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Abstract

To ensure that large language model (LLM) re-
sponses are helpful and non-toxic, a reward model
trained on human preference data is usually used.
LLM responses with high rewards are then se-
lected through best-of-n (BoN) sampling or the
LLM is further optimized to produce responses
with high rewards through reinforcement learn-
ing from human feedback (RLHF). However,
these processes are susceptible to reward overop-
timization or ‘hacking’, where responses receive
high rewards due to imperfections in the reward
model rather than true preference, particularly as
prompts or responses deviate from the training
data. To address these challenges, we propose
to train a Bayesian reward model, which signals
higher uncertainty further from the training data
distribution. We trained Bayesian reward models
using Laplace approximation on LoRA weights,
and found that the resulting uncertainty estimates
can effectively mitigate reward overoptimization
in BoN sampling.

1. Introduction
With the surge of developments in generative AI, alignment
with human preferences has become a crucial research topic
to ensure the safety and helpfulness of these systems (Sti-
ennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022;
Gao et al., 2023; Shi et al., 2024). A popular approach
to aligning large language models (LLMs) is to train a re-
ward model that captures human preferences, generate n
responses from an initial policy LLM after supervised fine-
tuning, and use the reward model to select the best response
(best-of-n or BoN sampling Stiennon et al., 2020). Another
widely adopted approach is to use the reward model to per-
form reinforcement learning from human feedback (RLHF)
(Ouyang et al., 2022) over the initial policy LLM.
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However, the reward model is trained on finite data and
therefore cannot be perfect; its imperfections may lead to
reward overoptimization or hacking when used in the con-
text of BoN or RLHF (Gao et al., 2023; Coste et al., 2024;
Eisenstein et al., 2023; Ramé et al., 2024; Zhai et al., 2024;
Zhang et al., 2024; Chen et al., 2024). Indeed, BoN and
RLHF try to find responses with particularly high rewards,
as judged by this imperfect reward model. Ideally, the re-
sponses with high reward, as judged by the reward model,
are genuinely good. This is likely to happen when responses
are close to the training data distribution, in which case we
can expect the reward model to be accurate. But it is also
quite possible for poor responses to be inaccurately judged
to have high reward by the imperfect reward model. This
problem is likely to be more acute in “out-of-distribution”
(OOD) regions with little training data for the reward model.
Such responses raise both performance and safety concerns.

An extreme example of overoptimization in RLHF is de-
picted in Fig. 1, demonstrating the consequences of exten-
sive training on a learned proxy reward model. As illustrated
in Fig. 1b, the proxy reward consistently increases with train-
ing progression. However, the oracle gold-standard reward
model—a more comprehensive model designed to better
reflect human preferences—begins to show a catastrophic
decline after just a few thousand training steps. A specific
instance of this is shown in Fig. 1a, where the LLM pro-
duces repeated tokens and phrases. In this example, while
the proxy reward model awards a high score of 7.1, the
gold-standard reward model rates it significantly lower, at
-0.9.

Bayesian deep learning has emerged as a pivotal approach
for addressing the challenges of distribution shifts and over-
confidence in deep neural networks. By providing epistemic
uncertainties for OOD data, this paradigm enhances model
robustness and reliability, as evidenced by a range of founda-
tional studies (Blundell et al., 2015; Zhang et al., 2020; Kris-
tiadi et al., 2020; Ober and Aitchison, 2021; Fortuin et al.,
2022; Aitchison et al., 2021). Building on this foundation,
Yang et al. (2024a) introduced Bayesian Low-Rank Adap-
tation (LoRA), or Laplace-LoRA, as a scalable, parameter-
efficient technique designed to equip fine-tuned LLMs with
uncertainty estimates, and significantly improves calibra-
tion. A follow up work by Kristiadi et al. (2024) showed
the method may also help in settings such as Bayesian opti-
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(a) Real example of a partial LLM response (full response in Appendix. A) after
overoptimizing the proxy reward, with proxy and gold reward scores shown on
the right.
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(b) Reward overoptimization during RLHF
training. Top: proxy reward scores. Bottom:
gold reward scores.

Figure 1: Illustrations of reward overoptimization in LLM alignment.

mization on molecules (Kristiadi et al., 2024).

Motivated by these advancements, our work seeks to pio-
neer the application of Laplace-LoRA on language reward
models. We harness the epistemic uncertainty derived from
the Bayesian posterior predictive distribution over proxy
reward scores to mitigate reward overoptimization. Our
evaluation results on BoN sampling showcases the efficacy
of this approach.

2. Related work
The study of overoptimization in language reward models
has received considerable attention, catalyzed by founda-
tional systematic investigations by Gao et al. (2023). Con-
ducted in a synthetic setting, Gao et al. (2023) utilized an
oracle gold-standard reward model both to provide training
labels for proxy rewards and for evaluation purposes. Their
findings highlighted that RLHF in LLM alignment tends
to overoptimize imperfect proxy reward models, resulting
in lower performance when assessed by a gold-standard
reward model.

Building on this, Coste et al. (2024) extended the synthetic
labeling framework to demonstrate that reward model en-
sembles, through various aggregation methods such as mean,
worst-case, or uncertainty-weighted, can effectively miti-
gate overoptimization. Concurrently, Eisenstein et al. (2023)
explored the efficacy of pre-trained ensembles in reducing

reward hacking, noting, however, that ensemble members
could still be overoptimized simultaneously. This observa-
tion underscores the complexity of achieving robust align-
ment, in addition to the computational demands of fully
pretrained and fine-tuned ensemble approaches.

In response to these challenges, the research community
has shifted towards more efficient strategies. Zhang et al.
(2024) investigated parameter-efficient fine-tuning methods
(Mangrulkar et al., 2022; Hu et al., 2022; Shi and Lipani,
2023), including last-layer and LoRA ensembles, for reward
models. Their findings suggest that while LoRA ensem-
bles achieve comparable benefits to full model ensembles
in best-of-n sampling, last-layer ensembles yield limited
improvements (Gleave and Irving, 2022). However, Zhai
et al. (2024) criticized the homogeneity of vanilla LoRA en-
sembles (Yang et al., 2024a; Wang et al., 2023), proposing
additional regularization to foster diversity among ensemble
members and enhance uncertainty estimation.

Alternatively, Ramé et al. (2024) leveraged weight averag-
ing, tapping into linear mode connectivity to surpass the
performance of traditional ensembles with a more inference-
efficient approach (Lin et al., 2023b;a). Chen et al. (2024)
introduced a novel direction by decoupling reward modeling
from response length through a specialized reward head and
regularization, showcasing more robust reward signals that
are independent of response length.
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3. Background
Reward modeling In LLM alignment, we typically
model human preference using a reward model (Ouyang
et al., 2022). Specifically, for a pair of responses to a prompt
(x, yw) and (x, yl), we define the human preference model
(the Bradley-Terry model) as

P (yw > yl) =
erθ(x,yw)

erθ(x,yw) + erθ(x,yl)
(1)

= σ(rθ(x, yw)− rθ(x, yl)), (2)

where rθ is the reward model and σ(·) is the sigmoid func-
tion. Then we simply perform maximum log-likelihood
optimization to learn the reward model given a fixed prefer-
ence dataset

max
θ

Ex,yw,yl
[log σ(rθ(x, yw)− rθ(x, yl))]. (3)

After learning the reward model, we can apply BoN sam-
pling to optimize for preference, or RLHF to fine-tune the
LLM policy.

Best-of-n (BoN) sampling BoN sampling (Stiennon et al.,
2020; Ouyang et al., 2022; Coste et al., 2024; Eisenstein
et al., 2023) is a decoding strategy to align LLM outputs with
a given reward model without further fine-tuning the LLM
policy. For any test prompt, BoN samples n responses, and
uses the reward model to rank the responses and select the
best one, which has the highest reward. The KL divergence
between the BoN policy and the reference policy can be
computed analytically (Stiennon et al., 2020),

KLbon = log(n)− n− 1

n
, (4)

which measures the degree of optimization as n increases.
In addition, we use the unbiased BoN reward estimator
proposed by (Nakano et al., 2021) for obtaining proxy and
gold reward model scores (see Appendix B). Yang et al.
(2024b) showed BoN sampling is asymptotically equivalent
to the KL-constrained RL solution.

Low-rank adaptation (LoRA) LoRA is a parameter-
efficient fine-tuning method, where we keep pretrained
weightsW0 fixed, and introduce a trainable perturbation
to the weight matrix, ∆W = BA,

h = W0a+∆Wa = W0a+BAa. (5)

where a and h are the inputs and outputs respectively. Im-
portantly, ∆W is low-rank as it is written as the product of
two rectangular matrices, B ∈ Rnout×nlr and A ∈ Rnlr×nin

where nlr is significantly smaller than nin or nout.

Laplace-LoRA Recently, Yang et al. (2024a) proposed
Laplace-LoRA which is a scalable Bayesian approximation
to LLM finetuning. In particular, Yang et al. (2024a) ap-
plied post-hoc Laplace approximation to perform Bayesian
inference on LoRA weights. Assume we have a dataset
containing inputs X and classification or regression targets
y, then Bayesian inference attempt to compute the posterior

P (θ|X,y) ∝ P (y|X,θ) P (θ) , (6)

usually with a Gaussian prior assumption P (θ) =
N (0, λ−1I) (Yang et al., 2024a; Daxberger et al., 2021).
However, computing this posterior is usually intractable.
The Laplace approximation begins by finding the maximum
a-posteriori (MAP) solution (MacKay, 1992) (i.e. the maxi-
mum of the log-joint, L(y,X;θ)),

L(y,X;θ) = log P (y|X,θ) + log P (θ) (7)
= log P (θ|X,y) + const (8)

θMAP = argmax
θ

L(y,X;θ). (9)

Then the Laplace approximation consists of a second-order
Taylor expansion of the log-joint around θMAP,

L(y,X;θ) ≈ L(y,X;θMAP)

−1

2
(θ − θMAP)

T (∇2
θL(y,X;θ)|θMAP)(θ − θMAP).

(10)

Since the log-joint is now a quadratic function of θ, the
approximate posterior becomes a Gaussian centered at θMAP
with covariance given by the inverse of the Hessian,

P (θ|D) ≈ N (θ;θMAP,Σ) , (11)

Σ = −(∇2
θL(y,X;θ)|θMAP)

−1 (12)

= −(∇2
θ log P (y|X,θ) |θMAP + λI)−1. (13)

Using Laplace approximations can be viewed as implicitly
linearizing the neural network (Kunstner et al., 2019; Immer
et al., 2021). As such, it is commonly found that predicting
under the linearized model is more effective than e.g. sam-
pling the approximate posterior over weights (Foong et al.,
2019; Daxberger et al., 2021; Deng et al., 2022; Antorán
et al., 2022). In particular,

fθ(x∗) ≈ fθMAP(x∗) +∇θfθ(x∗)|TθMAP
(θ − θMAP). (14)

where x∗ is a test-input. This approach is also known as the
linearized Laplace approximation.

Since we have the approximated posterior in Eq. (11) and
the linearized model in Eq. (14), we can integrate out the
posterior on weights and get a Gaussian posterior on output
logits,

fθ(x∗) ∼ N (fθMAP(x∗),Λ(x∗)) , (15)
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where

Λ(x∗) = (∇θfθ(x∗)|TθMAP
)Σ(∇θfθ(x∗)|θMAP). (16)

4. Method
Our approach aims to mitigate reward overoptimization in
language reward models by integrating uncertainty quan-
tification through the application of Laplace-LoRA. This
approach enriches reward models with the capability to
estimate the uncertainty associated with their predictions,
thereby enabling a more nuanced evaluation of language
model responses. Specifically, the Bradley-Terry preference
model in Eq. 1 provides a natural classification likelihood
for Laplace approximation. Then we apply Laplace-LoRA
post-hoc after training the standard reward model, which
provides a Gaussian distribution over the reward outputs for
each test prompt and response pair (x, y). This distribution
is centered around the reward predicted by the standard fine-
tuned model via maximum a-posteriori (MAP), denoted as
rθMAP(x, y),

rθ(x, y) ∼ N (rθMAP(x, y),Λ(x, y)), (17)

where Λ(x, y) denotes the variance.

This formulation acknowledges the uncertainty in reward
predictions, particularly for OOD query and response pairs,
where traditional models may exhibit overconfidence. We
propose a novel approach for integrating an uncertainty
penalty into the reward estimation process through the un-
certainty estimates given by Laplace-LoRA. In particular,
we consider two ways to incorporate the uncertainty:

Standard Deviation-Based Penalty:

r̃var(x, y) = rθMAP(x, y)− k
√
Λ(x, y), (18)

where k is a hyperparameter that governs the impact of the
uncertainty penalty. This method reduces the reward for
responses with higher standard deviation in their uncertainty
estimates, promoting a conservative reward allocation.

Variance-Based Penalty:

r̃std(x, y) = rθMAP(x, y)− kΛ(x, y), (19)

This approach further accentuates the penalty for uncer-
tainty, and is thus particularly effective at penalizing re-
sponses with significant uncertainty (Brantley et al., 2020;
Coste et al., 2024).

Combining with reward ensembles In addition, our ap-
proach can be combined with other approaches such as re-
ward ensembles (Coste et al., 2024; Eisenstein et al., 2023).
Specifically, reward ensembles train n reward models inde-
pendently, rθ1

MAP
(x, y), ..., rθn

MAP
(x, y), then by default take

the mean reward across all members to provide a more
robust optimization target, 1

n

∑n
i=1 rθi

MAP
. We can apply

Laplace-LoRA to each of the reward models and get a Gaus-
sian rθi(x, y) ∼ N (rθi

MAP
(x, y),Λi(x, y)) for each reward.

If we assume they are independent, then their mean is also
Gaussian

1

n

n∑
i=1

rθi ∼ N
(
1

n

n∑
i=1

rθi
MAP

(x, y),
1

n2

n∑
i=1

Λi(x, y)

)
.

(20)

Similarly, we can define the standard deviation penalized
ensemble reward as

r̃ens
std (x, y) =

1

n

n∑
i=1

rθi
MAP

(x, y)− k

n

√√√√ n∑
i=1

Λi(x, y), (21)

and the variance penalized ensemble reward as

r̃ens
var (x, y) =

1

n

n∑
i=1

rθi
MAP

(x, y)− k

n2

n∑
i=1

Λi(x, y), (22)

By incorporating the uncertainty penalties, our approach
ensures that reward predictions more accurately reflect the
true preferences they aim to model, especially in the face of
OOD query and response pairs.

5. Experiment setup
Our experimental framework adopts a synthetic labeling
strategy similar to the ones used by Gao et al. (2023); Coste
et al. (2024). An oracle gold reward model, trained using
the AlpacaFarm dataset (Dubois et al., 2024) and human
preferences, provides synthetic labels to fine-tune smaller
proxy reward models for RLHF. The gold reward model also
serves as the benchmark for evaluating the LLM policy’s
performance.

Base LLM Preparation We fine-tune both the LLM policy
and the proxy reward models from pretrained configura-
tions within the Pythia suite (Biderman et al., 2023). The
1.4 billion parameter model is designated as the LLM pol-
icy, and a smaller 70 million parameter model functions
as the proxy reward model. We first perform Supervised
Fine-Tuning (SFT) on the AlpacaFarm dataset’s ‘sft’ split,
which contains 10k instruction-response pairs tailored for
instruction-following capabilities (refer to Appendix C.1
for prompt formats and examples). Subsequently, the larger
1.4B model, post-SFT, serves as the base LLM for BoN sam-
pling and RLHF, while the 70M model is further fine-tuned
as the proxy reward model.

Reward model training For the gold-standard reward
model, we utilize the open-source human-preference reward
model from AlpacaFarm (Dubois et al., 2024), a LLaMA 7B
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(a) Variance-based penalty.
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(b) Standard deviation-based penalty.

Figure 2: Comparison of proxy and gold reward scores (normalized) of single reward model (MAP) and Laplace-LoRA
reward model (LA) in BoN sampling, across different uncertainty penalties and a range of k. Left column: compares the
proxy reward model’s evaluation. Right column: compares the gold reward model’s evaluation.
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(a) Variance-based penalty.
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(b) Standard deviation-based penalty.

Figure 3: Comparison of proxy and gold reward scores (normalized) of single reward model (MAP), reward model ensemble
(Ens), and Laplace-LoRA reward model ensemble (LA Ens) in BoN sampling, across different uncertainty penalties and a
range of k.

model (Touvron et al., 2023) fine-tuned on the AlpacaFarm
human preference dataset. The gold reward model is used
as a gold-standard reward model to provide labels to train
proxy reward models, as well as serve as the benchmark for
evaluating alignment.

To create a dataset for training proxy reward models, we
generate two distinct responses using the initial LLM policy
(after SFT) for each prompt from the AlpacaFarm dataset.
Each response is then evaluated using the gold-standard
reward model to assign a preference, simulating the pro-
cess of obtaining human-like judgments on the responses’
quality and relevance. Subsequently, a proxy reward model
based on a 70M parameter Pythia model is fine-tuned with
LoRA using the reward modeling objective in Eq. 1 (see
Appendix C.2 for hyperparameters).

Uncertainty estimation To incorporate uncertainty quantifi-
cation into our reward modeling, we apply Laplace-LoRA
to the proxy reward model post-training, enabling the proxy
reward model to produce not only reward estimates but

also measures of epistemic uncertainty. For reward model
ensembles, we train multiple proxy reward models with dif-
ferent seeds (different initializations of LoRA parameters
and different dataset ordering).

Policy optimization For BoN sampling, we collect a subset
of 1000 prompts from the AlpacaFarm instructions valida-
tion dataset and sample 12,500 responses from the super-
vised fine-tuned LLM policy for each prompt. We can then
compute expected proxy and gold reward scores using the
unbiased BoN estimator (Eq. 25 in Appendix B).

6. Results
For BoN experiments, we consider the performance of the
standard single reward model (MAP), Laplace-LoRA (LA)’s
uncertainty penalized reward models (Eq. 19), ensemble re-
ward models (Ens), and Laplace ensemble (LA Ens) reward
models (Eq. 21), with different numbers of samples (as
measured by the KL-divergence Eq. 4).
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We measured the policy performance under two reward
models: the proxy reward model (Fig. 2 left and Fig. 3 left)
and the gold-standard reward model (Fig. 2 right and Fig. 3
right), evaluated using the BoN estimator from Appendix B.
As expected, there is always improvement as the number of
samples increased when evaluated under the proxy reward
model. However, looking at the gold reward model we
observe reward overoptimization taking place. In particular,
the performance of the MAP reward, as evaluated under
the gold reward model, starts to decrease at a large KL
divergence, and hence a large number of BoN samples.

We found that taking uncertainty into account using Laplace-
LoRA offered considerable benefits in BoN. Looking at the
proxy rewards, the uncertainty penalty intensifies, particu-
larly at higher levels of KL divergence, which is a promising
indicator that LA is effectively generating the anticipated un-
certainty estimates, thereby enhancing the model’s ability to
discern and appropriately penalize overconfident predictions
in out-of-distribution scenarios.

Fig. 2b and 3b shows a standard deviation based penalty
(Eq. 18), while Fig. 2a and 3a shows a variance based
penalty (Eq. 19). Overall the performance is similar, with
perhaps a slight benefit for using variance-based methods,
especially at a lower KL divergence. While reward ensem-
bles significantly outperformed MAP, the integration of LA
with ensembles (LA Ens) demonstrated further enhance-
ments, emphasizing the utility of combined approaches in
handling overconfident predictions more effectively.

7. Limitations
Our study has certain limitations, notably that our use of
Laplace-LoRA is currently limited to LoRA fine-tuned re-
ward models. Extending this methodology to fully fine-
tuned models requires additional approximations on KFAC,
which we plan to explore in future research. Additionally,
due to constraints in computational resources and funding,
our experiments were conducted within synthetic settings
and with relatively small models, as similarly employed
by Gao et al. (2023); Coste et al. (2024). Beirami et al.
(2024) showed recently that the widely used KL equation
for BoN (Eq. 4) is only an upper bound, and provided a
more accurate KL estimator. However, it is out of scope for
this work to combine the KL estimator from (Beirami et al.,
2024) with the BoN estimator (Appendix B) that we used to
estimate mean rewards.

8. Conclusion
We showed that using Laplace-LoRA to quantify uncertainty
in reward models can effectively mitigate reward overopti-
mization in BoN sampling, offering gains over MAP and
ensembles. This also holds in RLHF, where it achieves the

highest gold reward without the application of KL penalty.
Our findings highlight the potential of Bayesian approaches
as valuable tools to provide uncertainty estimation in the
face of distribution shift, paving the way for more reliable
and safer alignment of LLMs.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Bayesian Reward Models for LLM Alignment

References
Laurence Aitchison, Adam X. Yang, and Sebastian W. Ober.

Deep kernel processes. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Confer-
ence on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pages 130–140. PMLR, 2021.
URL http://proceedings.mlr.press/v139/
aitchison21a.html.

Javier Antorán, David Janz, James Urquhart Allingham,
Erik A. Daxberger, Riccardo Barbano, Eric T. Nalisnick,
and José Miguel Hernández-Lobato. Adapting the lin-
earised laplace model evidence for modern deep learning.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato, editors, Interna-
tional Conference on Machine Learning, ICML 2022, 17-
23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages 796–
821. PMLR, 2022. URL https://proceedings.
mlr.press/v162/antoran22a.html.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell,
Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort,
Deep Ganguli, Tom Henighan, et al. Training a helpful
and harmless assistant with reinforcement learning from
human feedback. ArXiv preprint, abs/2204.05862, 2022.
URL https://arxiv.org/abs/2204.05862.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexan-
der D’Amour, Jacob Eisenstein, Chirag Nagpal, and
Ananda Theertha Suresh. Theoretical guarantees
on the best-of-n alignment policy. ArXiv preprint,
abs/2401.01879, 2024. URL https://arxiv.org/
abs/2401.01879.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory An-
thony, Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pages
2397–2430. PMLR, 2023.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural net-
work. In Francis R. Bach and David M. Blei, ed-
itors, Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop and
Conference Proceedings, pages 1613–1622. JMLR.org,
2015. URL http://proceedings.mlr.press/
v37/blundell15.html.

Kianté Brantley, Wen Sun, and Mikael Henaff.
Disagreement-regularized imitation learning. In

8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=rkgbYyHtwB.

Lichang Chen, Chen Zhu, Davit Soselia, Jiuhai Chen,
Tianyi Zhou, Tom Goldstein, Heng Huang, Moham-
mad Shoeybi, and Bryan Catanzaro. Odin: Disentan-
gled reward mitigates hacking in rlhf. ArXiv preprint,
abs/2402.07319, 2024. URL https://arxiv.org/
abs/2402.07319.

Thomas Coste, Usman Anwar, Robert Kirk, and David
Krueger. Reward model ensembles help mitigate overop-
timization. In ICLR, 2024.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer,
Runa Eschenhagen, Matthias Bauer, and Philipp
Hennig. Laplace redux - effortless bayesian deep
learning. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information
Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 20089–
20103, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/
a7c9585703d275249f30a088cebba0ad-Abstract.
html.

Zhijie Deng, Feng Zhou, and Jun Zhu. Accelerated lin-
earized laplace approximation for bayesian deep learning.
NeurIPS, 2022.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy S
Liang, and Tatsunori B Hashimoto. Alpacafarm: A sim-
ulation framework for methods that learn from human
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad
Beirami, Alex D’Amour, DJ Dvijotham, Adam Fisch,
Katherine Heller, Stephen Pfohl, Deepak Ramachan-
dran, et al. Helping or herding? reward model en-
sembles mitigate but do not eliminate reward hacking.
ArXiv preprint, abs/2312.09244, 2023. URL https:
//arxiv.org/abs/2312.09244.

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-
Lobato, and Richard E Turner. ’in-between’uncertainty
in bayesian neural networks. In ICML Workshop on
Uncertainty and Robustness in Deep Learning, 2019.

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober,
Florian Wenzel, Gunnar Rätsch, Richard E. Turner, Mark

7

http://proceedings.mlr.press/v139/aitchison21a.html
http://proceedings.mlr.press/v139/aitchison21a.html
https://proceedings.mlr.press/v162/antoran22a.html
https://proceedings.mlr.press/v162/antoran22a.html
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2401.01879
http://proceedings.mlr.press/v37/blundell15.html
http://proceedings.mlr.press/v37/blundell15.html
https://openreview.net/forum?id=rkgbYyHtwB
https://openreview.net/forum?id=rkgbYyHtwB
https://arxiv.org/abs/2402.07319
https://arxiv.org/abs/2402.07319
https://proceedings.neurips.cc/paper/2021/hash/a7c9585703d275249f30a088cebba0ad-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a7c9585703d275249f30a088cebba0ad-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a7c9585703d275249f30a088cebba0ad-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a7c9585703d275249f30a088cebba0ad-Abstract.html
https://arxiv.org/abs/2312.09244
https://arxiv.org/abs/2312.09244


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Bayesian Reward Models for LLM Alignment

van der Wilk, and Laurence Aitchison. Bayesian neu-
ral network priors revisited. In The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?
id=xkjqJYqRJy.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for
reward model overoptimization. In ICML, pages 10835–
10866, 2023.

Adam Gleave and Geoffrey Irving. Uncertainty esti-
mation for language reward models. ArXiv preprint,
abs/2203.07472, 2022. URL https://arxiv.org/
abs/2203.07472.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language mod-
els. In The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

Alexander Immer, Maciej Korzepa, and Matthias Bauer.
Improving predictions of bayesian neural nets via local
linearization. In Arindam Banerjee and Kenji Fukumizu,
editors, The 24th International Conference on Artificial
Intelligence and Statistics, AISTATS 2021, April 13-15,
2021, Virtual Event, volume 130 of Proceedings of Ma-
chine Learning Research, pages 703–711. PMLR, 2021.
URL http://proceedings.mlr.press/v130/
immer21a.html.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris
Anagnostidis, Zhi Rui Tam, Keith Stevens, Abdullah
Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi,
et al. Openassistant conversations-democratizing large
language model alignment. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig.
Being bayesian, even just a bit, fixes overconfidence in
relu networks. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 5436–5446. PMLR,
2020. URL http://proceedings.mlr.press/
v119/kristiadi20a.html.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta,
Pascal Poupart, Alán Aspuru-Guzik, and Geoff Pleiss.
A sober look at llms for material discovery: Are they
actually good for bayesian optimization over molecules?
ArXiv preprint, abs/2402.05015, 2024. URL https:
//arxiv.org/abs/2402.05015.

Frederik Kunstner, Philipp Hennig, and Lukas Balles.
Limitations of the empirical fisher approximation
for natural gradient descent. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 4158–
4169, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
46a558d97954d0692411c861cf78ef79-Abstract.
html.

Yong Lin, Lu Tan, Yifan Hao, Honam Wong, Hanze Dong,
Weizhong Zhang, Yujiu Yang, and Tong Zhang. Spurious
feature diversification improves out-of-distribution gener-
alization. ArXiv preprint, abs/2309.17230, 2023a. URL
https://arxiv.org/abs/2309.17230.

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie Pi,
Jipeng Zhang, Shizhe Diao, Haoxiang Wang, Han Zhao,
Yuan Yao, et al. Speciality vs generality: An empirical
study on catastrophic forgetting in fine-tuning foundation
models. ArXiv preprint, abs/2309.06256, 2023b. URL
https://arxiv.org/abs/2309.06256.

David JC MacKay. A practical bayesian framework for
backpropagation networks. Neural computation, 1992.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, and Sayak Paul. Peft: State-of-the-
art parameter-efficient fine-tuning methods. https:
//github.com/huggingface/peft, 2022.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse, Shan-
tanu Jain, Vineet Kosaraju, William Saunders, et al. We-
bgpt: Browser-assisted question-answering with human
feedback. ArXiv preprint, abs/2112.09332, 2021. URL
https://arxiv.org/abs/2112.09332.

Sebastian W. Ober and Laurence Aitchison. Global inducing
point variational posteriors for bayesian neural networks
and deep gaussian processes. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 8248–8259. PMLR,
2021. URL http://proceedings.mlr.press/
v139/ober21a.html.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human

8

https://openreview.net/forum?id=xkjqJYqRJy
https://openreview.net/forum?id=xkjqJYqRJy
https://arxiv.org/abs/2203.07472
https://arxiv.org/abs/2203.07472
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://proceedings.mlr.press/v130/immer21a.html
http://proceedings.mlr.press/v130/immer21a.html
http://proceedings.mlr.press/v119/kristiadi20a.html
http://proceedings.mlr.press/v119/kristiadi20a.html
https://arxiv.org/abs/2402.05015
https://arxiv.org/abs/2402.05015
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://arxiv.org/abs/2309.17230
https://arxiv.org/abs/2309.06256
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2112.09332
http://proceedings.mlr.press/v139/ober21a.html
http://proceedings.mlr.press/v139/ober21a.html


440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Bayesian Reward Models for LLM Alignment

feedback. Advances in Neural Information Processing
Systems, 35:27730–27744, 2022.

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert
Dadashi, Geoffrey Cideron, Olivier Bachem, and Johan
Ferret. Warm: On the benefits of weight averaged reward
models. ArXiv preprint, abs/2401.12187, 2024. URL
https://arxiv.org/abs/2401.12187.

Zhengxiang Shi and Aldo Lipani. Dept: Decomposed
prompt tuning for parameter-efficient fine-tuning. ArXiv
preprint, abs/2309.05173, 2023. URL https://
arxiv.org/abs/2309.05173.

Zhengyan Shi, Adam X Yang, Bin Wu, Laurence Aitchison,
Emine Yilmaz, and Aldo Lipani. Instruction tuning with
loss over instructions. arXiv preprint arXiv:2405.14394,
2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. Learning to
summarize with human feedback. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
1f89885d556929e98d3ef9b86448f951-Abstract.
html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. ArXiv preprint, abs/2302.13971, 2023. URL
https://arxiv.org/abs/2302.13971.

Xi Wang, Laurence Aitchison, and Maja Rudolph. Lora en-
sembles for large language model fine-tuning. ArXiv
preprint, abs/2310.00035, 2023. URL https://
arxiv.org/abs/2310.00035.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence
Aitchison. Bayesian low-rank adaptation for large lan-
guage models. In ICLR, 2024a.

Joy Qiping Yang, Salman Salamatian, Ziteng Sun,
Ananda Theertha Suresh, and Ahmad Beirami. Asymp-
totics of language model alignment. ArXiv preprint,
abs/2404.01730, 2024b. URL https://arxiv.org/
abs/2404.01730.

Yuanzhao Zhai, Han Zhang, Yu Lei, Yue Yu, Kele Xu,
Dawei Feng, Bo Ding, and Huaimin Wang. Uncertainty-
penalized reinforcement learning from human feedback

with diverse reward lora ensembles. ArXiv preprint,
abs/2401.00243, 2024. URL https://arxiv.org/
abs/2401.00243.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen,
and Andrew Gordon Wilson. Cyclical stochastic gradient
MCMC for bayesian deep learning. In 8th International
Conference on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?
id=rkeS1RVtPS.

Shun Zhang, Zhenfang Chen, Sunli Chen, Yikang Shen,
Zhiqing Sun, and Chuang Gan. Improving reinforce-
ment learning from human feedback with efficient reward
model ensemble. ArXiv preprint, abs/2401.16635, 2024.
URL https://arxiv.org/abs/2401.16635.

9

https://arxiv.org/abs/2401.12187
https://arxiv.org/abs/2309.05173
https://arxiv.org/abs/2309.05173
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.00035
https://arxiv.org/abs/2310.00035
https://arxiv.org/abs/2404.01730
https://arxiv.org/abs/2404.01730
https://arxiv.org/abs/2401.00243
https://arxiv.org/abs/2401.00243
https://openreview.net/forum?id=rkeS1RVtPS
https://openreview.net/forum?id=rkeS1RVtPS
https://arxiv.org/abs/2401.16635


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Bayesian Reward Models for LLM Alignment

A. Reward overoptimization
We present the full example generations from an LLM undergone extreme reward overoptimization in Table 1.

Table 1: Example generation.

Instruction prompt Give an example of a company that gives back to the community.
response The company that provides environmental initiatives to companies should be evaluated in terms

of the amount and quality of donations and sponsorships. Additionally, companies should
ensure transparency and ensure that policies and practices ensure sustainability and transparency.
Furthermore, companies should ensure compliance and ensure transparency and integrity in order
to ensure compliance and ensure trust and credibility. Additionally, companies should ensure
transparency and ensure integrity in order to ensure compliance and ensure trust and credibility.
Additionally, companies should ensure compliance and ensure integrity and integrity to ensure
compliance and ensure trust and credibility. Additionally, companies should ensure compliance
and ensure integrity and integrity to ensure compliance and ensure trust and credibility and
ensure integrity and integrity to ensure compliance and ensure trust and credibility and ensure
integrity and integrity to ensure compliance and ensure trust and credibility and ensure integrity
and quality and ensure quality and quality and ensure compliance and ensure quality and quality
and ensure integrity and quality and ensure quality and quality and ensure compliance and ensure
quality and quality and ensure integrity and quality and ensure quality and quality and ensure
compliance and ensure quality and quality and ensure integrity and quality and ensure quality
and quality and ensure compliance and ensure quality and quality and ensure integrity and quality
and ensure quality and quality and ensure quality and quality and ensure compliance and ensure
quality and quality and ensure integrity and quality and ensure quality and quality and ensure
quality

proxy reward 7.1
gold reward -0.9

B. Best-of-n sampling
In this section, we review the expected reward estimator in BoN for evaluating reward models (Nakano et al., 2021; Gao
et al., 2023; Coste et al., 2024). Assume we have two reward models rproxy for ranking and selecting responses, while
rgold for evaluation. Queries are sampled from a query distribution x ∼ q while responses are sampled from an LLM
y ∼ πref(y|x). For BoN sampling, we aim to sample n responses y1, ...yn from the LLM, and rank using rproxy(x, y). We
would like to compute the expected evaluation reward,

R(n) := Ex∼q,y1,...,yn∼πref

[
reval(x, argmax

y∈{y1,...yn}
rproxy(x, y)

)]
, (23)

where the evaluation reward model reval(x, y) could be either the proxy reward model or the gold reward model. The
simplest approach is to use a Monte-Carlo estimator for the expectation. However, this requires repeated sampling of n
responses from the LLM which is costly. Instead, we consider sampling a fixed set of N ≥ n responses for each query from
a fixed query set Q, and compute an unbiased estimator

RMC(n) =
∑
x∈Q

1(
N
n

) ∑
1≤i1≤...≤in≤N

reval(x, argmax
y∈{yi1 ,...yin}

rproxy(x, y)
)
. (24)

If we sort the N responses according to rproxy with rproxy(x, y1) ≤ ... ≤ rproxy(x, yN ), the above estimator can be further
simplified

RMC(n) =
∑
x∈Q

N∑
i=n

(
i−1
n−1

)(
N
n

) reval(x, yi) (25)

by noting we only need to iterate the top response from yn to yN , and select the rest (n− 1) responses from below.
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C. Experimental details
In this section we present experiment details for supervised fine-tuning, reward model training, and reinforcement learning
from human feedback.

C.1. Supervised fine-tuning

Here we present the experiment setup for supervised fine-tuning following Coste et al. (2024). We use instruction prompts and
responses from the AlpacaFarm dataset Dubois et al. (2024) and format prompts and responses with special tokens following
the OpenAssistant (Köpf et al., 2024) format. In particular, each prompt starts with a <|prompter|> token and ends
with a <|endoftext|> token; each response starts with a <|assistant|> token and ends with a <|endoftext|>
token. We show an example in Table 2 below.

Table 2: Prompt format example for supervised fine-tuning.

Instruction prompt <|prompter|>Create an outline for a presentation about the current state of the world econ-
omy.<|endoftext|>

response <|assistant|>1. Introduction a. Definition of Economics b. Overview of the Major Factors
Affecting the Global Economy 2. Causes of Economic Instability a. Impact of Globalization b.
Trade Imbalances c. Currency Exchange Rates d. Inflation and Deflation 3. Effects of Economic
Trends a. Changes to Consumption and Investment Patterns b. Impact on Employment and
Unemployment Rates c. Shift in Distribution of Wealth 4. Conclusion a. Solutions to Achieve
Economic Stability b. Suggestions to Overcome Economic Challenges c. Summary of Current
State of Global Economy<|endoftext|>

We also present the hyperparameters used in supervised fine-tuning in Table 3 below.

Hyperparameter Value
Learning Rate 8× 10−6

Learning Rate Scheduler Cosine
Batch Size 4

Epochs 3

Table 3: Hyperparameters used in supervised fine-tuning the Pythia 1.4B LLM policy.

C.2. Reward model training

Here we present the hyperparameters we used to train proxy reward models. Table 4 shows the hyperparameters we used for
fine-tuning the proxy reward model based on Pythia 70M.

Hyperparameter Value
LoRA r 8
LoRA α 16

Dropout Probability 0
Weight Decay 0
Learning Rate 5× 10−5

Learning Rate Scheduler Linear
Batch Size 8

Max Sequence Length 500

Table 4: Hyperparameters used in fine-tuning Pythia 70M reward model with LoRA.
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D. Additional experiments
In the main text, we have shown results for k = 1, 3, 5, 10. Here, we explore larger values k = 10, 0, 30 as shown in Fig. 4
and Fig. 5. We found larger penalties degrades performance of standard deviation-based penalty more significantly, while
variance-based penalty is more robust.
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(a) Variance-based penalty.
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(b) Standard deviation-based penalty.

Figure 4: Comparison of proxy and gold reward scores (normalized) in BoN sampling, across different uncertainty penalties
and a range of k. Left column: compares the proxy reward model’s evaluation. Right column: compares the gold reward
model’s evaluation.
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(a) Variance-based penalty.
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(b) Standard deviation-based penalty.

Figure 5: Comparison of proxy and gold reward scores (normalized) in BoN sampling, across different uncertainty penalties
and a range of k. Left column: compares the proxy reward model’s evaluation. Right column: compares the gold reward
model’s evaluation.
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