 2021; Park, Kim, and Kim 2023).
Following this direction of studies, our work aims to fo-
cus on improving intermediate flow prediction. Unlike most
methods that heavily rely on reconstruction loss for end-
to-end training, with optional flow distillation loss (Huang
et al. 2022b; Kong et al. 2022) for stabilized training, our ap-
proach employs disentangled and direct supervision solely
on flow estimation, marking an innovation in VFI research.

2.2 Perception-oriented Restoration
Conventional restoration methods in computer vision, in-
cluding VFI, focused on minimizing L1 or L2 distances,
often resulting in blurry images (Ledig et al. 2017) due to
prioritizing of pixel accuracy over human visual perception.
Recent studies have shifted towards deep feature spaces for
reconstruction loss (Johnson, Alahi, and Fei-Fei 2016) and
evaluation metrics (Zhang et al. 2018; Ding et al. 2020),
demonstrating that these align better with human judgment.
These approaches emphasize perceptual similarities over
traditional metrics like PSNR, signaling a move towards
more visually appealing, photo-realistic image synthesis.

Ever since the pioneering work of SRGAN (Ledig et al.
2017), generative models have been actively used to enhance
visual quality in restoration tasks (Saharia et al. 2022b;
Menon et al. 2020). The adoption of generative models has
also been explored in VFI (Voleti, Jolicoeur-Martineau, and
Pal 2022; Danier, Zhang, and Bull 2024; Wu et al. 2024).
LDMVFI (Danier, Zhang, and Bull 2024), closely related
to our work, use latent diffusion models (Rombach et al.
2022) to enhance perceptual quality. Our method aligns with
such innovations but uniquely focuses on generating optical
flow maps, differing from prior generative approaches that
directly model the pixel space.

2.3 Diffusion Models
Diffusion models (Sohl-Dickstein et al. 2015; Ho, Jain, and
Abbeel 2020) are popular generative models that consist of
forward and reverse process. Initially, the forward process
incrementally adds noise to the data x0 over T steps via a
predefined Markov chain, resulting in xT that approximates
a Gaussian noise. The diffused data xt is obtained through
forward process:

xt =
√
αtx0 +

√
1− αtϵ, (1)

where αt ∈ {α1, ..., αT } is a pre-defined noise schedule.
Then, the reverse process undoes the forward process by
starting from Gaussian noise xT and gradually denoising
back to x0 over T steps. Diffusion models train a neural net-
work to perform denoising at each step, by minimizing the
following objective:

L = Ex0,ϵ∼N (0,I),t∼U(1,T) ∥ϵ− ϵθ (xt, t)∥2 . (2)

While a commonly used approach is to predict the noise as
above (ϵ-prediction), there are some alternatives, such as x0-
prediction (Ramesh et al. 2022) which predicts the data x0

Training) Step 2: Intermediate Motion Modeling

Forward diffusion process

𝑧! = 𝐹"→!, 𝐹"→$ 𝑧%

�̂�!

Motion
Diffusion Model

𝐼! 𝐼$Flow
 M

odel

𝐹"→$

𝐹"→!
𝐼" 𝐼!

𝐼" 𝐼$

Flow
 M

odel

Training) Step 1: Synthesis Model & (Teacher) Flow model

Synthesis M
odel

Flow
 M

odel

𝐼" 𝐼!

𝐼"
𝐼$ 𝐹"→$

𝐹"→!

𝐼'"

Flow
 M

odel

Inference)

𝐼! 𝐼$

Motion
Diffusion Model

𝑧&~𝒩(0, 1)

�̂�! = 𝐹%"→!, 𝐹%"→$

Synthesis M
odel

×𝑇

(𝐼$ only)

(𝐼! only)

𝐼'"
𝐼"

ℒ'

𝐿$

Figure 2: Overview of our entire framework. The training procedure operates in two stages. Initially, we train a frame synthesis
network and an optical flow model, with the latter providing pseudo-labels for the second stage. In the second stage of training,
we focus on training a Motion Diffusion Model to predict bi-directional flow between frames. During inference, the Motion
Diffusion Model generates flow fields given the input frame pair, which the frame synthesis model uses to generate the output.

itself or v-prediction (Salimans and Ho 2022), beneficial for
numerical stability.

Diffusion model synthesizes the data in an iterative man-
ner following the backward process, resulting in high per-
ceptual quality of image samples or video samples (Sa-
haria et al. 2022a; Ho et al. 2022). Further, we are moti-
vated by optical flow modeling with diffusion models in
other tasks (Saxena et al. 2023; Ni et al. 2023), and aim
to leverage the benefit of diffusion models for optical flow
synthesis in video frame interpolation. Although an existing
work employs diffusion model for video frame interpolation
task (Danier, Zhang, and Bull 2024), our method synthesizes
the intermediate optical flows rather than directly synthesiz-
ing the RGB frames.

3 Method
3.1 Overview
In this paper, we focus on the goal of synthesizing an in-
termediate frame Iτ between consecutive frames I0 and I1,
where 0 < τ < 1. Our method adopts a two-stage training
scheme to disentangle the training of motion modeling and
frame synthesis (Fig. 2). In the first stage, we train a frame
synthesis network to synthesize an RGB frame from neigh-
boring frames and their bi-directional flows. Then, we fine-
tune the optical flow model to enhance flow quality. In the

second stage, the fine-tuned flow model serves as a teacher
for training the motion diffusion model. During inference,
this motion diffusion model generates intermediate motion
(bi-directional flow maps in specific), which the synthesis
network uses to produce the final RGB frame.

3.2 Synthesis and Teacher Flow Models
We propose a synthesis network S, designed to accurately
generate an intermediate target frame using a pair of input
frames and their corresponding optical flows from the target
frames. Specifically, given a frame pair of I0, I1, and the tar-
get intermediate frame Iτ , we first use an optical flow model
F to obtain the bi-directional flow from the target frame to
the input frames:

Fτ→i = F(Iτ , Ii), i ∈ {0, 1}, (3)

where i denotes the index of input frames. With the esti-
mated flows and their corresponding frames from the target
frame, we synthesize Îτ , which aims to recover the target
frame Iτ .

Îτ = S(Iin, Fτ), (4)
where Iin denotes the input frame pair {I0, I1} and Fτ de-
notes the corresponding flow pair {Fτ→0, Fτ→1}.

We adopt pre-trained RAFT (Teed and Deng 2020) for op-
tical flow model F , and train the synthesis network S from

In
pu

t D
ow

n-
sa

m
pl

in
g

Re
sB

lo
ck

Do
w

n
Re

sB
lo

ck

Do
w

n
Re

sB
lo

ck

Re
sB

lo
ck

Co
nv

ex
U

ps
am

pl
in

g

U
p

Re
sB

lo
ck

U
p

Re
sB

lo
ck

Re
sB

lo
ck

H x W x (3 x 2 + 2 x 2) H/8 x W
/8 x C

H/8 x W
/8 x C

H/16 x W
/16 x C

H/32 x W
/32 x 2

C

(Fine flows) H x W x (2 x 2)

(Up. Weights) H/8 x W/8 x (8 x 8 x 9 x 2)

(Coarse flows) H/8 x W/8 x (2 x 2)

H/16 x W
/16 x C

H/32 x W
/32 x 2

C

Figure 3: Architecture of our motion diffusion model. The input pair frames are downsampled to an 8× smaller size and goes
through a 3-level U-Net, which outputs a pair of coarse flow maps and their corresponding weight masks for upsampling. The
convex upsampling layer takes the coarse flow maps and weight masks to return the full resolution flow maps.

scratch. We use an alternating optimization of two models S
and F . We first fix F to the pre-trained state, and train the
synthesis network S. Once the training of S converges, we
freeze S, and fine-tune F . We fine-tune F so that it could
provide better estimations as the teacher in the next stage of
training. Note that the flow modelF is not used during infer-
ence, but serves its purpose as the teacher for intermediate
motion modeling described in Sec. 3.3.

Objective For optimization, we compute loss on the final
synthesized output Îτ , with a combination of three terms.
First, we use the pixel reconstruction error between the syn-
thesized frame and the target frame: L1 = ||Iτ − Îτ ||1. Fol-
lowing recent efforts (Danier, Zhang, and Bull 2024; Chen
and Zwicker 2022), we adopt the LPIPS-based perceptual
reconstruction loss Lp (Zhang et al. 2018), and also exploit
the style loss LG (Gatys, Ecker, and Bethge 2016) , as its ef-
fectiveness has been proved in a recent work (Reda et al.
2022). By combining the three loss terms, we define our
perception-oriented reconstruction loss Ls for high quality
synthesis:

Ls = λ1L1 + λpLp + λGLG. (5)

Further details on our perception-oriented reconstruction
loss can be found in the Appendix.

Recurrent Synthesis We build our synthesis network S
to be of recurrent structure, motivated by the recent trend
in video frame interpolation (Sim, Oh, and Kim 2021; Jin
et al. 2023; Reda et al. 2022), due to its great efficiency.
The inputs Iin and Fτ are resized to various scales of lower-
resolution, and by applying our synthesis module G recur-
rently from low-resolution and to higher resolutions, the out-
put frame is synthesized in a coarse-to-fine manner. For our
synthesis module G, we use a simple 3-level hierarchy U-
Net (Ronneberger, Fischer, and Brox 2015). Details on our
recurrent synthesis procedure are described in the Appendix.

3.3 Intermediate Motion Modeling with Diffusion
With a synthesis network fixed, we focus on modeling the
intermediate motions for VFI. We use our fine-tuned flow
model F as the teacher to train our motion diffusion model
M, which generates bi-directional optical flows from the

pair of input frames I0 and I1. Denoting concatenated flows
z0 = {Fτ→0, Fτ→1}, we train a diffusion modelM by min-
imizing the following objective:

Lm = Ez0,t∼U(1,T)[||z0 −M(zt, t, I0, I1)||1], (6)

where zt represents noisy flows diffused by Eq. 1. We con-
catenate I0 and I1 to zt and keep the teacher F frozen
during training of M. While ϵ-prediction (Ho, Jain, and
Abbeel 2020) and L2 norm are popular choices for train-
ing diffusion-based image generative models, we found x0-
prediction and L1 norm to be beneficial for modeling flows.
While image diffusion models utilize a U-Net architecture
that employs input and output of the same resolution for
noisy images that operates fully on the entire resolution, we
introduce a new architecture forM aimed at learning opti-
cal flows and enhancing efficiency, which will be described
in the following paragraph.

Architecture An overview of our proposed motion diffu-
sion model architecture is provided at Fig. 3. In our novel
diffusion model architecture designed for motion model-
ing, we begin by excluding attention layers, as we have
found doing so saves memory without deterioration in per-
formance. Observing that optical flow maps—our primary
target—are sparse representations encoding low-frequency
information, we opt to avoid the unnecessary complexity of
full-resolution estimation. Consequently, we initially predict
flows at 1/8 of the input resolution and upsample them by
8×, a method mirroring the coarse-to-fine strategies (Teed
and Deng 2020; Xu et al. 2022; Huang et al. 2022a), thus
sidestepping the need for full-resolution flow estimation. We
realize this by introducing input downsampling and con-
vex upsampling (Teed and Deng 2020) into U-Net, making
our architecture computationally efficient and well-suited to
meet our resolution-specific needs. We elaborate them in the
following paragraphs.

Input Downsampling Given an input {zt, I0, I1} of 10
channels, we downsample and encode it to 1/8 resolution.
Rather than using a single layer to directly apply on the 10
channel input, we separately apply layers DI and Dz on the
frames and the noisy flows, respectively:

I ′0 = DI(I0), I
′
1 = DI(I1), z

′
t = Dz(zt). (7)

By sharing the parameters applied to I0 and I1, we could
save the number of parameters required for the downsam-
pling process, and make it invariant to the order of the two
input frames. Once we obtain the downsampled features
I ′0, I

′
1, z
′
t, we concatenate and project them to features:

pt = Dp([I
′
0, I
′
1, z
′
t]), (8)

where the projection layer Dp is implemented by a single
1× 1 convolutional layer.

The projected features pt is then given to a 3-level dif-
fusion U-Net, which produces two outputs: a coarse esti-
mation of flow maps and their corresponding upsampling
weight masks. The two outputs are combined in the convex
upsampling layer to obtain the final full-scale flow maps.

Convex Upsampling Given the coarse flow maps and
their corresponding upsampling weight masks, both of size
H/8×W/8, we attempt to upsample the coarse flows to the
original H × W resolution using a weighted combination
of 3 × 3 grid of each coarse flow neighbors, by integrating
the convex upsampling layer (Teed and Deng 2020) to our
architecture. Using the predicted upsampling weight masks
of 8× 8× 9 channels, we apply softmax on the weights of 9
neighboring pixels, and perform weighted summation with
coarse flows to obtain the final upsampled flow map. An il-
lustrated description is provided in the Appendix.

This method aligns with x0-prediction, promoting local
correlations and differing from ϵ-predictions which neces-
sitate locally independent estimations. By operating at a
reduced resolution, specifically at 64× smaller space, we
achieve significant computation savings. Note that this up-
sampling layer does not involve any learnable parameters.

4 Experiments

4.1 Experiment Settings

Implementation Details We train our model on the
Vimeo90k dataset (Xue et al. 2019), using random 256×256
crops with augmentations like 90◦ rotation, flipping, and
frame order reversing. We recommend the reader to refer
to the Appendix for further details.

Evaluation Protocol We evaluate on well-known VFI
benchmarks: Vimeo90k (Xue et al. 2019), SNU-FILM (Choi
et al. 2020), Middlebury (others-set) (Baker et al. 2011),
and Xiph (Montgomery and Lars 1994; Niklaus and Liu
2020), chosen for their broad motion diversity and mag-
nitudes. Following practices in generative models-based
restoration (Danier, Zhang, and Bull 2024; Liang, Zeng,
and Zhang 2022), we focus on perceptual similarity metrics
LPIPS (Zhang et al. 2018) and DISTS (Ding et al. 2020),
which highly correlates with human perception, for evalua-
tion. While PSNR and SSIM are popular metrics, they have
been known to differ from human perception in some as-
pects, sensitive to imperceptible differences in pixels and
preferring blurry samples (Zhang et al. 2018). The full re-
sults can be found in the Appendix.

FILM-ℒ!XVFI MoMo (Ours)

Sy
nt
he
si
ze
d

Fl
ow

𝐹 !
→
#

Fl
ow

𝐹 !
→
$

Figure 4: Visualized comparison of estimated intermediate
flows against state-of-the-art methods. Our flow estimations
show better-structured flow fields which leads to promising
synthesis of frames.

4.2 Comparison to State-of-the-arts
Baselines We compare our method, MoMo, with state-of-
the-art VFI methods which employ perception-oriented ob-
jectives in the training process: CAIN (Choi et al. 2020),
FILM-Lvgg, FILM-Ls (Reda et al. 2022), LDMVFI (Danier,
Zhang, and Bull 2024) and PerVFI (Wu et al. 2024). Since
there is a limited number of methods focused on perception-
oriented objectives, we also include methods trained with
the traditional pixel-wise reconstruction loss for compari-
son: XVFI (Sim, Oh, and Kim 2021), RIFE (Huang et al.
2022b), IFRNet (Kong et al. 2022), AMT (Li et al. 2023),
EMA-VFI (Zhang et al. 2023), UPRNet (Jin et al. 2023).

Quantitative Results Tables 1 and 2 present our quantita-
tive results across four benchmark datasets. MoMo achieves
state-of-the-art on all four subsets of SNU-FILM, leading
in both LPIPS and DISTS metrics. On Middlebury and
Vimeo90k, it outperforms baselines in DISTS and closely
trails FILM-Ls in LPIPS. MoMo also excels on both Xiph
subsets, 2K and 4K, in both metrics. This highlights the
effectiveness of our approach in generating well-structured
optical flows for the intermediate frame through proficient
intermediate motion modeling.

To support our discussion, we provide a visualization of
flow estimations and the frame synthesis outcomes, with
comparison to state-of-the-art algorithms at Fig. 4. Although
XVFI and FILM takes advantage of the recurrent architec-
ture tailored for flow estimations at high resolution images,
they fail in well-structured flow estimations and frame syn-
thesis. XVFI largely fails in flow estimation, which results in
blurry outputs. The estimations by FILM display vague and
noisy motion boundaries, especially in Fτ→1. Another im-
portant point to note is that the flow pair Fτ→0 and Fτ→1 of
FILM do not align well with each other, causing confusion
in the synthesis process.

Qualitative Results The qualitative results of MoMo with
comparison to the state-of-the-art algorithms can be found
at Fig. 1 and 5. In Fig. 1, MoMo reconstructs both wings
with rich details, whereas methods of the top row, which
greatly relies on the L1 pixel-wise loss in training show

Method Perception-
oriented loss

FILM-easy FILM-medium FILM-hard FILM-extreme
LPIPS DISTS LPIPS DISTS LPIPS DISTS LPIPS DISTS

ABME (Park, Lee, and Kim 2021) ✗ 0.0222 0.0229 0.0372 0.0344 0.0658 0.0496 0.1258 0.0747
XVFIv (Sim, Oh, and Kim 2021) ✗ 0.0175 0.0181 0.0322 0.0276 0.0629 0.0414 0.1257 0.0673
IFRNet-Large (Kong et al. 2022) ✗ 0.0203 0.0211 0.0321 0.0288 0.0562 0.0403 0.1131 0.0638
RIFE (Huang et al. 2022b) ✗ 0.0181 0.0195 0.0317 0.0289 0.0657 0.0443 0.1390 0.0764
FILM-L1 (Reda et al. 2022) ✗ 0.0184 0.0217 0.0315 0.0316 0.0568 0.0441 0.1060 0.0632
AMT-G (Li et al. 2023) ✗ 0.0325 0.0312 0.0447 0.0395 0.0680 0.0506 0.1128 0.0686
EMA-VFI (Zhang et al. 2023) ✗ 0.0186 0.0204 0.0325 0.0318 0.0579 0.0457 0.1099 0.0671
UPRNet-LARGE (Jin et al. 2023) ✗ 0.0182 0.0203 0.0334 0.0327 0.0612 0.0475 0.1109 0.0672
CAIN (Choi et al. 2020) ✓ 0.0197 0.0229 0.0375 0.0347 0.0885 0.0606 0.1790 0.1042
FILM-Lvgg (Reda et al. 2022) ✓ 0.0123 0.0128 0.0219 0.0183 0.0443 0.0282 0.0917 0.0471
FILM-Ls (Reda et al. 2022) ✓ 0.0120 0.0124 0.0213 0.0177 0.0429 0.0268 0.0889 0.0448
LDMVFI (Danier, Zhang, and Bull 2024) ✓ 0.0145 0.0130 0.0284 0.0219 0.0602 0.0379 0.1226 0.0651
PerVFI (Wu et al. 2024) ✓ 0.0142 0.0124 0.0245 0.0181 0.0561 0.0635 0.0902 0.0448
MoMo (Ours) ✓ 0.0111 0.0102 0.0202 0.0155 0.0419 0.0252 0.0872 0.0433

Table 1: Quantitative experiments on the SNU-FILM benchmark (Choi et al. 2020). The best results are in bold, and the second
best is underlined, respectively. Our method outperforms existing methods on all four subsets.

Method Perception-
oriented loss

Middlebury Vimeo90k Xiph-2K Xiph-4K
LPIPS DISTS LPIPS DISTS LPIPS DISTS LPIPS DISTS

ABME (Park, Lee, and Kim 2021) ✗ 0.0290 0.0325 0.0213 0.0353 0.1071 0.0581 0.2361 0.1108
XVFIv (Sim, Oh, and Kim 2021) ✗ 0.0169 0.0244 0.0229 0.0354 0.0844 0.0418 0.1835 0.0779
IFRNet-Large (Kong et al. 2022) ✗ 0.0285 0.0366 0.0189 0.0325 0.0681 0.0372 0.1364 0.0665
RIFE (Huang et al. 2022b) ✗ 0.0162 0.0228 0.0223 0.0356 0.0918 0.0481 0.2072 0.0915
FILM-L1 (Reda et al. 2022) ✗ 0.0173 0.0246 0.0197 0.0343 0.0906 0.0510 0.1841 0.0884
AMT-G (Li et al. 2023) ✗ 0.0486 0.0533 0.0195 0.0351 0.1061 0.0563 0.2054 0.1005
EMA-VFI (Zhang et al. 2023) ✗ 0.0151 0.0218 0.0196 0.0343 0.1024 0.0550 0.2258 0.1049
UPRNet-LARGE (Jin et al. 2023) ✗ 0.0150 0.0209 0.0201 0.0342 0.1010 0.0553 0.2150 0.1017
CAIN (Choi et al. 2020) ✓ 0.0254 0.0383 0.0306 0.0483 0.1025 0.0533 0.2229 0.0980
FILM-Lvgg (Reda et al. 2022) ✓ 0.0096 0.0148 0.0137 0.0229 0.0355 0.0238 0.0754 0.0406
FILM-Ls (Reda et al. 2022) ✓ 0.0093 0.0140 0.0131 0.0224 0.0330 0.0237 0.0703 0.0385
LDMVFI (Danier, Zhang, and Bull 2024) ✓ 0.0195 0.0261 0.0233 0.0327 0.0420 0.0163 0.0859 0.0359
PerVFI (Wu et al. 2024) ✓ 0.0142 0.0163 0.0179 0.0248 0.0381 0.0153 0.0858 0.0331
MoMo (Ours) ✓ 0.0094 0.0126 0.0136 0.0203 0.0300 0.0119 0.0631 0.0274

Table 2: Quantitative experiments on the three benchmarks, Middlebury (Baker et al. 2011), Vimeo90k (Xue et al. 2019)
and Xiph-2K,4K (Montgomery and Lars 1994; Niklaus and Liu 2020). The best results are in bold, and the second best is
underlined, respectively.

blurry results. Moreover, our result also outperforms state-
of-the-art models designed particularly for perceptual qual-
ity, LDMVFI and FILM-Ls, with well-structurized synthe-
sis of both wings. Fig. 5 present additional results obtained
from the ‘extreme’ subset of SNU-FILM and Xiph-4K set.
MoMo consistently shows a superior visual quality, with less
artifacts and well-structured objects. The interpolated video
samples are provided in the supplementary material.

4.3 Ablation Studies
We conduct ablation studies to verify the effects of our
design choices. We use the ‘hard’ subset of SNU-FILM
dataset, unless mentioned otherwise. We start by studying
the effects of the teacher optical flow model, used for train-
ing the motion diffusion model. We then experiment on the
number of denoising steps used at inference time. Lastly, we

study on the design choices in diffusion architecture.

Optical Flow Teacher We conduct a study on the teacher
optical flow model. We choose RAFT (Teed and Deng 2020)
as the teacher model, the state-of-the-art model for optical
flow estimation. We test the teacher model of three differ-
ent weights: 1) the default off-the-shelf weights provided by
the Torchvision library (maintainers and contributors 2016).
2) Initialized with the pre-trained weights, weights trained
jointly with our synthesis network in an end-to-end manner.
3) Optimized in an alternating manner with the synthesis
network, initialized from pre-trained weights, as described
in Sec. 3.2. We use these three different versions of RAFT
as the teacher for the experiment.

The ablation study summarized in Table 4 shows that fine-
tuning the flow model F after training the synthesis model
G is the most effective. Fine-tuning of F enhances flow esti-

Data Prediction Architecture LPIPS DISTS TFLOPs Params. (M) R-time (ms)

Latent ϵ Standard U-Net (Danier, Zhang, and Bull 2024) 0.0601 0.0379 3.25 439.0 10283.51

Flow ϵ Standard U-Net 0.4090 0.2621 8.08 71.1 603.64
Flow x0 Standard U-Net 0.0460 0.0295 8.08 71.1 603.64
Flow x0 (weighted) Convex-Up U-Net (Ours) 0.0463 0.0298 1.12 73.6 145.49
Flow x0 Convex-Up U-Net (Ours) 0.0425 0.0257 1.12 73.6 145.49
Flow x0 Convex-Up U-Net (Ours) + Longer Training 0.0419 0.0252 1.12 73.6 145.49

Table 3: Ablation study on our motion diffusion model. Our design choice reaches the best performance with minimal compu-
tational needs and fastest runtime. The first row includes our baseline, LDMVFI (Danier, Zhang, and Bull 2024), for reference.

FILM-ℒ! MoMo (Ours)FILM-ℒ" GTLDMVFI

Figure 5: Qualitative comparison against state-of-the-art
methods on ‘extreme’ subset of SNU-FILM and Xiph-
4K. Our results show the least artifacts and generate well-
structured images.

mation and suitability for synthesis tasks (Xue et al. 2019).
However, end-to-end training can cause the synthesis model
to depend too heavily on estimated flows, risking inaccura-
cies from the motion diffusion model. Our results highlight
that sequential training of the synthesis model and the flow
estimator ensures optimal performance.

Diffusion Architecture In our ablation study, detailed
in Table 3, we assess our motion diffusion model us-
ing the standard timestep-conditioned U-Net architecture
(UNet2DModel) from the diffusers library (von Platen
et al. 2022), alongside ϵ- and x0-prediction types. Contrary
to the common preference for ϵ-prediction in diffusion mod-
els, our motion diffusion model favors x0-prediction.

We also explore our coarse-to-fine estimation using con-
vex upsampling. This approach reduces computational costs
and improves performance. Given that our architecture pre-
dicts values with a strong correlation between neighbor-
ing pixels, ϵ-prediction, which samples noise independently,
proves less suitable. We experiment with a SNR-weighted
x0-prediction (Salimans and Ho 2022), to make it equivalent
to ϵ-prediction loss. Nonetheless, x0-prediction consistently
outperforms, validating our architectural decisions.

Despite having a similar number of parameters as the

Teacher Fine-tune F Train S LPIPS DISTS

Pre-trained ✗ ✗ 0.0445 0.0284
End-to-End ✓ ✓ 0.0475 0.0287
Alternating (Ours) ✓ ✗ 0.0419 0.0252

Table 4: Experiments on the teacher flow model. We use
RAFT (Teed and Deng 2020) with three different weights.
The results show that alternating optimization, fine-tuning
the flow model with S fixed, to be the most effective.

of steps LPIPS DISTS

1 step (≈ non-diffusion) 0.0892 0.0452
8 step (default) 0.0872 0.0433
20 step 0.0872 0.0433
50 step 0.0874 0.0435

Table 5: Experiment on the number of denoising steps for
inference (on SNU-FILM-extreme). Our experiments show
that about 8 steps is enough, and use of more steps exceeding
this does not lead to a notable improvement.

standard U-Net, our Convex Upsampling U-Net signifi-
cantly reduces floating point operations (FLOPs) by about
7.2×. Runtime tests on a NVIDIA 32GB V100 GPU for
256 × 448 resolution frames—averaged over 100 itera-
tions—reveal that our Convex-Up U-Net processes frames in
approximately 145.49 ms each, achieving a 4.15× speedup
over the standard U-Net and an 70× faster inference speed
than the LDMVFI baseline. This efficiency is attributed to
our model’s efficient architecture and notably fewer denois-
ing steps.

Effectiveness of Diffusion Table 5 shows the effect of
number of denoising steps in motion generation, experi-
mented on the ‘extreme’ subset of SNU-FILM. We observe
consistent improvement with more number of steps up to
8, with more steps not markedly improving performance. In
contrast to image diffusion models (Rombach et al. 2022)
and LDMVFI (Danier, Zhang, and Bull 2024) which re-
quires over 50 steps, our method delivers satisfactory out-
comes with far fewer steps, cutting down on both runtime
and computational expenses. This is likely due to the sim-
pler nature of flow representations compared to RGB pixels.
This experiment shows the effectiveness of using diffusion
models in motion modeling, as use of multiple steps guaran-
tees better motion predictions.

5 Conclusion
In this paper, we proposed MoMo, a disentangled motion
modeling framework for perceptual video frame interpola-
tion. Our approach mainly focuses on modeling the inter-
mediate motions between frames, with explicit supervision
on the motions only. We introduced motion diffusion model,
which generates intermediate bi-directional flows necessary
to synthesize the target frame with a novel architecture tai-
lored for optical flow generation, which greatly improves
both performance and computational efficiency. Extensive
experiments confirm that our method achieve state-of-the-
art quality on multiple benchmarks.

Acknowledgement
This work was partly supported by Institute of In-
formation & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea gov-
ernment(MSIT) [NO.RS-2021-II211343, Artificial Intelli-
gence Graduate School Program (Seoul National Univer-
sity)], the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No.
2022R1A3B1077720), the National Research Foundation
of Korea (NRF) grant funded by the Korea government
(MSIT)(No. 2022R1A5A7083908), and the BK21 FOUR
program of the Education and the Research Program for Fu-
ture ICT Pioneers, Seoul National University in 2024.

References
Baker, S.; Scharstein, D.; Lewis, J.; Roth, S.; Black, M. J.;
and Szeliski, R. 2011. A database and evaluation method-
ology for optical flow. International journal of computer
vision, 92: 1–31.
Chen, S.; and Zwicker, M. 2022. Improving the perceptual
quality of 2d animation interpolation. In European Confer-
ence on Computer Vision, 271–287. Springer.
Chi, Z.; Mohammadi Nasiri, R.; Liu, Z.; Lu, J.; Tang, J.; and
Plataniotis, K. N. 2020. All at once: Temporally adaptive
multi-frame interpolation with advanced motion modeling.
In Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXVII 16, 107–123. Springer.
Choi, M.; Kim, H.; Han, B.; Xu, N.; and Lee, K. M. 2020.
Channel Attention Is All You Need for Video Frame Inter-
polation. In AAAI.
Danier, D.; Zhang, F.; and Bull, D. 2024. Ldmvfi: Video
frame interpolation with latent diffusion models. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 38, 1472–1480.
Ding, K.; Ma, K.; Wang, S.; and Simoncelli, E. P. 2020.
Image Quality Assessment: Unifying Structure and Texture
Similarity. CoRR, abs/2004.07728.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image style
transfer using convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2414–2423.

Ho, J.; Chan, W.; Saharia, C.; Whang, J.; Gao, R.; Gritsenko,
A.; Kingma, D. P.; Poole, B.; Norouzi, M.; Fleet, D. J.; et al.
2022. Imagen video: High definition video generation with
diffusion models. arXiv preprint arXiv:2210.02303.
Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising diffusion
probabilistic models. Advances in neural information pro-
cessing systems, 33: 6840–6851.
Huang, Z.; Shi, X.; Zhang, C.; Wang, Q.; Cheung, K. C.;
Qin, H.; Dai, J.; and Li, H. 2022a. Flowformer: A trans-
former architecture for optical flow. In European Confer-
ence on Computer Vision, 668–685. Springer.
Huang, Z.; Zhang, T.; Heng, W.; Shi, B.; and Zhou, S.
2022b. Real-time intermediate flow estimation for video
frame interpolation. In European Conference on Computer
Vision, 624–642. Springer.
Jiang, H.; Sun, D.; Jampani, V.; Yang, M.-H.; Learned-
Miller, E.; and Kautz, J. 2018. Super slomo: High quality
estimation of multiple intermediate frames for video inter-
polation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 9000–9008.
Jin, X.; Wu, L.; Chen, J.; Chen, Y.; Koo, J.; and Hahm, C.-
h. 2023. A Unified Pyramid Recurrent Network for Video
Frame Interpolation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 1578–
1587.
Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Perceptual
losses for real-time style transfer and super-resolution. In
Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part II 14, 694–711. Springer.
Kong, L.; Jiang, B.; Luo, D.; Chu, W.; Huang, X.; Tai, Y.;
Wang, C.; and Yang, J. 2022. Ifrnet: Intermediate feature
refine network for efficient frame interpolation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1969–1978.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25.
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham,
A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.;
et al. 2017. Photo-realistic single image super-resolution us-
ing a generative adversarial network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 4681–4690.
Li, Z.; Zhu, Z.-L.; Han, L.-H.; Hou, Q.; Guo, C.-L.; and
Cheng, M.-M. 2023. AMT: All-Pairs Multi-Field Trans-
forms for Efficient Frame Interpolation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 9801–9810.
Liang, J.; Zeng, H.; and Zhang, L. 2022. Details or arti-
facts: A locally discriminative learning approach to realistic
image super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
5657–5666.
Loshchilov, I.; and Hutter, F. 2017. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101.

Lu, L.; Wu, R.; Lin, H.; Lu, J.; and Jia, J. 2022. Video
frame interpolation with transformer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3532–3542.
maintainers, T.; and contributors. 2016. TorchVision:
PyTorch’s Computer Vision library. https://github.com/
pytorch/vision.
Menon, S.; Damian, A.; Hu, S.; Ravi, N.; and Rudin, C.
2020. Pulse: Self-supervised photo upsampling via latent
space exploration of generative models. In Proceedings
of the ieee/cvf conference on computer vision and pattern
recognition, 2437–2445.
Montgomery, C.; and Lars, H. 1994. Xiph. org video
test media (derf’s collection). Online, https://media. xiph.
org/video/derf, 6.
Ni, H.; Shi, C.; Li, K.; Huang, S. X.; and Min, M. R. 2023.
Conditional Image-to-Video Generation with Latent Flow
Diffusion Models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 18444–
18455.
Niklaus, S.; and Liu, F. 2020. Softmax splatting for video
frame interpolation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 5437–
5446.
Park, J.; Kim, J.; and Kim, C.-S. 2023. BiFormer: Learn-
ing Bilateral Motion Estimation via Bilateral Transformer
for 4K Video Frame Interpolation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1568–1577.
Park, J.; Ko, K.; Lee, C.; and Kim, C.-S. 2020. Bmbc: Bilat-
eral motion estimation with bilateral cost volume for video
interpolation. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XIV 16, 109–125. Springer.
Park, J.; Lee, C.; and Kim, C.-S. 2021. Asymmetric bi-
lateral motion estimation for video frame interpolation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 14539–14548.
Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; and Chen, M.
2022. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 1(2): 3.
Reda, F.; Kontkanen, J.; Tabellion, E.; Sun, D.; Pantofaru,
C.; and Curless, B. 2022. FILM: Frame Interpolation for
Large Motion. In European Conference on Computer Vision
(ECCV).
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 10684–
10695.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net:
Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, 234–241. Springer.

Saharia, C.; Chan, W.; Saxena, S.; Li, L.; Whang, J.; Denton,
E. L.; Ghasemipour, K.; Gontijo Lopes, R.; Karagol Ayan,
B.; Salimans, T.; et al. 2022a. Photorealistic text-to-
image diffusion models with deep language understanding.
Advances in Neural Information Processing Systems, 35:
36479–36494.
Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D. J.; and
Norouzi, M. 2022b. Image super-resolution via iterative re-
finement. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 45(4): 4713–4726.
Salimans, T.; and Ho, J. 2022. Progressive Distillation for
Fast Sampling of Diffusion Models. In International Con-
ference on Learning Representations.
Saxena, S.; Herrmann, C.; Hur, J.; Kar, A.; Norouzi, M.;
Sun, D.; and Fleet, D. J. 2023. The Surprising Effective-
ness of Diffusion Models for Optical Flow and Monocular
Depth Estimation. arXiv preprint arXiv:2306.01923.
Sim, H.; Oh, J.; and Kim, M. 2021. Xvfi: extreme video
frame interpolation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, 14489–14498.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Siyao, L.; Zhao, S.; Yu, W.; Sun, W.; Metaxas, D.; Loy,
C. C.; and Liu, Z. 2021. Deep animation video interpolation
in the wild. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 6587–6595.
Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; and
Ganguli, S. 2015. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, 2256–2265. PMLR.
Sun, D.; Yang, X.; Liu, M.-Y.; and Kautz, J. 2018. Pwc-
net: Cnns for optical flow using pyramid, warping, and cost
volume. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 8934–8943.
Teed, Z.; and Deng, J. 2020. Raft: Recurrent all-pairs field
transforms for optical flow. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16, 402–419. Springer.
Voleti, V.; Jolicoeur-Martineau, A.; and Pal, C. 2022.
MCVD-masked conditional video diffusion for prediction,
generation, and interpolation. Advances in Neural Informa-
tion Processing Systems, 35: 23371–23385.
von Platen, P.; Patil, S.; Lozhkov, A.; Cuenca, P.; Lambert,
N.; Rasul, K.; Davaadorj, M.; and Wolf, T. 2022. Dif-
fusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers.
Wu, C.-Y.; Singhal, N.; and Krahenbuhl, P. 2018. Video
compression through image interpolation. In Proceedings of
the European conference on computer vision (ECCV), 416–
431.
Wu, G.; Tao, X.; Li, C.; Wang, W.; Liu, X.; and Zheng, Q.
2024. Perception-Oriented Video Frame Interpolation via
Asymmetric Blending. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2753–2762.

Xu, H.; Zhang, J.; Cai, J.; Rezatofighi, H.; and Tao, D. 2022.
Gmflow: Learning optical flow via global matching. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 8121–8130.
Xu, X.; Siyao, L.; Sun, W.; Yin, Q.; and Yang, M.-H. 2019.
Quadratic video interpolation. Advances in Neural Informa-
tion Processing Systems, 32.
Xue, T.; Chen, B.; Wu, J.; Wei, D.; and Freeman, W. T. 2019.
Video enhancement with task-oriented flow. International
Journal of Computer Vision, 127: 1106–1125.
Zhang, G.; Zhu, Y.; Wang, H.; Chen, Y.; Wu, G.; and Wang,
L. 2023. Extracting motion and appearance via inter-frame
attention for efficient video frame interpolation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5682–5692.
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; and Wang,
O. 2018. The unreasonable effectiveness of deep features as
a perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 586–595.

A Implementation Details
A.1 Recurrent Synthesis
We build our synthesis network S to be of recurrent struc-
ture, motivated by the recent trend in video frame interpo-
lation (Sim, Oh, and Kim 2021; Jin et al. 2023; Reda et al.
2022), due to its great efficiency. Let the number of recur-
rent process be L − 1, and S can be expressed as recurrent
application of a synthesis process P:

S(Iin, Fτ) = P0(· · · PL−1(ÎLτ , I
L−1
in , FL−1

τ) · · · , I0in, F 0
τ),
(9)

where I lin denotes the input image pair I0, I1 downsampled
by a factor of 2l×, and F l

τ denotes the flow map pair down-
sampled likewise.

Our process P l at level l is described as follows. P l

takes three components as the input: 1) frame Î l+1
τ , syn-

thesized from the previous level l + 1, 2) downsampled in-
put frame pair I lin = {I l0, I l1}, and 3) the downsampled
flow maps Fτ = {Fτ→0, Fτ→1}. First, using the input
frame pair I lin = {I l0, I l1} and its corresponding flow pair
Fτ = {Fτ→0, Fτ→1}, we perform backward-warping (←−ω)
on the two frames with their corresponding flows:

I lτ←i =
←−ω (I li , F

l
τ→i), i ∈ {0, 1}. (10)

Next, we take frame Î l+1
τ and use bicubic upsampling

to match the size of level l, denoted as Î l+1→l
τ . The up-

sampled frame Î l+1→l
τ , along with the two warped frames

I lτ←0, I
l
τ←1 and their corresponding flow maps F l

τ→0, F
l
τ→1

are given to the synthesis module G, which outputs a 4 chan-
nel output — 1 channel occlusion mask M0 to blend Iτ←0

and Iτ←1, and 3 channel residual RGB values ∆Îτ :

M l
0,∆Î lτ = G(Î l+1→l

τ , I lτ←0, I
l
τ←1, F

l
τ→0, F

l
τ→1). (11)

Using these outputs, we obtain the output of P l, the syn-
thesized frame at level l:
P l(Î l+1

τ , I lin, F
l
τ) = I lτ←0⊙M l

0+I lτ←1⊙ (1−M l
0)+∆Î lτ .

(12)
Note that ÎLτ is not available for level PL−1, since it is of

the highest level. Therefore we equally blend the two warped
frames at level l = L − 1 as a starting point: ÎL→L−1

τ =

IL−1τ←0 ⊙ 0.5 + IL−1τ←1 ⊙ 0.5.

A.2 Perception-oriented Loss
As mentioned in Sec. 3.2, we specify the objective func-
tion we use for stage 1 training. Along with the L1 pixel
reconstruction loss, we use an LPIPS-based perceptual loss,
which computes the L2 distance in the deep feature space
of AlexNet (Krizhevsky, Sutskever, and Hinton 2012). This
loss is well-known for high correlation with human judge-
ments. Next, we exploit the style loss (Gatys, Ecker, and
Bethge 2016) LG as its effectiveness has been proved in a
recent work (Reda et al. 2022). This loss computes the L2

distance of feature correlations extracted from the VGG-19
network (Simonyan and Zisserman 2014):

LG =
1

N

N∑
n=1

αn||Gn(Iτ)−Gn(Îτ)||2. (13)

Here, αn denotes the weighting hyper-parameter of the n-
th selected layer. Denoting the feature map of frame Iτ ex-
tracted from n-th selected layer of the VGG (Simonyan and
Zisserman 2014) network as ϕn(Iτ) ∈ RH×W×C , the Gram
matrix of frame Iτ at the n-th feature space, Gn(Iτ) ∈
RC×C can be acquired as follows:

Gn(Iτ) = ϕn(Iτ)
⊤ϕn(Iτ). (14)

Likewise, the Gram matrix of our synthesized frame,
Gn(Îτ), could be computed by substituting Iτ with Îτ in
Eq. 14.

A.3 Training Details
We elaborate on our training details mentioned in Sec. 4.1.

Stage 1 Training We employ the AdamW opti-
mizer (Loshchilov and Hutter 2017), setting the weight
decay to 10−4 and the batch size to 32 both in the
training process of G and F . We train the synthesis
model G for a total of 200 epochs, with a fixed learning
rate of 2 × 10−4. For the first 150 epochs, we set the
hyper-parameters to λ1 = 1, λp = 0, λG = 0. After
that, we use λ1 = 1, λp = 1, λG = 20 for the last 50
epochs. Once the synthesis model is fully trained, we
fine-tune the teacher flow model F for 100 epochs, with
its learning rate fixed to 10−4. We set hyper-parameters
to λ1 = 1, λp = 1, λG = 20. Both G and F benefit from
an exponential moving average (EMA) with a 0.999 decay
rate. We set the number of pyramids L = 3 during training,
and use L = ⌈log2(R/32)⌉ for resolution R at inference.

Stage 2 Training We train our diffusion model for 500
epochs using the AdamW optimizer with a constant learn-
ing rate of 2 × 10−4, weight decay of 10−8, and batch size
of 64, applying an EMA with a 0.9999 decay rate. Given
that diffusion models typically operate with data values be-
tween [−1, 1] but optical flows often exceed this range, we
normalize flow values by dividing them by 128. This adjust-
ment ensures flow values to be compatible with the diffusion
model’s expected data range, effectively aligning flow val-
ues with those of the RGB space, which are similarly nor-
malized. We utilize a linear noise schedule (Ho, Jain, and
Abbeel 2020) and perform 8 denoising steps using the an-
cestral DDPM sampler (Ho, Jain, and Abbeel 2020) for effi-
cient sampling.

A.4 Inference
Since our motion diffusion model is trained on a well-
curated data ranging within 256 resolution, it could suffer
from a performance drop when it comes to high resolution
videos of large motions which goes beyond the distribution
of the training data. To handle these cases, we generate flows
at the training resolution by resizing the inputs, followed by
post-processing of bicubic upsampling at inference time.

A.5 Input Downsampling
We provide illustrated description of input downsampling
(Sec. 3.3) in Fig. A1.

𝐼!

𝐼!′

𝐼"

𝐼"′

𝑧#

𝑧#′

𝒟$

𝑝#

Input Downsampling

Figure A1: Visualized description of input downsampling in
our motion diffusion model.

𝒘𝟏 𝒘𝟐 𝒘𝟑

𝒘𝟒 𝒘𝟔

𝒘𝟕 𝒘𝟖 𝒘𝟗

𝒇𝒖𝒑
=	𝒘𝟏 ∗ 𝒇𝟏
+		𝒘𝟐 ∗ 𝒇𝟐
+	…											
+ 	𝒘𝟗 ∗ 𝒇𝟗

H x W

H/8 x W/8

H/8 x W/8 x (8 x 8 x 9)

Convex Upsampling

Upsample weights

Coarse flows

Fine flows

Figure A2: Visualization of convex upsampling layer. The
dimensions of flows are omitted for simplicity. The upsam-
pling weights are predicted for both directions and applied
to the bi-directional flows in the same manner.

A.6 Convex Upsampling
We provide a illustrated description of convex upsampling
(Sec. 3.3) in Fig. A2.

B Additional Experiments
B.1 Further Analysis on Denoising Steps
We experiment on the effect of different number of denois-
ing steps for motion modeling, on the ‘hard’ subset of SNU-
FILM.(Tab.A1) Although the performance does improve up
to 8 steps, the increase is relatively marginal compared to
the results on the ‘extreme’ subset. We speculate the reason
for this result is due to the smaller ill-posedness of the ‘hard’
subset, which limits the diversity of feasible flows. We claim
that the use of more steps and the design choice of diffusion
models for motion modeling is more advantageous as the
ill-posedness of motions gets larger.

B.2 Full Quantitative Results
We report the full quantitative results including the fi-
delity metrics such as PSNR and SSIM on the SNU-FILM
(Tab. A2, A3), Middlebury, Vimeo90k (Tab. A4) and Xiph
benchmarks (Tab. A5).

of steps SNU-FILM-hard SNU-FILM-extreme
LPIPS DISTS LPIPS DISTS

1 step 0.0421 0.0254 0.0892 0.0452
8 step (default) 0.0419 0.0252 0.0872 0.0433
20 step 0.0420 0.0253 0.0872 0.0433
50 step 0.0420 0.0254 0.0874 0.0435

Table A1: Experiment on the number of denoising steps at
inference time. Our experiments show that about 8 steps is
enough, and use of more steps exceeding this does not lead
to a notable improvement considering the runtime tradeoff.

In addition to the fidelity metrics, we also include the re-
sults of a lighter version of our model with 10M parameters,
denoted as MoMo-10M.

Method Perception-
oriented loss

SNU-FILM-easy SNU-FILM-medium
PSNR SSIM LPIPS DISTS PSNR SSIM LPIPS DISTS

ABME (Park, Lee, and Kim 2021) ✗ 39.59 0.9901 0.0222 0.0229 35.77 0.9789 0.0372 0.0344
XVFIv (Sim, Oh, and Kim 2021) ✗ 39.78 0.9865 0.0175 0.0181 35.36 0.9692 0.0322 0.0276
IFRNet-Large (Kong et al. 2022) ✗ 40.10 0.9906 0.0203 0.0211 36.12 0.9797 0.0321 0.0288
RIFE (Huang et al. 2022b) ✗ 40.06 0.9907 0.0181 0.0195 35.75 0.9789 0.0317 0.0289
FILM-L1 (Reda et al. 2022) ✗ 39.74 0.9902 0.0184 0.0217 35.81 0.9789 0.0315 0.0316
AMT-G (Li et al. 2023) ✗ 38.47 0.9880 0.0325 0.0312 35.39 0.9779 0.0447 0.0395
EMA-VFI (Zhang et al. 2023) ✗ 39.52 0.9903 0.0186 0.0204 35.83 0.9795 0.0325 0.0318
UPRNet-LARGE (Jin et al. 2023) ✗ 40.44 0.9911 0.0182 0.0203 36.29 0.9801 0.0334 0.0327
CAIN (Choi et al. 2020) ✓ 39.89 0.9900 0.0197 0.0229 35.61 0.9776 0.0375 0.0347
FILM-Lvgg (Reda et al. 2022) ✓ 39.79 0.9900 0.0123 0.0128 35.77 0.9782 0.0219 0.0183
FILM-Ls (Reda et al. 2022) ✓ 39.68 0.9900 0.0120 0.0124 35.70 0.9781 0.0213 0.0177
LDMVFI (Danier, Zhang, and Bull 2024) ✓ 38.68 0.9834 0.0145 0.0130 33.90 0.9703 0.0284 0.0219
PerVFI (Wu et al. 2024) ✓ 38.02 0.9831 0.0142 0.0124 34.57 0.9662 0.0245 0.0181
MoMo (Ours) ✓ 39.64 0.9895 0.0111 0.0102 35.45 0.9769 0.0202 0.0155
MoMo-10M (Ours) ✓ 39.54 0.9896 0.0111 0.0103 35.36 0.9769 0.0204 0.0157

Table A2: Full quantitative results including the fidelity metrics (PSNR, SSIM) on the ‘easy’ and ‘medium’ subsets of SNU-
FILM benchmark (Choi et al. 2020) The best results are in bold, and the second best is underlined, respectively.

Method Perception-
oriented loss

SNU-FILM-hard SNU-FILM-extreme
PSNR SSIM LPIPS DISTS PSNR SSIM LPIPS DISTS

ABME (Park, Lee, and Kim 2021) ✗ 30.58 0.9364 0.0658 0.0496 25.42 0.8639 0.1258 0.0747
XVFIv (Sim, Oh, and Kim 2021) ✗ 29.91 0.9073 0.0629 0.0414 24.67 0.8092 0.1257 0.0673
IFRNet-Large (Kong et al. 2022) ✗ 30.63 0.9368 0.0562 0.0403 25.27 0.8609 0.1131 0.0638
RIFE (Huang et al. 2022b) ✗ 30.10 0.9330 0.0657 0.0443 24.84 0.8534 0.1390 0.0764
FILM-L1 (Reda et al. 2022) ✗ 30.42 0.9353 0.0568 0.0441 25.17 0.8593 0.1060 0.0632
AMT-G (Li et al. 2023) ✗ 30.70 0.9381 0.0680 0.0506 25.64 0.8658 0.1128 0.0686
EMA-VFI (Zhang et al. 2023) ✗ 30.79 0.9386 0.0579 0.0457 25.59 0.8648 0.1099 0.0671
UPRNet-LARGE (Jin et al. 2023) ✗ 30.86 0.9377 0.0612 0.0475 25.63 0.8641 0.1109 0.0672
CAIN (Choi et al. 2020) ✓ 29.90 0.9292 0.0885 0.0606 24.78 0.8507 0.1790 0.1042
FILM-Lvgg (Reda et al. 2022) ✓ 30.34 0.9332 0.0443 0.0282 25.11 0.8557 0.0917 0.0471
FILM-Ls (Reda et al. 2022) ✓ 30.29 0.9329 0.0429 0.0268 25.07 0.8550 0.0889 0.0448
LDMVFI (Danier, Zhang, and Bull 2024) ✓ 28.51 0.9173 0.0602 0.0379 23.92 0.8372 0.1226 0.0651
PerVFI (Wu et al. 2024) ✓ 29.68 0.9287 0.0561 0.0635 25.03 0.8120 0.0902 0.0448
MoMo (Ours) ✓ 30.12 0.9312 0.0419 0.0252 25.02 0.8547 0.0872 0.0433
MoMo-10M (Ours) ✓ 30.00 0.9308 0.0425 0.0257 24.91 0.8535 0.0882 0.0438

Table A3: Full quantitative results including the fidelity metrics (PSNR, SSIM) on the ‘hard’ and ‘extreme’ subsets of SNU-
FILM benchmark (Choi et al. 2020). The best results are in bold, and the second best is underlined, respectively.

Method Perception-
oriented loss

Middlebury Vimeo90k
PSNR SSIM LPIPS DISTS PSNR SSIM LPIPS DISTS

ABME (Park, Lee, and Kim 2021) ✗ 37.05 0.9845 0.0290 0.0325 36.18 0.9805 0.0213 0.0353
XVFIv (Sim, Oh, and Kim 2021) ✗ 36.72 0.9826 0.0169 0.0244 35.07 0.9710 0.0229 0.0354
IFRNet-Large (Kong et al. 2022) ✗ 36.27 0.9816 0.0285 0.0366 36.20 0.9808 0.0189 0.0325
RIFE (Huang et al. 2022b) ✗ 37.16 0.9853 0.0162 0.0228 35.61 0.9780 0.0223 0.0356
FILM-L1 (Reda et al. 2022) ✗ 37.37 0.9838 0.0173 0.0246 35.89 0.9796 0.0197 0.0343
AMT-G (Li et al. 2023) ✗ 34.23 0.9708 0.0486 0.0533 36.53 0.9819 0.0195 0.0351
EMA-VFI (Zhang et al. 2023) ✗ 38.32 0.9871 0.0151 0.0218 36.45 0.9811 0.0196 0.0343
UPRNet-LARGE (Jin et al. 2023) ✗ 38.09 0.9861 0.0150 0.0209 36.42 0.9815 0.0201 0.0342
CAIN (Choi et al. 2020) ✓ 35.11 0.9761 0.0254 0.0383 34.65 0.9729 0.0306 0.0483
FILM-Lvgg (Reda et al. 2022) ✓ 37.28 0.9843 0.0096 0.0148 35.62 0.9784 0.0137 0.0229
FILM-Ls (Reda et al. 2022) ✓ 37.38 0.9844 0.0093 0.0140 35.71 0.9787 0.0131 0.0224
LDMVFI (Danier, Zhang, and Bull 2024) ✓ 34.03 0.9648 0.0195 0.0261 33.09 0.9558 0.0233 0.0327
PerVFI (Wu et al. 2024) ✓ 35.00 0.9751 0.0142 0.0163 34.00 0.9675 0.0179 0.0248
MoMo (Ours) ✓ 36.77 0.9806 0.0094 0.0126 34.94 0.9756 0.0136 0.0203
MoMo-10M (Ours) ✓ 36.52 0.9801 0.0100 0.0139 34.82 0.9752 0.0138 0.0206

Table A4: Full quantitative results including the fidelity metrics (PSNR, SSIM) on Middlebury (Baker et al. 2011) and
Vimeo90k (Xue et al. 2019) benchmarks. The best results are in bold, and the second best is underlined, respectively.

Method Perception-
oriented loss

Xiph-2K Xiph-4K
PSNR SSIM LPIPS DISTS PSNR SSIM LPIPS DISTS

ABME (Park, Lee, and Kim 2021) ✗ 36.50 0.9668 0.1071 0.0581 33.72 0.9452 0.2361 0.1108
XVFIv (Sim, Oh, and Kim 2021) ✗ 35.17 0.9625 0.0844 0.0418 32.45 0.9274 0.1835 0.0779
IFRNet-Large (Kong et al. 2022) ✗ 36.40 0.9646 0.0681 0.0372 33.71 0.9425 0.1364 0.0665
RIFE (Huang et al. 2022b) ✗ 36.06 0.9642 0.0918 0.0481 33.21 0.9413 0.2072 0.0915
FILM-L1 (Reda et al. 2022) ✗ 36.53 0.9663 0.0906 0.0510 33.83 0.9439 0.1841 0.0884
AMT-G (Li et al. 2023) ✗ 36.29 0.9647 0.1061 0.0563 34.55 0.9472 0.2054 0.1005
EMA-VFI (Zhang et al. 2023) ✗ 36.74 0.9675 0.1024 0.0550 34.55 0.9486 0.2258 0.1049
UPRNet-LARGE (Jin et al. 2023) ✗ 37.13 0.9691 0.1010 0.0553 34.57 0.9388 0.2150 0.1017
CAIN (Choi et al. 2020) ✓ 35.18 0.9625 0.1025 0.0533 32.55 0.9398 0.2229 0.0980
FILM-Lvgg (Reda et al. 2022) ✓ 36.29 0.9626 0.0355 0.0238 33.44 0.9356 0.0754 0.0406
FILM-Ls (Reda et al. 2022) ✓ 36.30 0.9616 0.0330 0.0237 33.37 0.9323 0.0703 0.0385
LDMVFI (Danier, Zhang, and Bull 2024) ✓ 33.82 0.9494 0.0420 0.0163 31.39 0.9214 0.0859 0.0359
PerVFI (Wu et al. 2024) ✓ 34.69 0.9541 0.0381 0.0153 32.30 0.9149 0.0858 0.0331
MoMo (Ours) ✓ 35.38 0.9553 0.0300 0.0119 33.09 0.9293 0.0631 0.0274
MoMo-10M (Ours) ✓ 35.23 0.9548 0.0303 0.0120 32.97 0.9281 0.0638 0.0275

Table A5: Full quantitative results including the fidelity metrics (PSNR, SSIM) on Xiph-2K and Xiph-4K (Montgomery and
Lars 1994; Niklaus and Liu 2020). The best results are in bold, and the second best is underlined, respectively.

