
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUPERCODER: ASSEMBLY PROGRAM SUPEROPTIMIZA-
TION WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Superoptimization is the task of transforming a program into a faster one while
preserving its input–output behavior. In this work, we investigate whether large
language models (LLMs) can serve as superoptimizers, generating assembly pro-
grams that outperform code already optimized by industry-standard compilers.
We construct the first large-scale benchmark for this problem, consisting of 8,072
assembly programs averaging 130 lines, in contrast to prior datasets restricted to
2–15 straight-line, loop-free programs. We evaluate 23 LLMs on this benchmark
and find that the strongest baseline, Claude-opus-4, achieves a 51.5% test-passing
rate and a 1.43× average speedup over gcc -O3. To further enhance performance,
we fine-tune models with reinforcement learning, optimizing a reward function
that integrates correctness and performance speedup. Starting from Qwen2.5-
Coder-7B-Instruct (61.4% correctness, 1.10× speedup), the fine-tuned model Su-
perCoder attains 95.0% correctness and 1.46× average speedup, with additional
improvement enabled by Best-of-N sampling and iterative refinement. Our re-
sults demonstrate, for the first time, that LLMs can be applied as superoptimizers
for assembly programs, establishing a foundation for future research in program
performance optimization beyond compiler heuristics. Our code is available at
https://anonymous.4open.science/r/SuperCoder/.

1 INTRODUCTION

Superoptimization is the task of transforming a program into a faster one while preserving its input-
output behavior. In this work, we investigate whether large language models (LLMs) can perform
superoptimization by generating assembly code that surpasses the performance of compiler outputs.

Decades of research have tackled the problem of code optimization, giving rise to two main ap-
proaches. The first develops better algorithms for rule-based transformations in compilers (Wolf &
Lam, 1991). However, given the vast space of possible transformations, compiler-optimized code is
not guaranteed to be optimal and often leaves performance untapped (Center et al., 1971; Theodoridis
et al., 2022). The second, superoptimization, develops search algorithms that directly explore the
space of all possible programs, aiming to discover the correct variant with the best performance rather
than relying on a fixed set of transformation rules (Schkufza et al., 2013).

Superoptimization is an aggressive form of program optimization that can outperform compiler-
optimized code, yet existing literature has focused on very short, straight-line assembly programs
without loops. Prior work has primarily relied on CPU-based search heuristics, which fail to scale to
larger programs (Schkufza et al., 2013; Phothilimthana et al., 2016; Koenig et al., 2021b); available
datasets include at most 15 lines of straight-line assembly (Koenig et al., 2021a).

In this work, we explore the use of LLMs as a superoptimizer to improve the performance of assembly
code. In contrast to most prior work on code generation from natural language (Chen et al., 2021;
Austin et al., 2021; Hendrycks et al., 2021; Zhuo et al., 2024), we tackle a fundamentally different
and more technically demanding task: improving assembly code that has already been optimized
by the industry-standard compiler at its highest optimization level (gcc -O3). Compilers have been
refined over decades of expert-driven development, and surpassing them remains a central challenge
in programming languages, as compilers form the foundation of all software.

1

https://anonymous.4open.science/r/SuperCoder/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

#include <stdio.h>
int main() {
 int a, b;
 scanf("%d", &a);
 ...
}

call scanf@PLT
mov eax, [rsp+8]
add eax, [rsp+4]
call printf@PLT
...

Test 1

...
Test 2

Test n

call scanf@PLT
mov eax, [rsp+8]
add eax, [rsp+4]
jmp printf@PLT
...

gcc -O3 Assembly Correctness

SpeedupLLM

C Code

LLM optimized
assembly

RewardUpdate Weights

Executable

Executable

PPO / GRPO

Figure 1: Overview of the assembly code optimization task. Given a C program and its baseline
assembly from gcc -O3, an LLM is fine-tuned with PPO or GRPO to generate improved assembly.
The reward function reflects correctness and performance based on test execution.

Unlike high-level programming languages (e.g., Python or C), large-scale, high-quality assembly
datasets are scarce. As the first study in this direction, we construct a dataset of 8,072 assembly
programs. Each instance includes input–output test cases and baseline assembly generated by the
compiler at its highest optimization level (gcc -O3), which serves as the starting point for further
optimization. In contrast, the datasets commonly used in the superoptimization community (Warren,
2013; Schkufza et al., 2013; Koenig et al., 2021a) are either extremely limited in size, containing
only 25 programs, or consist of toy examples with 2 to 15 instructions without loops. Our dataset
is substantially larger, with assembly programs averaging 130 lines and including loops. Our test
suites achieve 96.2% line and 87.3% branch coverage, demonstrating strong test quality. Our dataset
represents a substantial step forward in scale for evaluating superoptimization techniques.

Beyond evaluating existing models, we also apply reinforcement learning (RL) for fine-tuning to
further enhance their capabilities. We use widely adopted algorithms, including Proximal Policy
Optimization (PPO) and Group Relative Policy Optimization (GRPO), to train an LLM with a reward
function that integrates both correctness and performance speedup. Prior work on LLM-based perfor-
mance optimization has explored alternative methodologies such as supervised fine-tuning (Shypula
et al., 2024), chain-of-thought prompting (Liu et al., 2024c), agent-based frameworks (Wei et al.,
2025b;c), and preference learning (Du et al., 2024). Our approach optimizes speedup explicitly in the
reward function, making reinforcement learning well suited to superoptimization. To our knowledge,
this is the first application of reward-based RL to LLMs for code performance optimization, with
correctness and speedup jointly encoded in the objective.

We evaluate 23 LLMs on this task and find that the best-performing model, Claude-opus-4, achieves
a 51.5% test-passing rate and an average speedup of 1.43× over the compiler-optimized baseline
(gcc -O3). Our reinforcement learning approach is highly effective: starting from the base model
Qwen2.5-Coder-7B-Instruct, which achieves 61.4% correctness and a modest 1.10× speedup, the
fine-tuned model SuperCoder attains 95.0% correctness and 1.46× average speedup, with further
improvement enabled by Best-of-N sampling and iterative refinement.

In summary, our contributions are as follows:

• We are the first to introduce superoptimization as a task for LLMs, a technically demanding
challenge that aims to improve assembly code already optimized by industry-standard
compilers.

• We construct the first large-scale dataset of 8,072 assembly programs, averaging 130 lines.
This far surpasses prior loop-free datasets under 15 lines and marks a substantial step forward
in scale and realism for evaluating superoptimization techniques.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We evaluate 23 LLMs on the benchmark and show that RL-based training substantially
improves performance: fine-tuning Qwen2.5-Coder-7B-Instruct (61.4% correctness, 1.10×
speedup) results in SuperCoder with 95.0% correctness and 1.46× speedup, with further
gains enabled by Best-of-N sampling and iterative refinement.

2 RELATED WORK

Large Language Models for Code. Benchmarks for evaluating large language models (LLMs)
on code generation from natural language specifications have received increasing attention. Notable
examples include HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), APPS (Hendrycks
et al., 2021), and more recent efforts (Liu et al., 2023b; Li et al., 2024; Xia et al., 2024b; Zhuo
et al., 2024). In parallel, many models have been developed to enhance code generation capabilities,
such as Codex (Chen et al., 2021), AlphaCode (Li et al., 2022), CodeGen (Nijkamp et al., 2022),
InCoder (Fried et al., 2022), StarCoder (Li et al., 2023), DeepSeek-Coder (Guo et al., 2024), Code
Llama (Roziere et al., 2023), and others (Hui et al., 2024; Wei et al., 2025e). Beyond code generation,
LLMs have been applied to real-world software engineering tasks including automated program
repair (Xia & Zhang, 2022; Xia et al., 2023b), software testing (Xia et al., 2023a; Deng et al.,
2024), bug localization (Yang et al., 2024a), transpilation (Yang et al., 2024c; Bhatia et al., 2024),
equivalence checking (Wei et al., 2025a), and synthesis (Wei et al., 2025d). SWE-bench (Jimenez
et al., 2023) integrates these tasks into a benchmark for resolving real GitHub issues. Building on
this, SWE-agent (Yang et al., 2024b) and subsequent works (Xia et al., 2024a; Wei et al., 2025f)
employ an agent-based framework that leverages LLMs to improve the issue resolution process.

Recent work has also explored LLMs for improving program performance. CodeRosetta (Tehrani-
Jamsaz et al., 2024) targets automatic parallelization, such as translating C++ to CUDA. Other
efforts focus on optimizing Python code for efficiency (Du et al., 2024; Liu et al., 2024c) or enabling
self-adaptation (Huang et al., 2024), and improving C++ performance (Shypula et al., 2024). Of
particular relevance are approaches to low-level code optimization (Wei et al., 2024; Ouyang et al.,
2025). The LLM Compiler foundation models (Cummins et al., 2024; 2025) are primarily designed
for code size reduction and binary disassembly, whereas our work focuses on optimizing assembly
code for performance. LLM-Vectorizer (Taneja et al., 2025) offers a formally verified solution for
auto-vectorization, a specific compiler pass. In contrast, our work does not restrict the optimization
type and uses test-case validation.

Learning-Based Code Optimization. The space of code optimization is vast, and many approaches
have leveraged machine learning to improve program performance. A classic challenge in compilers
is the phase-ordering problem, where performance depends heavily on the sequence of optimization
passes. AutoPhase (Haj-Ali et al., 2020) uses deep reinforcement learning to tackle this, while
Coreset (Liang et al., 2023) employs graph neural networks (GNNs) to guide optimization decisions.
Modern compilers apply extensive rewrite rules but offer no guarantee of optimality. Superoptimiza-
tion seeks the most efficient program among all semantically equivalent variants of the compiler
output. Traditional methods use stochastic search, such as MCMC sampling (Schkufza et al., 2013),
with follow-up work improving scalability (Phothilimthana et al., 2016; Bunel et al., 2016) and
extending to broader domains (Sharma et al., 2015; Churchill et al., 2017). These rely on formal
verification for correctness, restricting them to small, loop-free programs. In contrast, our approach
uses test-based validation, enabling optimization of general programs with loops. With the rise of
deep learning, substantial attention has turned to optimizing GPU kernel code. AutoTVM (Chen
et al., 2018) pioneered statistical cost model-based search for CUDA code optimization, followed
by methods such as Ansor (Zheng et al., 2020), AMOS (Zheng et al., 2022), and others (Shao et al.,
2022; Zhao et al., 2024; Wu et al., 2024).

More recently, LLMs have been explored as code optimizers (Shypula et al., 2024; Grubisic et al.,
2024; Wei et al., 2024; 2025b;c), with growing interest in reinforcement learning that guides genera-
tion through reward signals (Dou et al., 2024; Wei et al., 2025f). Rewards are often derived from
unit-test correctness (Le et al., 2022; Shojaee et al., 2023; Liu et al., 2023a) or binary preference
signals (Liu et al., 2024b; Du et al., 2024). To our knowledge, this is the first work to apply reinforce-
ment learning to optimize code performance with LLMs, with concurrent efforts exploring CUDA
kernel optimization (Li et al., 2025; Baronio et al., 2025).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

3.1 TASK DEFINITION

Let C be a program written in a high-level language such as C. A modern compiler like gcc can
compile C into an x86-64 assembly program P = gcc(C), which can then be further assembled into
an executable binary. The assembly program P serves as an intermediate representation that exposes
low-level optimization opportunities, making it suitable for aggressive performance improvement.
We assume the semantics-preserving nature of the compilation process, i.e., JCK = JP K, so that the
behavior of the assembly program P is identical to that of the source program C.

In theory, the goal is to produce a program P ′ that is functionally equivalent to P across the entire
input space X , i.e., P (x) = P ′(x) for all x ∈ X . Since verifying this property is undecidable in
general, we approximate equivalence using a finite test set T = {(xi, yi)}ni=1, where each input-
output pair (xi, yi) captures the expected behavior of C.

We say that an assembly program P ′ is valid if it can be successfully assembled and linked into an
executable binary. Let valid(P ′) ∈ {True,False} denote this property. Based on all that we
said above, we define the set of correct programs as:

S(P) = {P ′ | valid(P ′) ∧ ∀(xi, yi) ∈ T , P ′(xi) = yi} .

Performance and Speedup. Let t(P) denote the execution time of P on the test set T , and let
t(P ′) be the corresponding execution time for P ′. The speedup of P ′ relative to P is defined as
follows. If the LLM-generated program is invalid or slower, we fall back to the baseline and assign a
speedup of 1.

Speedup(P ′) =

{
t(P)
t(P ′) if P ′ ∈ S(P) and t(P ′) < t(P),

1 otherwise.

Optimization Objective. The objective is to generate a candidate program P ′ that maximizes
Speedup(P ′). Only programs in S(P) are eligible for speedup; any candidate that fails to compile
into a binary or produces incorrect outputs is assigned a default speedup of 1. This reflects a practical
fallback: when the generated program is invalid, the system can revert to the baseline P , compiled
with gcc -O3, which defines the 1× reference performance. Although S(P) captures the correctness
criteria, we do not restrict the LLM to generate only valid programs. Instead, the model produces
arbitrary assembly code, and correctness is validated post hoc via compilation and test execution. We
train an LLM using reinforcement learning (see Section 3.3) to generate candidates that both satisfy
correctness and achieve performance improvements.

3.2 DATASET CONSTRUCTION

We construct our dataset using C programs from CodeNet (Puri et al., 2021), a large-scale corpus of
competitive programming submissions. CodeNet is a well-established and widely used benchmark in
the AI-for-code community (Li et al., 2022; Shypula et al., 2024). Each dataset instance is a tuple
(C,P, T), where C is the original C source code, P = gcc(C) is the corresponding x86-64 assembly
generated by compiling C with gcc at the -O3 optimization level, and T = {(xi, yi)}ni=1 is the test
set. Since not all CodeNet problems include test inputs, we adopt those provided by prior work (Li
et al., 2022) to define xi, but discard their output labels. Instead, we regenerate each output yi by
executing the original submission on input xi, as many CodeNet programs are not accepted solutions,
and even accepted ones do not reliably pass all test cases.

Given the scale of CodeNet, which contains over 8 million C and C++ submissions, we sample a
subset for this study. To focus on performance-critical cases, we sample programs that exhibit the
highest relative speedup from gcc -O0 (no optimization) to gcc -O3 (maximum optimization). Such
a strategy serves two purposes: (1) it favors programs with complex logic that lead to suboptimal
performance under -O0 and can be effectively optimized by -O3, and (2) it creates a more challenging
setting by starting from code that has already benefited from aggressive compiler optimizations.
The final dataset consists of 7,872 training programs and 200 held-out evaluation programs, with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

additional statistics provided in Section 4. We also evaluate our method on an unbiased, randomly
sampled dataset distribution in Appendix A.5.

3.3 REINFORCEMENT LEARNING

We conceptualize our task as a standard contextual multi-armed bandit problem (Lu et al., 2010),
defined by a context space S , an action space A, and a reward function r : S ×A → R. Each context
s ∈ S represents a problem instance, comprising the source program C, its baseline assembly P ,
and the associated test cases T . An action a ∈ A corresponds to generating a candidate assembly
program P̃ . The reward function r(s, a) evaluates the quality of the generated program based on
correctness and performance. We will describe different designs of the reward function later. A policy
π : S → ∆(A) maps a context s to a probability distribution over actions and samples an action
a ∈ A stochastically. Given a distribution µ over problem instances, the expected performance of a
policy π under reward function r is expressed as Es∼µ,a∼π(·|s) [r(s, a)]. The objective is to find a
policy that maximizes this expected reward.

Optimization with PPO and GRPO. We train the policy using two policy-gradient algorithms:
Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024). PPO stabilizes training by constraining each update to
remain close to the previous policy. It maximizes a clipped surrogate objective of the form
Es,a

[
min

(
ρ(θ)Â, clip(ρ(θ), 1− ϵ, 1 + ϵ) Â

)]
, where ρ(θ) = πθ(a | s)/πθold(a | s), Â is the

estimated advantage, and ϵ controls the clipping range. GRPO, in contrast, compares rewards among
a group of sampled outputs and assigns a higher likelihood to relatively stronger ones, effectively
normalizing advantages without requiring a value function. In both algorithms, rewards are based
on the correctness and execution time of the generated program, eliminating the need for a separate
reward model.

Reward Function Design. As defined in our contextual bandit setup, the reward function r :
S × A → R assigns a scalar score to each (context, action) pair. Each context s ∈ S consists of
the source program C, the baseline assembly P , and a test set T = {(xi, yi)}ni=1. An action a ∈ A
corresponds to a generation procedure that produces a candidate assembly program P̃ = gen(a).

We define two auxiliary metrics for computing reward:

pass(s, a) = 1
|T |

∑
(x,y)∈T

1[P̃ (x) = y], speedup(s, a) = t(P)/t(P̃),

which denote the fraction of test cases passed and the speedup of the generated program P̃ relative to
the baseline P . We use the following reward function during training:

r(s, a) =

{
0, if pass(s, a) < 1,

speedup(s, a), if pass(s, a) = 1.

If a generated program fails to compile or does not pass all tests, its reward is set to 0, with no partial
credit for partial correctness. Only when the code compiles and passes all tests is a positive reward
assigned, equal to the achieved speedup.

3.4 BEST-OF-N SAMPLING, SUPERVISED FINE-TUNING, AND ITERATIVE REFINEMENT

Best-of-N Sampling. Generating multiple candidate programs and selecting the strongest one is a
well-established strategy for improving code generation quality (Li et al., 2022; Ehrlich et al., 2025).
In our setting, the best candidate refers to the program that is correct while achieving the fastest
execution time. Best-of-N sampling is an inference-time technique that can boost performance, but it
incurs additional cost because each candidate must be tested at runtime.

Supervised Fine-Tuning. To obtain training targets for supervised fine-tuning, we require reference
solutions to the superoptimization task. However, superoptimization is inherently open-ended: beyond

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the compiler baseline, there is no unique ground-truth program, and multiple distinct solutions may
exist. We therefore apply best-of-8 sampling with the base model over the full training set and treat
the highest-quality candidate for each instance as the ground truth. We then fine-tune the model using
LoRA (Hu et al., 2022).

Iterative Refinement. Iterative refinement is a complementary inference-time technique that can
be applied to any model to further improve its outputs. After each trial, we feed back the model’s
previous attempt: if the generated program fails to compile or fails any test cases, we include the
corresponding compiler errors or test failures in the next prompt; if the model produces a correct
program, we also include that successful attempt as part of the prompt.

4 EXPERIMENTAL SETUP

Split # Prog. Avg. Tests Avg. LOC
C Assembly

Training 7,872 8.86 22.3 130.3
Evaluation 200 8.92 21.9 133.3

Table 1: Dataset statistics across training and evaluation
splits. LOC = lines of code.

Dataset. We describe our dataset con-
struction approach in Section 3.2. Each
instance consists of a C source program
C, the corresponding gcc -O3 compiled
assembly P , and a set of test cases T for
correctness evaluation. The final dataset
contains 7,872 training programs and 200
evaluation programs, with average pro-
gram lengths and test case counts summa-
rized in Table 1, and additional analysis
below.

Test Coverage. Our dataset includes test cases for every program. Rather than relying directly on
the original submissions, we re-run each program on its inputs to generate correct outputs, thereby
fixing errors in prior datasets. The resulting test suites of our evaluation dataset achieve an average of
96.2% line coverage and 87.3% branch coverage, demonstrating high test quality.

Speedup by Compilers. We quantify compiler optimizations by comparing gcc -O0 with gcc -O3
on the evaluation dataset and observe a mean speedup of 2.65×. This demonstrates the substantial
effect of compiler optimizations and confirms that performance improvements in our dataset are
measurable. Building on this baseline, we investigate whether LLMs can further enhance performance
beyond the 2.65× speedup provided by the compiler.

Prompts. For each instance, we construct a prompt that includes the original C program along
with the generated assembly using gcc -O3. Test cases are withheld from the model. The model is
instructed to generate the optimized assembly code. We show the prompt template in Appendix A.3.

Metrics. We evaluate each model using both correctness and performance metrics. Compile pass
is the percentage of problems for which the generated assembly compiles to binary executable
successfully, while test pass is the percentage of problems where the compiled code passes all test
cases. For a given problem, any single failed test case is considered a failure for the test pass metric.
Both metrics are computed across the entire validation set. For performance, we measure the relative
speedup over the gcc -O3 baseline. As defined in Section 3.1, we assign a default speedup of 1× to
any candidate that fails to compile, fails any test case, or is slower than the baseline. This reflects the
practical setting where a system can fall back to the gcc -O3 output, resulting in no performance gain.
We report the 25th, 50th (median), and 75th percentiles of speedup to capture distributional behavior,
along with the average speedup over the entire evaluation set.

Models. We evaluate 23 state-of-the-art language models spanning a diverse range of architectures.
Our benchmark includes frontier proprietary models such as gpt-4o (Achiam et al., 2023), o4-mini,
gemini-2.0-flash-001 (Team et al., 2023), and claude-3.7-sonnet, as well as open-source families
such as Llama (Touvron et al., 2023), DeepSeek (Liu et al., 2024a), and Qwen (Hui et al., 2024).
In addition, we include models distilled from DeepSeek-R1 (Guo et al., 2025) based on Qwen and
Llama. Finally, we evaluate recent compiler-oriented foundation models (Cummins et al., 2024;

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Compile
Pass

Test
Pass

Speedup Percentiles Average
Speedup25th 50th 75th

DS-R1-Distill-Qwen-1.5B 0.0% 0.0% 1.00× 1.00× 1.00× 1.00×
DeepSeek-R1 0.0% 0.0% 1.00× 1.00× 1.00× 1.00×
DS-R1-Distill-Llama-70B 5.5% 0.0% 1.00× 1.00× 1.00× 1.00×
DS-R1-Distill-Qwen-14B 11.5% 0.5% 1.00× 1.00× 1.00× 1.00×
gpt-4o-mini 44.5% 1.0% 1.00× 1.00× 1.00× 1.00×
Llama-4-Maverick-17B 77.5% 7.0% 1.00× 1.00× 1.00× 1.02×
Llama-3.2-11B 84.0% 21.0% 1.00× 1.00× 1.00× 1.02×
gpt-4o 81.0% 5.0% 1.00× 1.00× 1.00× 1.02×
Llama-4-Scout-17B 68.5% 5.5% 1.00× 1.00× 1.00× 1.02×
o4-mini 25.0% 4.5% 1.00× 1.00× 1.00× 1.02×
gemini-2.0-flash-001 57.5% 4.0% 1.00× 1.00× 1.00× 1.03×
Qwen2.5-72B 59.5% 7.5% 1.00× 1.00× 1.00× 1.03×
Llama-3.2-90B 82.5% 15.0% 1.00× 1.00× 1.00× 1.05×
Qwen2.5-Coder-7B 77.9% 61.4% 1.00× 1.00× 1.00× 1.10×
gpt-5 78.5% 6.0% 1.00× 1.00× 1.00× 1.13×
DeepSeek-V3 94.0% 43.0% 1.00× 1.00× 1.40× 1.21×
claude-3.7-sonnet 94.5% 58.5% 1.00× 1.10× 1.45× 1.22×
claude-sonnet-4 87.0% 37.0% 1.00× 1.00× 1.95× 1.30×
claude-opus-4 90.0% 51.5% 1.00× 1.58× 2.03× 1.43×

llm-compiler-7b-ftd 2.0% 2.0% 1.00× 1.00× 1.00× 1.00×
llm-compiler-13b-ftd 2.5% 2.0% 1.00× 1.00× 1.00× 1.01×
llm-compiler-7b 55.0% 54.0% 1.00× 1.00× 1.00× 1.09×
llm-compiler-13b 60.5% 59.5% 1.00× 1.27× 1.63× 1.34×

Table 2: Comparison of LLMs on our assembly optimization benchmark. We report compilation
success rate, test pass rate, and average speedup over the gcc -O3 baseline. All open-source models
are instruction-tuned.

2025), pretrained on assembly code and derived from Code Llama, with a design focus on compiler
tasks (listed as llm-compiler in Table 2). All open-source models are instruction-tuned.

Performance Measurement. To ensure an accurate performance evaluation, we use hyperfine (hyp,
2025), a benchmarking tool that reduces measurement noise by performing warmup runs followed by
repeated timed executions. For each program’s execution, we discard the first three runs and report
the average runtime over the next ten runs.

Implementation. We implement our customized reinforcement learning reward functions within
the VERL framework (Sheng et al., 2024), which enables fine-tuning of LLMs using PPO and GRPO.
As part of this setup, we build a task-specific environment that handles program compilation, test
execution, and runtime measurement, as detailed in Section 3.3. This environment provides the model
with direct scalar feedback based on both functional correctness and execution performance.

Training Configurations. Among all evaluated models (see Table 2), we select Qwen2.5-Coder-
7B-Instruct for training due to its strong correctness results and substantial room for performance
improvement, while intentionally avoiding compiler-specific foundation models to preserve generality.
Training is performed on a single node with four A100 GPUs. Full hyperparameter settings are
provided in Appendix A.2.

5 RESULTS

5.1 EVALUATION OF DIFFERENT MODELS

Main Results. Table 2 reports results across evaluated models. Most perform poorly on this task,
with only a few demonstrating effectiveness as superoptimizers. Most models struggle to generate
performant assembly: the majority yield only 1.00× speedup, with low compile and test pass rates.
Among all models, claude-opus-4 and claude-sonnet-4 perform best, achieving average speedups

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Compile Pass Test Pass Average Speedup

Qwen2.5-Coder-7B (Base) 77.9 ± 0.8% 61.4 ± 0.5% 1.10 ± 0.01×
SuperCoder (GRPO) 95.0 ± 0.0% 94.7 ± 0.6% 1.44 ± 0.07×
SuperCoder (PPO) 96.0 ± 0.0% 95.0 ± 0.0% 1.46 ± 0.12×
SuperCoder (Supervised fine-tuning) 95.5 ± 0.0% 92.5 ± 0.0% 1.39 ± 0.05×

Table 3: Performance of the base model and the models trained with RL or supervised fine-tuning.
Results include compilation success, test pass rates, and average speedup, reported over 5 runs with
95% confidence intervals.

of 1.43× and 1.30×, respectively. Compiler foundation models (prefixed with llm-compiler-) are
pretrained on assembly code and compiler IRs. Among them, llm-compiler-13b achieves a notable
1.34× speedup, whereas the fine-tuned variants (-ftd) perform poorly, likely because they were adapted
for different tasks such as disassembling x86-64 into LLVM IR. These results suggest that while
superoptimization is inherently difficult, some LLMs can be effective superoptimizers.

Failure Modes. Interestingly, models that are expected to achieve strong results perform (e.g.,
DeepSeek-R1, GPT-4o) perform poorly on the task of superoptimization, motivating our analysis
of their failure modes. We find that DeepSeek-R1 consistently fails to generate valid assembly
code, resulting in a 0% compilation rate. DeepSeek-R1 often produces verbose analysis instead
of executable code, spending its entire output length on reasoning about instruction semantics and
potential optimizations without actually implementing them.

We further analyze the failure modes of GPT-4o, which achieves a high compilation rate (81.0%)
but exhibits poor correctness (only 5.0% test pass rate). The primary correctness issues are as
follows: (1) missing critical directives and safety setup, such as stack canary initialization and
.cfi_* metadata, which often lead to runtime crashes; (2) incorrect function call conventions,
where repeated system calls like scanf are made without proper argument setup, causing undefined
behavior; (3) semantic errors in core computations, including incorrect pointer usage or altered
algorithm logic, which produce wrong outputs even when the code runs; and (4) over-simplified stack
or register management, resulting in memory errors or invalid control flow. In summary, GPT-4o
tends to sacrifice correctness in pursuit of optimization: it generates syntactically valid assembly but
frequently violates low-level conventions necessary for correct and reliable execution.

5.2 EFFECTIVENESS OF RL TRAINING

Improvement. Table 3 presents the results of RL training, averaged over 5 runs with 95% confidence
intervals to provide more statistical confidence in the reported improvements. We select Qwen2.5-
Coder-7B-Instruct for RL training due to its strong test pass rate (61.4%) among models. After RL
training with PPO, the fine-tuned model SuperCoder attains 95.0% correctness and improves average
speedup from 1.10× to 1.46×. Its speedup percentiles are 1.17 ± 0.03× (25th), 1.35 ± 0.04× (50th),
and 1.64 ± 0.08× (75th) respectively, outperforming the majority of evaluated models.

PPO versus GRPO. We evaluate both PPO-trained and GRPO-trained models and find their perfor-
mance to be nearly identical. SuperCoder trained with GRPO attains 94.7 ± 0.6% correctness and
1.44 ± 0.07× average speedup, which is comparable to SuperCoder trained with PPO (95.0 ± 0.0%
correctness and 1.46 ± 0.12× average speedup).

5.3 RESULTS FROM SUPERVISED FINE-TUNING AND INFERENCE-TIME METHODS

Best-of-N Sampling. We evaluate best-of-N sampling for three models: claude-opus-4 (the
strongest baseline in Table 2), Qwen2.5-Coder-7B (base), and SuperCoder (our PPO-trained model).
Results are shown in Figure 2. Notably, the base model’s best-of-8 speedup is close to the PPO-
trained model’s best-of-1 result, and the RL-trained model itself can still be improved with best-of-N
sampling (i.e., from 1.46× in the single-sample setting to 1.93× with best-of-8 sampling).

Supervised Fine-Tuning. We describe our supervised fine-tuning approach in Section 3.4. Table 2
reports results averaged over five runs with 95% confidence intervals. While supervised fine-tuning

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 2 4 8
Number of Generations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Av
er

ag
e

Sp
ee

du
p

Best-of-N Sampling Across Different Models

claude-opus-4
Qwen2.5-Coder-7B (base)
SuperCoder (PPO)

Figure 2: Best-of-N sampling results.

1 2 4
Number of Iterations

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

Sp
ee

du
p

Effectiveness of Iterative Refinement
claude-opus-4
Qwen2.5-Coder-7B
SuperCoder (PPO)

Figure 3: Iterative refinement results.

improves performance, RL achieves slightly stronger results. We believe that RL is a natural fit for
the open-ended nature of superoptimization, as RL directly optimizes for correctness and speedup
rather than imitating existing examples.

Iterative Refinement. Figure 3 shows the results of iterative refinement, where the model receives
feedback about compilation failures, test failures, or performance for self-reflection. All three models
exhibit improvements as the number of refinement iterations increases, with the effect being most
pronounced for our RL fine-tuned model.

5.4 ANALYSIS OF LEARNED PROGRAM TRANSFORMATIONS

To better understand why LLMs can further optimize assembly programs already optimized by
industry-standard compilers, we analyze all 200 evaluation programs by comparing the gcc -O3
output with the assembly generated by our PPO-trained model SuperCoder. We categorize the learned
transformations into four types: (1) code layout and instruction scheduling, which account for 98.5%
of the changes and include basic block placement, instruction alignment, and reordering to improve
cache behavior and hide latencies; (2) register allocation, representing 16% of the changes, where
the model selects alternative registers; (3) control flow optimization (1.5%); and (4) instruction
selection (1.0%). Since a single problem’s transformation may belong to multiple categories, the
percentages do not sum to 100%. Unfortunately, there is currently no automated tool that can further
reliably explain performance speedups at the assembly level. Automated analysis and explanation of
performance differences in assembly code remains a challenging and unsolved problem.

The observed gains and our analysis suggest that LLMs can produce reasonable code transformations
that meaningfully improve assembly performance. These results indicate that LLMs can uncover
nuanced optimization opportunities beyond the reach of traditional compiler heuristics, suggesting
that compilers themselves still have room for improvement.

5.5 COMPARISON WITH SIMPLE RANDOM PERTURBATIONS

To assess whether the improvements achieved by LLMs stem from systematic strategies learned
during training rather than simple random variation in assembly programs, we compare against a
baseline that applies simple random perturbations to assembly code. While such perturbations do
not necessarily improve performance, running them multiple times and selecting the fastest version
allows us to compute a speedup. These perturbations preserve correctness but can still influence
performance, and we report speedup using the minimum observed runtime across 10 runs.

To randomly perturb the assembly, we compile the binaries with options that randomize both the
stack and program load addresses. This alters code layout in memory, which can affect performance
but not correctness. Speedup is measured as the ratio of the fastest run to the original runtime over
10 randomized runs. Repeating the experiment five times yields a speedup of 1.19 ± 0.01× (95%
CI), significantly lower than 1.46 ± 0.12× achieved by SuperCoder. This indicates that SuperCoder
systematically exploits performance opportunities rather than relying on simple random perturbations,
particularly since it produces each result in a single shot without retries or iterative refinement.

6 DISCUSSION

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Prompt Optimization Methods. We experimented with few-shot in-context learning and found
that adding more examples does not reliably improve performance and often degrades it, consistent
with prior observations in code optimization (Shypula et al., 2024). We also evaluated GEPA (Agrawal
et al., 2025), an evolutionary prompting framework that uses natural language reflection to derive
optimization rules, but observed only minimal gains. Additional results are provided in Appendix A.4.

Alternative Reward Function Design. Besides the reward function presented in Section 3.3, we
also evaluate an alternative design. The original design assigns zero reward whenever any test fails. In
contrast, the alternative assigns (i) a reward of −1 if the program fails to compile, (ii) a partial reward
equal to the fraction of passed tests if only some tests succeed, and (iii) a reward of 1 + α · speedup
once all tests pass. Training the base model with this design yields an average speedup of 1.38×.
Varying the scaling factor (5 or 10) has a negligible effect, and the result remains worse than the
1.46× achieved by SuperCoder with the original reward. This suggests that directly optimizing for
the terminal speedup reward is more effective.

Direct Compilation from C. We also examine a more challenging setting where gcc -O0 assembly
is not provided. Instead, LLMs receive only the C source code and are asked to generate assembly
directly. This setup leads to a sharp drop in performance: for example, SuperCoder, which attains
95.0% correctness with the assembly baseline, fails to produce any compilable code without it.
Similar degradation occurs for other models such as llm-compiler-13b and Claude models. These
results indicate that, at least in their current state, LLMs can act as superoptimizers building on
compiler outputs, but cannot replace compilers themselves.

Case Study. We illustrate in Appendix A.1 a representative example where an LLM discovers an
optimization beyond the reach of a state-of-the-art compiler. The original C function computes the
population count (i.e., the number of set bits) by repeatedly shifting the input and accumulating its
least significant bit. The assembly produced by gcc -O3 preserves this loop structure, relying on
explicit bitwise operations and conditional branches. In contrast, Claude-opus-4 produces an efficient
implementation that replaces the entire loop with a single popcnt instruction, performing the same
computation in one operation and reducing both instruction count and runtime overhead.

Limitation and Potential Directions. A limitation of our approach is the lack of formal correctness
guarantees. The absence of a general formal equivalence checker is a well-known theoretical
limitation, grounded in the undecidability of program equivalence. Our evaluation relies on test-based
validation, which is common in with prior work (Shypula et al., 2024; Du et al., 2024). Moreover, our
evaluation achieves 96.2% line coverage, which substantially reduces the risk of undetected errors.
Encouragingly, researchers are already building formal verification tools for GPU kernels (Dubey
et al., 2025), inspired in part by advances in LLM-generated GPU code. We hope that our work
motivates the development of more general and scalable assembly verification tools.

Compared with traditional compiler optimization, reinforcement learning introduces substantial
computational overhead during training. This cost, however, is incurred only once: once trained, the
model can generate optimized assembly efficiently with low latency.

In addition, most superoptimization research has centered on x86-64, and our work follows this focus.
Extending the methodology to other targets such as ARM, RISC-V, or GPU kernels could greatly
broaden its applicability and impact.

7 CONCLUSION

We investigated whether LLMs can act as superoptimizers, generating assembly programs that
outperform code already optimized by industry-standard compilers. To support this study, we
introduced the first large-scale benchmark of 8,072 assembly programs. Evaluating 23 models
revealed the difficulty of the task, with most failing to achieve meaningful gains. By fine-tuning with
reinforcement learning, our model SuperCoder improved both correctness and performance, reaching
95.0% test pass rate and an average speedup of 1.46× over gcc -O3. We also show that Best-of-N
sampling and iterative refinement can bring additional improvement. These results demonstrate,
for the first time, that LLMs can be applied as superoptimizers for assembly code, opening new
opportunities for performance optimization beyond compiler heuristics.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LLM USAGE

Large Language Models (LLMs) are the primary subject of study in this paper. In addition, we used
LLMs as a general-purpose writing assistant to polish the presentation and improve readability.

REFERENCES

Hyperfine, 2025. URL https://github.com/sharkdp/hyperfine.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, et al. Gepa: Reflective prompt
evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Carlo Baronio, Pietro Marsella, Ben Pan, Simon Guo, and Silas Alberti. Kevin: Multi-turn rl for
generating cuda kernels. arXiv preprint arXiv:2507.11948, 2025.

Sahil Bhatia, Jie Qiu, Niranjan Hasabnis, Sanjit Seshia, and Alvin Cheung. Verified code transpilation
with llms. Advances in Neural Information Processing Systems, 37:41394–41424, 2024.

Rudy Bunel, Alban Desmaison, M Pawan Kumar, Philip HS Torr, and Pushmeet Kohli. Learning to
superoptimize programs. arXiv preprint arXiv:1611.01787, 2016.

Thomas J. Watson IBM Research Center, F.E. Allen, and J. Cocke. A Catalogue of Optimizing
Transformations. IBM Thomas J. Watson Research Center, 1971. URL https://books.
google.com/books?id=oeXaZwEACAAJ.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in Neural Information
Processing Systems, 31, 2018.

Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. Sound loop superoptimization for
google native client. ACM SIGPLAN Notices, 52(4):313–326, 2017.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Syn-
naeve, and Hugh Leather. Meta large language model compiler: Foundation models of compiler
optimization. arXiv preprint arXiv:2407.02524, 2024.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Synnaeve,
and Hugh Leather. Llm compiler: Foundation language models for compiler optimization. In
Proceedings of the 34th ACM SIGPLAN International Conference on Compiler Construction, pp.
141–153, 2025.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and
Lingming Zhang. Large language models are edge-case generators: Crafting unusual programs for
fuzzing deep learning libraries. In Proceedings of the 46th IEEE/ACM international conference on
software engineering, pp. 1–13, 2024.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

11

https://github.com/sharkdp/hyperfine
https://books.google.com/books?id=oeXaZwEACAAJ
https://books.google.com/books?id=oeXaZwEACAAJ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, and See-Kiong Ng. Mercury: A code efficiency
benchmark for code large language models. arXiv preprint arXiv:2402.07844, 2024.

Kshitij Dubey, Benjamin Driscoll, Anjiang Wei, Neeraj Kayal, Rahul Sharma, and Alex Aiken.
Equivalence checking of ml gpu kernels. arXiv preprint arXiv:2511.12638, 2025.

Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia Mirho-
seini. Codemonkeys: Scaling test-time compute for software engineering. arXiv preprint
arXiv:2501.14723, 2025.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, 2022.

Dejan Grubisic, Chris Cummins, Volker Seeker, and Hugh Leather. Compiler generated feedback for
large language models. arXiv preprint arXiv:2403.14714, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Ameer Haj-Ali, Qijing Jenny Huang, John Xiang, William Moses, Krste Asanovic, John Wawrzynek,
and Ion Stoica. Autophase: Juggling hls phase orderings in random forests with deep reinforcement
learning. Proceedings of machine learning and systems, 2:70–81, 2020.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Dong Huang, Jianbo Dai, Han Weng, Puzhen Wu, Yuhao Qing, Heming Cui, Zhijiang Guo, and Jie
Zhang. Effilearner: Enhancing efficiency of generated code via self-optimization. Advances in
Neural Information Processing Systems, 37:84482–84522, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Jason R. Koenig, Oded Padon, and Alex Aiken. Replication package for article: Adaptive restarts for
stochastic synthesis, 2021a. URL https://doi.org/10.1145/3410298.

Jason R Koenig, Oded Padon, and Alex Aiken. Adaptive restarts for stochastic synthesis. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, pp. 696–709, 2021b.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, and
Yongbin Li. Evocodebench: An evolving code generation benchmark with domain-specific
evaluations. Advances in Neural Information Processing Systems, 37:57619–57641, 2024.

12

https://doi.org/10.1145/3410298

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Xiaoya Li, Xiaofei Sun, Albert Wang, Jiwei Li, and Chris Shum. Cuda-l1: Improving cuda optimiza-
tion via contrastive reinforcement learning. arXiv preprint arXiv:2507.14111, 2025.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Youwei Liang, Kevin Stone, Ali Shameli, Chris Cummins, Mostafa Elhoushi, Jiadong Guo, Benoit
Steiner, Xiaomeng Yang, Pengtao Xie, Hugh James Leather, et al. Learning compiler pass orders
using coreset and normalized value prediction. In International Conference on Machine Learning,
pp. 20746–20762. PMLR, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. Rltf: Reinforce-
ment learning from unit test feedback. arXiv preprint arXiv:2307.04349, 2023a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Advances in Neural Information Processing Systems, 2023b.

Jiawei Liu, Thanh Nguyen, Mingyue Shang, Hantian Ding, Xiaopeng Li, Yu Yu, Varun Kumar, and
Zijian Wang. Learning code preference via synthetic evolution. arXiv preprint arXiv:2410.03837,
2024b.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evaluating
language models for efficient code generation. arXiv preprint arXiv:2408.06450, 2024c.

Tyler Lu, Dávid Pál, and Martin Pál. Contextual multi-armed bandits. In Proceedings of the Thirteenth
international conference on Artificial Intelligence and Statistics, pp. 485–492. JMLR Workshop
and Conference Proceedings, 2010.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Ré, and Azalia
Mirhoseini. Kernelbench: Can llms write efficient gpu kernels? arXiv preprint arXiv:2502.10517,
2025.

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. Scaling up
superoptimization. In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 297–310, 2016.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. ACM SIGARCH
Computer Architecture News, 41(1):305–316, 2013.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin, Wuwei Lin, Masahiro
Masuda, Cody Hao Yu, and Tianqi Chen. Tensor program optimization with probabilistic programs.
Advances in Neural Information Processing Systems, 35:35783–35796, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Conditionally correct superopti-
mization. ACM SIGPLAN Notices, 50(10):147–162, 2015.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming Yang, Milad
Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh.
Learning performance-improving code edits. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ix7rLVHXyY.

Jubi Taneja, Avery Laird, Cong Yan, Madan Musuvathi, and Shuvendu K Lahiri. Llm-vectorizer: Llm-
based verified loop vectorizer. In Proceedings of the 23rd ACM/IEEE International Symposium on
Code Generation and Optimization, pp. 137–149, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Ali TehraniJamsaz, Arijit Bhattacharjee, Le Chen, Nesreen K Ahmed, Amir Yazdanbakhsh, and
Ali Jannesari. Coderosetta: Pushing the boundaries of unsupervised code translation for parallel
programming. arXiv preprint arXiv:2410.20527, 2024.

Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. Finding missed optimizations through
the lens of dead code elimination. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 697–709, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Henry S Warren. Hacker’s delight. Pearson Education, 2013.

Anjiang Wei, Allen Nie, Thiago SFX Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and Alex
Aiken. Improving parallel program performance through dsl-driven code generation with llm
optimizers. arXiv preprint arXiv:2410.15625, 2024.

Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yaofeng Sun, Yuan
Liu, Thiago SFX Teixeira, Diyi Yang, et al. Equibench: Benchmarking code reasoning capabilities
of large language models via equivalence checking. arXiv preprint arXiv:2502.12466, 2025a.

Anjiang Wei, Allen Nie, Thiago S. F. X. Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and
Alex Aiken. Improving parallel program performance with LLM optimizers via agent-system
interfaces. In Forty-second International Conference on Machine Learning, 2025b. URL https:
//openreview.net/forum?id=3h80HyStMH.

Anjiang Wei, Tianran Sun, Yogesh Seenichamy, Hang Song, Anne Ouyang, Azalia Mirhoseini,
Ke Wang, and Alex Aiken. Astra: A multi-agent system for gpu kernel performance optimization.
arXiv preprint arXiv:2509.07506, 2025c.

14

https://openreview.net/forum?id=ix7rLVHXyY
https://openreview.net/forum?id=3h80HyStMH
https://openreview.net/forum?id=3h80HyStMH

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Anjiang Wei, Tarun Suresh, Jiannan Cao, Naveen Kannan, Yuheng Wu, Kai Yan, Thiago S. F. X.
Teixeira, Ke Wang, and Alex Aiken. CodeARC: Benchmarking reasoning capabilities of LLM
agents for inductive program synthesis. In Second Conference on Language Modeling, 2025d.
URL https://openreview.net/forum?id=Q5pVZCrrKr.

Anjiang Wei, Huanmi Tan, Tarun Suresh, Daniel Mendoza, Thiago SFX Teixeira, Ke Wang, Caroline
Trippel, and Alex Aiken. Vericoder: Enhancing llm-based rtl code generation through functional
correctness validation. arXiv preprint arXiv:2504.15659, 2025e.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025f.

Michael E Wolf and Monica S Lam. A loop transformation theory and an algorithm to maximize
parallelism. IEEE transactions on parallel and distributed systems, 2(4):452–471, 1991.

Mengdi Wu, Xinhao Cheng, Shengyu Liu, Chunan Shi, Jianan Ji, Kit Ao, Praveen Velliengiri, Xupeng
Miao, Oded Padon, and Zhihao Jia. Mirage: A multi-level superoptimizer for tensor programs.
arXiv preprint arXiv:2405.05751, 2024.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 959–971,
2022.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Universal
fuzzing via large language models. CoRR, 2023a.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era of
large pre-trained language models. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 1482–1494. IEEE, 2023b.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024a.

Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang. Top leaderboard ranking= top coding profi-
ciency, always? evoeval: Evolving coding benchmarks via llm. arXiv preprint arXiv:2403.19114,
2024b.

Aidan ZH Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. Large language models
for test-free fault localization. In Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, pp. 1–12, 2024a.

John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024b.

Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in automated
code translation. Proceedings of the ACM on Software Engineering, 1(FSE):1585–1608, 2024c.

Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic. Felix: Optimizing tensor programs
with gradient descent. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3, pp. 367–381, 2024.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun
Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating {High-Performance} tensor programs
for deep learning. In 14th USENIX symposium on operating systems design and implementation
(OSDI 20), pp. 863–879, 2020.

Size Zheng, Renze Chen, Anjiang Wei, Yicheng Jin, Qin Han, Liqiang Lu, Bingyang Wu, Xiuhong
Li, Shengen Yan, and Yun Liang. Amos: enabling automatic mapping for tensor computations on
spatial accelerators with hardware abstraction. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, pp. 874–887, 2022.

15

https://openreview.net/forum?id=Q5pVZCrrKr

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CASE STUDY

C Code

int f(unsigned long x)
{

int res = 0;
while (x > 0)
{
res += x & 1;
x >>= 1;

}
return res;

}

GCC -O3 Output

.L0:
xorl %eax, %eax
testq %rdi, %rdi
je .L2

.L1:
movq %rdi, %rdx
andl $0x1, %edx
addq %rdx, %rax
shrq $0x1, %rdi
jne .L1
retq

.L2:
retq

Claude-Opus-4

.L0:
popcnt %rdi, %rax
retq

Figure A1: Case study comparing the C code, baseline assembly produced by gcc -O3, and optimized
assembly generated by Claude-Opus-4. The model successfully replaces the loop with the specialized
hardware instruction popcnt, resulting in a significantly more concise implementation.

A.2 TRAINING CONFIGURATIONS

Component Setting

Base model Qwen2.5-Coder-7B-Instruct
Actor’s learning rate 1e-6
Critic’s learning rate 1e-5
Batch size 16
Epoch 1
Max prompt length 2000 tokens
Max response length 2000 tokens
Gradient checkpointing Enabled (both actor and critic)
Rollout temperature 0.5
Hardware 4× A100 GPUs

Table A1: Key training configurations for PPO fine-tuning.

A.3 PROMPT TEMPLATE

Prompt Template

Given the following C code and assembly code, your task is to
generate highly optimized x86-64 assembly code.

C Code:

<C code here>

Assembly Code:

<baseline assembly code here produced by gcc -O3>

Only output the optimized assembly code. Do not include any other
text. Do not write any comments in the assembly code. Wrap the
assembly code in assembly tags.
Optimized Assembly Code:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Model Shots Compile Pass (%) Test Pass (%) Avg. Speedup

claude-opus-4 0-shot 90.0 51.5 1.43×
claude-opus-4 2-shot 95.0 15.0 1.13×
claude-opus-4 4-shot 95.0 12.5 1.11×
SuperCoder (PPO) 0-shot 96.0 95.0 1.46×
SuperCoder (PPO) 2-shot 94.0 90.5 1.59×
SuperCoder (PPO) 4-shot 93.0 81.0 1.54×
Qwen2.5-Coder-7B (Base) 0-shot 77.9 61.4 1.10×
Qwen2.5-Coder-7B (Base) 2-shot 70.5 35.0 1.10×
Qwen2.5-Coder-7B (Base) 4-shot 80.5 30.5 1.06×

Table A2: Comparison of 0-shot, 2-shot, and 4-shot prompting across different models.

A.4 PROMPT OPTIMIZATION METHODS

Few-shot Prompting. We evaluate 0-shot, 2-shot, and 4-shot prompting across three models.
Table A2 shows that adding more in-context examples does not reliably improve performance and
often degrades it. This observation is consistent with prior work (Shypula et al., 2024), which finds
that few-shot examples can bias the model and lead to incorrect task understanding.

Prompt Evolution Framework. We experimented with GEPA (Agrawal et al., 2025), an evolution-
ary prompting framework that uses natural language reflection to learn high-level optimization rules
from trial and error. We used gpt-4o as the model under evaluation and gpt-5 as the reflection model.
GEPA yielded only modest gains: compilation pass increased from 81.0% to 84.0% and test pass
from 5.0% to 7.5%, while performance speedup remained essentially unchanged. We suspect this is
because assembly optimization requires substantial domain knowledge that is difficult to capture by
modifying the prompt alone.

A.5 ADDITIONAL EVALUATION ON RANDOMLY SAMPLED PROGRAMS

Our main dataset samples programs with larger speedup from -O0 to -O3 speedup. To evaluate how
much dataset distribution affects our method, we conduct an additional experiment on 200 programs
randomly sampled from CodeNet, and we ensure that this new set is fully disjoint from both our
training and evaluation splits and not selected based on compiler speedup characteristics. Across
these unbiased sampled programs, the conclusions remain largely unchanged: the PPO-trained model
consistently produces correct and faster assembly code. This indicates that the improvements learned
through reinforcement learning generalize beyond the specific distribution used for training and
primary evaluation.

Model Compile Pass (%) Test Pass (%) Avg. Speedup

Qwen2.5-Coder-7B 66.5 40.0 1.07×
claude-opus-4 94.0 43.0 1.10×
SuperCoder (PPO) 98.5 93.5 1.57×

Table A3: Performance on 200 randomly sampled programs from CodeNet, disjoint from all training
and evaluation splits. Unlike the main dataset, these programs are not selected for large gcc -O0 to
gcc -O3 speedup. The PPO-trained model maintains strong correctness and performance gains.

18

	Introduction
	Related Work
	Methodology
	Task Definition
	Dataset Construction
	Reinforcement Learning
	Best-of-N Sampling, Supervised Fine-Tuning, and Iterative Refinement

	Experimental Setup
	Results
	Evaluation of Different Models
	Effectiveness of RL Training
	Results from Supervised Fine-Tuning and Inference-Time Methods
	Analysis of Learned Program Transformations
	Comparison with Simple Random Perturbations

	Discussion
	Conclusion
	Appendix
	Case Study
	Training Configurations
	Prompt Template
	Prompt Optimization Methods
	Additional Evaluation on Randomly Sampled Programs

