

SUPERCODER: ASSEMBLY PROGRAM SUPEROPTIMIZATION WITH LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Superoptimization is the task of transforming a program into a faster one while preserving its input–output behavior. In this work, we investigate whether large language models (LLMs) can serve as superoptimizers, generating assembly programs that outperform code already optimized by industry-standard compilers. We construct the first large-scale benchmark for this problem, consisting of 8,072 assembly programs averaging 130 lines, in contrast to prior datasets restricted to 2–15 straight-line, loop-free programs. We evaluate 23 LLMs on this benchmark and find that the strongest baseline, Claude-opus-4, achieves a 51.5% test-passing rate and a 1.43 \times average speedup over `gcc -O3`. To further enhance performance, we fine-tune models with reinforcement learning, optimizing a reward function that integrates correctness and performance speedup. Starting from Qwen2.5-Coder-7B-Instruct (61.4% correctness, 1.10 \times speedup), the fine-tuned model SuperCoder attains 95.0% correctness and 1.46 \times average speedup, with additional improvement enabled by Best-of-N sampling and iterative refinement. Our results demonstrate, for the first time, that LLMs can be applied as superoptimizers for assembly programs, establishing a foundation for future research in program performance optimization beyond compiler heuristics. Our code is available at <https://anonymous.4open.science/r/SuperCoder/>.

1 INTRODUCTION

Superoptimization is the task of transforming a program into a faster one while preserving its input-output behavior. In this work, we investigate whether large language models (LLMs) can perform superoptimization by generating assembly code that surpasses the performance of compiler outputs.

Decades of research have tackled the problem of code optimization, giving rise to two main approaches. The first develops better algorithms for rule-based transformations in compilers (Wolf & Lam, 1991). However, given the vast space of possible transformations, compiler-optimized code is not guaranteed to be optimal and often leaves performance untapped (Center et al., 1971; Theodoridis et al., 2022). The second, superoptimization, develops search algorithms that directly explore the space of all possible programs, aiming to discover the correct variant with the best performance rather than relying on a fixed set of transformation rules (Schkufza et al., 2013).

Superoptimization is an aggressive form of program optimization that can outperform compiler-optimized code, yet existing literature has focused on very short, straight-line assembly programs without loops. Prior work has primarily relied on CPU-based search heuristics, which fail to scale to larger programs (Schkufza et al., 2013; Phothilimthana et al., 2016; Koenig et al., 2021b); available datasets include at most 15 lines of straight-line assembly (Koenig et al., 2021a).

In this work, we explore the use of LLMs as a superoptimizer to improve the performance of assembly code. In contrast to most prior work on code generation from natural language (Chen et al., 2021; Austin et al., 2021; Hendrycks et al., 2021; Zhuo et al., 2024), we tackle a fundamentally different and more technically demanding task: improving assembly code that has already been optimized by the industry-standard compiler at its highest optimization level (gcc -O3). Compilers have been refined over decades of expert-driven development, and surpassing them remains a central challenge in programming languages, as compilers form the foundation of all software.

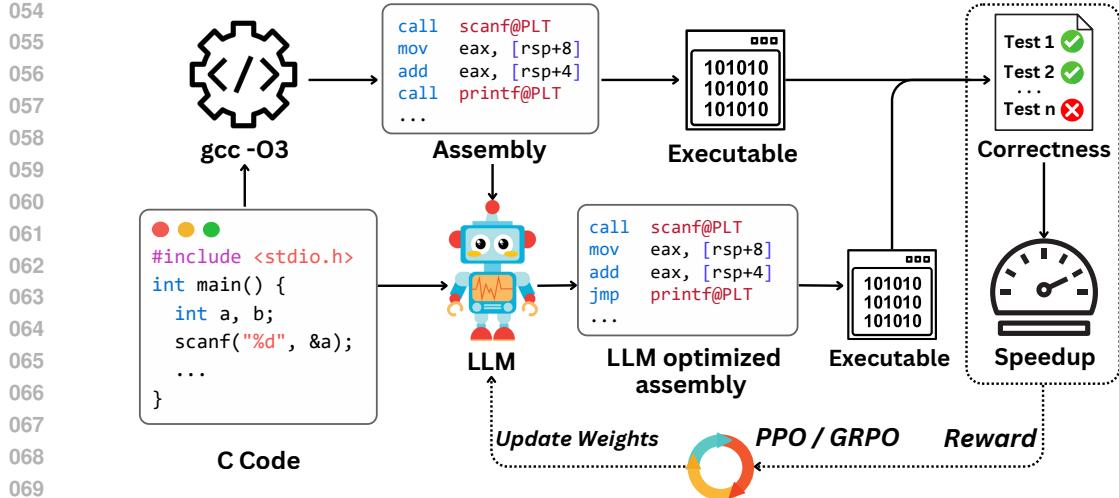


Figure 1: Overview of the assembly code optimization task. Given a C program and its baseline assembly from gcc -O3, an LLM is fine-tuned with PPO or GRPO to generate improved assembly. The reward function reflects correctness and performance based on test execution.

Unlike high-level programming languages (e.g., Python or C), large-scale, high-quality assembly datasets are scarce. As the first study in this direction, we construct a dataset of 8,072 assembly programs. Each instance includes input–output test cases and baseline assembly generated by the compiler at its highest optimization level (gcc -O3), which serves as the starting point for further optimization. In contrast, the datasets commonly used in the superoptimization community (Warren, 2013; Schkufza et al., 2013; Koenig et al., 2021a) are either extremely limited in size, containing only 25 programs, or consist of toy examples with 2 to 15 instructions without loops. Our dataset is substantially larger, with assembly programs averaging 130 lines and including loops. Our test suites achieve 96.2% line and 87.3% branch coverage, demonstrating strong test quality. Our dataset represents a substantial step forward in scale for evaluating superoptimization techniques.

Beyond evaluating existing models, we also apply reinforcement learning (RL) for fine-tuning to further enhance their capabilities. We use widely adopted algorithms, including Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO), to train an LLM with a reward function that integrates both correctness and performance speedup. Prior work on LLM-based performance optimization has explored alternative methodologies such as supervised fine-tuning (Shypula et al., 2024), chain-of-thought prompting (Liu et al., 2024c), agent-based frameworks (Wei et al., 2025b;c), and preference learning (Du et al., 2024). Our approach optimizes speedup explicitly in the reward function, making reinforcement learning well suited to superoptimization. To our knowledge, this is the first application of reward-based RL to LLMs for code performance optimization, with correctness and speedup jointly encoded in the objective.

We evaluate 23 LLMs on this task and find that the best-performing model, Claude-opus-4, achieves a 51.5% test-passing rate and an average speedup of 1.43 \times over the compiler-optimized baseline (gcc -O3). Our reinforcement learning approach is highly effective: starting from the base model Qwen2.5-Coder-7B-Instruct, which achieves 61.4% correctness and a modest 1.10 \times speedup, the fine-tuned model SuperCoder attains 95.0% correctness and 1.46 \times average speedup, **with further improvement enabled by Best-of-N sampling and iterative refinement**.

In summary, our contributions are as follows:

- We are the first to introduce superoptimization as a task for LLMs, a technically demanding challenge that aims to improve assembly code already optimized by industry-standard compilers.
- We construct the first large-scale dataset of 8,072 assembly programs, averaging 130 lines. This far surpasses prior loop-free datasets under 15 lines and marks a substantial step forward in scale and realism for evaluating superoptimization techniques.

108

- We evaluate 23 LLMs on the benchmark and show that RL-based training substantially
109 improves performance: fine-tuning Qwen2.5-Coder-7B-Instruct (61.4% correctness, 1.10 \times
110 speedup) results in SuperCoder with 95.0% correctness and 1.46 \times speedup, **with further
111 gains enabled by Best-of-N sampling and iterative refinement.**

112

113

114 2 RELATED WORK

115

116 **Large Language Models for Code.** Benchmarks for evaluating large language models (LLMs)
117 on code generation from natural language specifications have received increasing attention. Notable
118 examples include HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), APPS (Hendrycks
119 et al., 2021), and more recent efforts (Liu et al., 2023b; Li et al., 2024; Xia et al., 2024b; Zhuo
120 et al., 2024). In parallel, many models have been developed to enhance code generation capabilities,
121 such as Codex (Chen et al., 2021), AlphaCode (Li et al., 2022), CodeGen (Nijkamp et al., 2022),
122 InCoder (Fried et al., 2022), StarCoder (Li et al., 2023), DeepSeek-Coder (Guo et al., 2024), Code
123 Llama (Roziere et al., 2023), and others (Hui et al., 2024; Wei et al., 2025e). Beyond code generation,
124 LLMs have been applied to real-world software engineering tasks including automated program
125 repair (Xia & Zhang, 2022; Xia et al., 2023b), software testing (Xia et al., 2023a; Deng et al.,
126 2024), bug localization (Yang et al., 2024a), transpilation (Yang et al., 2024c; Bhatia et al., 2024),
127 equivalence checking (Wei et al., 2025a), and synthesis (Wei et al., 2025d). SWE-bench (Jimenez
128 et al., 2023) integrates these tasks into a benchmark for resolving real GitHub issues. Building on
129 this, SWE-agent (Yang et al., 2024b) and subsequent works (Xia et al., 2024a; Wei et al., 2025f)
130 employ an agent-based framework that leverages LLMs to improve the issue resolution process.

131 Recent work has also explored LLMs for improving program performance. CodeRosetta (Tehrani-
132 Jamsaz et al., 2024) targets automatic parallelization, such as translating C++ to CUDA. Other
133 efforts focus on optimizing Python code for efficiency (Du et al., 2024; Liu et al., 2024c) or enabling
134 self-adaptation (Huang et al., 2024), and improving C++ performance (Shypula et al., 2024). Of
135 particular relevance are approaches to low-level code optimization (Wei et al., 2024; Ouyang et al.,
136 2025). The LLM Compiler foundation models (Cummins et al., 2024; 2025) are primarily designed
137 for code size reduction and binary disassembly, whereas our work focuses on optimizing assembly
138 code for performance. LLM-Vectorizer (Taneja et al., 2025) offers a formally verified solution for
139 auto-vectorization, a specific compiler pass. In contrast, our work does not restrict the optimization
140 type and uses test-case validation.

141 **Learning-Based Code Optimization.** The space of code optimization is vast, and many approaches
142 have leveraged machine learning to improve program performance. A classic challenge in compilers
143 is the phase-ordering problem, where performance depends heavily on the sequence of optimization
144 passes. AutoPhase (Haj-Ali et al., 2020) uses deep reinforcement learning to tackle this, while
145 Coreset (Liang et al., 2023) employs graph neural networks (GNNs) to guide optimization decisions.
146 Modern compilers apply extensive rewrite rules but offer no guarantee of optimality. Superoptimization
147 seeks the most efficient program among all semantically equivalent variants of the compiler
148 output. Traditional methods use stochastic search, such as MCMC sampling (Schkufza et al., 2013),
149 with follow-up work improving scalability (Phothilimthana et al., 2016; Bunel et al., 2016) and
150 extending to broader domains (Sharma et al., 2015; Churchill et al., 2017). These rely on formal
151 verification for correctness, restricting them to small, loop-free programs. In contrast, our approach
152 uses test-based validation, enabling optimization of general programs with loops. With the rise of
153 deep learning, substantial attention has turned to optimizing GPU kernel code. AutoTVM (Chen
154 et al., 2018) pioneered statistical cost model-based search for CUDA code optimization, followed
155 by methods such as Ansor (Zheng et al., 2020), AMOS (Zheng et al., 2022), and others (Shao et al.,
156 2022; Zhao et al., 2024; Wu et al., 2024).

157 More recently, LLMs have been explored as code optimizers (Shypula et al., 2024; Grubisic et al.,
158 2024; Wei et al., 2024; 2025b;c), with growing interest in reinforcement learning that guides genera-
159 tion through reward signals (Dou et al., 2024; Wei et al., 2025f). Rewards are often derived from
160 unit-test correctness (Le et al., 2022; Shojaaee et al., 2023; Liu et al., 2023a) or binary preference
161 signals (Liu et al., 2024b; Du et al., 2024). To our knowledge, this is the first work to apply reinforce-
162 ment learning to optimize code performance with LLMs, with concurrent efforts exploring CUDA
163 kernel optimization (Li et al., 2025; Baronio et al., 2025).

162

3 METHODOLOGY

163

3.1 TASK DEFINITION

166 Let C be a program written in a high-level language such as C. A modern compiler like gcc can
 167 compile C into an x86-64 assembly program $P = \text{gcc}(C)$, which can then be further assembled into
 168 an executable binary. The assembly program P serves as an intermediate representation that exposes
 169 low-level optimization opportunities, making it suitable for aggressive performance improvement.
 170 We assume the semantics-preserving nature of the compilation process, i.e., $\llbracket C \rrbracket = \llbracket P \rrbracket$, so that the
 171 behavior of the assembly program P is identical to that of the source program C .

172 In theory, the goal is to produce a program P' that is functionally equivalent to P across the entire
 173 input space \mathcal{X} , i.e., $P(x) = P'(x)$ for all $x \in \mathcal{X}$. Since verifying this property is undecidable in
 174 general, we approximate equivalence using a finite test set $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$, where each input-
 175 output pair (x_i, y_i) captures the expected behavior of C .

176 We say that an assembly program P' is *valid* if it can be successfully assembled and linked into an
 177 executable binary. Let $\text{valid}(P') \in \{\text{True}, \text{False}\}$ denote this property. Based on all that we
 178 said above, we define the set of *correct* programs as:

$$179 \mathcal{S}(P) = \{P' \mid \text{valid}(P') \wedge \forall (x_i, y_i) \in \mathcal{T}, P'(x_i) = y_i\}.$$

181 **Performance and Speedup.** Let $t(P)$ denote the execution time of P on the test set \mathcal{T} , and let
 182 $t(P')$ be the corresponding execution time for P' . The speedup of P' relative to P is defined as
 183 follows. If the LLM-generated program is invalid or slower, we fall back to the baseline and assign a
 184 speedup of 1.

$$186 \text{Speedup}(P') = \begin{cases} \frac{t(P)}{t(P')} & \text{if } P' \in \mathcal{S}(P) \text{ and } t(P') < t(P), \\ 1 & \text{otherwise.} \end{cases}$$

190 **Optimization Objective.** The objective is to generate a candidate program P' that maximizes
 191 $\text{Speedup}(P')$. Only programs in $\mathcal{S}(P)$ are eligible for speedup; any candidate that fails to compile
 192 into a binary or produces incorrect outputs is assigned a default speedup of 1. This reflects a practical
 193 fallback: when the generated program is invalid, the system can revert to the baseline P , compiled
 194 with gcc -O3, which defines the 1x reference performance. Although $\mathcal{S}(P)$ captures the correctness
 195 criteria, we do not restrict the LLM to generate only valid programs. Instead, the model produces
 196 arbitrary assembly code, and correctness is validated post hoc via compilation and test execution. We
 197 train an LLM using reinforcement learning (see Section 3.3) to generate candidates that both satisfy
 198 correctness and achieve performance improvements.

199

3.2 DATASET CONSTRUCTION

201 We construct our dataset using C programs from CodeNet (Puri et al., 2021), a large-scale corpus of
 202 competitive programming submissions. **CodeNet is a well-established and widely used benchmark in**
 203 **the AI-for-code community (Li et al., 2022; Shypula et al., 2024)**. Each dataset instance is a tuple
 204 (C, P, \mathcal{T}) , where C is the original C source code, $P = \text{gcc}(C)$ is the corresponding x86-64 assembly
 205 generated by compiling C with gcc at the -O3 optimization level, and $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$ is the test
 206 set. Since not all CodeNet problems include test inputs, we adopt those provided by prior work (Li
 207 et al., 2022) to define x_i , but discard their output labels. Instead, we regenerate each output y_i by
 208 executing the original submission on input x_i , as many CodeNet programs are not accepted solutions,
 209 and even accepted ones do not reliably pass all test cases.

210 Given the scale of CodeNet, which contains over 8 million C and C++ submissions, we sample a
 211 subset for this study. To focus on performance-critical cases, we sample programs that exhibit the
 212 highest relative speedup from gcc -O0 (no optimization) to gcc -O3 (maximum optimization). Such
 213 a strategy serves two purposes: (1) it favors programs with complex logic that lead to suboptimal
 214 performance under -O0 and can be effectively optimized by -O3, and (2) it creates a more challenging
 215 setting by starting from code that has already benefited from aggressive compiler optimizations.
 The final dataset consists of 7,872 training programs and 200 held-out evaluation programs, with

216 additional statistics provided in Section 4. We also evaluate our method on an unbiased, randomly
 217 sampled dataset distribution in Appendix A.5.
 218

219 **3.3 REINFORCEMENT LEARNING**
 220

221 We conceptualize our task as a standard contextual multi-armed bandit problem (Lu et al., 2010),
 222 defined by a context space \mathcal{S} , an action space \mathcal{A} , and a reward function $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$. Each context
 223 $s \in \mathcal{S}$ represents a problem instance, comprising the source program C , its baseline assembly P ,
 224 and the associated test cases \mathcal{T} . An action $a \in \mathcal{A}$ corresponds to generating a candidate assembly
 225 program \tilde{P} . The reward function $r(s, a)$ evaluates the quality of the generated program based on
 226 correctness and performance. We will describe different designs of the reward function later. A policy
 227 $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ maps a context s to a probability distribution over actions and samples an action
 228 $a \in \mathcal{A}$ stochastically. Given a distribution μ over problem instances, the expected performance of a
 229 policy π under reward function r is expressed as $\mathbb{E}_{s \sim \mu, a \sim \pi(\cdot | s)} [r(s, a)]$. The objective is to find a
 230 policy that maximizes this expected reward.
 231

232 **Optimization with PPO and GRPO.** We train the policy using two policy-gradient algorithms:
 233 *Proximal Policy Optimization* (PPO) (Schulman et al., 2017) and *Group Relative Policy Opti-*
 234 *mization* (GRPO) (Shao et al., 2024). PPO stabilizes training by constraining each update to
 235 remain close to the previous policy. It maximizes a clipped surrogate objective of the form
 236 $\mathbb{E}_{s, a} \left[\min \left(\rho(\theta) \hat{A}, \text{clip}(\rho(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A} \right) \right]$, where $\rho(\theta) = \pi_\theta(a | s) / \pi_{\theta_{\text{old}}}(a | s)$, \hat{A} is the
 237 estimated advantage, and ϵ controls the clipping range. GRPO, in contrast, compares rewards among
 238 a group of sampled outputs and assigns a higher likelihood to relatively stronger ones, effectively
 239 normalizing advantages without requiring a value function. In both algorithms, rewards are based
 240 on the correctness and execution time of the generated program, eliminating the need for a separate
 241 reward model.
 242

243 **Reward Function Design.** As defined in our contextual bandit setup, the reward function $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ assigns a scalar score to each (context, action) pair. Each context $s \in \mathcal{S}$ consists of
 244 the source program C , the baseline assembly P , and a test set $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$. An action $a \in \mathcal{A}$
 245 corresponds to a generation procedure that produces a candidate assembly program $\tilde{P} = \text{gen}(a)$.
 246

247 We define two auxiliary metrics for computing reward:

$$248 \text{pass}(s, a) = \frac{1}{|\mathcal{T}|} \sum_{(x, y) \in \mathcal{T}} \mathbf{1}[\tilde{P}(x) = y], \quad \text{speedup}(s, a) = t(P) / t(\tilde{P}),$$

251 which denote the fraction of test cases passed and the speedup of the generated program \tilde{P} relative to
 252 the baseline P . We use the following reward function during training:
 253

$$254 r(s, a) = \begin{cases} 0, & \text{if } \text{pass}(s, a) < 1, \\ 255 \text{speedup}(s, a), & \text{if } \text{pass}(s, a) = 1. \end{cases}$$

257 If a generated program fails to compile or does not pass all tests, its reward is set to 0, with no partial
 258 credit for partial correctness. Only when the code compiles and passes all tests is a positive reward
 259 assigned, equal to the achieved speedup.
 260

261 **3.4 BEST-OF-N SAMPLING, SUPERVISED FINE-TUNING, AND ITERATIVE REFINEMENT**
 262

263 **Best-of-N Sampling.** Generating multiple candidate programs and selecting the strongest one is a
 264 well-established strategy for improving code generation quality (Li et al., 2022; Ehrlich et al., 2025).
 265 In our setting, the best candidate refers to the program that is correct while achieving the fastest
 266 execution time. Best-of-N sampling is an inference-time technique that can boost performance, but it
 267 incurs additional cost because each candidate must be tested at runtime.
 268

269 **Supervised Fine-Tuning.** To obtain training targets for supervised fine-tuning, we require reference
 270 solutions to the superoptimization task. However, superoptimization is inherently open-ended: beyond

270 the compiler baseline, there is no unique ground-truth program, and multiple distinct solutions may
 271 exist. We therefore apply best-of-8 sampling with the base model over the full training set and treat
 272 the highest-quality candidate for each instance as the ground truth. We then fine-tune the model using
 273 LoRA (Hu et al., 2022).

275 **Iterative Refinement.** Iterative refinement is a complementary inference-time technique that can
 276 be applied to any model to further improve its outputs. After each trial, we feed back the model’s
 277 previous attempt: if the generated program fails to compile or fails any test cases, we include the
 278 corresponding compiler errors or test failures in the next prompt; if the model produces a correct
 279 program, we also include that successful attempt as part of the prompt.

281 4 EXPERIMENTAL SETUP

283 **Dataset.** We describe our dataset con-
 284 struction approach in Section 3.2. Each
 285 instance consists of a C source program
 286 C , the corresponding `gcc -O3` compiled
 287 assembly P , and a set of test cases \mathcal{T} for
 288 correctness evaluation. The final dataset
 289 contains 7,872 training programs and 200
 290 evaluation programs, with average pro-
 291 gram lengths and test case counts summa-
 292 rized in Table 1, and additional analysis
 293 below.

294 **Test Coverage.** Our dataset includes test cases for every program. Rather than relying directly on
 295 the original submissions, we re-run each program on its inputs to generate correct outputs, thereby
 296 fixing errors in prior datasets. The resulting test suites of our evaluation dataset achieve an average of
 297 96.2% line coverage and 87.3% branch coverage, demonstrating high test quality.

299 **Speedup by Compilers.** We quantify compiler optimizations by comparing `gcc -O0` with `gcc -O3`
 300 on the evaluation dataset and observe a mean speedup of 2.65 \times . This demonstrates the substantial
 301 effect of compiler optimizations and confirms that performance improvements in our dataset are
 302 measurable. Building on this baseline, we investigate whether LLMs can further enhance performance
 303 beyond the 2.65 \times speedup provided by the compiler.

305 **Prompts.** For each instance, we construct a prompt that includes the original C program along
 306 with the generated assembly using `gcc -O3`. Test cases are withheld from the model. The model is
 307 instructed to generate the optimized assembly code. We show the prompt template in Appendix A.3.

309 **Metrics.** We evaluate each model using both correctness and performance metrics. *Compile pass*
 310 is the percentage of problems for which the generated assembly compiles to binary executable
 311 successfully, while *test pass* is the percentage of problems where the compiled code passes all test
 312 cases. For a given problem, any single failed test case is considered a failure for the test pass metric.
 313 Both metrics are computed across the entire validation set. For performance, we measure the relative
 314 speedup over the `gcc -O3` baseline. As defined in Section 3.1, we assign a default speedup of 1 \times to
 315 any candidate that fails to compile, fails any test case, or is slower than the baseline. This reflects the
 316 practical setting where a system can fall back to the `gcc -O3` output, resulting in no performance gain.
 317 We report the 25 th , 50 th (median), and 75 th percentiles of speedup to capture distributional behavior,
 318 along with the *average speedup* over the entire evaluation set.

319 **Models.** We evaluate 23 state-of-the-art language models spanning a diverse range of architectures.
 320 Our benchmark includes frontier proprietary models such as `gpt-4o` (Achiam et al., 2023), `o4-mini`,
 321 `gemini-2.0-flash-001` (Team et al., 2023), and `claude-3.7-sonnet`, as well as open-source families
 322 such as `Llama` (Touvron et al., 2023), `DeepSeek` (Liu et al., 2024a), and `Qwen` (Hui et al., 2024).
 323 In addition, we include models distilled from `DeepSeek-R1` (Guo et al., 2025) based on `Qwen` and
`Llama`. Finally, we evaluate recent compiler-oriented foundation models (Cummins et al., 2024;

Model	Compile	Test	Speedup Percentiles			Average Speedup
	Pass	Pass	25th	50th	75th	
DS-R1-Distill-Qwen-1.5B	0.0%	0.0%	1.00x	1.00x	1.00x	1.00x
DeepSeek-R1	0.0%	0.0%	1.00x	1.00x	1.00x	1.00x
DS-R1-Distill-Llama-70B	5.5%	0.0%	1.00x	1.00x	1.00x	1.00x
DS-R1-Distill-Qwen-14B	11.5%	0.5%	1.00x	1.00x	1.00x	1.00x
gpt-4o-mini	44.5%	1.0%	1.00x	1.00x	1.00x	1.00x
Llama-4-Maverick-17B	77.5%	7.0%	1.00x	1.00x	1.00x	1.02x
Llama-3.2-11B	84.0%	21.0%	1.00x	1.00x	1.00x	1.02x
gpt-4o	81.0%	5.0%	1.00x	1.00x	1.00x	1.02x
Llama-4-Scout-17B	68.5%	5.5%	1.00x	1.00x	1.00x	1.02x
o4-mini	25.0%	4.5%	1.00x	1.00x	1.00x	1.02x
gemini-2.0-flash-001	57.5%	4.0%	1.00x	1.00x	1.00x	1.03x
Qwen2.5-72B	59.5%	7.5%	1.00x	1.00x	1.00x	1.03x
Llama-3.2-90B	82.5%	15.0%	1.00x	1.00x	1.00x	1.05x
Qwen2.5-Coder-7B	77.9%	61.4%	1.00x	1.00x	1.00x	1.10x
gpt-5	78.5%	6.0%	1.00x	1.00x	1.00x	1.13x
DeepSeek-V3	94.0%	43.0%	1.00x	1.00x	1.40x	1.21x
claude-3.7-sonnet	94.5%	58.5%	1.00x	1.10x	1.45x	1.22x
claude-sonnet-4	87.0%	37.0%	1.00x	1.00x	1.95x	1.30x
claude-opus-4	90.0%	51.5%	1.00x	1.58x	2.03x	1.43x
llm-compiler-7b-ftd	2.0%	2.0%	1.00x	1.00x	1.00x	1.00x
llm-compiler-13b-ftd	2.5%	2.0%	1.00x	1.00x	1.00x	1.01x
llm-compiler-7b	55.0%	54.0%	1.00x	1.00x	1.00x	1.09x
llm-compiler-13b	60.5%	59.5%	1.00x	1.27x	1.63x	1.34x

Table 2: Comparison of LLMs on our assembly optimization benchmark. We report compilation success rate, test pass rate, and average speedup over the gcc -O3 baseline. All open-source models are instruction-tuned.

2025), pretrained on assembly code and derived from Code Llama, with a design focus on compiler tasks (listed as llm-compiler in Table 2). All open-source models are instruction-tuned.

Performance Measurement. To ensure an accurate performance evaluation, we use `hyperfine` (hyp, 2025), a benchmarking tool that reduces measurement noise by performing warmup runs followed by repeated timed executions. For each program’s execution, we discard the first three runs and report the average runtime over the next ten runs.

Implementation. We implement our customized reinforcement learning reward functions within the VERL framework (Sheng et al., 2024), which enables fine-tuning of LLMs using PPO and GRPO. As part of this setup, we build a task-specific environment that handles program compilation, test execution, and runtime measurement, as detailed in Section 3.3. This environment provides the model with direct scalar feedback based on both functional correctness and execution performance.

Training Configurations. Among all evaluated models (see Table 2), we select Qwen2.5-Coder-7B-Instruct for training due to its strong correctness results and substantial room for performance improvement, while intentionally avoiding compiler-specific foundation models to preserve generality. Training is performed on a single node with four A100 GPUs. Full hyperparameter settings are provided in Appendix A.2.

5 RESULTS

5.1 EVALUATION OF DIFFERENT MODELS

Main Results. Table 2 reports results across evaluated models. Most perform poorly on this task, with only a few demonstrating effectiveness as superoptimizers. Most models struggle to generate performant assembly: the majority yield only 1.00x speedup, with low compile and test pass rates. Among all models, claude-opus-4 and claude-sonnet-4 perform best, achieving average speedups

Model	Compile Pass	Test Pass	Average Speedup
Qwen2.5-Coder-7B (Base)	$77.9 \pm 0.8\%$	$61.4 \pm 0.5\%$	$1.10 \pm 0.01\times$
SuperCoder (GRPO)	$95.0 \pm 0.0\%$	$94.7 \pm 0.6\%$	$1.44 \pm 0.07\times$
SuperCoder (PPO)	$96.0 \pm 0.0\%$	$95.0 \pm 0.0\%$	$1.46 \pm 0.12\times$
SuperCoder (Supervised fine-tuning)	$95.5 \pm 0.0\%$	$92.5 \pm 0.0\%$	$1.39 \pm 0.05\times$

Table 3: **Performance of the base model and the models trained with RL or supervised fine-tuning.** Results include compilation success, test pass rates, and average speedup, reported over 5 runs with 95% confidence intervals.

of $1.43\times$ and $1.30\times$, respectively. Compiler foundation models (prefixed with llm-compiler-) are pretrained on assembly code and compiler IRs. Among them, llm-compiler-13b achieves a notable $1.34\times$ speedup, whereas the fine-tuned variants (-ftd) perform poorly, likely because they were adapted for different tasks such as disassembling x86-64 into LLVM IR. These results suggest that while superoptimization is inherently difficult, some LLMs can be effective superoptimizers.

Failure Modes. Interestingly, models that are expected to achieve strong results perform (e.g., DeepSeek-R1, GPT-4o) perform poorly on the task of superoptimization, motivating our analysis of their failure modes. We find that DeepSeek-R1 consistently fails to generate valid assembly code, resulting in a 0% compilation rate. DeepSeek-R1 often produces verbose analysis instead of executable code, spending its entire output length on reasoning about instruction semantics and potential optimizations without actually implementing them.

We further analyze the failure modes of GPT-4o, which achieves a high compilation rate (81.0%) but exhibits poor correctness (only 5.0% test pass rate). The primary correctness issues are as follows: (1) missing critical directives and safety setup, such as stack canary initialization and `.cfi_*` metadata, which often lead to runtime crashes; (2) incorrect function call conventions, where repeated system calls like `scanf` are made without proper argument setup, causing undefined behavior; (3) semantic errors in core computations, including incorrect pointer usage or altered algorithm logic, which produce wrong outputs even when the code runs; and (4) over-simplified stack or register management, resulting in memory errors or invalid control flow. In summary, GPT-4o tends to sacrifice correctness in pursuit of optimization: it generates syntactically valid assembly but frequently violates low-level conventions necessary for correct and reliable execution.

5.2 EFFECTIVENESS OF RL TRAINING

Improvement. Table 3 presents the results of RL training, averaged over 5 runs with 95% confidence intervals to provide more statistical confidence in the reported improvements. We select Qwen2.5-Coder-7B-Instruct for RL training due to its strong test pass rate (61.4%) among models. After RL training with PPO, the fine-tuned model SuperCoder attains 95.0% correctness and improves average speedup from $1.10\times$ to $1.46\times$. Its speedup percentiles are $1.17 \pm 0.03\times$ (25th), $1.35 \pm 0.04\times$ (50th), and $1.64 \pm 0.08\times$ (75th) respectively, outperforming the majority of evaluated models.

PPO versus GRPO. We evaluate both PPO-trained and GRPO-trained models and find their performance to be nearly identical. SuperCoder trained with GRPO attains $94.7 \pm 0.6\%$ correctness and $1.44 \pm 0.07\times$ average speedup, which is comparable to SuperCoder trained with PPO ($95.0 \pm 0.0\%$ correctness and $1.46 \pm 0.12\times$ average speedup).

5.3 RESULTS FROM SUPERVISED FINE-TUNING AND INFERENCE-TIME METHODS

Best-of-N Sampling. We evaluate best-of-N sampling for three models: `claude-opus-4` (the strongest baseline in Table 2), Qwen2.5-Coder-7B (base), and SuperCoder (our PPO-trained model). Results are shown in Figure 2. Notably, the base model’s best-of-8 speedup is close to the PPO-trained model’s best-of-1 result, and the RL-trained model itself can still be improved with best-of-N sampling (i.e., from $1.46\times$ in the single-sample setting to $1.93\times$ with best-of-8 sampling).

Supervised Fine-Tuning. We describe our supervised fine-tuning approach in Section 3.4. Table 2 reports results averaged over five runs with 95% confidence intervals. While supervised fine-tuning

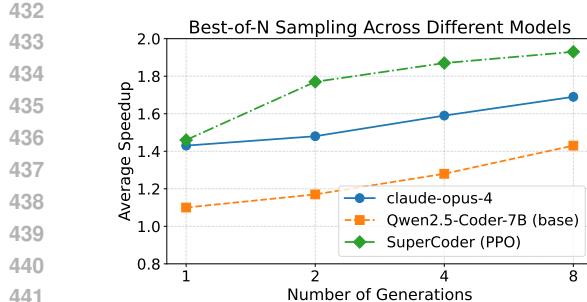


Figure 2: Best-of-N sampling results.

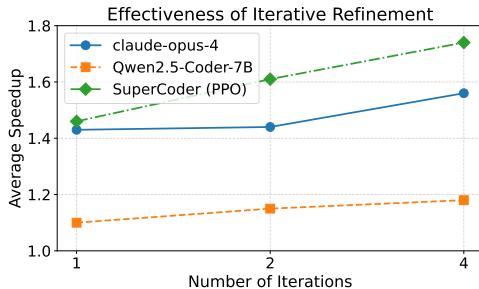


Figure 3: Iterative refinement results.

improves performance, RL achieves slightly stronger results. We believe that RL is a natural fit for the open-ended nature of superoptimization, as RL directly optimizes for correctness and speedup rather than imitating existing examples.

Iterative Refinement. Figure 3 shows the results of iterative refinement, where the model receives feedback about compilation failures, test failures, or performance for self-reflection. All three models exhibit improvements as the number of refinement iterations increases, with the effect being most pronounced for our RL fine-tuned model.

5.4 ANALYSIS OF LEARNED PROGRAM TRANSFORMATIONS

To better understand why LLMs can further optimize assembly programs already optimized by industry-standard compilers, we analyze all 200 evaluation programs by comparing the `gcc -O3` output with the assembly generated by our PPO-trained model SuperCoder. We categorize the learned transformations into four types: (1) code layout and instruction scheduling, which account for 98.5% of the changes and include basic block placement, instruction alignment, and reordering to improve cache behavior and hide latencies; (2) register allocation, representing 16% of the changes, where the model selects alternative registers; (3) control flow optimization (1.5%); and (4) instruction selection (1.0%). Since a single problem’s transformation may belong to multiple categories, the percentages do not sum to 100%. Unfortunately, there is currently no automated tool that can further reliably explain performance speedups at the assembly level. Automated analysis and explanation of performance differences in assembly code remains a challenging and unsolved problem.

The observed gains and our analysis suggest that LLMs can produce reasonable code transformations that meaningfully improve assembly performance. These results indicate that LLMs can uncover nuanced optimization opportunities beyond the reach of traditional compiler heuristics, suggesting that compilers themselves still have room for improvement.

5.5 COMPARISON WITH SIMPLE RANDOM PERTURBATIONS

To assess whether the improvements achieved by LLMs stem from systematic strategies learned during training rather than simple random variation in assembly programs, we compare against a baseline that applies simple random perturbations to assembly code. While such perturbations do not necessarily improve performance, running them multiple times and selecting the fastest version allows us to compute a speedup. These perturbations preserve correctness but can still influence performance, and we report speedup using the minimum observed runtime across 10 runs.

To randomly perturb the assembly, we compile the binaries with options that randomize both the stack and program load addresses. This alters code layout in memory, which can affect performance but not correctness. Speedup is measured as the ratio of the fastest run to the original runtime over 10 randomized runs. Repeating the experiment five times yields a speedup of 1.19 ± 0.01 (95% CI), significantly lower than 1.46 ± 0.12 achieved by SuperCoder. This indicates that SuperCoder systematically exploits performance opportunities rather than relying on simple random perturbations, particularly since it produces each result in a single shot without retries or iterative refinement.

6 DISCUSSION

486 **Prompt Optimization Methods.** We experimented with few-shot in-context learning and found
 487 that adding more examples does not reliably improve performance and often degrades it, consistent
 488 with prior observations in code optimization (Shypula et al., 2024). We also evaluated GEPA (Agrawal
 489 et al., 2025), an evolutionary prompting framework that uses natural language reflection to derive
 490 optimization rules, but observed only minimal gains. Additional results are provided in Appendix A.4.
 491

492 **Alternative Reward Function Design.** Besides the reward function presented in Section 3.3, we
 493 also evaluate an alternative design. The original design assigns zero reward whenever any test fails. In
 494 contrast, the alternative assigns (i) a reward of -1 if the program fails to compile, (ii) a partial reward
 495 equal to the fraction of passed tests if only some tests succeed, and (iii) a reward of $1 + \alpha \cdot \text{speedup}$
 496 once all tests pass. Training the base model with this design yields an average speedup of $1.38\times$.
 497 Varying the scaling factor (5 or 10) has a negligible effect, and the result remains worse than the
 498 $1.46\times$ achieved by SuperCoder with the original reward. This suggests that directly optimizing for
 499 the terminal speedup reward is more effective.
 500

501 **Direct Compilation from C.** We also examine a more challenging setting where `gcc -O0` assembly
 502 is not provided. Instead, LLMs receive only the C source code and are asked to generate assembly
 503 directly. This setup leads to a sharp drop in performance: for example, SuperCoder, which attains
 504 95.0% correctness with the assembly baseline, fails to produce any compilable code without it.
 505 Similar degradation occurs for other models such as `llm-compiler-13b` and Claude models. These
 506 results indicate that, at least in their current state, LLMs can act as superoptimizers building on
 507 compiler outputs, but cannot replace compilers themselves.
 508

509 **Case Study.** We illustrate in Appendix A.1 a representative example where an LLM discovers an
 510 optimization beyond the reach of a state-of-the-art compiler. The original C function computes the
 511 population count (i.e., the number of set bits) by repeatedly shifting the input and accumulating its
 512 least significant bit. The assembly produced by `gcc -O3` preserves this loop structure, relying on
 513 explicit bitwise operations and conditional branches. In contrast, Claude-*opus-4* produces an efficient
 514 implementation that replaces the entire loop with a single `popcnt` instruction, performing the same
 515 computation in one operation and reducing both instruction count and runtime overhead.
 516

517 **Limitation and Potential Directions.** A limitation of our approach is the lack of formal correctness
 518 guarantees. The absence of a general formal equivalence checker is a well-known theoretical
 519 limitation, grounded in the undecidability of program equivalence. Our evaluation relies on test-based
 520 validation, which is common in with prior work (Shypula et al., 2024; Du et al., 2024). Moreover, our
 521 evaluation achieves 96.2% line coverage, which substantially reduces the risk of undetected errors.
 522 Encouragingly, researchers are already building formal verification tools for GPU kernels (Dubey
 523 et al., 2025), inspired in part by advances in LLM-generated GPU code. We hope that our work
 524 motivates the development of more general and scalable assembly verification tools.
 525

526 Compared with traditional compiler optimization, reinforcement learning introduces substantial
 527 computational overhead during training. This cost, however, is incurred only once: once trained, the
 528 model can generate optimized assembly efficiently with low latency.
 529

530 In addition, most superoptimization research has centered on x86-64, and our work follows this focus.
 531 Extending the methodology to other targets such as ARM, RISC-V, or GPU kernels could greatly
 532 broaden its applicability and impact.
 533

7 CONCLUSION

534 We investigated whether LLMs can act as superoptimizers, generating assembly programs that
 535 outperform code already optimized by industry-standard compilers. To support this study, we
 536 introduced the first large-scale benchmark of 8,072 assembly programs. Evaluating 23 models
 537 revealed the difficulty of the task, with most failing to achieve meaningful gains. By fine-tuning with
 538 reinforcement learning, our model SuperCoder improved both correctness and performance, reaching
 539 95.0% test pass rate and an average speedup of $1.46\times$ over `gcc -O3`. We also show that Best-of-N
 540 sampling and iterative refinement can bring additional improvement. These results demonstrate,
 541 for the first time, that LLMs can be applied as superoptimizers for assembly code, opening new
 542 opportunities for performance optimization beyond compiler heuristics.
 543

540 LLM USAGE
541542 Large Language Models (LLMs) are the primary subject of study in this paper. In addition, we used
543 LLMs as a general-purpose writing assistant to polish the presentation and improve readability.
544545 REFERENCES
546547 Hyperfine, 2025. URL <https://github.com/sharkdp/hyperfine>.548
549 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
550 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
551 *arXiv preprint arXiv:2303.08774*, 2023.552 Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
553 Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, et al. Gepa: Reflective prompt
554 evolution can outperform reinforcement learning. *arXiv preprint arXiv:2507.19457*, 2025.555 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
556 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
557 models. *arXiv preprint arXiv:2108.07732*, 2021.558 Carlo Baronio, Pietro Marsella, Ben Pan, Simon Guo, and Silas Alberti. Kevin: Multi-turn rl for
559 generating cuda kernels. *arXiv preprint arXiv:2507.11948*, 2025.560 Sahil Bhatia, Jie Qiu, Niranjan Hasabnis, Sanjit Seshia, and Alvin Cheung. Verified code transpilation
561 with llms. *Advances in Neural Information Processing Systems*, 37:41394–41424, 2024.562 Rudy Bunel, Alban Desmaison, M Pawan Kumar, Philip HS Torr, and Pushmeet Kohli. Learning to
563 superoptimize programs. *arXiv preprint arXiv:1611.01787*, 2016.564 Thomas J. Watson IBM Research Center, F.E. Allen, and J. Cocke. *A Catalogue of Optimizing
565 Transformations*. IBM Thomas J. Watson Research Center, 1971. URL <https://books.google.com/books?id=oExaZwEACAAJ>.566 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
567 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
568 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.569 Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin,
570 and Arvind Krishnamurthy. Learning to optimize tensor programs. *Advances in Neural Information
571 Processing Systems*, 31, 2018.572 Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. Sound loop superoptimization for
573 google native client. *ACM SIGPLAN Notices*, 52(4):313–326, 2017.574 Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Synnaeve,
575 and Hugh Leather. Meta large language model compiler: Foundation models of compiler
576 optimization. *arXiv preprint arXiv:2407.02524*, 2024.577 Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Synnaeve,
578 and Hugh Leather. Llm compiler: Foundation language models for compiler optimization. In
579 *Proceedings of the 34th ACM SIGPLAN International Conference on Compiler Construction*, pp.
580 141–153, 2025.581 Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and
582 Lingming Zhang. Large language models are edge-case generators: Crafting unusual programs for
583 fuzzing deep learning libraries. In *Proceedings of the 46th IEEE/ACM international conference on
584 software engineering*, pp. 1–13, 2024.585 Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
586 Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
587 learning from compiler feedback. *arXiv preprint arXiv:2402.01391*, 2024.

594 Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, and See-Kiong Ng. Mercury: A code efficiency
 595 benchmark for code large language models. *arXiv preprint arXiv:2402.07844*, 2024.
 596

597 Kshitij Dubey, Benjamin Driscoll, Anjiang Wei, Neeraj Kayal, Rahul Sharma, and Alex Aiken.
 598 Equivalence checking of ml gpu kernels. *arXiv preprint arXiv:2511.12638*, 2025.
 599

600 Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia Mirhoseini.
 601 Codemonkeys: Scaling test-time compute for software engineering. *arXiv preprint
 602 arXiv:2501.14723*, 2025.

603 Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
 604 Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
 605 and synthesis. *arXiv preprint arXiv:2204.05999*, 2022.
 606

607 Dejan Grubisic, Chris Cummins, Volker Seeker, and Hugh Leather. Compiler generated feedback for
 608 large language models. *arXiv preprint arXiv:2403.14714*, 2024.
 609

610 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
 611 Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
 612 rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024.
 613

614 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 615 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 616 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
 617

618 Ameer Haj-Ali, Qijing Jenny Huang, John Xiang, William Moses, Krste Asanovic, John Wawrzynek,
 619 and Ion Stoica. Autophase: Juggling hls phase orderings in random forests with deep reinforcement
 620 learning. *Proceedings of machine learning and systems*, 2:70–81, 2020.
 621

622 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
 623 Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
 624 with apps. *arXiv preprint arXiv:2105.09938*, 2021.
 625

626 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 627 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 628

629 Dong Huang, Jianbo Dai, Han Weng, Puzhen Wu, Yuhao Qing, Heming Cui, Zhijiang Guo, and Jie
 630 Zhang. Effilearner: Enhancing efficiency of generated code via self-optimization. *Advances in
 631 Neural Information Processing Systems*, 37:84482–84522, 2024.
 632

633 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 634 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 635 2024.
 636

637 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 638 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint
 639 arXiv:2310.06770*, 2023.
 640

641 Jason R. Koenig, Oded Padon, and Alex Aiken. Replication package for article: Adaptive restarts for
 642 stochastic synthesis, 2021a. URL <https://doi.org/10.1145/3410298>.
 643

644 Jason R Koenig, Oded Padon, and Alex Aiken. Adaptive restarts for stochastic synthesis. In
 645 *Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
 646 Design and Implementation*, pp. 696–709, 2021b.
 647

648 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
 649 Mastering code generation through pretrained models and deep reinforcement learning. *Advances
 650 in Neural Information Processing Systems*, 35:21314–21328, 2022.
 651

652 Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong Dong, Zhi Jin, Binhu Li, Fei Huang, and
 653 Yongbin Li. Evocodebench: An evolving code generation benchmark with domain-specific
 654 evaluations. *Advances in Neural Information Processing Systems*, 37:57619–57641, 2024.
 655

648 Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
 649 Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
 650 you! *arXiv preprint arXiv:2305.06161*, 2023.

651

652 Xiaoya Li, Xiaofei Sun, Albert Wang, Jiwei Li, and Chris Shum. Cuda-11: Improving cuda optimiza-
 653 tion via contrastive reinforcement learning. *arXiv preprint arXiv:2507.14111*, 2025.

654

655 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
 656 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
 657 with alphacode. *Science*, 378(6624):1092–1097, 2022.

658

659 Youwei Liang, Kevin Stone, Ali Shameli, Chris Cummins, Mostafa Elhoushi, Jiadong Guo, Benoit
 660 Steiner, Xiaomeng Yang, Pengtao Xie, Hugh James Leather, et al. Learning compiler pass orders
 661 using coresets and normalized value prediction. In *International Conference on Machine Learning*,
 pp. 20746–20762. PMLR, 2023.

662

663 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 664 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
arXiv:2412.19437, 2024a.

665

666 Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. Rltf: Reinforce-
 667 ment learning from unit test feedback. *arXiv preprint arXiv:2307.04349*, 2023a.

668

669 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 670 chatGPT really correct? rigorous evaluation of large language models for code generation. In
Advances in Neural Information Processing Systems, 2023b.

671

672 Jiawei Liu, Thanh Nguyen, Mingyue Shang, Hantian Ding, Xiaopeng Li, Yu Yu, Varun Kumar, and
 673 Zijian Wang. Learning code preference via synthetic evolution. *arXiv preprint arXiv:2410.03837*,
 2024b.

674

675 Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evaluating
 676 language models for efficient code generation. *arXiv preprint arXiv:2408.06450*, 2024c.

677

678 Tyler Lu, Dávid Pál, and Martin Pál. Contextual multi-armed bandits. In *Proceedings of the Thirteenth*
679 international conference on Artificial Intelligence and Statistics, pp. 485–492. JMLR Workshop
 and Conference Proceedings, 2010.

680

681 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
 682 and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
 683 synthesis. *arXiv preprint arXiv:2203.13474*, 2022.

684

685 Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Ré, and Azalia
 686 Mirhoseini. Kernelbench: Can llms write efficient gpu kernels? *arXiv preprint arXiv:2502.10517*,
 2025.

687

688 Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. Scaling up
 689 superoptimization. In *Proceedings of the Twenty-First International Conference on Architectural*
690 Support for Programming Languages and Operating Systems, pp. 297–310, 2016.

691

692 Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
 693 Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for
 694 code dataset for learning a diversity of coding tasks. *arXiv preprint arXiv:2105.12655*, 2021.

695

696 Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 697 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
 code. *arXiv preprint arXiv:2308.12950*, 2023.

698

699 Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. *ACM SIGARCH*
Computer Architecture News, 41(1):305–316, 2013.

700

701 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

702 Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin, Wuwei Lin, Masahiro
 703 Masuda, Cody Hao Yu, and Tianqi Chen. Tensor program optimization with probabilistic programs.
 704 *Advances in Neural Information Processing Systems*, 35:35783–35796, 2022.

705 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 706 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 707 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

708 Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Conditionally correct superoptimization. *ACM SIGPLAN Notices*, 50(10):147–162, 2015.

709 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 710 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
 711 arXiv:2409.19256*, 2024.

712 Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
 713 generation using deep reinforcement learning. *arXiv preprint arXiv:2301.13816*, 2023.

714 Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming Yang, Milad
 715 Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh.
 716 Learning performance-improving code edits. In *The Twelfth International Conference on Learning
 717 Representations*, 2024. URL <https://openreview.net/forum?id=ix7rLVHXY>.

718 Jubi Taneja, Avery Laird, Cong Yan, Madan Musuvathi, and Shuvendu K Lahiri. Llm-vectorizer: Llm-
 719 based verified loop vectorizer. In *Proceedings of the 23rd ACM/IEEE International Symposium on
 720 Code Generation and Optimization*, pp. 137–149, 2025.

721 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 722 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 723 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

724 Ali TehraniJamsaz, Arijit Bhattacharjee, Le Chen, Nesreen K Ahmed, Amir Yazdanbakhsh, and
 725 Ali Jannesari. Coderosetta: Pushing the boundaries of unsupervised code translation for parallel
 726 programming. *arXiv preprint arXiv:2410.20527*, 2024.

727 Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. Finding missed optimizations through
 728 the lens of dead code elimination. In *Proceedings of the 27th ACM International Conference on
 729 Architectural Support for Programming Languages and Operating Systems*, pp. 697–709, 2022.

730 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 731 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 732 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

733 Henry S Warren. *Hacker's delight*. Pearson Education, 2013.

734 Anjiang Wei, Allen Nie, Thiago SFX Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and Alex
 735 Aiken. Improving parallel program performance through dsl-driven code generation with llm
 736 optimizers. *arXiv preprint arXiv:2410.15625*, 2024.

737 Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yaofeng Sun, Yuan
 738 Liu, Thiago SFX Teixeira, Diyi Yang, et al. Equibench: Benchmarking code reasoning capabilities
 739 of large language models via equivalence checking. *arXiv preprint arXiv:2502.12466*, 2025a.

740 Anjiang Wei, Allen Nie, Thiago S. F. X. Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and
 741 Alex Aiken. Improving parallel program performance with LLM optimizers via agent-system
 742 interfaces. In *Forty-second International Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=3h80HyStMH>.

743 Anjiang Wei, Tianran Sun, Yogesh Seenichamy, Hang Song, Anne Ouyang, Azalia Mirhoseini,
 744 Ke Wang, and Alex Aiken. Astra: A multi-agent system for gpu kernel performance optimization.
 745 *arXiv preprint arXiv:2509.07506*, 2025c.

756 Anjiang Wei, Tarun Suresh, Jiannan Cao, Naveen Kannan, Yuheng Wu, Kai Yan, Thiago S. F. X.
 757 Teixeira, Ke Wang, and Alex Aiken. CodeARC: Benchmarking reasoning capabilities of LLM
 758 agents for inductive program synthesis. In *Second Conference on Language Modeling*, 2025d.
 759 URL <https://openreview.net/forum?id=Q5pVZCrrKr>.

760 Anjiang Wei, Huanmi Tan, Tarun Suresh, Daniel Mendoza, Thiago SFX Teixeira, Ke Wang, Caroline
 761 Trippel, and Alex Aiken. Vericoder: Enhancing llm-based rtl code generation through functional
 762 correctness validation. *arXiv preprint arXiv:2504.15659*, 2025e.

763 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 764 Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
 765 reinforcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025f.

766 Michael E Wolf and Monica S Lam. A loop transformation theory and an algorithm to maximize
 767 parallelism. *IEEE transactions on parallel and distributed systems*, 2(4):452–471, 1991.

768 Mengdi Wu, Xinhao Cheng, Shengyu Liu, Chunyan Shi, Jianan Ji, Kit Ao, Praveen Velliengiri, Xupeng
 769 Miao, Oded Padon, and Zhihao Jia. Mirage: A multi-level superoptimizer for tensor programs.
 770 *arXiv preprint arXiv:2405.05751*, 2024.

771 Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
 772 program repair via zero-shot learning. In *Proceedings of the 30th ACM Joint European Software
 773 Engineering Conference and Symposium on the Foundations of Software Engineering*, pp. 959–971,
 774 2022.

775 Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Universal
 776 fuzzing via large language models. *CoRR*, 2023a.

777 Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era of
 778 large pre-trained language models. In *2023 IEEE/ACM 45th International Conference on Software
 779 Engineering (ICSE)*, pp. 1482–1494. IEEE, 2023b.

780 Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
 781 llm-based software engineering agents. *arXiv preprint arXiv:2407.01489*, 2024a.

782 Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang. Top leaderboard ranking= top coding profi-
 783 ciency, always? evoeval: Evolving coding benchmarks via llm. *arXiv preprint arXiv:2403.19114*,
 784 2024b.

785 Aidan ZH Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. Large language models
 786 for test-free fault localization. In *Proceedings of the 46th IEEE/ACM International Conference on
 787 Software Engineering*, pp. 1–12, 2024a.

788 John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 789 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
 790 *Advances in Neural Information Processing Systems*, 37:50528–50652, 2024b.

791 Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
 792 Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in automated
 793 code translation. *Proceedings of the ACM on Software Engineering*, 1(FSE):1585–1608, 2024c.

794 Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic. Felix: Optimizing tensor programs
 795 with gradient descent. In *Proceedings of the 29th ACM International Conference on Architectural
 796 Support for Programming Languages and Operating Systems, Volume 3*, pp. 367–381, 2024.

797 Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun
 798 Yang, Danyang Zhuo, Koushik Sen, et al. Ansol: Generating {High-Performance} tensor programs
 799 for deep learning. In *14th USENIX symposium on operating systems design and implementation
 800 (OSDI 20)*, pp. 863–879, 2020.

801 Size Zheng, Renze Chen, Anjiang Wei, Yicheng Jin, Qin Han, Liqiang Lu, Bingyang Wu, Xiuhong
 802 Li, Shengen Yan, and Yun Liang. Amos: enabling automatic mapping for tensor computations on
 803 spatial accelerators with hardware abstraction. In *Proceedings of the 49th Annual International
 804 Symposium on Computer Architecture*, pp. 874–887, 2022.

810 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
811 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
812 generation with diverse function calls and complex instructions. *arXiv preprint arXiv:2406.15877*,
813 2024.
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

A APPENDIX

865

A.1 CASE STUDY

867

868

869

```

870 int f(unsigned long x)
871 {
872     int res = 0;
873     while (x > 0)
874     {
875         res += x & 1;
876         x >>= 1;
877     }
878     return res;
879 }
880
881
882

```

```

.L0:
    xorl %eax, %eax
    testq %rdi, %rdi
    je .L2
.L1:
    movq %rdi, %rdx
    andl $0x1, %edx
    addq %rdx, %rax
    shrq $0x1, %rdi
    jne .L1
    retq
.L2:
    retq

```

Claude-Opus-4

```

.L0:
    popcnt %rdi, %rax
    retq

```

Figure A1: Case study comparing the C code, baseline assembly produced by gcc -O3, and optimized assembly generated by Claude-Opus-4. The model successfully replaces the loop with the specialized hardware instruction `popcnt`, resulting in a significantly more concise implementation.

886

887

A.2 TRAINING CONFIGURATIONS

888

Component	Setting
Base model	Qwen2.5-Coder-7B-Instruct
Actor's learning rate	1e-6
Critic's learning rate	1e-5
Batch size	16
Epoch	1
Max prompt length	2000 tokens
Max response length	2000 tokens
Gradient checkpointing	Enabled (both actor and critic)
Rollout temperature	0.5
Hardware	4x A100 GPUs

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

A.3 PROMPT TEMPLATE

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Prompt Template

Given the following C code and assembly code, your task is to generate highly optimized x86-64 assembly code.

C Code:

<C code here>

Assembly Code:

<baseline assembly code here produced by gcc -O3>

Only output the optimized assembly code. Do not include any other text. Do not write any comments in the assembly code. Wrap the assembly code in assembly tags.

Optimized Assembly Code:

Model	Shots	Compile Pass (%)	Test Pass (%)	Avg. Speedup
claude-opus-4	0-shot	90.0	51.5	1.43×
claude-opus-4	2-shot	95.0	15.0	1.13×
claude-opus-4	4-shot	95.0	12.5	1.11×
SuperCoder (PPO)	0-shot	96.0	95.0	1.46×
SuperCoder (PPO)	2-shot	94.0	90.5	1.59×
SuperCoder (PPO)	4-shot	93.0	81.0	1.54×
Qwen2.5-Coder-7B (Base)	0-shot	77.9	61.4	1.10×
Qwen2.5-Coder-7B (Base)	2-shot	70.5	35.0	1.10×
Qwen2.5-Coder-7B (Base)	4-shot	80.5	30.5	1.06×

Table A2: Comparison of 0-shot, 2-shot, and 4-shot prompting across different models.

A.4 PROMPT OPTIMIZATION METHODS

Few-shot Prompting. We evaluate 0-shot, 2-shot, and 4-shot prompting across three models. Table A2 shows that adding more in-context examples does not reliably improve performance and often degrades it. This observation is consistent with prior work (Shypula et al., 2024), which finds that few-shot examples can bias the model and lead to incorrect task understanding.

Prompt Evolution Framework. We experimented with GEPA (Agrawal et al., 2025), an evolutionary prompting framework that uses natural language reflection to learn high-level optimization rules from trial and error. We used gpt-4o as the model under evaluation and gpt-5 as the reflection model. GEPA yielded only modest gains: compilation pass increased from 81.0% to 84.0% and test pass from 5.0% to 7.5%, while performance speedup remained essentially unchanged. We suspect this is because assembly optimization requires substantial domain knowledge that is difficult to capture by modifying the prompt alone.

A.5 ADDITIONAL EVALUATION ON RANDOMLY SAMPLED PROGRAMS

Our main dataset samples programs with larger speedup from -O0 to -O3 speedup. To evaluate how much dataset distribution affects our method, we conduct an additional experiment on 200 programs *randomly sampled* from CodeNet, and we ensure that this new set is fully disjoint from both our training and evaluation splits and *not* selected based on compiler speedup characteristics. Across these unbiased sampled programs, the conclusions remain largely unchanged: the PPO-trained model consistently produces correct and faster assembly code. This indicates that the improvements learned through reinforcement learning generalize beyond the specific distribution used for training and primary evaluation.

Model	Compile Pass (%)	Test Pass (%)	Avg. Speedup
Qwen2.5-Coder-7B	66.5	40.0	1.07×
claude-opus-4	94.0	43.0	1.10×
SuperCoder (PPO)	98.5	93.5	1.57×

Table A3: Performance on 200 randomly sampled programs from CodeNet, disjoint from all training and evaluation splits. Unlike the main dataset, these programs are *not* selected for large gcc -O0 to gcc -O3 speedup. The PPO-trained model maintains strong correctness and performance gains.