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Abstract
Planning in complex environments requires rea-
soning over multi-step timescales. However, in
model-based learning, an agent’s model is more
commonly defined over transitions between con-
secutive states. This leads to plans using interme-
diate states that are either unnecessary, or worse,
introduce cumulative prediction errors. Inspired
by the recent works on human time perception,
we devise a novel approach for learning a tran-
sition dynamics model based on the sequences
of episodic memories that define an agent’s sub-
jective timescale – over which it learns world
dynamics and over which future planning is per-
formed. We analyse the emergent benefits of the
subjective-timescale model (STM) by incorporat-
ing it into two disparate model-based methods –
Dreamer and deep active inference. Using 3D vi-
sual foraging tasks, we demonstrate that STM can
systematically vary the temporal extent of its pre-
dictions and is more likely to predict future salient
events (such as new objects coming into view). In
comparison to the agents trained using objective
timescales, STM agents also collect more rewards
due to their ability to perform flexible planning
and a more pronounced exploratory behaviour.

1. Introduction
An agent endowed with a model of its environment has the
ability to predict the consequences of its actions and perform
planning into the future. Models allow agents to simulate
the possible action-conditioned futures from their current
state, even if the state was never visited during learning. As
a result, model-based approaches can provide agents with
better generalization abilities across both states and tasks in
an environment, compared to their model-free counterparts
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Figure 1. In standard approaches an agent’s model inherits envi-
ronment’s object time rate, resulting in equally-spaced predictions
and likely including redundant intermediate states (top). In our
proposed STM model, the temporal extent of predictions varies
automatically depending on the context, resulting in more infor-
mative planning (bottom).

(Racanière et al., 2017; Mishra et al., 2017).

The most popular framework for developing agents with in-
ternal models is model-based reinforcement learning (RL).
Model-based RL has seen great progress in recent years,
with a number of proposed architectures attempting to
improve both the quality and the usage of these models
(Racanière et al., 2017; Kansky et al., 2017; Hamrick, 2019;
Kaiser et al., 2020). Nevertheless, learning internal models
affords a number of unresolved problems. The central one
of them is model-bias, in which the imperfections of the
learned model result in unwanted over-optimism and sequen-
tial error accumulation for long-term predictions (Deisen-
roth & Rasmussen, 2011). Long-term predictions are ad-
ditionally computationally expensive in environments with
slow temporal dynamics, given that all intermediary states
must be predicted. Moreover, slow world dynamics1 can
inhibit the learning of dependencies between temporally-
distant events, which can be crucial for environments with
sparse rewards. Finally, the temporal extent of future pre-
dictions is limited to the objective timescale of the environ-
ment over which the transition dynamics has been learned.
This leaves little room for flexible and context-dependent
planning over varying timescales which is characteristic to
animals and humans (Clayton et al., 2003; Buhusi & Meck,
2005; Cheke & Clayton, 2011).

The final issue exemplifies the disadvantage of the classi-
cal view on internal models, in which they are expected

1Worlds with small change in state given an action
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to capture the ground-truth transition dynamics of the en-
vironment. Furthermore, in more complex environments
with first-person observations, this perspective does not take
into account the apparent subjectivity of first-person expe-
riences. In particular, the agent’s learned representations
of the environment’s transition dynamics implicitly include
information about time. Little work has been done to ad-
dress the concept of time perception in model-based agents.
Empirical evidence from the studies of human and animal
cognition has led some researchers to posit that intelligent
biological organisms do not perceive time precisely and
do not possess an explicit clock mechanism responsible for
keeping track of it (Hills, 2003; Roseboom et al., 2019; Sher-
man et al., 2020). For instance, humans tend to perceive
time slower in environments rich in perceptual content (e.g.
busy city), and faster in environments with little perceptual
change (e.g. empty field). The mechanisms of subjective
time perception still remain unknown; however, recent com-
putational models based on episodic memory were able to
closely model the deviations of human time perception from
veridical perception (Fountas et al., 2020b).

Inspired by this account, in this work we propose subjective-
timescale model (STM), an alternative approach to learning
a transition dynamics model, by replacing the objective
timescale with a subjective one. The latter represents the
timescale by which an agent perceives events in an envi-
ronment, predicts future states, and which is defined by
the sequences of episodic memories. These memories are
accumulated on the basis of saliency (i.e. how poorly an
event was predicted by the agent’s transition model), which
attempts to mimic the way humans perceive time and results
in an agent with an ability to plan over varying timescales
and construct novel future scenarios.

We employ two disparate agents to analyse the emergent
characteristics of STM and demonstrate its applicability and
usefulness to a variety of model-based agents. We particu-
larly emphasise the ease with which STM can be plugged
into an existing model-based algorithm to significantly im-
prove its performance. For this work, we use Dreamer by
Hafner et al. (2020) and deep active inference by Fountas
et al. (2020a). While these agents involve considerably dif-
ferent training and planning procedures, their underlying
nature implies the central role of a generative model, includ-
ing the learned transition dynamics model. Thus, as will be
seen, both of the agents benefit from the incorporation of
STM.

Using these two agents and a combination of visually-
complex first-person foraging tasks, we demonstrate that
the resulting characteristics of STM allow the agent to auto-
matically perform both short- and long-term planning using
the same computational resources and without any explicit
mechanism for adjusting the temporal extent of its predic-

tions. Furthermore, for long-term predictions STM system-
atically performs temporal jumps (skipping intermediary
steps), thus providing more informative future predictions
and reducing the detrimental effects of one-step prediction
error accumulation. Additionally, being trained on salient
events, STM much more frequently imagines futures that
contain epistemically-surprising events, which incentivises
exploratory behaviour. In both cases, the STM version out-
performs the objective-timescale models, achieving higher
rewards with significantly fewer penalties.

2. Related Work
Model-based RL. Internal models are extensively stud-
ied in the field of model-based RL. Using linear models
to explicitly model transition dynamics has achieved im-
pressive results in robotics (Bagnell & Schneider, 2001;
Abbeel et al., 2006; Levine & Abbeel, 2014a;b; Watter et al.,
2015; Levine et al., 2016; Kumar et al., 2016). In general,
however, their application is limited to low-dimensional
domains and relatively simple environment dynamics. Simi-
larly, Gaussian Processes (GPs) have been used (Ko et al.,
2007; Deisenroth & Rasmussen, 2011). Their probabilis-
tic nature allows for state uncertainty estimation, which
can be incorporated in the planning module to make more
cautious predictions; however, GPs struggle to scale to high-
dimensional data. An alternative and recently more preva-
lent method for parametrising transition models is to use
neural networks. These are particularly attractive due to
their recent proven success in a variety of domains, in-
cluding deep model-free RL (Silver et al., 2017), ability
to deal with high-dimensional data, and existence of meth-
ods for uncertainty quantification (Blundell et al., 2015; Gal
& Ghahramani, 2016). Different deep learning architec-
tures have been utilised including fully-connected neural
networks (Nagabandi et al., 2018; Feinberg et al., 2018;
Kurutach et al., 2018) and autoregressive models (Racanière
et al., 2017; Ha & Schmidhuber, 2018; Ke et al., 2019),
showing promising results in environments with relatively
high-dimensional state spaces. In particular, autoregressive
architectures, such as Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997), are capable of mod-
elling non-Markovian environments and of learning tempo-
ral dependencies. Nevertheless, LSTMs are still limited in
their ability to learn relations between temporally-distant
events, which is exacerbated in environments where little
change occurs given an action.

Uncertainty quantification using ensemble methods
(Kalweit & Boedecker, 2017; Buckman et al., 2018; Clavera
et al., 2020) or Bayesian neural networks (McAllister & Ras-
mussen, 2016; Depeweg et al., 2017) have been proposed to
tackle model bias and sequential error accumulation. Other
works have focused on techniques to create more accurate
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long-term predictions. Mishra et al. (2017) used a segment-
based approach to predict entire trajectories at once in an
attempt to avoid one-step prediction error accumulation.
A work by Ke et al. (2019) used an autoregressive model
and introduced a regularising auxiliary cost with respect
to the encodings of future observations, thus forcing the
latent states to carry useful information for long-horizon
predictions. In contrast, the work presented in this paper
re-focuses the objective from attempting to create better
parametrisation techniques or mitigating methods to simply
transforming the timescale over which the dynamics of an
environment is learned. As will be seen, our approach can
lead to more informative and efficient long-term predictions
without compromising agent’s ability to plan over short
time-horizons.

Time and Models. Relatively little work has been done
in the field to study the role and practical use of time per-
ception for artificial agents, despite its apparent importance
for intelligent behaviour (Deverett et al., 2019). For in-
stance, Braylan et al. (2015) showed that the degree of
frame-skipping can have a significant impact on an agent’s
performance in Atari 2600 games. Nevertheless, several
works have proposed methods for learning models with
particular temporal characteristics, such as time-agnostic
models (Jayaraman et al., 2019) or ‘jumpy’ models with
fixed (Gregor & Besse, 2019; Buesing et al., 2018) or adap-
tive frame intervals (Goyal et al., 2019; Neitz et al., 2018;
Pertsch et al., 2020). In line with some of these works, our
approach is designed to perform adaptive frame skips, but
unlike all of them it is characterised by the simplicity of
use and incorporation into existing model-based methods.
Furthermore, our method aims to mimic human time percep-
tion, being inspired by the latest works from computational
neuroscience.

Active Inference. Until now, most of the work on active
inference has been done in low-dimensional and discrete
state spaces (Friston et al., 2015; 2017a;b;c). Recently,
however, there has been a rising interest in scaling active
inference and applying it to environments with continuous
and/or large state spaces (Ueltzhöffer, 2018; Tschantz et al.,
2019; Çatal et al., 2019; Millidge, 2019; Fountas et al.,
2020a). Although these works used deep learning tech-
niques, their generative models have so far been designed
to be Markovian and trained over the objective timescale of
the environment.

Episodic Memory. In neuroscience, episodic memory is
used to describe autobiographical memories that link a col-
lection of first-person sensory experiences at a specific time
and place (Tulving, 1972). Past studies in the field suggest
that episodic memory plays an important role in human
learning (Mahr & Csibra, 2017), and may capture a wide

range of potential functional purposes, such as construc-
tion of novel future scenarios (Schacter et al., 2007; Hass-
abis et al., 2007; Schacter et al., 2012), mental time-travel
(Michaelian, 2016) or assisting in the formation of new se-
mantic memories (Greenberg & Verfaellie, 2010). A recent
computational model of episodic memory (Fountas et al.,
2020b) also relates it to the human ability to estimate time
durations.

The application of episodic memory in reinforcement learn-
ing has been somewhat limited. Some works have employed
simple forms of memory to improve the performance of
a deep model-free RL agent via experience replay (Mnih
et al., 2015; Schaul et al., 2016; Espeholt et al., 2018). How-
ever, these methods do not incorporate information about
associative or temporal dependencies between the memo-
ries (Hansen et al., 2018). Read-write memory banks have
also been implemented alongside gradient-based systems
(memory-augmented neural networks) for assisting in learn-
ing and prediction (Graves et al., 2014; 2016; Oh et al., 2016;
Jung et al., 2018; Hung et al., 2019). Further, episodic mem-
ory has been used for non-parametric Q-function approxima-
tion (Hansen et al., 2018; Blundell et al., 2016; Pritzel et al.,
2017; Zhu et al., 2020). It has also been proposed to be used
directly for control as a faster and more efficient alternative
to model-based and model-free approaches in RL, such as
instance-based control (Lengyel & Dayan, 2007; Gershman
& Daw, 2017; Botvinick et al., 2019) and one-shot learn-
ing (Kaiser et al., 2017). In contrast, our paper considers
a novel way of using episodic memories – in defining the
agent’s subjective timescale of the environment and training
a transition dynamics model over the sequences of these
memories.

3. Baseline Agents
To test the versatility of STM, we integrate it into two types
of model-based agents that represent fundamentally differ-
ent approaches to building model-based agents. We consider
a partially-observable Markov decision process (POMDP)
with discrete time t. At every time step, agents receive ob-
servation ot ∈ O upon taking a discrete action at−1 ∈ A.
Latent states inferred by an agent are denoted by st ∈ S.
For Dreamer, an agent also observes a scalar reward rt ∈ R.

3.1. Dreamer

Dreamer (Hafner et al., 2020) is a well-established model-
based RL agent that uses a recurrent generative model
(Hafner et al., 2019) and latent imagination to learn a reward-
maximising policy. Specifically, it consists of: a repre-
sentation model q(st|st−1, at−1, ot; θ), a transition model
p(st|st−1, at−1; θ), a reward model q(rt|st; θ), an action
model q(at|st;φ), and a value model v(st;ψ) (Fig. 2b),
where {θ, φ, ψ} are parameters of the models. The dynam-
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Figure 2. Graphical models. Circles and rectangles denote stochastic and deterministic variables, respectively. Full lines represent
generative models, while dotted lines inference models. We also use blue to denote the transition dynamics model, and red for perception
models. Figure (a) shows the Markovian deep active inference agent. Figure (b) shows the graphical model of the Dreamer agent,
including the additional recurrent state h. Figure (c) shows the subjective-timescale generative model that performs adaptive skips and
that operates over the subjective time variable τ . Light red line indicates the dependency that is only used in the Dreamer agent.

ics model trained from environment observations is used to
perform latent roll-outs up to horizon H while predicting
rewards r̂t and values v(st), and then updating the action
and value models using the value estimates Vλ(st), such
that the action model maximises expected rewards, while
the value model regresses the value of a state:

max
φ

Epθ,qφ
( k+H∑
t=k

Vλ(st)
)
, (1)

max
ψ

Epθ,qφ
(1
2

k+H∑
t=k

||v(st)− Vλ(st)||2
)
. (2)

In turn, value estimates Vλ are calculated via a combina-
tion of predicted rewards and values (see Appendix A.2).
Dreamer performs competitively on a wide range of tradi-
tional RL tasks.

3.2. Deep Active Inference

The second baseline is a deep active inference (DAI) agent
with Monte-Carlo tree search (Fountas et al., 2020a). Its
selection is motivated by an observation-based objective and
a purely model-based planning procedure, which allow for a
more detailed analysis of STM’s properties. The generative
model of this agent is defined as p(o1:t, s1:t, a1:t; θ), where
θ are parameters of the model. Specifically, it includes
two factors: a transition model p(st|st−1, at−1; θ) and a la-
tent state decoder p(ot|st; θ) parametrised by feed-forward
neural networks (Fig. 2a). The agent also possesses two
inference models, which are trained using amortized infer-

ence: a habitual network q(at;φa) and observation encoder
q(st;φs) parametrised by φa and φs, respectively. Further,
we use π to denote a sequence of actions up to some time
horizon H . Training is performed using the variational free
energy at an arbitrary time-step t:

Ft =− Eq(st) [log p(ot|st; θ)] (3a)
+DKL [q(st;φs)‖p(st|st−1, at−1; θ)] (3b)
+ Eq(st) [DKL [q(at;φa)‖p(at)]] , (3c)

where p(a) =
∑
π:a1=a

p(π) is the summed probability
of all policies π beginning with action a. The expected
free energy (EFE) of the generative model up to some time
horizon H is defined as:

G(π) =

H∑
k=t

Eq̃ [log q(sk, θ|π)− log p(ok, sk, θ|π)] ,

(4a)

where q̃ = q(ok, sk, θ|π) and p(ok, sk, θ|π) =
p(ok|π)q(sk|ok, π)p(θ|sk, ok, π). Action selection is aided
with Monte Carlo tree search (MCTS), ensuring a more
efficient trajectory search. Specifically, MCTS generates
a weighted tree that is used to sample policies from the
current timestep, where the weights refer to the agent’s
estimation of the EFE given a state-action pair, G̃(s, a).
The nodes of the tree are predicted via the transition
model, p(st|st−1, at−1; θ). At the end of the search,
MCTS is used to construct the action prior, p(at) =
N(at, st)/

∑
j N(aj,t, st), where N(at, st) is the number

of times action at has been taken from state st. More details
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Figure 3. STM pipeline. As the agent moves through the environ-
ment, states s that exceeded a pre-defined threshold are recorded
along with all successive actions a in an S-sequence. S-sequences
are saved in a buffer at the end of each episode and are later sam-
pled for training a subjective-timescale transition model.

on active inference and MCTS planning procedure can be
found in Appendix A and C.2.

4. Subjective-Timescale Model
We introduce subjective-timescale model (STM) – a tran-
sition dynamics model trained over sequences of episodic
memories that define a more useful timescale. As such, the
system consists of a memory accumulation module to selec-
tively record salient events and an autoregressive transition
model (Figure 3).

We define a ground-truth sequence as a sequence of
all states experienced in an environment during a single
episode denoted with t, Sg = {s0, ..., st, st+1, ..., sT },
and an S-sequence (subjective sequence) as a sequence
of states selectively picked by our system, and over
which the new transition model would be learned, Se =
{s0, ..., sτ , sτ+1, ..., sT}, denoted with τ . Each unit in an S-
sequence is called an episodic memory and consists of a set
of sufficient statistics, s = {µs,σs}, where µs and σs are
mean and variance vectors of a Gaussian-distributed state s,
respectively. Additionally, each episodic memory contains a
reference to its preceding (parent) episodic memory and all
actions until the next one. We call the process of recording
S-sequences memory accumulation.

4.1. Memory Accumulation

Previous work on time perception and episodic memory
(Fountas et al., 2020b) employed saliency of an event, or
the generative model’s prediction error, as the memory for-

mation criterion. Selection of this criterion is informed by
the experimental evidence from neuroscience on episodic
memory (Greve et al., 2017; Jang et al., 2018; Rouhani et al.,
2018) and recent time perception models (Roseboom et al.,
2019). Inspired by this account, our memory accumulation
system uses the prediction error (or the free energy) of the
objective-timescale transition model as a measure of event
saliency, and forms memories when a pre-defined threshold
is exceeded.

Accumulation To train STM, an agent moves in the envi-
ronment under a pre-trained generative model. During this
process, each transition is evaluated based on the objective
transition model prediction error (or free energy), which rep-
resents the degree of surprise experienced by the transition
model upon taking an action. If the value exceeds a pre-
defined threshold, ε, a memory is formed and placed into
an S-sequence. At the end of each episode, the recorded S-
sequence is saved for later use. Over the course of training,
we increase the threshold using ε = εmax(1− exp(−λ · i)),
where εmax is the maximum allowable threshold, λ is the
half-life of the exponential decay term and i is training
iteration.

Recorded memories We can categorise the transitions
that cause higher values of transition model prediction er-
rors into two main groups: epistemic surprise and model-
imperfection surprise. The former refers to transitions that
the model could not have predicted accurately due to the
lack of information about the current state of the environ-
ment (e.g. objects coming into view). The latter refers to
the main bulk of these high prediction-error transitions and
stems from the inherent imperfections of the learned dynam-
ics. Specifically, less frequently-occurring observations with
richer combinatorial structure would systematically result in
higher compounded transition model errors, given that these
would be characteristic of more complex scenes. Empirical
evidence of these trends can be found in Appendix D. As
will become apparent, the presence of these two categories
in the recorded S-sequences results in the model’s ability to
vary its prediction timescale based on the perceptual context
and systematically imagine future salient events. Two exam-
ples of S-sequences are shown in Figure 4, where colours
are used to indicate parts of the sequences with different
accumulation rates.

A transition dynamics model is necessarily trained with
respect to actions that an agent took to reach subsequent
states. However, STM records memories over an arbitrary
number of steps, thus leaving action sequences of variable
length. For the purposes of this paper, we implement a
simple heuristic to summarise agent’s trajectories, which
is enough to provide our system with the necessary infor-
mation to learn action-conditioned predictions. We do it by
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estimating the angle between the agent’s initial position and
its final position at the time-step of the subsequent memory
(full details can be found in Appendix B.3).

4.2. Transition Dynamics Model

As mentioned, S-sequences are characterised by the pres-
ence of epistemically-surprising and salient events squeezed
together in the recorded episodes. As a result, training on
these sequences is more conducive for learning temporal
dependencies between important states. For this reason,
we employ a recurrent transition dynamics model (LSTM
(Hochreiter & Schmidhuber, 1997) for active inference and
GRU (Cho et al., 2014) for Dreamer), which utilises internal
memory states to store information about preceding inputs.
As such, hidden states hτ at subjective time τ are calcu-
lated via a deterministic mapping, hτ = fθh(sτ , aτ , hτ−1),
where sτ and aτ are the latent state and action, respectively,
and fθh is a deterministic function of the used recurrent unit
with parameters θh. The hidden state hτ is then mapped to
a latent state sτ+1 at the next subjective time τ + 1. Im-
portantly, the parameters of STM can be trained normally
according to the procedure of the model-based agent or in
isolation via loss function defined as,

LSTM =
1

T

T∑
τ

DKL

[
q(sτ+1)‖p(sτ+1|hτ )

]
. (5)

The STM generative model is shown in Figure 2c and the
procedure is outlined in Algorithm 1. Architectural and
training details of the model can be found in Appendix B.

5. Experiments
To analyse the properties and benefits of STM, we use a
combination of visually-complex 3D foraging tasks from
DeepMind Lab (DMLab) (Beattie et al., 2016) and Animal-
AI (AAI) (Crosby et al., 2020; Crosby, 2020). DMLab
and AAI afford suitable testing conditions given their large
size, slow objective temporal dynamics, and low density of
rewards.

Foraging with sparse rewards Within DMLab and AAI,
we use sparsely populated arenas with positive2 and negative
rewards. The chosen map configuration is motivated by the
fact that a successful agent would be forced to perform
both short- and long-distance planning, as well as a more
extensive exploration of the environment.

Foraging in a maze Further, we test the Dreamer agent
within a more complex maze configuration in DMLab.
These maps include additional levels of complexity such
as epistemic distractions (wall imagery) and more difficult

2In AAI, we use one green (terminal) and one yellow rewards.
In DMLab, there is only one type of positive reward.

Algorithm 1 Training with STM
Initialise :

Pre-trained objective-timescale generative model, p(o, s, a; θ)
Memory threshold, ε
Episodic buffer, D ← {}

for episode = 1 to∞ do
Initialise S-sequence with the first observation and state,
S ← {s1, o1}
for t = 1 to max length do

// Interact and collect memories

Sample an action and get a new observation
Compute surprise of the objective-timescale transi-
tion model, Lobj
if Lobj ≥ ε then

Add memory: S ← S ∪ {at, st+1, ot+1}
else

Add action: S ← S ∪ {at}
// Training

Sample a batch of S-sequences: Bi ∼ D
Train the models: EBi [L]

terrain with obstructions. More pronounced exploratory
navigation and reward signals are crucial in this setting.

Training Across all tasks, we use the environment’s in-
trinsic frame rate (i.e. no action repetitions) and an episode
length of 1000 steps. Observations are of size 32× 32× 3
and 64 × 64 × 3 for AAI and DMLab, respectively. We
train the objective- and subjective-timescale agents using
the same hyperparameters on a single NVIDIA Quadro RTX
6000 GPU.

5.1. Reward-based Results

Enhanced reward seeking Upon training completion,
we compare the objective- and subjective-timescale agents
performance in randomly-generated environments and val-
idate a statistically significant improvement in solving the
tasks by agents with STM. Table 1 summarises reward-based
results. This empirical evidence indicates that training and
planning over the subjective timescale can be considerably
advantageous to model-based agents.

More cautious behaviour The ability of STM to perform
both short- and long-term planning allows the agent to be
more cautious in selecting actions that may lead to negative
rewards in the future. Table 1 shows a large drop in the
collected negative rewards when the agents employ STM.

5.2. Varying Prediction Timescale

Much like human perception of time changes depending
on the perceptual content of the surroundings, our agent
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Figure 4. Examples of collected S-sequences. S-sequences tend to perform temporal jumps in visually simple settings, thus defining a
more useful timescale. We use red for slower and green for faster parts of the sequences. As evident, STM can produce large skips of
uninteresting areas of the arena, while slowing down in more important settings.

Task Agent Rewards p-value Penalties

AAI Sparse Rewards DAI 1.06 ± 4.12
< 0.001

0.22 ± 0.024
DAI + STM 2.70 ± 3.53 0.12 ± 0.002

DMLab Sparse Rewards Dreamer 1.05 ± 0.89
< 0.001

0.24 ± 0.019
Dreamer + STM 1.26 ± 0.46 0.01 ± 0.003

DMLab Maze Rewards Dreamer 2.81 ± 4.20 0.043 n/a
Dreamer + STM 3.46 ± 5.83 n/a

Table 1. Agent performances (per episode)

varies the prediction timescale depending on the context
it finds itself in. Specifically, in a static environment the
complexity of any given observation is primarily driven by
its configurable parts (e.g. objects, which may appear in
different sizes, colours, locations, etc.). As a result, our
agent tends to predict farther into the future in the absence
of any nearby objects, and slows its timescale, predicting at
finer temporal rate, when the objects are close.

The EFE planning objective of the active inference agent
allows us to visualise this property of STM by means of
an energy map. Figure 6a shows the agent’s values of EFE
at different locations in the environment calculated using
the active inference agent with and without STM using
identical MCTS parameters. Specifically, the map contains
a single green sphere placed in the middle, and the agent’s
orientation is always towards the top of the image. Regions
with lower values of EFE (more blue) indicate the agent’s

ability to ‘see’ the sphere in its imagination roll-outs during
planning, since its appearance decreases the value of the
observational prior component. The comparison of these
regions produced by the two models indicate two important
things. First, the significantly larger blue region of DAI
with STM (right) points to the model’s ability to predict
farther into the future, when placed at a distance from the
object of interest, in contrast to the agent with the objective-
timescale transition model. Second, STM’s blue region also
extends to the regions very close to the sphere, suggesting
that short-term planning is not compromised.

Performing temporal jumps and skipping unnecessary in-
termediary steps affords greater computational efficiency
and reduces the detrimental effects of sequential error ac-
cumulation, as can be seen in Figure 5. Similarly, while
STM is able to predict far ahead, its inherent flexibility to
automatically predict over varying timescales does not com-

Figure 5. STM can vary prediction timescale. (a) Ground-truth observations shown for reference. (b) DAI without STM suffers from
slow-timescale predictions and error accumulation, resulting in poorly informative roll-outs. (c) DAI with STM predicts a rapid approach
to the object of interest, later becoming more fine-grained.
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Figure 6. (a) Visualisation of EFE values calculated by DAI without (left) and with STM (right) at different locations of the arena
containing a green sphere in the centre. Larger low-value region of STM points to the ability to perform temporally-flexible planning (b)
Normalised heatmap of visited locations (in an empty map). STM agent (right) explores the environment much more extensively than the
baseline (left) and is less prone to spend time at suboptimal border locations.

promise the agent’s performance when the states of interest
are close. Thus, a separate mechanism for adjusting how far
into the future an agent should plan is not necessary and is
implicitly handled by our model. Finally, STM allows the
agent to make more informed decisions in an environment,
as it tends to populate the roll-outs with salient observa-
tions of the short- and long-term futures depending on the
context. As such, STM effectively re-focuses the central pur-
pose of a transition model from most accurately modeling
the ground-truth dynamics of an environment to predicting
states more informative with respect to the affordances of
its surroundings.

5.3. Imagining Surprising Events
In the absence of interesting surroundings, it is useful for an
agent to imagine the kinds of observations it could see in the
future. We show that since S-sequences frequently include
epistemically-surprising memories, STM favours prediction
of salient events. For instance, in the context of the selected
environments, these events mostly constitute objects coming
into agent’s view upon turning. To investigate this, we
compared 1000 roll-outs using DAI with and without STM
(example shown in Fig.7), counting objects that the models
imagine starting from an initial observation of an empty
arena. For roll-outs conditioned on turning right, we detect
1274 objects in roll-outs made with STM compared to 97
without STM; similarly, for turning left, 941 with STM
compared to 0 without STM.

The ability of the STM to imagine novel and salient future
events encourages exploratory behaviour that is distinct
from the agents’ information seeking motivations. To test
this, we create an empty AAI arena with light brown walls
and set a pre-trained active inference agent’s observational
prior to a green colour. In this scenario, brown walls act as
suboptimal attractors that reduce agent’s EFE, meaning that

the agent is likely to stick around them unless it can imagine
more optimal states elsewhere. Figure 6b shows a striking
difference in the heat map of visited locations between DAI
without and with STM (after 50k steps). As can be seen, the
STM agent explores the environment even in the presence of
the ubiquitous suboptimal border states (acting as rewarding
distractions), indicating stronger exploratory motives.

Figure 7. STM can imagine surprising events. (a) Prediction of
DAI agent without STM. (b) Prediction of DAI with STM. Despite
the fact that appearance of objects is a rare event, STM frequently
predicts them in the roll-outs.

6. Conclusion
We proposed STM, a novel approach to learning a transi-
tion dynamics model with the use of sequences of episodic
memories, which define an agent’s more useful, subjec-
tive timescale. As shown, the emergent properties of STM
can be useful to different model-based agents that rely on
the transition dynamics model in either training or infer-
ence. We demonstrated its effectiveness within two types
of agents and by using several complex 3D foraging tasks
within DMLab and AAI. Nevertheless, a limitation of the
current version of STM is its action summarisation heuristic.
We pose that integrating general techniques for summarising
sequences of actions will allow for more advanced planning
and application to environments with more demanding con-
trol requirements.
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A. Preliminaries
A.1. Active Inference

Active inference is a corollary of the free-energy principle
applied to action (Friston et al., 2016; Friston, 2019; Sajid
et al., 2019). In this framework, an agent embedded in
an environment aims to do two things: (i) minimise sur-
prisal from the observations of the environment under the
agent’s internal model of this environment, and (ii) perform
actions so as to minimise the expected surprisal in the fu-
ture. More formally, an agent is equipped with a generative
model p(ot, st; θ), where ot is the agent’s observation at
time t, st is the hidden state of the environment, and θ de-
notes the parameters of the generative model. The agent’s
surprise at time t is defined as the negative log-likelihood,
− log p(ot; θ).

We can upper-bound this intractable expression using vari-
ational inference by introducing an approximate posterior
distribution, q(st), over st, such that:

− log p(ot; θ) ≤ Eq(st) [log q(st)− log p(ot, st; θ)] = F ,
(6)

where F is the variational free energy. The minimisation
of this quantity realises objective (i) and is performed by
optimising the parameters of the generative model, θ. It
is also equivalent to the maximisation of model evidence,
which intuitively implies that the agent aims to perfect its
generative model at explaining the sensory observations
from the environment. To realise objective (ii), the agent
must select actions that lead to the lowest expected surprise
in the future, which can be calculated using the expected
free energy (EFE), G:

G(π,k) =

Ep(ok|sk)
[
Eq(sk|π) [log q(sk|π)− log p(ok, sk|π)]︸ ︷︷ ︸

variational free energy, F

]
,

(7)

where k > t and π = {at, at+1, ..., ak−1} is a sequence of
actions (policy) between the present time t and the future
time k. The free-energy minimising system must, therefore,
imagine the future observations given a policy and calculate
the expected free energy conditioned on taking this policy.
Then, actions that led to lower values of the EFE are chosen
with higher probability, as opposed to actions that led to
higher values of EFE, such that:

p(π) = σ (−γG(π)) , (8)

where G(π) =
∑
k>tG(π, k), γ is the temperature param-

eter, σ(·) denotes a softmax function, and t is the present
timestep.

A.2. Dreamer

As explained in the main body of the paper, Dreamer oper-
ates by learning a policy function q(at|st;φ) using latent
roll-outs. While the generative model (pθ) is trained to per-
form accurate reconstructions of the future, the action (qφ)
and value (vψ) models are trained to maximise rewards (Eq.
1) and predict state values (Eq. 2).

As per the original paper by Hafner et al. (2020), we outline
how the value estimate Vλ is calculated. Specifically, given
an imagined trajectory of length H , the value estimate is
defined such that:

V kN (sj) = Epθ,qφ
[ h−1∑
n=j

γn−jrn + γh−jvψ(sh)
]
,

where h = min(j + k, t+H),

(9)

Vλ(sj) = Epθ,qφ
[
(1−λ)

H−1∑
n=1

λn−1V nN (sj)+λ
H−1V HN (sj)

]
,

(10)
where j denotes the timestep from which the roll-out is

performed.

B. Architectural Details and Training
B.1. Deep active inference (DAI)

Baseline system In order to ensure the strongest perfor-
mance of the baseline agent, we have made slight adjust-
ments to the architecture and training procedure of the
original DAI agent by Fountas et al. (2020a), which we
report next. In DAI, each component of the generative
and inference models is parametrised by feed-forward neu-
ral networks (including fully-connected, convolutional and
transpose-convolutional layers), whose architectural details
can be found in Table 2. The latent bottleneck of the autoen-
coder, s, was of size 10. Similarly, we restricted the action
space to 3 – forward, left, right. The networks were trained
using separate Adam optimisers (Kingma & Ba, 2015) for
stability reasons. The habitual and transition networks are
trained with a learning rate of 0.0001; the autoencoder’s
optimiser had a learning rate of 0.001. The batch size was
set to 50 and the model was trained for 1 × 106 iterations
under a green observational prior. All of the networks were
implemented using Tensorflow v2.2 (Abadi et al., 2015).
Tests were performed in Animal-AI v2.0.1 (Beyret et al.,
2019).

For the objective-timescale version of DAI, we also employ
a top-down attention mechanism, as outlined in Fountas
et al. (2020a). Introducing variable ω that modulates un-
certainty about hidden states is aimed at promoting latent
state disentanglement and more efficient learning. Specif-
ically, the latent state distribution is defined as a Gaussian
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such that s ∼ N (s;µs,σs/ω), where µs and σs are the
mean and the diagonal covariance, and ω is a decreasing
logistic function over the divergence DKL [q(a;φa)‖p(a)].
During training, the hyperparameters of the top-down atten-
tion mechanism were: a = 2, b = 0.5, c = 0.1, and d = 5,
chosen to match those in Fountas et al. (2020a).

Each network was trained with its corresponding loss func-
tion, which are the constituent parts of the total variational
free energy. In particular, the autoencoder was trained using
Eqs. 11a and 11b, transition model using Eq. 11b, and
habitual network using Eq. 11c:

Ft =− Eq(st) [log p(ot|st; θo)] (11a)
+DKL [q(st;φs)‖p(st|st−1, at−1; θs)] (11b)
+ Eq(st) [DKL [q(at;φa)‖p(at)]] . (11c)

Furthermore, following the training procedure from Fountas
et al. (2020a), we stabilise the convergence of the autoen-
coder by modifying the loss function to:

Lautoencoder =− Eq(st) [log p(ot|st; θo)]
+ γDKL [q(st;φs)||p(st|st−1, at−1; θs)]
+ (1− γ)DKL [q(st;φs)||N (0, I)] ,

(12)

where γ is a hyperparameter that gradually increases from 0
to 0.8 during training.

As part of the system’s training procedure, we used a replay
buffer with random sampling to mitigate the detrimental
effects of on-line learning. Full training procedure is shown
in Algorithm 2.

Adding STM The STM module replaces the Markovian
transition model of the DAI agent. We train the subjective
transition model using batch size 15 and a learning rate of
0.001. Each batch consisted of zero-padded S-sequences
with length 50. We use a Masking layer to ignore zero-
padded parts of the sequences in the computational graph.
The training was stopped at approximately 800× 103 train-
ing iterations. The memory formation threshold, ε, was set
to increase via ε = εmax(1− exp(−λ · i)), where threshold
ceiling is εmax = 5, i is training iteration, λ = ln 2/t1/2
with half-life t1/2 = 1× 105 training iterations.

B.2. Dreamer

Baseline system For the Dreamer agent, we follow the
training details outlined in Hafner et al. (2020), in order to
ensure the strongest performance of the objective-timescale
baseline. The only minor adjustment included setting action
repetition to 1, thus forcing the agent to operate over the ob-
jective timescale of the environment. The baseline Dreamer
was trained for 1.8M steps in DMLab Sparse Rewards and
2.8M steps in DMLab Maze Rewards.

Algorithm 2 Objective-timescale DAI
Initialise :

Empty replay buffer, D ← {}
Random generative and inference model parameters, {θ, φ}

for episode = 1 to∞ do
Reset and randomise the environment
for t = 1 to 250 do

Retrieve observation: õt
Sample and take an action ãt ∼ p(at) using the
planner
Retrieve next observation: õt+1

Add to replay buffer, D ← D ∪ {(õt, ãt, õt+1)}

if D sufficient size then
Sample a batch of transitions: Bi ∼ D
For every tuple in Bi, encode the preceding
and the subsequent observations, (õt1 , õt2) →
(q(st1 ;φs), q(st2 ;φs))

Compute q(at1 |st1 ;φa) via sampled s̃t1 ∼
q(st1 ;φs)

Calculate p(at1) using the planner
Train habitual network . Eq. 11c
Compute ωt2 with the use of Eq. 11c
Compute next state sufficient statistics
(µt2 ,σt2) using p(st2 |st1 , at1 ; θs)
Train transition model . Eq. 11b
Train variational autoencoder . Eqs. 11a, 11b

Adding STM Because the Dreamer already involved a
recurrent dynamics model, no changes to the architecture of
the Dreamer+STM agent needed to be done. As such, the
training procedure with all concomitant hyperparameters
were kept the same. The threshold was set to a constant
value, ε = 7 for Sparse Rewards and ε = 8 for Maze
Rewards. Dreamer+STM was trained for 1.8M steps in
DMLab Sparse Rewards and 3.5M steps in DMLab Maze
Rewards.

B.3. Action Heuristic

To train the STM transition model in the AAI and DM-
Lab environments, we implement a simple heuristic that
is used to summarise a sequence of actions taken by the
agent from one memory to reach the next one. A se-
quence of actions, A = {aτ1 , aτ1+1, ...aτ1+(N−1)}, takes
the agent from a recorded memory sτ1 to memory sτ2 ,
where the time between these states τ2 − τ1 = N , and
a ∈ {aforward, aright, aleft}. We employ polar coordinates rel-
ative to the agent’s initial position in Cartesian coordinates
at time τ1 and perform iterative updates of its position after
every action until the time-step of the next episodic memory,
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Table 2. DAI Architecture

Task Layer Size Activation

Habitual

Linear 128 ReLU
Linear 128 ReLU
Linear 128 ReLU
Linear 128 ReLU
Linear 3 -

Transition

Linear 512 ReLU
Linear 512 ReLU
Linear 512 ReLU
Linear 512 ReLU
Linear 20 -

Encoder

Conv2D 32 filters, kernel (3, 3), stride (2, 2) ReLU
Conv2D 64 filters, kernel (3, 3), stride (2, 2) ReLU
Conv2D 128 filters, kernel (3, 3), stride (2, 2) ReLU
Conv2D 256 filters, kernel (3, 3), stride (2, 2) ReLU
Linear 256 ReLU
Linear 256 ReLU
Linear 256 ReLU
Linear 20 -

Decoder

Linear 256 ReLU
Linear 256 ReLU
Linear 256 ReLU
Linear 162 ∗ 64 ReLU
Conv2DTranspose 256 filters, kernel (3, 3), stride (1, 1) ReLU
Conv2DTranspose 128 filters, kernel (3, 3), stride (2, 2) ReLU
Conv2DTranspose 64 filters, kernel (3, 3), stride (1, 1) ReLU
Conv2DTranspose 3 filters, kernel (3, 3), stride (1, 1) Sigmoid

STM Transition

Linear 256 ReLU
LSTM 512 -
LSTM 512 -
LSTM 512 -
LSTM 512 -
Linear 20 -

τ2, is reached. Given the agent’s orientation in the envi-
ronment, θ, the next position of the agent given a forward
action is calculated using,

pt+1 = pt +

[
sin θ
cos θ

]
, where pt =

[
0
0

]
t=τ1

(13)

Finally, we retrieve angle φ, which describes the direction
in which the agent has travelled with respect to its initial
position and orientation. This angle is used to decide on the
action that summarises the trajectory (see Figure 8) using

a =


aforward |φ| ≤ 22.5◦

aright 22.5◦ < φ < 180◦

aleft −22.5◦ > φ ≥ −180◦.

Although this heuristic provided satisfactory results, tra-
jectory encoding is one of the most limiting parts of the
STM. Nevertheless, we believe such simplistic encoding
was sufficient to demonstrate the primary characteristics of
the STM – relating to time and prediction saliency. As such,
we strongly encourage further research into more sophisti-
cated and generalisable techniques of summarising action
sequences.

C. Testing
C.1. Animal-AI Environment

We expect some readers to be unfamiliar with the Animal-
AI environment (Beyret et al., 2019), and thus provide a few
snapshots from the environment in Figure 9.
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Figure 8. Action encoding for STM.

Figure 9. (A) Top view of an empty arena with an agent in the
center. (B) Close-up of a green sphere. (C) Green, yellow, and red
spheres. (D) View of a green sphere in the corner from the center
of the arena.

C.2. Monte Carlo Tree Search of DAI

Following Fountas et al. (2020a), we define the MCTS upper
confidence bound as,

U(st, at) =

G̃(st, at) + cexplore · q(at|st;φa) ·
1

N(at, st) + 1
,

(14a)

where G̃(st, at) is agent’s estimation of the expected free
energy given action at from state st, N(at, st) is the num-
ber of times at was taken from st during tree search, and
cexplore is a tree exploration hyperparameter.

For testing, the MCTS parameters of the baseline and STM
were kept the same to ensure a fair comparison, with the ex-
ception of the exploration hyperparameter, cexplore, which
was optimised separately for both to yield the best perfor-
mance of the agents: cexplore = 1 for STM and cexplore = 0
for the baseline. Otherwise, both agents used 15 MCTS sim-
ulation loops with depth 3.

D. Empirical Trends
As discussed in Section 4.1, prediction error (or free energy)
of the transition model was used as the criterion for memory
formation. Although the idea is largely inspired by the
neuroscience literature on episodic memory and human time
perception, it is useful to examine the practical implications
of this criterion in the context of model-based agents.

In particular, we consider the necessity for context-aware
adaptation of the temporal extent of future predictions
during planning. We pose that using shorter extents in
perceptually-complex scenes is conducive to the agent’s
ability to navigate difficult or important parts of the en-
vironment. In contrast, longer extents should be used in
scenes with little perceptual complexity, as the agent plans
to get to the objects of its interest. This is further justified
by the STM agent’s significantly improved performance at
avoiding negative rewards.

The chosen criterion allows the STM transition model to
learn just that – due to the fact that the frequency of mem-
ory formation increases in more complex or rare scenes, as
the prediction error gets larger. Empirically, this is demon-
strated in Figure 10, in which observations from a replay
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buffer were sorted based on the DAI agent’s free energy
of the transition model. It can be seen that observations
with higher free energy contain more objects and, generally,
constitute more perceptually-complex scenes.

At the same time, higher values of transition model free
energy can be driven by epistemically-surprising events (e.g.
sphere entering the agent’s view upon turning). Indeed,
these types of observations can also be observed in the
higher levels of Figure 10. As demonstrated in the paper,
such observations appearing in the recorded S-sequences
drive the STM to producing more salient predictions of the
future, which in turn encourages exploratory behaviour.

E. Additional Results
Collected S-sequences Figure 11 shows additional
examples of collected S-sequences in DMLab. In particular,
we draw reader’s attention to how the model is able to
record memories at different temporal rates, in which
different segments are approximately denoted with different
colours. In visually simple settings, the model tends to
skip more frames than in more complex scenes, thus
resulting in the STM’s ability to vary the extent of its
predictions. To better understand STM memory collection,
access the following anonymised link, which contains
a number of videos of episodes as perceived by the
objective- and subjective-timescale agents. https:
//www.notion.so/Dreamer-STM-Episodes-
47692c7680b541d69e13983d04256aec.

STM roll-outs Figure 13 shows random STM roll-outs
generated by the system. These diverse roll-outs demon-
strate that STM is able to: i) make correct action-
conditioned predictions, ii) speed up its prediction timescale
when objects are far away, iii) slow down the prediction
timescale when objects are nearby. Additionally, for initial
observations without any objects in the frame, the agent is
capable of imagining their presence in the future.

Exploration heatmaps The provided exploration
heatmaps in the main body of the paper were concerned
with showcasing the STM’s ability to exert more pro-
nounced exploratory behaviour in the presence of rewarding
distractions. Here, we additionally demonstrate the
exploratory behaviour of Dreamer with and without STM
in an empty DMLab environment (in the absence of
any rewards) – see Figure 14. Specifically, Figure 14a
shows the exploration heatmap comparison, while Figure
14b shows 20 random samples of the different paths
that the agents took in an empty arena. We emphasise
the considerable differences in the agents’ behaviours –
STM agent employs a consistent strategy with extensive
and persistent exploration of the environment, while the
objective-timescale agent resorts to more chaotic behaviour.

Figure 10. Observations sorted by their corresponding recorded
value of the objective-timescale transition model free energy (using
DAI agent) in the descending order. States with higher values on
average contain more objects, constituting more complex settings.

https://www.notion.so/Dreamer-STM-Episodes-47692c7680b541d69e13983d04256aec
https://www.notion.so/Dreamer-STM-Episodes-47692c7680b541d69e13983d04256aec
https://www.notion.so/Dreamer-STM-Episodes-47692c7680b541d69e13983d04256aec
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Figure 11. Examples of collected S-sequences in DMLab. Red is used for slower and green for faster parts of the sequences. For better
dynamic visualisations of the collected S-sequences, you can access https://www.notion.so/Dreamer-STM-Episodes-
47692c7680b541d69e13983d04256aec.

Figure 12. Single example of a recorded sequence using the objective timescale – shown for reference. In contrast to the presented
S-sequences, an approach of similar distance takes significantly higher number of episode frames.

https://www.notion.so/Dreamer-STM-Episodes-47692c7680b541d69e13983d04256aec
https://www.notion.so/Dreamer-STM-Episodes-47692c7680b541d69e13983d04256aec
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Figure 13. Representative roll-outs generated with the DAI-STM agent which are meant to showcase several important characteristics.
Firstly, the agent can successfully model the action-conditioned dynamics of the environment, justifying the appropriateness of the used
action heuristic. Secondly, in line with the analysis from the main body of the paper, STM is able to vary the extent of its predictions
depending on the perceptual context. For instance, the top roll-out illustrates a rapid approach to a red sphere, while slowing down close
to it. This is akin to some of the presented S-sequences in Figure 11, which illustrate a very similar behaviour. Thirdly, in roll-outs with
uninformative initial states (such as the ones with the agent facing a wall), STM agent tends to imagine observing an object in the future
and with generally increased speed of future predictions.

(a) Exploration heatmap in an empty arena (b) Samples of Dreamer’s exploration paths

Figure 14. (a) Normalised heatmap of visited locations (in an empty map). Dreamer+STM agent (right) exhibits a significantly different
behaviour to the objective-timescale Dreamer (left), employing an active and consistent exploratory strategy. (b) Samples of the paths
taken by both agents. Dreamer+STM agent (right) employs a clear exploratory strategy, characterised by perpetual loops in an empty
environment. On the other hand, objective-timescale Dreamer (left) seems to produce inconsistent and less favourable strategy, in which
the agent is more prone to travel in straight lines and not explore beyond its current location.


