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Abstract

In spite of their huge success, transformer models
remain difficult to scale in depth. In this work,
we develop a unified signal propagation theory
and provide formulae that govern the moments
of the forward and backward signal through the
transformer model. Our framework can be used
to understand and mitigate vanishing/exploding
gradients, rank collapse, and instability associated
with high attention scores. We also propose Deep-
ScaleLLM, an initialization and scaling scheme that
conserves unit output/gradient moments through-
out the model, enabling the training of very deep
models with 1000 layers. We find that transformer
models could be much deeper — our deep models
with fewer parameters outperform shallow mod-
els in Language Modeling, Speech Translation,
and Image Classification, across encoder-only,
decoder-only and encoder-decoder variants, for
both Pre-LN and Post-LN transformers, for mul-
tiple datasets and model sizes. These improve-
ments also translate into improved performance
on downstream Question Answering tasks and
improved robustness for Image Classification.

1 Introduction

Transformer models are extremely popular across different
domains of machine learning, however, deep transformers
are plagued with issues of gradient explosion/vanishing (Rae
et al., 2021; Shleifer et al., 2021; Smith et al., 2022; Takase
et al., 2022; Smith et al., 2022; Zhang et al., 2022c; De-
hghani et al., 2023; Chowdhery et al., 2023; Molybog et al.,
2023; Wortsman et al., 2024) and rank collapse (Zhou et al.,
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2021; Noci et al., 2022) that adversely affect training stabil-
ity. Proposed remedies include residual scaling, changing
initialization or extra/modified layernorms (Zhang et al.,
2019a; Xiong et al., 2020; Bachlechner et al., 2021; Wang
et al., 2024; Dehghani et al., 2023).

Theoretical analysis via signal propagation and kernel meth-
ods has led to an improved understanding of these issues.
Several works in the signal propagation domain (Glorot &
Bengio, 2010; Arpit et al., 2016; Xu et al., 2019; Dong et al.,
2021; Davis et al., 2021; Wang et al., 2022) have analysed
the propagation of moments for some components of deep
transformers, but often make simplifying assumptions of IID
inputs, uncorrelated outputs, ignoring effect of query/key
initialization, simplifying non-linearity, etc. We observed
break down of each of these assumptions with real world
data, adversely affecting model stability.

These issues highlight the need for a holistic theoretical
framework that can fully explain signal propagation through
transformer models with real data. In this work, we provide
a framework to fully explain signal propagation through
transformer models, by deriving closed-form expressions
for the first and second-order moments (mean and variance)
of the outputs and gradients of each of the components of
the transformer model (Embeddings, FFN, ReLU/GeLU,
LayerNorm, Dropout, Softmax, Single-Head Attention),
Attention and FFN blocks, and through the entire model.
Our derived equations are empirically verified within strict
error bounds with real world data'.

We apply this framework to understand and mitigate insta-
bility issues with deep transformers — vanishing/exploding
gradients, rank collapse, and instability caused by high QK
values. To harness the improved complexity of deeper mod-
els (Montufar et al., 2014; Poole et al., 2016; Raghu et al.,
2017), we propose DeepScaleLM, a novel initialization
scheme that augments residual/output scaling, and ensures
the moments of outputs and gradients remain fully con-
served throughout the model. DSLM enables us to break the
depth barrier and train models with 100s of layers which out-
perform shallow models for BERT, GPT, Encoder-Decoder
models across text, vision and speech modalities.

!Code: https://github.com/akhilkedia/TranformersGetStable
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Table 1. Signal propagation for forward and backward passes through components of a transformer (GeLU in Appendix A.5). The
expressions here are illustrative simplification of full closed form formulae in Appendices A and C.
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Table 2. Moment Propagation through the blocks of a transformer layer. Exact closed forms / proofs are provided in Appendices B and C.
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2 Moments of Transformer Models

2.1 Moments of Transformer Components

Following an analysis similar to that of Xavier initializa-
tion (Glorot & Bengio, 2010), we derive closed-form ex-
pressions for the mean and variance of the output and of
the backpropagated gradient for all the components of the
transformer model in Table 1.

Here jiz,, 02, Hay,» Oa,, are the mean and variance of
the input/outputs, aim, cr;" are the variance of the gradient
back-propagated to/from the component, and r!, ¢ are the
correlations across sequence length and hidden dimension.
p is the dropout probability, L sequence length, di,, doy

input/output dimensions of Linear layer, 02, 02 vari-

Wembd
ances of the weights of the Linear layer and the Embeddings
table. At the input side, rfpm originates from repeated to-

kens. For text, we estimate input correlation theoretically

by assuming that input tokens follow Zipf (Kingsley, 1935)
distribution. Detailed proofs are provided in Appendix A,
and all assumptions are summarized in Appendix L.2.

2.2 Moments of Transformer Blocks

Combining the expressions reported in Table 1, we derive
closed-form expressions for the moment transformation dur-
ing the forward and backward pass of the transformer At-
tention and FFN blocks. The Attention block refers to the
Q, K,V projection, followed by Multi-Head Attention and
Output-Projection Layer. The FFN block refers to the Linear
layer followed by non-linearity (ReLU) and output Linear
layer. Table 2 provides our derived equations for these,

where 03 s 0(2), afu L o2 are the variances for V weights,

w2
Output-Projection weights, and weights of FFN block Lin-
ear layers, and d is model the hidden size. These results

show that considering correlation 7!, dropout p and effects
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Figure 1. Pre-LN: Variance of
forward signal increases lin-
early across layers N.

gradient variance increases
hyperbolically across layers V.

of non-linearity are crucial for correctly modelling signal
propagation through Transformer blocks.

2.3 Moments of Entire Transformer Model

By repeatedly applying the expressions in Table 2 for each
layer, we calculate the propagation of moments of outputs
and gradients through the entire transformer model. We
do this for both Pre-LN style transformers, in which the
skip connection bypasses the LayerNorm, and for Post-
LN style transformers, in which the Layernorm is applied
before the skip-connection. The method is fully detailed
in Appendices E.1 and E.2. Figures 1, 2 and 3 provide the
forward (left to right) and backward (right to left) signal
propagation at initialization through the layers of a very
deep 192-layer model with Xavier initialization.

2.4 Numerical Validation of Theoretical Results

We verify the theoretical formulae of transformer compo-
nents and blocks by running simulations with real/synthetic
data, (detailed in Appendix D, code released). Even at 99
percentile, no error (other than SHA gradient o2) is larger
than 10%, verifying our assumptions.

All our derivations are modality-agnostic. We verify our
formulae for the entire transformer model using real textual
MLM data, as shown in Figures 1, 2 and 3 (Reproducible us-
ing our released code), and using ImageNet data (as shown
in Appendix H). Our formulae predict the observed gradi-
ent and forward/backward norms with remarkable accuracy,
with mean and median relative errors of 6.8% and 5.2%
respectively, and an R? of 0.998. We further verify that for
model depths in range [1 — 768], and model dimensions
[128 — 6096], the reported formulae are within 10% error,
even across 768 layers of the transformer model.

2.5 Validity of Theoretical Predictions even after
Training

Interestingly, our theoretical estimates hold approximately
even after the models have been trained for a large num-
ber of steps. The model stays in the regime it is initialized
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gradient variance vanishes ex- ances remain conserved for both for-
ponentially (y-axis log-scale).

ward and backward pass.

with (as has also been shown in Li & Liang (2018); Arora
et al. (2019a); Lee et al. (2019); Jesus et al. (2021); Arora
et al. (2019b); Dettmers et al. (2023)), highlighting the
importance of correct initialization. We analyze gradient
explosion in a 30B parameter 64-layer PreLN model (af-
ter 150k training steps) and use our theory to predict the
moments. Our hyperbolic estimation for the gradient explo-
sion match closely with the observed moments as shown in
Figure 5. Similarly, forward growth in a 48-layer 1024-d
PreLLN model (after 100k training steps) matches our linear
estimations (Figure 6).
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Figure 5. Backward gradient
variance increases hyperboli-
cally after 150k train steps.

Figure 6. Linear growth in the
forward pass for a 48-layer af-
ter 100k train steps.

3 Applications

3.1 Explaining Variance Explosion in Transformer

Our approach theoretically proves the gradient vanishing/ex-
plosion (Table 3) for both Pre-LN and Post-LN transformers.

Exploding Output and Gradient in Pre-LN The forward
output for Pre-LN transformer increases linearly with in-
creasing depth N (Appendix E.1) since each layer’s output
is directly added to the skip connection, as seen in Figure 1.
For the backward pass, the gradient increases hyperbolically
with increasing N, as seen in Figure 2. Intuitively, this is
because the gradient increases in every layer when a block’s
gradient is added to the skip connection, and the fractional
increase in gradient is inversely proportional to the forward
variance (which increases by V) because of LayerNorm.
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Vanishing/Exploding Gradient in Post-LN While layer-
norm solves the explosion in the forward pass of networks
with residual connections (De & Smith, 2020), it has the
opposite impact on the gradient. As proved in Appendix E.2,
the gradient in a Post-LN transformer grows/decays expo-
nentially with the number of layers (Figure 3).

Intuitively, the gradient is first transformed within the layer
and then at the LayerNorm placed before the layer. The mul-
tiplicative factor is applied repeatedly, and causes gradient
to vanish or explode exponentially, as was also observed in
Schoenholz et al. (2017). This explains why Post-LN mod-
els are more challenging to train than Pre-LN for deeper
networks (Wang et al., 2024; Shleifer et al., 2021; Takase
et al., 2022).

Table 3. Comparison of maximum theoretical forward pass and
backward pass growth in variance for the entire transformer model
across methods (See Appendix E for proofs). Here [ is the initial
value of residual scaling for LayerScale.

Method Post-LN Pre-LN

Backward Sensitivity | Forward Backward Sensitivity
Vanilla O(ctN) O(N) O(N) O(N) O(logN)
DSInit o(1) O(N™Y) 0(1) o(1) O(N—Y)
LayerScale O(1) O(BN) o) o(1) O(BN)
DeepNet o(1) O(N—05) - -
DSLM (Ours) O(1) O(1) 1 O(1) o(1)

3.2 Explaining Higher Pruning of Deeper Layers

Gromov et al. (2024) found that LLMs such as Llama-2-
70B (Touvron et al., 2023) have minimal degradation in
performance on Question Answering tasks until almost half
the deeper layers are removed — suggesting that parameters
in deeper layers are less effective in current LLMs. As we
prove in Appendix E.1, the output of a Pre-LN transformer
grows proportionally with depth (Figure 1). For an 80-layer
model like Llama-2, this implies the deeper layers will have
a significantly reduced impact on changing the output.

3.3 Explaining Impact of Large QK Values

In Dehghani et al. (2023), the authors observed large QK
values destabilized the training, and solved this empirically
by adding a layernorm after attention scores. Unlike prior
works (Wang et al., 2024; Noci et al., 2022), note from
our derivations of softmax(Appendix A.7) that the back-
wards gradients from Q/K are exponentially related to their
variance, highlighting the critical significance of correct ini-
tialization of Q/K. For example, by initializing them to only
2x the xavier values (all other initializations the same), back-
wards gradients exploded 10000x through a 192 layer model.
Our theory explains these empirical observations, and sug-

gests a simple initialization strategy to fix this problem,
achieving the same variance on QK without the overhead of
LayerNorm (Section 3.5).

3.4 Explaining and Mitigating Rank Collapse

Similar to our work, Noci et al. (2022) also analyze moment
propagation through the transformer, and observed the rank
collapse of the token’s representations at initialization after
just a few layers, i.e., all the token representations became
the same (7!, ~ 1 after just 12 layers) at initialization. This
has also been reported in Shi et al. (2022); Zhou et al. (2021);
Wang et al. (2022); He et al. (2023); Bachlechner et al.
(2021); Zhai et al. (2023), and suggested modifications such
as adding a skip connection on attention scores, initializing
Q/other weights to 0, or normalizing all FFN weights.
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Our theory suggests a very simple solution — Dropout. As
our closed form expressions show, both FFN block (because
of ReLU) and dropout reduce the correlation (Figure 7).
With dropout, our method shows that such a rank collapse
will not occur, and 7, will quickly reach a stable value < 1
(Appendix F), as verified empirically in Figure 8.

Alternatively, scaling the block output by § = J%’ or

equivalently initializing the weights very small in Post-LN
will also prevent rank collapse, even without Dropout. For
Pre-LN, A 1 slows down increase in r! compared to
A =1-— (but the same slowdown can be achieved
by decreasing 3). This highlights the criticality of correct
initialization, dropout and scaling for deep transformer mod-
els, as well as the explainability power of our theoretical
framework.

Z)= |l

3.5 DeepScaleLM: Enabling Deep Transformers

We propose DeepScaleLM (DSLM), a new initialization /
scaling scheme that alleviates the issues discussed above.
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Residual/Skip-Connection Scaling Let 03, Opocks
02 4 be the variances of the skip connection, the block,
and the output of the final layer of the model, respectively.
Let 03, = Opjoak> and we scale them by scalars A and 3
respectively. Then, as has been proven in numerous works
(Appendix K.3), if A2 + 32 = 1, this scaling will maintain
the variance after addition of the residual.

P - o a2 — o2
Initialization However while ensuring o5, = 0, (and

equal to the variance of model input) has been done for
ResNets (Appendix K.1), it is difficult to achieve theoreti-
cally for transformers. By leveraging the equations in Ta-
ble 2, our theory provides us the tools to achieve this. We
modify the initialization of the components of the trans-
former FFN and Attention blocks such that the variance of
their output is 1, as further detailed in Appendix M —

1. We set the variance of embedding weights as 02 =

e
m};p -, where numenpq is the number of embeddings
types. As embeddings are followed by a dropout, this
ensures the input variance to the model is 1.
2 _ 2 _ 1 1—
2. Weset o, = 0, = 5 %1/ —5~, to make the output

of the FFN block 1.

3. We iteratively calculate layer-by-layer rim, rl%m using
expressions from Table 2, and calculate the initial vari-
ance of the attention block weights to make the output

variance 1.

This initialization of transformer blocks, combined with
the scaling of the skip connection and residual, and correct
initialization of the embeddings, results 02 ,,, = 1, irre-
spective of the number of layer N. This initialization also
preserves the backward gradient, as proved for Pre-LN and
Post-LN, in Appendices E.3 and E.4. Empirically, we show
the backward gradient being preserved for both Pre-LN and

Post-LN even across 192 layers at initialization (Figure 4).

Choice of Scaling Parameters While any choice of 3 will
work at initialization, higher values of (3, for example 32 =
0.5 causes gradients to vanish (Figure 9, Table 4). This is
because covariance between residual and skip connection
increases the forward variance, which causes normalization
to decrease backward gradient (De & Smith, 2020).

Similar to other prior works (Appendix K.3), we use
52 = % in all our experiments, where k is some small
constant. This enables us to bound the fall in gradient (Ap-
pendix E.3) for Pre-LN. For Post-LN, 32 < 7% is theoret-
ically required to bound the gradient (Appendix E.6). In
practice, with 3% = %, even with 768 layers, we empir-
ically observed the final output variance from the model
does not exceed 30, and all our models converge. We hence
use 32 = % (Figure 10), but a practitioner may choose

B2 = %, with o > 1 if more stability is required at the

expense of performance/“sensitivity” (Refer to discussion
of relative strength in Section 4.6 and comparison to prior
works in Section 4.5). While the above analysis assumes
positive covariance (which we always observed experimen-
tally), negative covariance follows a similar reasoning, and
will cause gradient explosion instead.
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Figure 9. Gradient vanishes us-
ing A> = 0.9 and 5% = 0.1, after
50k training steps.

Figure 10. Gradient remains
conserved using A2 = 1 — %

and 8% = &, after 50k steps.

Preventing Rank Collapse For DSLM, applying block
equations iteratively shows that L < 1 — eiz after N layers.

Simpler Initialization Another avenue to handle the co-
variance between residual and skip connection could be to
set A2 + 32 < 1. We therefore also consider a simpler
initialization method(Appendix M), in which we modify the
initialization of attention value and output matrices to be the
same as those of FFN block. This decreases the "effective"
[ of the attention block, but as the attention block has 2x
fewer params than FFN, this change in weightage seems
reasonable. As we show in Appendices E.5 and E.6 while
variances are no longer unit at initialization, they are still
bounded. This change does not impact performance signifi-
cantly, as we show in Table 14. All further experiments in
Section 4 used this simpler initialization.

Folding Scaling into Weights for Inference The scaling
parameters introduced here can be fully absorbed into the
model checkpoint weights by recursively scaling layernorm
gain and output linear weights, hence and do not require any
changes to vanilla transformers inference code.

DeepScaleLM enables training deeper-narrower models
with 100s of layers, outperforming standard models across
transformer variants, tasks and modalities.

4 DeepScaleLLM Results

4.1 Improvements on Encoder-only Models (BERT)

Implementation Details We test our method on the
Masked Language Modelling task with the BERT (Devlin
et al., 2019) model. Pile-CC dataset (Gao et al., 2021) was
used to pre-train our model. We use k& = 2 for 5 while keep-
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ing all the original hyper-parameters of BERT the same,
except for learning rate (LR). We find that higher LR is
needed for our deeper-narrower models (similar to Yang
et al. (2021)). Hence, we search for LR for all the models.
The training steps were decided based on Chinchilla (Hoff-
mann et al., 2022), at 6.6B tokens. Table 25 provides all
hyper-parameter details. For DSLM, model output was
down-scaled by v/d before being passed to the LM-head.

We train different language models with the same number of
parameters and compute — while increasing the depth (/V),
we reduce the hidden dimension d keeping number of trans-
former parameters (Nd?) constant. When changing from
12-layer 1024-d model to 192-layer 256-d model, compute
negligibly increases by only 6.6% when keeping Nd? con-
stant (Table 23), while the number of parameters decreases
by 5 — 15% due to decreased embedding parameters.

Evaluation Metrics Pre-training Perplexity (exponential
of pre-training test-set loss) is often used to measure MLM
pre-training performance (RoBERTa (Liu et al., 2019b),
Megatron-LM (Shoeybi et al., 2019), Tay et al. (2023), or
similar variants in Salazar et al. (2020); Lu et al. (2023)),
and is well-correlated with downstream performance (Geip-
ing & Goldstein, 2023). We use the perplexity as reported
by Megatron-LM here. Calling this measure “perplexity”
is a slight abuse of notation (as previous words which are
masked are not available, and future words are). For down-
stream fine-tuning, we use accuracy while for Speech-to-
Text translation, we use BLEU score.

Pre-Training Improvements In Table 4, we provide the
results obtained on scaling model depth after applying
DSLM to Post-LN. Post-LN models often diverge while
scaling model depth. DSLM stabilizes the training of Post-
LN models, and even a 768 layer Post-LN model (with 2300
Linear and 768 attention layers) converges.

Table 4. Performance (perplexity) of BERT models with different
shapes. Deep-Thin models provide large improvements with fewer
parameters.

Model N/D  12/1024 48/512 192/256 768/128
(# Params) (185M) (168M) (160M) (156M)
Baseline 14.2 14.8 17.2 diverge
DSLM 15.5 13.1 129 18.4

Model N/D  24/1024 96/512  384/256 -

(# Params) (336M) (319M) (311M) -
Baseline 13.2 diverge diverge -
DSLM 14.0 11.7 12.3 -

Our method is comparable to the baseline for shallow mod-
els but starts to outperform as the model gets deeper. Our

192-layer model outperforms the vanilla 12-layer, and our
96 layer outperforms the vanilla 24-layer model. The 160M
192-layer model outperforms the vanilla 24-layer 336M
model with more than 2 x the params.

Reading Table 4 vertically, we can compare the performance
of our approach with the baseline as we vary the model
depth (V) while keeping the hidden dimension (d) constant.
The baseline models often diverge at larger depths. By
stabilizing the training, DSLM allows training larger models
with better performance, with consistent improvements at
larger depths.

Pre-training Improvements for Pre-LN We also applied
DSLM to the deep Pre-LN models, trained for 3.3B tokens.
Table 5 show that DSLM significantly improves the per-
formance of the Pre-LN model across a range of model
depths.

Table 5. DSLM with Pre-LN Models.

Model N/D  12/512  96/512 192/256 768/128
Baseline 29.4 20.6 19.8 26.9
DSLM 26.0 154 17.0 25.9

Sustained Improvements after Longer Pre-training
Due to compute limitations, our models were trained for
Chinchilla optimal steps. To ensure reproducibility of our
work (scripts provided in released code), and demonstrate
sustained improvements for standard models, we trained
the BERT-base model using public Wikipedia data for 64B
tokens (30zx chinchilla tokens). We train a 4x deeper, 10%
smaller model using DSLM (V/d = 48 / 384). We finetune
these models on the public RACE-M, RACE-H (Lai et al.,
2017), MNLI (Williams et al., 2018) and QQP ? datasets.
As shown in Table 6, our model provides better pretraining
performance which is translated into downstream Question-
Answering tasks’ performance across all datasets.

Table 6. BERT-base (trained for 64B tokens) pre-training and fine-
tuning results (mean accuracy across 5 runs with stderr).

Dataset Baseline DSLM
Pretraining Performance
Validation PPL 8.3 7.8
Finetuning Accuracy

MNLI 824 +0.1 83.7+0.1
QQP 90.8 £0.03 91.1 +0.05
RACE-Middle 71.1+02 74.0£0.3
RACE-High 63.7+0.1 65.7+02

2Quora Question Pairs dataset


https://github.com/NVIDIA/Megatron-LM/blob/443ce9f3f98fdc5a53c6b480c6e21b79944d198e/megatron/training.py#L975
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Downstream Low Rank Finetuning DSLM continues
to outperform the baseline on finetuning for downstream
tasks with Low Rank Adapters (Hu et al., 2022), as shown
in Table 7. Following QLoRA (Dettmers et al., 2023), we
apply LoRA on all linear modules, with » = 32, o = 16,
and searched for LR.

Table 7. Accuracy on MNLI after low rank finetuning using LoRA

Model Model Size Score (Accuracy)
Layers (N) Hidden Dim (d)

Baseline 12 768 82.2 £0.1

DSLM 48 384 829 +0.1

4.2 Improvements on Decoder-only Models (GPT)

We applied DSLM to the decoder-only GPT model, trained
for 8B tokens (slightly more than Chinchilla-optimal). Sim-
ilar to BERT, increasing model depth by 4z with DSLM
while keeping the parameters constant results in improved
performance (Table 8).

Table 8. Application of DSLM to Decoder-only model (GPT),
while increasing model depth to 4x (token-level PPL).

Model Model Size LM Perplexity
Layers (N) Dim(d) Params | Pre-LN Post-LN
Baseline 12 1024 204M 11.6 12.7
DSLM 12 1024 204M 11.5 11.5
DSLM 48 512 178M 11.2 11.7
Baseline 24 1024 355M 10.4 11.6
DSLM 24 1024 355M 10.2 10.5
DSLM 96 512 329M 10.1 10.6

4.3 Improvements on Speech (Encoder-Decoder)

We apply DSLM on encoder/decoder style transformer for
Speech-to-Text translation task. Applying our method to
speech additionally requires handling the input embeddings.
Instead of theoretical estimates as in the case of text inputs
(Appendix A.1), the moments for speech embedding were
replaced by the empirically observed values. This input
variance and correlation was observed as 2.2 and 0.29.

The baseline was trained on the MuST-C (Di Gangi et al.,
2019) dataset using fairseq (Ott et al., 2019). Using DSLM,
we successfully train 4x deeper models which outperforms
the 18-layer (12-encoder, 6-decoder layers) baseline with
9% less parameters as seen in Table 9.

4.4 Improvements on Vision Modality

Similar to speech domain, applying our method to vision
modality simply requires handling the input embedding (Ap-

Table 9. Application of DSLM to Speech-to-Text translation. Nenc
and Ny, refer to number of layers in the encoder and the decoder
respectively. For models marked with *, maximum source se-
quence length was limited to 1024 due to compute limitations, and
longer examples were discarded for both train and test.

Model Lang Model Size BLEU
Nenes Ngee Dim (d) Params
Baseline Pre-LN en—de 12,6 256 31.1M 24.9
DSLM Pre-LN en—de 48,24 128 28.4M 25.6
Baseline Post-LN  en—de 12,6 256 31.1M 21.9
DSLM Post-LN en—de 48,24 128 28.4M 23.8
Baseline Pre-LN* en — es 12,6 256 31.1M 21.61
DSLM Pre-LN* en — es 48,24 128 28.4M 23.03
Baseline Pre-LN* en — fr 12,6 256 31.1M 23.74
DSLM Pre-LN* en — fr 48,24 128 28.4M 26.30

pendix H). Using ImageNet-1k (Russakovsky et al., 2015)
data with ViT (Dosovitskiy et al., 2021) model, our method
can also constrain the growth of moments in Vision Trans-
formers, as we show in Figure 11.

We train our models on the Image Classification task us-
ing ViT baselines provided by Beyer et al. (2022), and
trained a 4x deeper model with same params. The deeper
DSLM model outperforms the baseline ViT both in both
90 and 300 epoch settings. The improvements also trans-
late to improved robustness on ImageNet-v2 (Recht et al.,
2019), ImageNet-R (Hendrycks et al., 2021) and ImageNet-
Sketch (Wang et al., 2019).

Table 10. Applying DSLM to Image classification using ViT.

Eval Set 90-epoch 300-epoch
Baseline DSLM | Baseline DSLM
ImageNet 76.5 77.2 79.8 80.3
ImageNet-Real 83.2 83.8 85.4 85.5
ImageNet-v2 63.7 65.2 67.9 68.3
ImageNet-R 239 244 27.8 28.3

ImageNet-Sketch 24.4 25.5 28.7 29.9

4.5 Comparison with Prior Methods

In Table 11, we compare DSLM with several prior meth-
ods for deep transformers. DSInit and DeepNet stabilize
the model training at the expense of reduced “‘sensitivity”
(Section 4.6) by using smaller effective values of 32, at
O(N~2) and O(N~15) respectively. Interestingly, 96-
layer model diverges with DSInit, despite DSInit using a
smaller 5 asymptotically — this is because the constants hid-
den in O(N ~2) are much larger for DSInit. Our method, by
analysing signal propagation, sets constants exactly at 1.
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Bamboo method is a vanilla Pre-LN transformer, which
our method out-performs. Skiplnit, ReZero, LayerScale and
Value-Skipinit all initialize 3 to zero/very small values — this
choice may slow down learning initially by reducing back-
propagated gradients, and a learnable 3 under-performs
compared to fixed (Table 13). Vanilla yP targets hyper-
parameter transfer from thinner to wider models, and also
diverges. Zero-initializing the output layers solves this di-
vergence, but under-performs similar to SkipInit. Noci et al.
(2022) initializes Query and Key matrices to a large value,
causing divergence (Section 3.3). ADMIN requires an ex-
tra profiling pass through the model, and more importantly,
cannot stop vanishing gradients (Appendix K.1), causing
the 192-Layer model to diverge.

Table 11. Comparison with prior methods for deep Transformers.

Method 192/256 96/512
DSlInit (Zhang et al., 2019a) 15.9 diverge
ADMIN (Liu et al., 2020a) diverge 252
SkipInit (De & Smith, 2020) 15.1 13.1
ReZero (Bachlechner et al., 2021) diverge diverge
LayerScale (Touvron et al., 2021b) 13.2 14.4
uP-Tensor Programs V (Yang et al., 2021)  diverge  diverge
DeepNorm (Wang et al., 2024) 14.4 13.4
Noci et al. (2022) diverge diverge
Bamboo (Xue et al., 2023) 17.1 diverge
Value-SkiplInit (He et al., 2023) 18.8 17.1
DeepScaleLLM (ours) 12.9 11.7

4.6 Analysis of DSLM

Model Quantization Similar to Unit Scaling (Blake et al.,
2023), conserving unit activations and gradients from our
method results in models which lose much less performance
when quantized (via direct casting) to FP8 precision com-
pared to original models. We apply 8-bit quantization to
the 48-Layer 512-dim BERT baseline model and the model
trained with DSLM. Table 12 provides the performance
corresponding to the full precision inference and FP8 infer-
ences (corresponding to two different FP8 standards, ESM2
and E4M3). DSLM model can be compressed to 25% of
the original size with significantly lower performance loss.

Table 12. Model performance on direct casting to FP8

Model FP32 ESM2 E4M3
Baseline 14.8 42.5(A277) 165(A1.7)
DSLM 13.1 214(A 83) 13.9(A0.8)

Ablation of Residual Scaling Table 13 provides the re-
sults corresponding to the different components of our pro-
posed DSLM scheme for training 96-layer 512-d model

Post-LN model. The model fails to converge without the
proposed residual scaling. 8 may also be set as learnable
(similar to BatchNorm (Ioffe & Szegedy, 2015)), after ini-
tializing it with 32 = %. We find that this does not signifi-
cantly impact performance, and 8 remains within [0.2 — 5] X
of its initialized values.

Table 13. Ablation of various DeepScaleLM components.

Model Perf
Vanilla Xavier (with or w/o 82 = 0.5)  diverge
DSLM-Init (with or w/o 82 = 0.5) diverge
DSLM-Init + 32 = 2 (learnable [3) 122
DSLM-Init + 82 = £ (fixed 3) 11.7

Ablation of Initialization Table 14 provides ablation re-
sults for our proposed initialization. All experiments in
Table 14 were conducted for the Pre-LN model with our
proposed scaling (A, 3), since the Post-LN model diverged
with Xavier initialization. Xavier initialization performs
significantly worse for very deep models, due to higher QK
initialization. BERT default initialization with o = 0.02
also performs worse. Finally, DSLM simpler initialization
performs comparably to DSLM.

Table 14. Ablation of the initializations.

Model Model Size (N/d) Perf
Xavier 192/256 (160M)  38.2
DSLM 192/256 (160M) 17.0
DSLM (simple) 192/256 (160M) 17.9
Fixed o = 0.02 96/512 (319M) 20.5
DSLM 96/512 (319M) 17.9

Compute Appendix I provides detailed theoretical and
wall-clock compute overheads for making models deeper.
We observe that up to 200 layers, the theoretical compute
is within 6 — 7% and wall-clock times is within 15% of the
original shallow model. While our 192-layer 256-d model
requires 6% extra compute than the 12-layer 1024-d model,
it manages to outperform the 24-layer 1024-d model, that
has 62.5% more parameters, at equal wall-clock time and at
equal number of tokens.

Discussion of Relative Strength In general, for a 5 of the
form 62 = %, we can choose from a wide range of values
for the constant k£ and exponent .. There is an expressivity-
trainability trade-off in training deep networks (Yang &
Schoenholz, 2017) — having lower /3 (smaller % or higher
«) will result in networks where observed issues (forward
growth or gradient explosion/vanishing) are mitigated, but

they may converge slowly/sub-optimally.
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Davis et al. (2021) defines “sensitivity” as the variance of
relative change in output for small perturbations in parame-
ters, averaged across all parameters. If Jfkip = 1, sensitivity
can be shown to be mean across layers of N * (1/0 ) =
N % 32. Mean is not robust to outliers, and hence we suggest
median may provide a more robust measure. For e.g., for
vanilla pre-LN, Davis et al. (2021)’s definition gives sensi-
tivity as O(log(NN)), whereas using median provides a more
robust measure as O(1). But only the first N/10 layers have
O(log(N)) sensitivity, and the last 9N /10 layers have O(1)

sensitivity. We will use median in the discussion below.

In Appendix G, we show that the fall in gradient for both
pre-LN and post-LN for 82 = k/N® is O(¢*N' ™). The
sensitivity is hence kN 1= For DSLM, we chose a = 1,
that is the sweet spot on the stability-expressivity curve
where both the gradient fall bound and sensitivity expres-
sions become independent of model depth. For higher val-
ues of « such as o = 2 (DS-Init) and, o = 1.5 (DeepNet),
the gradient becomes stable using but the model expressivity
reduces with depth, as shown in Table 3. Such models might
not be able to extract better results when going deeper, as
we indeed verify empirically in the comparison with prior
works paragraph in Section 4.5.

5 Related Works

For detailed discussion of prior works, refer to Appendix K.

Initialization Several works (Glorot & Bengio, 2010; He
et al., 2015; Brock et al., 2021a; Poole et al., 2016; Schoen-
holz et al., 2017) improved the initialization of ResNet-
s/ReLLU networks. These works do not consider transform-
ers, and are unable to handle Softmax/Attention. Others,
such as ADMIN (Liu et al., 2020a), Mishkin & Matas
(2016); Liu et al. (2020b) achieve unit variance for faster
convergence by scaling the weights and/or outputs based on
empirical profiling of a forward pass. Blake et al. (2023)
also tries to achieve this, but does not completely handle
correlation and non-zero mean of ReL.U. We demonstrate
that this profiling is unnecessary, and can instead be done
theoretically in our work.

Signal Propagation Signal propagation in Neural Net-
works (Neal, 1995; LeCun et al., 1996) has a long history,
such as for ResNets (He et al., 2015; De & Smith, 2020;
Brock et al., 2021a; Schoenholz et al., 2017; Hoedt et al.,
2022; Labatie et al., 2021; Marion et al., 2022; Klambauer
et al., 2017; Balduzzi et al., 2017), and for transformers
in (Xu et al., 2019; Dong et al., 2021; Davis et al., 2021;
Noci et al., 2022; Martens et al., 2021; He et al., 2023; Shi
et al., 2022; Wang et al., 2022). Our work considers previ-
ously often neglected effects of dropout, input correlation,
activation non-linearity, and QK initialization, providing

closed forms with verifiable correctness of signal propaga-
tion. This allows us to constrain the output and gradient to
almost exactly unit variance.

Moment Control & Residual Scaling Bounded gradi-
ents have been shown to results in better/faster conver-
gence (Shen et al., 2020; Yu et al., 2017; You et al., 2017;
2020; Takase et al., 2022; Shleifer et al., 2021; Hayou et al.,
2019). Different scaling schemes for residual networks (A
for skip connections and /3 for residual output) have been ex-
plored by prior works, such as A2+ /3% = 1 for ResNets (Bal-
duzzi et al., 2017; Szegedy et al., 2017; Hanin & Rolnick,
2018; Arpit et al., 2019; Zhang et al., 2019b; Hoedt et al.,
2022). Learnable 8 ~ 0 was used in SkipInit (De & Smith,
2020), ReZero (Bachlechner et al., 2021), LayerScale (Tou-
vron et al., 2021b), Value-SkipInit (He et al., 2023). Others
proposed 32 :O(%), where N is max/current layer was
used in Arpit et al. (2019); Brock et al. (2021a); Marion
et al. (2022); Zhang et al. (2022b); He et al. (2023); Noci
et al. (2022); De & Smith (2020); Liu et al. (2020a;b); Davis
et al. (2021); Blake et al. (2023), while DSInit (Zhang et al.,
2019a), T-Fixup (Huang et al., 2020a), DeepNorm (Wang
et al., 2024) used 32 <O(%). However, the optimal initial-
ization/scaling can vary based on data/model characteris-
tics (Zhang et al., 2022b; Marion et al., 2022). Our contri-
bution goes beyond providing an optimal scaling scheme —
our theory enables informed choices about these initializa-
tion/scaling schemes based on their expressivity-trainability
trade-off. Some works such as DeepNet, ADMIN show
performance improvements by making the model deeper,
but much larger. In this work, we explore a stricter setting
of keeping transformer parameters and compute constant
while making the model deeper.

Other Network modifications for Deep Networks Ar-
chitectural modifications such as Zhai et al. (2023); Zhou
et al. (2021); Shleifer et al. (2021) can only stabilize the
model later during training and not at initialization. They
are orthogonal to our approach, and our equations can be
easily extended to cover these.

6 Conclusion

We theoretically derive closed forms for the growth of vari-
ances for forward and backward pass through individual
transformer components as well as the entire transformer
model. These formulae enable us to identify and solve the
key reasons for vanishing/exploding gradients and rank col-
lapse in very deep transformers. Via scaling and correct
initialization, we also enable training very deep transform-
ers with 1000 layers. Our experiments suggest that deeper
transformers should be explored — using our method, mod-
els with 100s of layers outperform larger standard models
across multiple modalities, tasks, and transformer variants.
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A Moment Propagation through Transformer Components

We provide detailed proofs of the closed-form expression for each of the transformer component — Linear layer, Dropout,
ReLU, GeLU, LayerNorm, and Softmax.

For any component, input is represented as X;j, and X, is the output. The gradient flowing in into the component from the
output side is represented as go,; and the backpropagated gradient towards the input is g;,. We switch from vector to matrix
notation (Xj,, Xow) Whenever needed. We assume that the input is distributed normally N (0, 0., ). No assumptions are
made regarding the covariance of the input — it is not assumed to be IID, and it may/may-not have covariance both along the
sequence length and hidden dimension. Additional assumptions needed to derive the proofs for softmax and attention can be
found in the respective proofs. A detailed list of terms/notations used in the proofs is provided at the end of this work in
Appendix O.
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A.1 Embeddings

The BERT model’s embedding component consists of 3 look up tables - token embeddings, position embeddings, and
segment embeddings. For a given input token, each of these 3 embeddings are added before being passed to the transformer
model. Other transformer models, such as decoder-only GPT lack some (eg. segment) of these, but the derivations remain
similar. In the general case, these theoretical derivations can be replaced by the empirically observed moments of the inputs
fed to the transformer model (as we did for Speech-to-Text translation). We derive formulae for each of these embedding
types below.

Token Embeddings We do not assume the input embeddings to be IID. Repetition of same token introduces correlation
across the sequence length. We assume that the input tokens have been sampled from a multinomial distribution. The words
/ token ids are distributed almost according to Zipf’s law (Kingsley, 1935). Assuming we initialize all the embeddings with

variance a?um .- the relevant statistics for word embeddings output oy, are as follows

l’l’ml)ulwe =
2 _ 2
Touty e Wembd
N; % (N; — 1)
l o 7 % 2
Cov' (Tout,,. ) = Z m * 0 wemna
N; % (N; — 1)
l _ 7 T
r (l‘OUlwe) - I % (L o 1)
Covd(aroutwe) =0
Nix(N;—1)

Assume ith word occurs IV; times, it contributes — =) t©° the covariance along sequence length. Similarly, we can
calculate the correlation for segment-type embeddings output oy, . Zipf’s law states that the probability for each token is
inversely proportional to its rank. For the word with rank ¢, p; = ¢, where ¢ = where v /2 0.58 is the

1 1
ST T ytlog(IVI)?
Euler’s constant.

For a sentence of length L, the token with probability p; is expected to occur p;.L times. Hence, for a given vocabulary size
|V'|, we can calculate the correlation as follows

N; % (N; — 1)
1 . % i
r (xollt“,ﬂ) - L * (L _ 1)

L2 -1
~ 6-0+log(IV])?
L—-1

7T.2

~ log([V])2

assuming v ~ 0.58 << log(|V|) = 104, L >> 1

Segment Type Embeddings Similarly, the segment type embeddings have two possible values denoting the sentence
order. If first sentence has length z, we can consider this as a special case of the analysis performed above with two possible
tokens, where N1 = z and Ny = L — 2. Assuming z is distributed uniformly between 0 to L, L — x also has the same
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distribution. Hence,

N2+ N2 - L
l _ 2
r(xoutseaNhNQ)— L*(L—]_)
Taking expectation, we get
2,72
. _5xL"—L
@) = T
~ 2
i

Position Embeddings Since learnt position embeddings are lookup tables with unique inputs, the correlation from position
embeddings is 0.

Final Model Input Embeddings Each of the above embeddings are added before being passed to the transformer model.
Since the variance is same for all embedding types, the final correlation is the average of the three. Hence:

1

g(rl(momw) + Tl(xOUtse))
w2
18k log([V])2 9

TZ (xout) -

For our case, |V| = 32000 and sequence length L = 256, the theoretically predicted correlation T;lc,m = 0.227 which is
within 3% of the empirically observed correlation (0.221).

Hence, the final moments for the embedding output are

/’(‘woul = 0
O'g(ml = 3 * 0-12Ucmhd
2
s 2
Covl =(———— + )52
Ve = (55 Togqv T 9%
Covl =0

A.2 Linear

For linear layer with d;,, dimensional input x;,, and d,.; dimensional output x,,, we can define the forward pass mathemat-
ically as,

Xout = Xin W

din
= Zouy; = § xiniWi,j
=1

Similarly, we define the backward pass as,

T
8in = goulW
dﬂu[
= Gin; = Zgoutin,i
=1
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For expectation of output we have,

di“ din
Eltou;] = E[Y | @in, Wig) = D Elin, Wi
i=1 i=1
din

= Bz JE[Wi ;] = fra, thu
=1

(As weights and input are independent of each other)

(v

To get variance of the output of forward pass we have,

din
Var(zouw,) = Var(z Tin; Wi ;)
i=1
As the weights are initialized independently each term in summation is independent of each other

= (Var(zin, Wi 5))

= (02 +p2 )02+ pd) — p2 p2)

(As weights and input are independent of each other)

o2 i) (¥))
2

If we have two inputs x;, and y;, such that for all i we have Corr(zip,, Yin;) = riin, and Xy = Xin W and you = yin W.
Then for any j we have

]E[xoutj youlj] - ]E[xoutj]E[youtj]
v/ Var(zouw, ) Var (You, )

COI"I‘(J}Ou[j » Yout ) =

_ ]E[xoutj youtj]
B 2 2

Zout ~ Lout

din din
_ B @in Wi 3™ Ying W1

%oul

d; din d;

B E[Ziil Lin; Yin; W22] + Zk:l,k;ﬁi Zz‘il Lin; Yiny, Wi,jWk,j]

2

Lout

In second summation all terms are independent of each other and as the expectation of weights is 0 we have

din
]E[Z’Lzl ZLin; Yin; ng]
COI"I‘(J}OU[J. 5 youtj) = )
Zout
din 2
= 2z B ]21” Yim W35 (Independence of weight initialization)

B S E[@in, yin, JE[W?]
= 2

Zout
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din (1 2 2 2
Sry on +uL)o . .
= 2217, o M) T (Definition of correlation)

Zout
R l 2 2 2
o dm (rl‘in Ux;n + /J“xi" )Uw
. 2 2 2
dm (O-l‘in + N’xm)gw

l 2 2
T @ +'u$in

Tin ¥ T
COI‘I‘(.Z’Omj 5 youtj) = m2 - B}
Uwin + ’U/JUin
l 2 2
Tl _ "1 T + Mz,
Tou 0—2 + 2
T T M,

As the backward pass has similar structure, assuming fi4,, = 0 we can use the same analysis to get,

/’[/gin =0
2 _ 2 2
Ugin - douto-gouto—w

A.3 Dropout
We can define Dropout mathematically as,
Xout = Dropout(x;,)
{ i with probability 1 — p

(1-p)

= Tou; =
0 else

To calculate expectation of dropout,

xil’li

E[zou,] :0*p+(1—p)*E[(17p)]

For variance,

Var(zouw,;) = E[x(z)uti] - E[xOUti]Q

= 0p (1 p) » Bl ] — g

Elz3]
(i-p

0,2 — o-gin +pM926in
o (-p)

r;in, and X, = Dropout(x;,) and

If we have two inputs x;, and y;, such that for all i we have Corr(ziy,, Yin,) =
You = Dropout(yi,). Then for any j we have

E[xou[j youlj} - ]E[xoutj]E[youtj]

Corr(Tou; , Youy;) = /Vat (Zou TV (ou)
_ ]E[xoutj youlj} - Hmom,ufacou[
CENCEN
P04+ 25 px (1—p) x 0+ (1 —p)? % B[y o] — 12,

2

Lout
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]E[xinj yinj] - /”’?vou[
2

Lout

(T:ltino-:%i")(l - p) l
Corr(xoutjayoutj) = W = o

We can define the backward pass of Dropout as,

(1-p)

{ i - if 2; isn’t dropped out (which has probability (1 — p))
gin% =
0 else

Again we can see that backward has similar definition to that of forward pass. Assuming p,, ~= 0 and using similar
analysis we get,

/’Lgin = 0
2
2 _ %9
o (1-p)

A4 ReLU
Formuale functionally equivalent to ours for i, 02, and 03 have also been derived in Arpit et al. (2016).

We can define ReLU mathematically as,

Xout = ReLU(xi,)

Tin; if Tin;, > 0
Tout, = 0 else

For getting expectation of output of ReL.U for normally distributed input we have,

oo ReLU(zi,) exp (55z+)
E[Zou, ] /

Tin d-rinl
—oo V2moy,,
2 2
~Tin, ~Tin,
0 0%exp(g5zt) % Tin; XP (552+)
— in dxini + in dx]rh

—o V2710,
2

00 Tin, XP (%)

= ———"dxyy,
0 V2o, i
. . 12“ .Z‘invddfin,
Substituting ¢ = ~—~ we have dt = ——5— we get,
Zin O—Im
E[2ow,] = > Oy, exp (—t)dt
ut; | —
© 0 vV 27’1’
Ozin

= T [ exp (—))F =

V2r

Hence, the mean of output

e 1
Hozgy \/ﬂ M

Variance of output can be calculated by,

Var(xouli) = E[woutf} - E[mouti]Q

27



Transformers Get Stable: An End-to-End Signal Propagation Theory for Language Models

_z2
/oo (ReLU(xin,))? exp (553

\/ﬂam Fine 23;
0 0% exp (gomt) oo 22, exp ( ;:2‘2"1' ) 2
= g, + — gy, —
— V270y, ' 0 V2o, * o 2m
oo xF exp ( ;f; ) o2
0 T%dlmi o
oo x5 exp ( :j“ )
Let] = A N ——————"—dxjy,, then substituting ¢ = —x;,, we have,
—o0 —t2exp(2 3 )
I= ; Varon ———n
0 t?exp( G: )
. \/%UL“,IH dt
0o t? exp(%%2 ) 0o $12n eXp(zagi)
= I+1= o \/ﬂ%mm dt + i T e g,
o0 x? eXp(iw?“') )
21 = o Voron ————"—dxin, = 0,
2 2 2
= Var(zow,) = % - % = %(1 - %)
2
I

Now for two inputs x;, and yi, such that for all ¢ we have Corr(Xin,, Vin,) =
ReLU(yin). Then for any j we have,

IE[Ioutj youtj] - E[l‘outj]E[youlj}
v/ Var(zou, ) Var (You, )

Corr(xoutj ) youtj) =

—(zh, + i, —

ri and X, = ReLU(x,) and you =

l
2r T 1 Lin yinj)

202, (1= (r5,)%)

‘TIH] ym]
AZin, AYin.
wlwa) = [ [ Y I T AR A R
e} [e’e) 1 2
Tin Yin, — (i, — T inyn.)
= / / j 10 eXp( 2021 21 — lgrl 1)12) ) exp ( % B )d.rm] dme
0 0 27T0'%i“ 1 — (lem) Tin Tin xm
Substituting ¢t = Tin; — rim Yin, » and assuming Yin; is constant for the inner integral,dxinj =dt
E[xoutj youtj] =
v
L) e ey,
0 V2moy,, =Tk Yin; V2mog, /1 — ('ré )2 20526|n(1 - ( x.n) ) "
00 _ 02 oo 2
Yin; me / t —1
= exp ( ) Ydtdyin,
0 V 27'('0':1;1“ 2 Z%m _Tfpinyinj V 27‘—0—&2“1 ]. - (rl ) v

Tin
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o —q2 00 l 2

yinj yinj T yinj —1
+ exp ( ) in exp ( )dtdyin,
0o V2moy 20'92% —rl. Yin, /27703% 1— (chm)Q 20'%“(1 - (rém)Q) in;

Let us first define I and I5 as:

e [T YTl I ! it
1= exp exp Yin.
0o V2mog, 20326;n =7k, Yin; V2mo, /1 — (rfn )2 2032:in(1 - (TQ;H)Q) mJ
oo _ 22 oo 1 2
Yin, Yin; Ty Yin; —t
I, = ! — exp (=2 / — exp ( )dtdyin,
0 V2moy 20—%“ —T‘lwinyinj \/27T(jrin 1— (rlr )2 20926.n(1 - (rlzin)z) "
o 2 oo 2
Yin; Yin, t —t
I = — exp ( 2 )/ exp ( )dtdyin,
0 \% 2770'13“‘ 2032?i|| _Téi“yiuj AV, 27T0'wi" 1 — (’I"lw )2 20—%",(1 - (Tét;“)z) "
I t2 tdt
Substltutlng p= m we haVe dp = m
Zin Zin Zin Zin
I i, eXp(iy&j ) B 7o~ 05)") exp (—p)dpdy,
1= oy )2 - in;
o Vamos, R e Vo
_(pl )2
_ o yinj eXp ( _y12nJ O-xin (1 (rwin) ) eXp ( _(T‘éin yinj )2 )dy
o V2moy, 202, Ver 202 (1—(rL, )37
o img (L= (1L, )2) =
| o P oz = (7))
2
. . Yin, Yin; dyin,-
Substitutingm = ———2———, dmn = ——2—"7F——,
2 %02 (1= (L)) oZ (1—(rL,))
ooy
h= [ e )k e (m)dm
0 iy
(1- ()02,
o 2
I U, (_yﬁ” ) / " Teolin ( s )dtd
5 = exp exp Yin.
0 V2mog, 20’%1“ —rl Y, /QTI'U;ci., 1— (T;lc )2 20%“‘(1 — (T:lvm)Q) in;
o Tl Y, N 1 —¢2
= o exp ( 2) / exp ( )dtdyin,
0 V27O, 207, b Yng V2mog /1 — (rL )2 202, (1= (r},)?) "
Substituting p = —t, where ® is CDF of Standard Normal Distribution
o 7l yk Y, [T —1 —p?
I = = exp (5—5>) / exp ( )dpdyin,
0o V2moy, 20925in T Yinj V2mo, /1 — ('r’gllc )2 20920in(1 - (Tgcm)Q) "
Tl Y, —Yp, [Tt 1 —p?
= = exp ( ) / exp ( Ydpdyin .
0o V2mo., 202 7 ] V2ros\J1— (L )2 202 (1—(rl )?) in;
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e réc y12n7 _y12n ! Yin
in I ex J (I) Zin g d
0 V2TOy, p(Qng) (Urin 1—(r} )2) "
T in, ~Yin, 1 L Yin,
0 exp (o) [ (1 + exf(———2e )y,
0 VImow, 20,02 Oan/2(1 = (11,)?)
l %) 2 a2
T in; yin7
= —= ex L) dyin. +
2 Jo V2ro.. p(5 z ) lyin,
l oo _ 22
rﬂlin / 2 yi“j Tin me
— v exp ( Jerf( )dy
2270, Jo T 202 T /201 — (1L )2) "
Let us define I5 ; and I 5 as
l oo 2 2
Tz Yin, Yin,
Iy = =& I ex L) dy;
T2 )y Vomon, p(3 gm) Yin;
l oo 22
. Yin,; T, Yin
12’2 _ ZTin / y2 . exp( 5 )erf( Tin j )dy
2v 27T0Iin 0 " QU%m Oy 2(1 - (Tlxin)z) "
l e 2 2
r. Yin Yin,
I, = 2o J L) dyin.
2,1 2 J, \/%Uzm exp ( 2033“ ) Yin;
I 52
Iy = % (Same integral as in variance calculation)
VT tanl(2) N a
463 2/mb? 2/7bh2 (a2 + b?)’

From Ng & Geller (1969) we have / 22 exp (—b*2?)erf(ax)dx =
0

l
T 1
Hence, putting a = and b = we get,
21—, w2

1—(rk )2
W ayaes  tanT (SRVael Vi od - (L )?)
I — Lin Lin Zin +
2,2 2\/271'0'%" [ 4 2ﬁ ﬁ }
L o2 L ocos™1 (rl )o? (re,) /(L= (rh,)?)o2

T2 T Tin 4
2w

4 2
E[Zout; Your;] = 11 + 21 + T2

(1 — (lriin Zin + 2 % in ffin _ T-’iin COS?l ( Zin/ ~ Tin +
2w 4 2w 2
2
_ r;in 926 B i cos™! (rii“)ag N (L= (rk,) )U?g;“
2 2w 2w
E|zou, | — Elxou, |E .
COI‘I‘(Z‘Omj ’ youtj ) _ [ out; youl]} [ out]] [youtj]
v/ Var(zouw, ) Var (You, )
lxin a27in _ bein COS_l ( fbin) gin _|_ (1 B (réin)2)0i — L:%m
2 2

P2 gl L2 (k)2 = ()02,

2T
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mrl .-
Do ok sin (K )+ /(1 - (rL,)?) — 1

Twom T — 1

Backward pass on ReLU can be defined as,
Gout, if @i, > 0 (wWhich has probability 1)
Gin; =
0 else
Assuming fiq4,, = 0,

1 1
E[gini] = 5 * 0+ 5 * E[gouti]

1 1
S*¥0+ 5% E[ggul]

2 2
2

0_2 _ Ugou[

gn 9

If for two inputs x;, and y;, for all ¢ we have Corr( Gout,., » Jout,, )= réom, and gip, , Gin,,, be the gradient after passing through

ReLU layer. Then we have,
E[ginmiginy } = IP>(xini > Oa Yin; > O)E[goutmi goutyi]

]P)(xln, > 0 ym7 > 0) gamggom

P( xlm >0 yml >0) =
l

Lin; Yin; _(xiQni + y12nl - 2Tzin$iniyini)
eXp( 2 2 1 1 2 )dxdeymL
2mo2 1 - (rém) oz, (1—(rk.)?)
Vi

l 2
Lin; Yin; (xinz — Ty yinq‘,)
— exp ( - ) exp ( )din, dYin,
/ / mez (rz )2 202 (1= (rk,)?) 202 TR

-Lm

Substituting { = iy, — rlz Yin, » and assuming y;,, is constant for the inner integral,dzi,, = dt

P(xin;, > 0,4, > 0) =
2

1 —Yin, / o 1
exp ( ) exp ( )dtdyin,
/U Vv 27‘-0"inn 20‘%"1 *Tﬁcmyini vV 27T'0'wm 1-— (le )2 20‘%1:1(1 - (Téin)Q) "

Substituting p = —t, where ® is CDF of Standard Normal Distribution

P(in, > 0, yin, > 0) =
2

[T e [ e (g L),
27TUzm 205, Thotng 2moy, (/1 — (1L )2 20 wm(l - (Tmm) )
. Yin 2
Yin 1 —p
5) / exp ( )dpdyin,
203, s mogJ1— (L 2 208, (1= ()7

(

° 1
= exp
/0 V2o,
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l
_yini Txi“ yini
xXp (55 )% )dyin;

/ 271-0-11" gi“ Oy 1- (rClE )

° 1 73;’1?1 1 Ti- Yin,
= exp (5 )5 (1 +erf( L )] dyin,
o v Ta20 - (1))
/ (_ylnL )d ]- /OO ( y]%ll ) f( lemyini )d
= €Xp Yin; + €xp €r Yin,
v T0g, 2v2n0y, Jo 203, ou 201 — (L )2)
in ‘Tm
=-+-—F—— [ exp er Yin:
17 2o, RN TN
e 1 b
From Ng & Geller (1969) we have/0 exp (—b*z?)erf(ax)dr = g NG tan~ 1(5)
. rfc, 1
Putting a = L and b = —— we get,
Oray/2(1 = (11,)2) 00, V/2
1 1 V2 o2 (1= (rf,)%)
P(l‘ini > O7yini > O) — _|_ \/7?0.3?|n\/7 _ O'xmf tanfl( . )]
4 2y 2mog, 2 ﬁ T i
1 1 7 _
1 %[5 —cos™! (Tim)]
1 sin~'(rk
1 sl L)
4 27
1 osin™' (b)),
— E[gmhgmyl} = (Z + o ) goma-gum
(l + sin”’ (T;in)) l 0.2
4 27 YGout ~ Gout

Corr(ginwi ) ginyi ) -

1
l l
rQ(yut = (5 + )rgom

A5 GeLU
Forward pass through GeLU is defined as,

Xout = GeLU(Xin)
= Touy; = xiﬂi(p(xiﬂi)

where ®(z) is CDF of Standard Normal Distribution at =

Lin; Lin,
— i 1+e f i
2 ( ' (ﬂ)>

To get the mean of output of GeLU, we have

oo Lout; _‘Tini
]E[(Eomi] = /;)o \/%O'I exp ( 20_.%" )dxini

/wzmu+aﬂ@» ok
= ex -
oo 2V 2mo,, P 202
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0 Tip, erf( f;% ) 71-12117 )dm
2 m;

o) 2
Lin, in;
= —— ex L) dTin, —|—/ ex
/_oo 2V/2moy, P 202 Jdzin, —oo 2V2moy, p( 203
o iy erf(Zhi) —2
n; V2 in;
= ex VdTin,
/_oo 2V2mo,, p( 202, Jdin
2

(Integral of odd function)

1 > Tin, T
- Tin, erf(22) ex ) Az
2210, /m () p(zagm) ;

° a
From 2.6.1.4 of Korotkov & Korotkov (2020), zerf(az) exp (—a123)dz = ————
@00, [ serlaz)exp (an2)ie = e

1 1
Substituting, a = ﬁ’al = 292 we have

Zin
1
1 V2
E[zow;] =
i V/ 1 1 1
2V 2moy, %7 /5 + %7
_ 1 20;“
© 2V270,, /o2 +1
3in

Haon = m

Lin

For calculating variance of output,

2 —z

oo
2 t;
Blad) = [ 22 exn ()
—00 ZTin Zin

o afy (1+erf(%))? —22
= exp( 2 - )dxini
o 4210y, 203,
| e
= i ex < €T
—oo 4V 2wy, P 202 M
fcini) l21erf2(@) —a22
V2" exp (5 ) dan,

oo 22 erf( —z2 o
in; V2 Lin, / in
+ ex dzin, + ex

| e i [ e
ZLin;
)

2 o 22 erf?( —2
- / n v € p( > )dxinf,

— _Zin X
4 —0oo 4 v 2//To-min 2()-%in
2 [eS) 2
(o= 1 / 2 2/ Lin; ~ZLin,
= =+ — i erf - ) ex L) dx; B
4 A2roy, Joo ™ ( \/i) P 202 Jdin,

From 2.7.3.3 of Korotkov & Korotkov (2020)

oo
/ 22 exp (—az?)erf(a; 2)erf(azz) =
— 00
1 ( 1 fan~1 ( ayas )+ ajasz(2a + a? + a3)
Va2 + ad? + aa3 av/a+ a? + a3(a? + aa? + aa} + a3a3)

Vi ava

Substituting a = #, ai = as
Tin
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1 1 3(z+1)
= Vol ™ () )
g 402 + 202, 202 202 + 1(4U§_ + 202 + Z)
1 o2 4\/20° (02 +1
= —(2V203 tan™!( i )+ V295, (0%, +1)
™ in \/(Ugi" +1)2 —ol 202 + 1(ok +202 +1)
1 o2 44205
= — (2203 sin7! () + V272, )
™ n o2 +1 V202 +1(02 +1)
2ﬂ02in ( a1 ( 0'92% ) + 20—92% ))
= sin
N 2 +1 V203 +1(02 +1)
E 2 —_ T 2 f2 n; n; d -
[xouti] 4 + 4m0$m [m xmier ( \/§ ) eXp ( 20_%“ ) €T i
a-gin + 1 Qﬁo—gm( so—1 ( a-gin ) 4 20%“ ))
= sin
4 4270, T 02 +1 202 +1(02 +1)
o2 o2 o2 202
E 2 _ i “Tin (14— 1 Tin Tin
i) = T2+ G () )
Var(zou,) = ]E[xcz)uti] - (E[mOUti})Q
o2 o2 o2 202
o_g — Tin (E _ Tin + Sin—l( Tin ) + Lin )
out 2r "2 1402 1+o2 (1+02 )/1+202

Now if we have two inputs x;, and y;, such that for all values of ¢, we have Corr(xiy,, Yin,) = rém, then we can calculate
the covariance Cov(Zou; , Your, ) for any j as,

Cov(xoutj ) youtj) = E[xoutj youtj] - E[Ioutj]E[youtj]

E [SCnutj Yout; ]
2 l 2
= Lout; Yout; —Tin, + 27, Tin; Yiny — Yin,
= // 19 t exp( 5 — ; )dl’inj dyinj -7
—o0 2102 /(1 — (rL )2) 202 (1—(rl )?)
xin;’ yinj
//OO iy (L et Dy (¥ el O )) (T 2o ins b, — Vi
- exp 1 Lin; yinj
—oo 802 /(1 — (1L )2) 202 (1—(rL )?) i
Yin ;
oo yinj(l—&—erf(\/%)) _yi2nj
= eXp( 2 1 2 )IXdyinj
-0 8mo2 /(1 — (rk )?) 203, (1= (r,)%)

o Tin, —a:?nj + 2rL Tin, Yin,
Where Ix :/ xinj(1+erf(ﬁ))exp( 202 (1— (rL )2) )dxin,

- Lin Tin

oo Tin, —x?nj + 2rL Tin, Yin,
Ix :/ xinj(l—&—erf(\/i))exp( 502 (1= (1L )2) )dxin,

— 00
g —x?nv + 27“;,, Tin; Yin,
= Tin, €X 2 = dxin. +
[ e

0 2 T
ZLin; —T, 21, ZLin; Yin;
e f J e J in d .
[ et G e ot =y e
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o0 —22 + 27 - Tin; Yin;
Let, Ix1 = / Tin, exp ( 2:2] a :D(Tl ])2) = )dain,
Tin

— 00

S 2 U

Lin.: —Tin, + 2rzm Tin; Yin;

Ixo= in, erf z dTin.

va= [ et e o iy
o0 —x?nj + 2r

Ix, :/ Tin; exp ( 202 (1—

— 00 Im

(L))

/OO (—xinj + 27‘zin$inj yinj ) ( _(T:lrm)2yi2nj ) ( ( l‘m) yln] )d

Tin. €X ex ex i
P02 (= (i )2) TP 202 (1= (i )2)) TP 202 (1= (L )2) ™

(rt. )y o —(@in, — T yin. )2
_ exp( T in; )/ Tin, exp( ( in; xmlym]> )dxinj

— 0o

2 -%m(1 - ( ‘Lm)2) —0o0 2 ‘%m( - (T-'L'in)z)
_ /°° Tin, exp(—(xinj - TMZUinJ-)Q)dm
=0 27, /(1 — (rL )?) 20:%;;.(1 - (Téin)Q) "
( 93,“) lel]

= 1, Yin, V210, /(1 = (1}, )2) exp ( )

QO—min(]‘ - (réi“)z)
2 1

I _ > f _zma +2T£Cm i“jyi"j d
X,2 — B xmjer (\/ﬁ)exp( 2 2 ( (Tl )2) ) -Tinj

From 2.7.2.4 of Korotkov & Korotkov (2020),

/ zerf(ay2) exp (—az? + bz)dz =

b2 a a 2
= T e (L er b L

erf + exp
QCL\f (2\/a2+aa%) a /a—i—a% 4a+4a%
Substituting a; = %, =T 1( T )2),1) = oz (f‘"?rf ok we get
ri Yin; (T‘i’in) yi"j mym
ﬁai.n(li(ri.n)z) oz, (1=(rh, )?)? V202, (1—(r%, )?)
IX,Z — 2 i i i eXp (4 in i i )erf( - i i - )
2v203 (1—(rl )2)3 207, (1=(r%, )?) 2\/404 1—(rL_)7)2 + 102 (1—(rL )?)
L (r) i,
V2 oz, (1=(rk VR
+ 1 1 1 exp(47 é)
T (T Y B, T2 207, (=7 2
ym m
=am@mmw%mmg(ﬁ’ Jer Lrutin )
(1= \/2 (A=) +1)
20‘1"‘(1 - (ré;n)g)% ( acm) yan
exp ( )

T 1 AR, T G, + o3, (L,

Let us define Ix o1 and Ix o o as:

(r a:m> yl r$ Yi
Ixo1 = r;lcmyinj \/%Uxin (1- (T;lcm) ) exp (202 = nJ \/ in mJl > ))
Tin 2 1 — Twm +1
20m,n(1 B (le;“)z)% ( :cm) ym7

)

free NG x,,,(1—<rém)2)+1e 2(02, (1= (rL,)?) + D)oz, (1 = (rL,)?)
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Yin;
ooy (1 +erf(=2)) —y2
I:/ V2 exp(2 2 (J 7 )2))deymj
o gmo2, 1 (rL,)7) 2081 (%
Yin
Y, (1 +erf(—2)) v
:/ : 2 e P(2 2 (1 = 2 YUx 1+ Ix21 + Ix22)dyin,
—00 8102 /(1 — (1L )?) 0, (1= (r},)?)
g, (1 + erf(2)) —12
Il = € p(2 2 (1 7 \2 )IX,ldme
—o0 8o /(1 — (1L )?) 2. (1= (r,)?)
Yin
Y, (1 +erf(—2)) Y.
12:/ : - Xp(z 2 (1 mJl a3y M x.2,10Yin,
—oo 8702 /(1 — (1L )2) 2, (1= (r3,)%)
< yin, (14 exf(22)) —12
I3 = P(2 7] o) [x.2,2dYin,
—0 8102 /(1 — (1L )?) 05 (L= (r2,)%)
Wehave [ =1, + 1o + I3
Yin
0y, (1t erf(%2)) R
I = exXp (20_2 (1 — (Tl )2))Tzinyinj
—o0 8mo2 /(1 —(rl )?) Tin Tin
— (2, *Vin,
27T0—fl‘in (1 - (Tiin)z) exp (m)dym7
rl /Oo y2, (1 +erf(L)) (—y?nj @
=—= ex i,
4 e /7271_0_%"‘ p 20_£in me
s 2 2 L poo y2 erf(2) 2
T, ymj ymj Ty ymj er V2 Yin,
— % dui in I da
4 ~/—oo /7271_0%. exXp ( 20-32:“, ) ylny + 4 e /7271_0_% exp ( 20-32:in ) yan
T‘l 0'2
= % (Definition of variance, and integral of odd function)
Yin
0y, (1t erf(%2)) R
I, = €xXp (20_2 (1 — (Tl )2))Tzinyinj
—oo 8mo2 /(1 —(rl )?) Tin Tin
(Tim )Qyi%]] r;m Yin,

V2105, /(1= (1}, )?) exp (

) dyin j

205, (1= (e )0 fa(o2, (1= (11, )2) + 1)

l oS 2 1
T 2 Yin; —Yin. T2 Yin,
=0 S (L+erf(—=%)) ex ~erf -2 dYin,
o | e G en () TR
l e8] 2 l
=T / Y2 exp (—d Yerf( zininy )dYin
WO S R e (= () )

Loy,
Ty Yin

l 0o _
T Yin,
+ — / y2 erf(Z2L) exp 2erf dyin,
Wano, )R P g e

rl. /OO 2 Yin ; - 1211 rl-yin'
S yin erf(==%) exp (== erf( i )AYin, (Integral of Odd function)
Wamos, Jooo ™V 2 T o2 (1 () 4 1)
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From 2.7.3.3 of Korotkov & Korotkov (2020),

00
/2
—00

z7exp (
1 1

Vrlaya e

-1

. . _ 1 _ L _
Substituting a = o701 = 75,02 =

ai1az

a’® + aa% + aa% =

2 2
a+aj +a;

a’® + aa% + aa% + a%a% =

20+ a2 + a3 =

l
Tx in

Iy = ——"—
’ 42roy,

+

(2\/503“ tan™!(

—az?)erf(ar2)erf(agz) =

araz(2a + a? + a3)

aiaz
+ 2 2(2 2 2 2.2
av/a+ a? + a3(a? + aa? + aa} + a?a3)

Va2 + ad? + aa3

l
T
Zin

V2002 =L )+

l

2\/(02, (1= (11,)?) +1)

1 1 (rt.)?

T It Tz T 102 02 (- (LB 1 1)
(1= (L)) 1ot (1 (L)) 4 0, + (1L )%,
It (02 (1= (L)) + 1)

a;li —|—20 o+ 1 (r I"‘)Qoii“ (aim —|—1) (r zmagm)2
T a0l 02 (1- (L)) + 1) dod (02 (1— (L, )%) + 1)
_ a?+aa} +aad  (0F +1)2—(rk o2 )? v 202

a T 4ol (02, (1—(rL )7+ 1) e
(02, +1)? = (rl o2 )?
T 202 (02 (1— (1L )2) + 1)
(02, +1)% — (1} 02 )? (rt,)?

Tol (o2 (1= (L )%) + 1) 4(o2 (1= (L )%) + 1)

(02, + 1) — (rl 02 )2 + (rl )%0%, (02, +1)?
T ot (2, (- () +1) 4ok (02, (1— (L )?) 1)

1 (02, +1)% — (1, 02, )?

20%“1 QU%m(U%m(l—(Tl )2)+1)

(o2 )P = (ko2 )P +o2 (1 (L)) +1
202 (02, (1— (1)) + 1)

(Ufcin—kl) —|—a2 +1-— (rxmaﬁm)Z—agm(rim)Q
N 207 (02, (1= (L )2) + 1)

(o2, D) (0F, +2)—(r xm)%in(%, +1)

202 (02
(07, + V(o3

2 (52
2o—zm (o—fm

L= (5,0 + 1)
(1—( r5)?) +2)
(ry,)?) +1)

(1

1

Tin

2/(02 I=(L ) +D)

( Im+1) (’rf”mo-?”m)2
407, (o2, (A=(rL )?)+1)

)

l (02 +1)(02 (1—(r, )*)+2)
T ST AT 202, (72, (=G, )+
W2r0, (o2 +1)2 (r o2 )2 (02 +1)2
307 \| 207_(oZ (=12 +1]) 30T (o2 (=T I+)
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l Tl o2

fEm (2\/>0_ 1’1_ ( zin Y Tin ))
WV, Jo2, 12— (L 02,)2
Talvm 2\/§Tzi“ Uwi" (Ugi" (1 - (ra:m )2) + 2)

" Wano,, (02, + 1)/ (02, +1)2 = (7,02,

Zin = Lin

)

l 2 l 2 l 2
12 = rwino-win (Sin_l ( Twinawin + TImo-:Em( wm(l — ( wm) ) + 2)

)

27 et (02, + 002, + 1) = (L 02, )?
L v (L erf(5)) —12,
k_[wwﬁnu—@meQﬁﬂwm%>
2033"]( — (rim)Q)% eXp( ( ac.n) ym] )dy-
N T R R A G DR A e G D
e o (1= ()P, () =g (02, (1= ()P 1= ()?)
L o e = L)+ D (1 )
_/w%ﬁ—wgmmwwmgnw( i, (0% D003
- — 47 J%i“(l — ( zm)Q) +1 P 2(032?in(1 - (Talv;n)Q) + 1)032?in(1 - (Técin)2) ymj
_ Uz;n(l - (Tégi“)z) e : yinj _yizn] (ng + 1) .
_MVﬁﬂ—%mHJ[meﬂﬂﬁmm%@ﬂ GRIESERAL
R 0 N Gl v, (03, + 1) |
_“%mme%H[mMGNMM1<>HwﬁW%
Jwin(l - (rlzin)2) o - er Yin; < _me( Tin + 1) )
“%ﬁu—meJ/m“”“ﬂ”p5@J1< L)+ D,

)dyin;  (Integral of Odd function)

Oan(1— (r)?) j/@> (U o (Wm0
| 202, (1 (L)) + D2,

a

From 2.6.1.4 of Korotkov & Korotkov (2020), zerf(az) exp (—a122)dz = ————
@020, | serf(az)exp (~ans)dz = ——

Substitutin 1 (Um"‘ +1) we have

a=——a s
g’ \/ﬁ, b 20-5%m (O'%‘“(l - <rlwm)2) + 1)

0, (1= (rL)?) 7
13:4 2 (1 L2 1( (03, +1) (02,+1) :
— T 1 T
TR () + 357,12, (0L, )P 7D \/ PR N G (e DY
o, (1= (rh)?) 203 (02 (1—(rl )?) +1)2

7471'\/ (=L )2) +1(02 + 1) Jot (1—(rL)2) + 02 + 02 +1
T (02, (1= (5 )*) + 1)1 = (r1,)?)
27(03, +1)y/(02, +1)2 = (h, 02, )2

I3 =
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Finally we have,

I=5L+1L+1Is

— riin O.gin + lxin gm (Si —1 ( lem Ugin réin O-C%in (O-im(1 B (Tlxm)2) + 2) )
- 2
! 2 o T (02, +1))/(02, + 1) — (L, 02,)?

+ Uiin(aiin(l B (rlwin)Q) + 1)(1 — (vain)Q)
203, + 1)/ (02, + 1) = (1}, 02,

Pt rhob o hed L ob (R0 (b)) 14 (b))
- 2
tom A aner ) o2, 02— (o)

o2 ! L o2 202 (02 (1 —(rL Y2)+ 1+ (rL )2
I — Lin ,ri:i“ + Tin si —1( gm Tin ) 1m( J/m( ( -Lm) ) ( -Lm) )
! T % T w(o2, + 1),/(02, +1)? = (1L, 02,)?
‘We have,
COV(moutjayoutj) =1- ]E[xoutj]]E[youtj]
0.4

Lin

C out; » Jout; =] ——"—
OV(I t; Y tg) QW(U%i“‘i‘l)

o2 ) I 52
COV(xoutj ) youlj) = ﬁ(ﬂrém + 2rlzin sin~! (O,;m —Eml)
Zin

2RO -0 P14 ()) 20,
(02, + Dy/(02, + 12 = (b 022 (5T

The backward pass through GeL.U is defined as,

— 2

Lin, in,
i, = (@ Zin; ) + = exp (—* 5
Yin; ( ( ) \/ﬂ p( 2 ))gout,

1 Lin, ZLin, _xiZn-
=(=(1+erf(—2)) + —=exp (—2%)) Gout,
So the mean of gradient is obtained as following,
2

Blin] = El(G (1 +erf(2) + T2 exp (<))o

= Bl (1 +erf(U2) + 2 oxp (T2 B g, ] = 0

V2 Vor 2

Similarly for variance,

i Tin; —IE?H. 2 92
Elgh,] = El(G(1+erf(2) + T2 exp (<)),
= E{(5(1 + et () + T2 exp (<)) Bl

= B{(5 (1 + et () + T exp (<52,
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1 Tin, Tin _q2
I=E[(=(1 (2 i 12
(G2 erf(5)) + T exp (<5 )
<1 Tin, Tin, —2 QGXP(;J?)
= —(1+erf(—2)) + L ex d " dx;
[ G et & T exp (e,
00 2 Tin;
I (1+erf( 2) x?niexp( ?ni)+erf(\/§)Jr
oo 4 4 27 2
z2_
Tin, ©Xp (—)  Tin, exp (g™ erf(Tk) exp(202 )d
T
V2 Var mawm in;
22
I /oo 1exp(202")d
in xml
' 4 \2roy,,
1
I = 1
I2
o [,
—0o0 4 \/ﬂdzin .
1 2 xlgn
= erf ex d i,
4\/%0351" [w ( 2) P(2 a2:m) '
From 2.7.1.3 of Korotkov & Korotkov (2020),
/oo erf(ayz)erf(asz) exp (*azz)dz _ i tan—! ( aias )
o Vra V@ T aa? t add
Substituting a = 2012 Ja1 = ag = %
1 2 1
I = o tan™! ( 2 )
4 O.Jj‘“ T3 f \/40%, + 401,3 + 4 13
1 o2 1 o2
— 7tan71 ( ;m ) — — tan 1 ( > Tin
27 20”“" +1 2 \/(alm + 1) a:.n
2
fop
]’ - —1 Lin
27 ™ (agm + 1)
2
< 22 exp (—z2 )exp(2 gl)
I3 = / " din,
—0 27T \/ gxm
1 > @, ah, (205 +1)
- / 1 p ( - )dxim
2M0z, J_oo V21 202
1 U$.|, o $12nl (_.'1712 ( O’im + 1))d
= exp Tin,
2 V2r—Zen 2 i
2104, /(202 +1) J_ \/m 202
1 Oxin Ugi“ (D finiti £ . )
= efinition of variance
27104, /(202 +1) (202 +1)
2
I3 = Tin
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Az, =0 (Integral of odd function)
oo 2 2oy, '
2 x2
°° Tin, exp(_Q'l) EXp(QU?s»l) .
I = / —dxiy, =0 (Integral of odd function)
oo \/ 21 2moy,,
—a? o n
0 Tip, exp (—5ot Jerf(Ha) exp (3 2’)
16 — / n 2 \/i Tin dl'm,
oo V2T V2o,
1 > Tin, *1'1211, (O—%m +1)
= Sron /_Oo X, erf( 7 ) exp (T)dxini
From 2.6.1.4 of Korotkov & Korotkov (2020), ffooo zerf(az) exp (—a12%)dz = ﬁ
Substituti Loy = D e
ubstituting, a = 75, a1 = —55—, we have
1
Io= — V2
2M0s;, (03,41 [1 | (03, +1)
20%“ 2 + 20’2
i 203,
2704, (02 +1)y/202 +1
2
IG — Lin
n(o2 +1)\/20% +1
I=L+DL+I+1,+ 15+ Ig
11 ., o2 o2 o2
+ . Sl n + n _ + 1n
T 12 <agm + 1) 2m(202 + 1)z w02 +1)/202 +1
Lo i o2 o2 (402 +2+02 +1)
1 2n o2 +17 2m(02 +1)(202 +1)3
1 1 o2 o2 502. +3
I - + . Sln —1 ( 5 in + m( ) 3
4 2 oz +1 2m(02 +1)(202 +1)2

So the variance of gradient of input of GeLU comes out to be

Elga,] = Io,,

goul
11 o2 oz (bo2 +3

0;“ S Sin_l ( > Tin )Jr acm( ) . 03(““
4 2 oz +1 2m(02 +1)(202 +1)2

If for two inputs x;, and y;, for all ¢ we have Corr(goutl,i s Jout,, )= rlgom, and Gin,,, > Gin,,, be the gradient after passing through
GeLU layer. Then we have,

E[Qinz. giny,.,] =
2

Tin; Tin; _xini 1 Yin; Yin; _yi2nz
E[(Q (1 te f( \/i)) + m eXp( 2 ))goulzi (5(1 + erf( \/i)) + m GXP( 9 ))gouty7]

(1 —l—erf(fi/%))—k

N =

E[ginxiginyi] = E[(
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e ex ) 51+ ert()) + 2 e o)) B o, o,
- E[(%(l +erf(f;’§))+
= exp (o)) (Ao L+ erf(7) + T2 ex S
I= E[(%(l erf(fi/%))-l-
Tin, : ~Yin,

T exp (<5 L+ et (M) + T2 exp ()

:/Z(;(1+erf(fg))+

2 2
Lin, ~ Tin, 1 in; in; “Yin,
\/l;? exp ( 5 ))(5(1 + erf(?i;%)) + yl;T exp ( 5 )Pz, i, Ain; AYin,;
1 —z2 +2rL T, Yin, — Y2
Where pxin’_’ym’_ = eXp( i 5 Tin 'L;y 12 Y z)
T ome2 (1 - (L )2) 207, (1= (13,)%)
Yin; Yin; —yi?,,
I /Oo (%(1+erf(</§))+ \jﬁeXp( ) exp ( i, M xdy
= X @Yin;
—o0 2a2 /(1 —(rk )?) 2‘73,"(1 —(r L.") ) "

Where,

> 1 Tin, Tin, —x2 —z2 +2rl zi i,
I — - 1 f m; m; n; n; Tin i i d .
x = [ GO et + T e (< exp (S

1 —x2 42k Zin, Yin,
I _ = in; Tin i i do
i /_ 3 Pl 202 (1= (r,)?) )i

1 /oo ( I?m + 2T§cin$in¢yim) ( 7(T£cin)2yi%1,- ) ( ( xm) ymZ )d
= = exp : exp exp Tin,
2 ) 202 (1— (rL, )?) 202 (1— (1L )2) P\ 202 (1— (L )2) "™
_ lex ( ( wm) yml ) o ex (_(l’im - ri:myini)Q )dx
2P0z (1= (L ) ) TP 202 (1= (L )2) )™

‘Lm -
i xm

= Eexp(M)\/%J (I—=(rL) / o G dz;
2 1 _ 1 2 Lin Z’m g
2U$m( (rwin) ) o 2oy, ( (T’é ) )

V2rog,\ /(1= (rk,)?) (r5.,)*vin,

exp(2 2 (j_(:;lm)g))

ZTin T

Yin; )2
ST =)

Ix, =

[\V]

Lin; )

oo erf( —22 4+ 2rl zin yin,
I — n; Zip 71N J1N; d .
X,2 / 2 exp( 20—%“](1 (7"[ )2) ) Lin,

Tin

1 /°° Tin, 71'1:; + 27t 20 Yin,
= erf(—=) exp ( n— Vi,
2/« V2 207, (1= (r},)?) !

From 2.7.1.6 of Korotkov & Korotkov (2020),

/OC erf(a;z) exp (—az? + bz)dz \/?e (b2 Jerf( ab )
X - = — ex — e —
—c0 ! P a p 4a 24 /aQ + aa%

S
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Substituting a; = b= (f‘"f,'f; )2)

1 a 1
) 2 — L 2)
V2 4T 2T TG

( lzm)2y12“7 rliinyi"i
1 ol (1—(rk )?)? \foz 1— rl 2)
Ix2=3 +exp(4 n (1 w)?) Jerf( (=L )?)
202 (10, )%) 202 (01-0% )% 2\/ To1 (1- (rz 7 T I (1 (rz 57)
v 2104/ (1 = (1L, )?) (Tém)an émqu
Ixo= exp (5 erf )
2 272,01 R
2 2
* Tin, —; + 27t Zin, Yin,
I — m; mn; ll'l Tin X2 7 d in
X,3 [Oo /727;- exp( 2 )e p( 2% ;%m(l (rlmm)2) ) Lin;
_ /Oo 'ril’li, ex (_xlznl (O-gm(]‘ - ( xin) ) + 1) + 2T£l13;nxini yini )dm
e VT 203,(1 - (r£,)?)

1
QTJ;m ing Ying

g2 g ey TingYin
Ting T 02 A=, )?)FD)

Tin

:/ i exp( 2 T 2 )dﬂ?im
oo V2T 202 (1—(rk )?)

@2 (1=GL)+D)

2 2rlminxi"iyi"i _(Tiin)%ﬁni
[ (_xinﬂf GE0-CLID ) - EEO-CL I
N R G B e N RGN
R CAREIESY @2, (1L )]
(Tim)2y‘%‘i
@2 (=L )12
P (o7 timrr 4
@2 (- )]
= exp ( (r w‘") ym‘ )
202 (1—(rL, )3 (02, (1= (v}, )?) +1)
Tin, ~ (@i, — (oim(l—(r;m)2>+1>)2
/_oo Var Pl 202 (1=(r%,)%) Jdin
@2 (01— )]
( ( :Em) yml ) a-win 1- (T:lcm)
= exp
202, (1—(rL, )3 (02, (1= (r},)?) +1) \/( o2 (1—(rl )2)+1)
J,mym1
R Tin, _($ini - @2 (1L, 7)2)_,_1))2
oo Jor T/ TOL? exp ( 207 (1=(r] %)
V(@2 (1=(rL)9)+1) (02, (1= (rg;, ) +1)
— eXp( ( avm) ym1 )
202, (1= (rL )3 (02, (1= (rl)?) +1)7
UIln 1 - (’rgjm> rclrmyinz
Je 0=+ 1) RO L)+ D)
_ rl- yini Oz, 1- (rém)Q ( xm) y]m
Ixs= exp (

)

(02,(1— (1L )?) +1)% 207, (1= (r}, )?) (0, (1 = (r,)?) + 1)
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I =
—y2
oo (3(1+erf(Ym)) 4 Zo exp (—5)) -2
/ - = exp ( 2 - 7 \2 JIx1+ Ix2 + Ix 3)dyin,
e 271-0_2 (1 - (le ) ) 20—13;,,(1 - (Tmi“) )
2
in; ~Yin,
L o (314 erf(%2) + Joe exp () —Yin, i
| = exp(22(17(l )2)) ,10Yin,
e 2met (-l )2) Tl T
in in ym
/oo (3(1+erf(%2)) + o exp (—5)) ( ~ Y, )
_ ex
= amez, JO- (L) P - (L)
\/ﬂamm (1 - (ralvm) ) ( zm) y1n1 d
5 exXp (20%“(1 — (Tém)z)) ylm
2
BN A LG ST
2) NozZ 203,
RV Y2 1
I = Ying dyin, = —
/wmam e (g M. = 5
1 o0 erf( g )
Ts— / m\f exp ( ;/lznl Ydyin, = 0 (Integral of odd function)
2
1 [ Yin, € Vg ~Yin, i
Ly — 2 / Yin, 2>;PU( 5) exp ( 209;1 Ydyin, = 0 (Integral of odd function)
—y2
o (3(1+erf(Le)) + Lo exp (1)) — Ui,
]2:/ V2 V2r exp (5 ey Ix 2 dyin,
e 2r02,\/(1 = (11,)?) 205, (1= (1,)?)
2
in; in " Yin
o (31 +erf(88)) + o exp (™)) ~Yin,
= GXP( B} 7 \2 )
oo, J0- 6 202,(1= (L,)?)
V2T, /(1 - (rL,)?) (rh )22, i Yin
5 e p(2 2 (1—(rl )2))erf( )dYin,
Tin Tin \/2( (1 - (Tém) ) + 1)
. Yins Y,
1 GUref(T) + Zhexp (—51) g2
=3 Vi Pl )
—0 Tin Lin
erf( Teyin )dYin,
\/2( -Lm(l - (rim)Q) + 1)
1 o 1 — 2 T Yin, i
. / — exp ( - j/;nl Jerf( e Yin, Yd3fin, = 0 (Integral of odd function)
oo V20, Z \/Q(Ugm(l — (1L )2) +1)
1 o Yin, Y, T Yin,
12’2 _ 7/ erf( i ) exp( u )erf( ne )dyini
Wonoa, oo V20T P02 (1- (18,)) + 1)

From 2.7.1.3 of Korotkov & Korotkov (2020),
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o0 2y 7, _ _2 ~1
J7o erf(arz)erf(azz) exp (—az®)dz = = tan (\/ﬁﬁ)

l

. . . 1 _ 1 . Tﬂ‘in
Substituting a = 207 ay = 75,02 = NG M= A IESY
l
Lo 1 N G REGREID )
2 4210y, o (rl.)?
i 4(74 402 402 NCENE (l D)+
-1 JCm $m -1 T‘i:in gin
12_’2 = 271]3111 ) = 27 tan
4 Joh 4202 +1- (L )20k V(02,12 = (11,02, )2
1 rl o2
T — —1 Tin _ Tin
2= gy ()
1 ~Yin, ~Yin T Yin,
foa = g |t (TP e, ERAN e ( Sy
Tin J —00 Zin 2 O'mm 1 zm + 1
1 o —y2 (02 +1 UYin,
T (= TR
MO0 J oo O \/z(ggm(l —(rl )2)+1)
From 2.6.1.4 of Korotkov & Korotkov (2020), ffooo zerf(az) exp (—a12%)dz = ﬁ
_— ri _ (g, +D
Substituting, a = T .nl )2)“)’ — 2(.7.%‘“ . we have
l
1 V2@ (-t 4D
Ir3 =
ATo s, (02, +1) <r;m>2 (02, +1)
207, \/ 203, (-(L 5D T 202,
'f’l_ 0'2
( 93m + 1)\/04 + 2O-Zn + 1 ( wm)20-;1m
12}3 — Zin ~ Tin
2m(02, +1)y/(03, +1)2 - (rh, 02, )2
2
oo (3(1+erf(s)) + yﬁexp( 54)) —y2,
I3 = eXp(mﬂXﬁd?/mL
—co 27TU2 / I 0% Tin
n,; ym,
> (5 erf(F ))+3§exp( “)) —y2.
- P (57— (7T 2
- 27‘(0",% (’I"é 1 Tin Tin
T Yin Ta /1 — (1,)? : (rl )22 \d
exp - A
(02, (1= () + DE 202 (1= 0, ) (03, (1 = G, ) + 1)
l e} 2
T / 1 Yin; Yin; “Yin,
= in Yin; (= (1 + erf + exp (——
Sromn (o2, (1 - ()2 1+ 7 S et an e (=57)
—q2
eXp( ymi ( a:m> yln1 )dylm

202 (- (L) P % T ()2 (1= (L)) T 1)

2
_ Tim oo 1 . Yin; Yin, < —yizni
= TR (- ))+1)3/ ymi(2(1+e f(\/Q)H\/ﬁep( )
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—Yin, (02, (1 — (r,)*) +1— (r3,)%)
2

d¥Yin.
P 302, (1= (L) + Do, (= (1t )7) ™
l o] 2
T2, / Yin; Yin; ~Yin,
= in Yin; (= (1 + erf + —exp t
el RCCURE G IR e )
( ~Yin, (02, +1) \d
exp Yin;
202, (02, (1= (rt )2) + 1) 7"
l oo 2 2
Ta; “Yin, (Ux» + 1) .
I3, = o / in; €X N dyin, = 0 (Integral of odd function)
M (@ (L (7 1 DF Lo O o o (= (L ) e
l e’} 2 2
Tz Yin, ~Yin, (Uzv + 1)
Ia0 = in / in; €rf (== ) exp — AYin,
e P T T YL TR R (e G
From 2.6.1.4 of Korotkov & Korotkov (2020), ffooo zerf(az) exp (—ay2?)dz = ﬁ
0_2
Substituting, a = %, a1 = 552 (0,2,( (liirLJE:?). BESIEAG have
l 1
13,2 = o 3 V2
47T0win (0-:%;“(1 - (réi")Q) + 1)5 (U;z”in+1) 1 (U?Ein—H)
302 (@2, =L P+ \/ 2 T 202 (@2 (=L )P)+0)
— réin gin
27(03, + 1)\ Job, +202, +1— (1L, )24,
/r':ll:ina-gin
I30 =
2n(03, + 1)y/(02, +1)? = (rh, 02,
l .
1—3’3 = ZLin 7 -
210y, (03, (L= (1}, )?) +1)2
/°° Yo, (fy{f.i Jexp( ~Yin, (02, +1) y
L ex L) ex s
e V2T P2 TP e oz (1= ) 1)
rt
 2m0y, (02, (1 - ()2 + 12

/Oo y12m (_y12n1 (Ugin + 2O-gin + 1 B (Tiin)QU;lin) )d
e v2r P02 (02 (1= (1L )2) + 1) Yin,
_ lrm /OO ylzﬂq exp ( 7y12117: ((Jzin + 1)2 B (rilnina-iin)Q)

2104, (02, (1 — (1L )2) +1)2 J oo V2r 202 (02 (1= (r} )3 +1)

Zin

rl Oany /(02,1 = (1,)?) + 1)

Lin

) dyini

_%mwwf%ﬁHh%w%+m—wﬁy

Zin ~ Tin

/ > Yin, (—y]%i (03, +1)* = (r3,0%,)°)

oo /o 2z /05, (-0, )+ D P02 (@2 - (D) + 1)
T /02 F17 (L, o2 )?

) dyini

_ . o3 (o2 (1= (L )} +1)5
270, (02, (1 — (1L )2) +1)% ((02, +1)2 — (r, 02 )2)3
1 2
IS 3 — Tin Tin <
T 2m((02, + 1) — (1L, 02, )2)%
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I=I+1+ I
=hi+ho+lig+Izy+1Iao+1Ia3+131+132+ 133

l 2

1 1 r. o5
] — I | Zin ~ Tin
1T g sin (7‘732% n 1)+
2TJwinO-gm + rlwina-gin
3
2(03, +1)y/(03, + 12 — (rh,03,)2  27((02, + 17 = (1},02,))}
1 1 rl o2 rt o2 (202 +3)(02 +1)—2(rt o2 )2
I=-+ —Sinfl( ;’m Tin )_|_ Tin mm(( Tin )( Tin ) ( Tin zm3) )
4 27 O3, T 1 2m(oz, + 1)((02, +1)% — (1}, 02 )?)2

We defined Cov(ginwi s Giny, ), as

. . _ ! 2
Cov(gmzq‘, ’ gmyi) - I’rgou[ggoul

COV(ginmi s ginyi) =

1 1 rboo2 vl o2 (202, +3)(02, +1) —2(rk 02 )2
-+ — Sinil ( m.nowln )"' xmo'm‘“(( U‘r‘“ )(O—Im ) ( wmgzm) ) l 2
27{-(0"%3“ + 1)((0—%m + 1)2 - (Tlxina-i%in

2 % rgout YGout

4 27 o2 +1

A.6 LayerNorm

The affine transformation for layernorm are typically initialized with 1 scale and O bias, so they do not change any of our
derivations below and are ignored henceforth. For an input x;, the forward pass of LayerNorm is,

Xout = LayerNorm(x,)

= Tou;, = L‘”A— Lin
Oy
Where
din
o= >in1 Tin,
mn dm
N \/Z;jil(xim Tin)?
Oy —
din
To get expectation of output of LayerNorm,
Tin, — T
E[wouti} E[ mlé_mm m]
din din T T
o in; in
ZE[IOutJ - ZE[ 6‘1 ]
i=1 i=1 n
dn o z
_ E[Z m,iA ln]
i=1 Lin
_ E[Zl;l (xinl xln)]
&wm
din
Elzou,] =0
=1

By symmetry for any 4, j and ¢ # j we have E[zou,] = ElZou,;] = Lag,

- din//fzoul =0
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Similarly we calculate variance of output by,

Var(zow,) = E[22

out; ]

- E[IOUti]Z = E[IQ ]

Elzguw,] = E[~——
in in (m . T )2
D Elwd] =Y B[]
i=1 i=1 Zin
d.
- (xm, i’in)
i=1 Lin
din s
_ E[Zi:l(xini — ‘rin)z]
- 52
din
Z E[x?)uti] din
=1
By symmetry for any i, j and i # j we have E[z3,,| = E[z3,,] = 03
— dinaim = di,
T =1

Now we have 6, L5 Og, for large di,. So for large values of d;, we can treat 6, as a constant which has value o, . We
use this approximation to get the following results. For two inputs xi, and yi, such that for all 4, Corr(xin,, Yin;) = rfci". For
all j we have,

E[l'outj Yout, ] - E['Tomj ]E[yomj ]
v/ Var(Zouw, ) Var (You, )

. E[l'outj youtj] — Ko Moy
0—2 2

Zout ~ Lout

COI‘I‘(.’L’omj » Yout;; )=

E[xoutj youtj] -0
V1

= E[Ioutj youtj]
. E[(irin]- - jin)(yin]- - gin)}
B OA-iEinoA-yin
N E[(xinj - jin)(yinj - gin)}
Uwinalwin
_ E[(xinj - jin)(yinj - gin)]
%in
SRR, i S Yin
o E[(‘riny - kdilnm k )(yinj - Ldilny L)]
- 2
Lin
dip . din ) din . dip 5
_ E[l‘injyinj - yinj —Zkzilnxmk — ZZ?inj leil"yml + Zkzilnmmk leilnyml]
- 2

ZTin

Elements belonging to different dimensions from x;, and yj, are independent of each other and hence for 4, j and i # j we
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have E[zin, yin,] = 13, .

E[Iinjyinj] _ E[ym, Zk 1 2a=1 Ting } _ ]E[xinj Zl 1 Yiny ] + E[Zk 1 xmk Zl 1 Yiny ]

— m ix dm
2
Lin
+ _ T;inazin—‘rdinuiin _ r-lfi|‘giin+di““iin + T‘i’indmazin—‘r i iin
o wm xm 'uﬁm din din d,2“
- 2
Lin
o rz,nox,n(l - j)
- 2
Lin
1
0 ~oanl 1
Corr(xouw ? yOUtj) - T-'L'in (1 - di) ~ T-'L'in ' Tout
in
From Xu et al. (2019) (Eq. 17), the backward pass through LayerNorm is,
T
Sout 1 ]-dm + Xoutxout
gin = = (Idin d )
O—Iin in
Sout ]-d 14, +X0utxout
~ ( din - d )
O-;Ein in
T
13 1a, + X Xou . o
We have lim = Og,, .4, Where Og, 4, 1s zero matrix with shape di, x di,
din*)OO dil’l '
Sout
gin ~ (Idin)
O-"L'in
_ Sout
O-"L'in
Yout
—t ng = ==
O—xin
If :ugoul = 0’
gy =0
2
2 Ugoul
Jin - 2
Lin

A.7 Softmax

Assumption: Other than assuming normally distributed inputs, we also assume that L is large L >> 1 to derive softmax
variance.

The forward pass of Softmax can be defined as
Xout = Softmax(x;,)
e‘ti"i

Lout; = T

wm
j=1¢

For calculating mean we can easily see that,

L
§ Lout; = 1
=1
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Taking expectation both sides, we get

L
B[ o] =1
i=1
L

> Elwow,] =1

i=1

By symmetry we can assume that for any 7, j,4 # j, we have E[zou,| = E[zou, ]

LE[xouti] =1
1
Koy = Z

Let us define 2 = > e where y; = x; — ; is normally distributed N(0,0;). Hence, each e¥/ is log-normally distributed,
and z is a sum of correlated log-normals. Following (Lo, 2013), this sum of log-normals can be approximated as another
log-normal random variable, Log\ (u., 0,), where p, and o, are as follows -

Sy = E[Zyj] = Ze%
J J

1 1 2 2
2 _ . ) 3(o5+0%)
o, = —SQ E COTTj | OjOKe2 77k
+ 4.k
o?

e =In(Sy) — o

Since the difference of two normals x; and z; is also normal, from the M.G.F. of normal distribution, we have 0]2- =
2a§m(1 — Ty, ) if j # 4, and 0]2 =0ifj = 1.

Also, corrj, = 0if j =i ork =i, else corrj, = 3.

We can substitute these values in the above equations, to get

Sy =(L— l)eoim(lfrwi") +1

2 2
0 =0, (1= ra) 77
2
UZ
pz = In(S4) — o

Since z is log-normal, oy = % is also log-normal with LogN (—p, o). The variance of log-normal distribution can be
obtained from standard formulae for log-normal distribution as (e"3 — 1)6"5’2”2.

Substituting the values of u, and o, from above, we get

2 2
9 (eaz _ 1)62*02
Uwou( - 52
+
2 L 2 L
(ega:i“(l_r"”in)L—l _ 1)620min(1_rwin)L—1

(L — 1)) 4 1)2
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For large L, we can ignore the 1 in the denominator -

L (T )

g =

Zout (L _ 1)2

If L >>1and Ugm is small, we get the more simplified formula as -

9 ( (1 T‘Em Uiin — 1)

O.l'nul ~ L2

Using the mean and variances, we can calculate the scale of softmax output as follows-

E[x(z)ut} = i‘,u[ luﬂ?om
(e(l g o im)
N

The Jacobian of Softmax can be calculated as ((Kim et al., 2021)):

Jig = {%u”(l o) 0=

*xouti xoutj else

For large values of L this approximately becomes

J ~ diag(xou)
8in = goutJ
Gin; = Gout; Lout;

]E[gim] ~ E[gouu ZZ:out,]

Yout; ] [xout ] =0=

E[
[gm1 ] E [gouu out; ]
[

=E gout,] [ Lout; ]
2 2 (6(142‘“)02‘“)
Ugin = Ugoul L2

A.8 Scaled Dot-Product Attention

/’l/!]m

(Assuming L >> 1)

Inapplicability of Direct Usage of Softmax Derivations for SHA: One may be tempted to assume attention scores to be
independent of values. This then enables the use of our previous LogNormal-based softmax derivation, to easily derive the

forward variances.

But the theoretically calculated moments strongly disagree with empirical simulations. This is because SHA is X,y =

X WoWgTXT
Vg,

Dropout(SoftMax(

) X;n W, and the WKTXT term cannot be treated independently of the X;, W~/

term. A simple verification of this can be checked by simply simulating (XW ™)X, and verifying that the variances of the
results do not match that of L  o2((X'W)), but do if the second X is replaced by another random tensor.

This necessitates an alternate methodology to derive SHA, where the components are treated as a unified whole.
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Assumption: We assume that L and dj, are very large when compared to scale of scores being passed to the Softmax. These
approximations hold true for small values of o, and o0, and the resulting formulae are fairly accurate, as shown in the
numerical verification section.

The forward pass of Scaled Dot-Product Attention is
QK™
Vi k

Xou = Dropout (SoftMax( )V

Where,
Q = XinWQ
K = Xy Wk
V =XinWy
X WoqWxTXT
Xout = Dropout(SoftMax( )X Wy
Vidik
Let,
XinWoWgkTXT
O = Dropout(SoftMax(—2~ K in )y

ik
X WqWk T
ik

O = Dropout(SoftMax(WX)) X,

W =

Using results from Linear Layer we have a = dma azak = dm%n ok

mg, ;5

L
0;; = Y _ Dropout(SoftMax(WXil)); . X;
k=1

exp (WXT), )

L
= Z Dropout(—
= Z exp (WX7)im)

)Xi

mg j

i Dropout(exp (WXT); 1)) X,

L mg, ;5
k=
' exp (WXG)i,m)

m=1

L

Z Dropout(exp ((WXE)L;@))XmM
k=1

Z exp (WXI);m)

L din
Z Dropout(exp (Z Wi 1 Xiny,., ) Xin,

_ k=1 1=1
o L din
Z €Xp (Z WiJLXinvn,n)
m=1 n=1
L din
Z Dropout(exp (Z Wi 1 Xiny,., ) Xiny, ;)
k=1 1=1

L din
E exp ( E Xin.)
m=1 n=1
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Each Xj,, ; can be written as:
Xin, ; = €+ 0ij
Where ¢; and 0; ; are all independent and defined as

NN( ) m.“ mm)
8ij ~ N0, (1—7% )02 )

L din
Z Dropout(exp (Z Wi 1 Xiny,., ) Xin,. ;)

k=1 =1
Oi7j = L in
Z eXp (Z Wi,lXink,l)
k=1 =1
L din
Z(l di,k)(exp (Z Wi,lXink,l)Xink,j)

k=1 =1
o L din
(1-p) Z exp (Z WiJXink,L)
k=1 =1

Where d; j is Bernoulli random variable which is 1 with probability p

2 (U= dig) exp (4 Waa(e + 1)) (€ + Ory)
(1- )Zk 1eXp(Zz 1 Wi(er+ 65,1))
Zk (1= zk)EXP(Zl 1 zlel)eXp(Zz 1 Wiidi,t)
T (1= p) S exp (X, Wier) exp (X, Wi k)
Zk (1= Hc)eXp(Zz 1 zlel)eXP(Zl 1 Wii6k,1)0k 5
(1- )Zk 1eXP(Zl 1 zlel)eXP(Zl 1 iz5kl)
Zk L (1= di ) exp (7, Wi i6,0) Zk L (1= dig) exp (57, Wiabk.)0k 5

( )Zk 1eXP(Zz 1 Wiilk,1) (1- )Zk 1eXp(Ez 1 Wiibi,1)

Zk 1(1 d; k)eXP(Zl 1 Wi,16k,1) ndvg ZA 1(1 d; R)eXP(Zlml 7l6k")6k_] Wehave

Let vy —
L = ) S, exp (50, Wbk (1—p) SE_, oxp (S0 Wi 10.1)

Oi,j = V1 + Vg

Given a fixed €, W, we have

Sy (1 —dig) exp (X0, Wi 101.,)
(1—p) Sy exp (O, Wiidra)
SE_(1—dig) eXP (2721 Wi 10k,1)

vile, W =¢;

:gj

Ek 1CXP(Zl 1 zl‘skl)
(1-p)

L ) ex din !
By WLLN, 2o (ot SR Outs B0 25 (1 — p)Eglexp (37 Wigd)), and

(1 — p) e P CIR Watdi) By(1 s fonery (00 W, 1655,0)]
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D
Thus, we have vy e, W —e;

Zé (1= zk)eXp(Zl 1+ Wi i0k,1) 0k, 5

U2|€7 W ==
( )Zk 1 €Xp (Zl 1 Zlakl)
7\/sz . (1—di,k)exp(2,:1 Wi.185,1)0k 4
) & i Wias
(1—p) Yope, 2 s Werdes)
Let pioum = Es.a[(1 — dix) exp (3210 Wi i0k,1)0k. 5] Omum = Varsa((1 — dix) exp (2721 W; 10k.1)d%. ;). By central limit

theorem for large L,

L din
\/ZEkzl(l — di,k)eXpL(Elzl Wi 10k,1)0k \Fz’“ (1 —dik)(exp (ij A Wit0k))0k j — Houm) Vi

L d
_(1—d; e Wii0k1)0k.
\/Ezk_l( "k) eXpL( =1 L kJ) iz i)N(Ouo'I?um) + \/E,U/num
L
1—d; Wi 10k.1)8 2
k:l( k) exXp (Zl 1 l kl) k]i)N(anm anum)
L L
I=d
fnum = Ea[l — d; x]( H Eslexp (Wi 10k.,1)])Es[exp (Wi 0k, ;)0 ;]
1=1,1#j
W2 o3 .
Eslexp (W;,10k,1)] = exp (T) (MGEF of gaussian)
> exp (Wz j5k j)ék_j 2
Esle Wi-d-é-:/ S = @ do
slexp (Wi j0k.5)0k. 5] N Woro xp (5 §) k.
= W20, Oy (O,j — Wij03)?
= ex : = — ex : doy,. ;
[ e (T e (- T
W2.02 [ 5, . (O — Wi 02)>
4,578 k,j k,j ,9Y 5
=ex exp (— Aoy ;
p( 9 )[oo maé p( 20(% ) k.j
W2 o2
— oxp (La% o2
din W2
Hnum = (1 _p) exp (f)w,]gé
I=d
Opm = Bal(1 = dix)?)( T Eslexp (2Wii0x.)|Eslexp (2Wi j6x.1)07 ;] — Houm)
1=1,1#]
Es, , [exp (2W;,165,1)] = exp (2W}03) (MGF of gaussian)
< exp (2W; 0k ;)07 52 .
Es, ,[exp (2Wi ;04.1)02,] = / T exp (5 )
— 00 5
o o7 ; (6 — 2W; jo2)>
= ex 2W2 exp (— 2 8207 Ny
| e @wioh) Zh e (- P s,
© 0 (O — 2W; jo2)>
=exp (2W2.02 / Fd exp (— ki 8707 Ny
p( i,j 6) \/%05 p( 20_(% ) k,j
= exp (2W/};03) (AW} 05 + 0'5)
din
Taum = (1= p) exp ( Z 205) (AW 05 + 03) — (1 — p)* exp ZWMU(S W25

=1
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Similarly, Zi:l exp (Zld:l W, 105 1) is also a sum of L i.i.d. random variables for fixed W. By WLLN we have,

din
Zk 1 €XDP (Zz 1 Wii0k.1) N 2a _p)Eé[eXp(Z Wi 10k,1)]

(1-p)

=1
I=d
(] [ Eslexp (Wi 16x.0)))
=1
L d; din 2 2
in ) W
(a _p)zk:1 exp (%lzl Wi k7l)£>(1 —p)exp 1712 ,1‘75)

@
Sk exp (00 Wi i8k,1)0k,
L

Vg =

Sk exp (50 Wiidk.)
L

As for a given W, e, both the numerator and denominator converge in distribution and denominator is converging to a
constant by Slutskys theorem,

2
U2|VV,€£>N( Mnumdin 2 52 2 — d; 2 2)
(1—p)exp(7zl:1w’“”5) L(1 —p)?exp (332 Wi05)

cxp(zl 1 la;)(4W2 O’OJrO'O)

WiQ'OA
va| W, eﬁ./\/'( ,]05, (1 p) 7 g0
Thus we have,
exp (), W2,02)(AW2 oi402) 9 4
0, W, e ~ N (W, 62 Sy~ Wios
ij| W, € ~ N (W, o5, T ) +¢€j
‘We have,
E[O; ;|W] = Wi ;05 +0 =W, jo5
exp (Ypin, W2,03) (AW 03 +03) 2 4
E[O};[W] = = ALEC
i, L €
E[0; ;] = Ew[0; ;W] = Ew [W; jo5] = 0
]E[O?g] = EW[O?,J“W]
2
— By (2.0 ez 1W<305;)(4W”05+%) Wios
=Ew[W; ;05 + 17 + o]
For large d;, by WLLN and continuous mapping theorem exp (3, Wflo?;) ~ exp (dino2 03)
ex dinaiaz 4Uio4+o2
_ (L—1)o%0} + p( (fl(p) 2+95) o
L €
ex l d2 4 2 7T‘l 2dino'6, 0'2, —rl 0_2‘
(1 ol ) (L — 1)dm0' qu+ p ((A—ry, )diou, k)(4(1(171in) ey Okt (=75 Jog )
_ Tin P) 4+l g2
= L Zin ~ Tin
Hence,
l’l’wout = O
o B exp (11! )d20% o2 )(4(1=rh )2duol 0% +(1—r! Jo2 )
O—iout _ (]. T ) (L l)de qu? + - (1- p) +’I":lrinUgin
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Now to get covariance we make two approximations. As the term

approximate vy,

V1.

iy €

-~ €. Also we will treat Zk 1 €Xp (Zl 1

l5k l) ~ exp

Zk 1(1 d; k)exp(zl 1

1] kl)

(1-p) Zk:l exp (21:1
d:
(211:"1 Wig,zdg )
2

ZL (1=di,x) exp (37, Wi 185.0)0k
k=1 L

in,j ~

This makes vy, ; and v,

E[0;,;0m ;] = Ew
i + v2i.j)<vl7n,j + U2m,j)

Oi)jOmJ‘ |W = (Ul

(1 —p)exp

independent. For covariance

[E[O;,;Om,;|W]]

1
2

din 2 2
(le Wi,l"’a

)

,10k,1)

converges to 1, we

. Then, we have

= /Uliyj,ulm_’j + Uli,]»v2m,j + ,Uzi’]‘ ’Ulm,j + ’UQiyj V2
Uli,j ’Ulmd = 6?
Elvi, ,v1,, ,|W] = o?
Aswy,  =wv1, = €,v1, ,Va,  + V2, v1, = €(va, ; +v2, ), and ¢; is independent of (vo, ; 4 v2,, ;). Thus, we have
Elvi, ;v2,, ; +v2, 01, ;W] = Ele; [WIE[(v2, ; +va,, ;) [W] = 0% E[(v2, ; + 02, ,)[W] =0
ZL (1—d; k) exp (2721 Wi 10k ,1)0k, ,j ZL (1—=dm,ky) exp (2721 Win,10kg,1)0k,j
Vo Uy = ki1=1 L ko=1 L
nemme (1 7p)2 exp( z (W2 W2 )od
2
L din L din
Elvy, ,va,, ,|W] = BD k=1 (1 — di,) exp (30020 Wit Ok )0k 5 D, =1 (1 = dm,ks) €XP (20421 Wi, 10k )0k 5]
20,5 V2m =

L2(1

d:
> (W?L+W31,L)U§ )

7p)2 exp( = )

Breaking summation into two parts: k1 = ko = k and k1 # ko, we get

din

E[Y o (1 = dig)(1 = duni) exp (7, (Wi + Won1)0k.1)0% ]
o din 2 2 Vg2
L2(1 — p)? exp (22Tt
L L i
E[Zklzl Zk2:1,k2¢k1 (1- di7k1)(]‘ - dm,kz) exp (21:1

Wi7l5k17l)eXp(

Win 10ks.1) 0k, .50k».5]

_ T Bl

L2(1 = p)exp (
*dzk)(lfdmk)eXP(zl 1 ( zl+Wml)5k1)5 }

a
211:“1 (W‘21+W2 1)0(%

1,2 m, )

in 2 2 o
L2(1 —p)QeXP(Zl AU 2+W 1) *)
L L din din
N Doki=1 Dba1 ko thy BL(L = diky ) (L — dim i) exp (352 Wi l% 1) exp (312 Win 10k,,1)Oky 0k 5]
din 2 .
L2(1 — p)? exp (HEAp %k

E[(1 —d;x)(1—

dl"
Yexp (Y (Wis + Wi 1)dk.0)07 ;] =
=1

din

=E[(1 - di)]E[(1 — dm, k)| Elexp (Z(Wi,l + Win,1)0k,0)0 4]
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S (Wid + Wing) 203

=(1—p)exp( 5

din din
E[(1 = iy )(1 = dini) exp (Y Wi, ) exp (Y Win 16k3,0)801,0k2.5] =
=1 =1

(Wi + Wi j)05 +03)

din in
E[(1 = di ))JE[(1 = dm k) JE[exp (Y Wi 0k, )0k, 5TE[exp (O Win 18k.1)6k, 5]
=1 =1
din 2 2 2
(W2 4+ W
=(1- p)z exp ( 171( il m,z)Ua

2

din . 20_2
exp (Zl:l(Wl’l;rwm’l) Y (Wij + Wi j) 208 + 03)

4
Wi jWin o5

E[Ugi,jv2m,j |W} = dip 2 2 2
Lexp (Zl:l(Wi,12+Wm,l)05 )
din 2 2 52
(L _ 1) exp ( Zl:l(Wi‘I2+Wm,l) 5 )Wi,ij,jU:;l
i (W2 W2 ol
Lexp (&5 L0
din
_ b () WaaWon105) (Wi + Wonj)?05 +05) (L = Wi Winjos
L L
So, we have
din
E[O 0 |W] — 2 n exp (Zl:l Wi7le710'§)((Wi7j + Wm’j)Qgg + CT?) n (L — 1>Wi)ij)jU§
1,5~ m,g — Ye L L

E[O; jOm ;] = Ew[E[O; O, ;|W]]

din
_ o, exp (0 Wi W 103) (Wi j + Wi j)?05 + a3)
- EW[JC +

—~

(L =)W jWi jo5

~

exp (2721 WHWmJJ(%) (Wi,j + Wm,j)Qagl + 0?)

L

—~

)

:U€2+EW[

For large values of dj, by WLLN and continuous mapping theorem we have exp (27:1 Wi iWy,.102) ~ 1. Thus, we have

(207,05 +73)

E[0;,;0m,;] = ol + L
2(1 - Ti_ 2dm02. o +(1— ré 0'926
E[O“JOm»?] = rimaim + ( ( m) '"qu ( m) m)

The convergence arguments we have made require the scale of the variables to be small when compared to L and dj,. The
growth in scale can be controlled easily by controlling o4z, and we observe that if we let 04, become arbitrarily large the
scores passed to Softmax diverge leading to degenerate attention only attending to one token which has the highest score. To
avoid this degenerate attention, we choose smaller values of o, 0, and in that scenario, the approximate value for variance

and covariance are,

o2 ol g2

Tout ' Tin" Tin
l ~ ol 2
COVIout ~ Irxiu Umin

To get the final variance and covariance we can use results of Linear layer to account for W, If we initialize o, and oy,

T
to be small, in initial phase of training the output of Softmax layer can be treated as being a constant = % Using this

assumption we have,

1T1
Xout & Dropout( L_L

) XinWvy
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171,
= gx,, ~ Dropout(

IE 1y, T
= Dropout(T)ngWv

Hgin = 0
2 Ug‘mldag 14 (L1 1
Jgin - L(l _p)( ( - ) g(,m( *p))
o2 do?
Covf]m = 7‘%‘2 (1+ (L - 1)7“;0“[)

B Moment Propagation through Transformer Blocks
B.1 Transformer Attention Block

A forward pass through attention block consists of LayerNorm, followed by Scaled Dot-Product Attention, followed by an
output projection layer (a Linear Layer), and finally a Dropout. Using the results from above we get,

Pooe =0%0x0x0=0

i\)ul
exp (1=r )d2o% 0202)(4(1—rL )2dno® o202 +(1—rl )o? )
(= (L~ Dot 070} + S } o2 | g2 im0l
L Lin ~ Tin n 1;'(1_p)
exp((lfr; )d?na'i_ a' o )(4(1 r )Qdinaiv a2a2+(177’; )
_ dododol, (1= (L= Dduos,oiof + B 7 R —
(1_ ) L Tin
Covém
2(1 — 7k, ) ?dinoS olof + (1 -7k o2
_ (Timffiﬁ( (1= v, din ik 4 (21780 G2 ot

O~ UV~ Tin

— 2020202 (rl +(2(1— Pdinoy o208 + (1 -1l ))>

0,0,0
L

2 2 1 din0} l

2
Ugin = agout * (1 _ ) * dino.o * L(]. _p) (1 + (L l)lrgout(l _p))
dyo2 olo)
= g U0 (14 (L — 1)k (1
L(l _ p) ( + ( )rgoun( p))
dma
Cov‘f]m = agou * 1% dipo? x Y T 21+ (L — )Tﬁm)
dyos 000,
7513 (L+ (L =1 )

B.2 Transformer FFN Block

A forward pass through the FFN block of a transfer has a LayerNorm, then a Linear layer from d to 4d, which is then passed
through a ReLU gate, the output of which is the projected back to d dimension using another Linear layer, and eventually
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passed through a Dropout. Again using the results from above we get,

P =0 (Last Linear Layer makes it 0)
m—1 1 1
2 =1lxdpon, = ( 5 + %) x Adino, * = x 02
Qdiznaﬁ,lai2 9
(I=p) ™
! 1 12)0.5 U win—1(
l 2 "Zin (1 — (T 'in) ) Ty, S (T in) 1 1 2 2
Cov,, = dinoy, *( Z + 29;_ 4= — Tw) _ o + %) * Adinoy,, * 05
1 I 2105 U win—=1(nl
2 2 2 2 Tﬂci“ (1 - (T.’ti“) ) r.’rin S (T:ci“)
= 4din0w10w201in( 4 + 27_[_ + 27_‘_ )
1 I )2Y0.5 I ain=1(,l
l T:Ein (1 - (rﬁi“) ) rm;n S (rmi“)
=2x(1— o
e = 2x (1 =P (5 2 L
1
T 1 1 1
~(1=p)x (2 — 4 (== )b 2) (Fitting a 2-nd order polynomial)
2 s 2 g
1
2 2 2 2
O = Og % =) * din0s,, * 2 * 4dinoy,,
2 2 2 2
_ 2402, T, T g
(1-p)
1 sin!(rl
Covlgin = Covf%m x Lk digos, (Z + 27(7 ”’"‘)) x« Adiwo?2,
sin™*(rl, )

l
= 4d12ﬂai)1 03}2 Covgmu (Z + o0 )

C Summary Table of Moment Propagation through Transformer Components

In Table 15, Table 16, Table 17, Table 18, Table 19 and Table 20, we summarize the signal propagation formulae for all the
transformer components.
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Table 15. Moment Propagation (mean) during forward pass through components of transformer model.

Component oo
Embeddings 0
FFN (d;.ds) 0
ReLU T
(2m)
o2
GeLU i
2m(02 +1)
LayerNorm (d) 0
Dropout (p) .
Softmax I
SHA Block (without V) 0
Attn Block 0
FEN Block 0
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Table 16. Moment Propagation (variance) during forward pass through components of transformer model.

Component 2.
Embeddings 0
2/ 2 2
FFN (dldg) dlaw (O’zin + Mzin)
T—1
ReLU gagm
(2m)
o2 o2 o2 202
L Tin (T Tin i1 Tin Tin
GelU e (3~ T () * e i)
Layer Norm (d 1
y
2 2
0y + Dy
Dropout (p) %
-Pp
2 l L 2 1 L
o2, A-rh kg ) 202 (-rh )Ly
Softmax (e T s (11)11 . .
((L=1)e"#in"" i’ 41)2
xp (1—rL Yd20d 6262)(a(1—rl )2dyod o202 +(1-rL )
din02 [ (vt Y (L-1)dpo? o207+ T2 Trn) tn Ty 7 %k Zin! 7oy a7k T Ty
SHA (without V) a x‘“) Zin e %a%k - €E=D) b .
—p i
exp ((1—rk )d2o2 o207 —rl )2dipod o202 +(1-rk )
d? 20202 (1—rl )2 (L—-1)dino? o202+ POy gy 7 TRy ) in iy 7 T Lin
Attn BlOCk (Approx) m(lo v )rm Tin Tin~q” k — (1—p) + rlx
—p in
2d2 02 02 o2
FFN Block ZTinTwy T wa T Tin

(1-p)
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Table 17. Moment Propagation (variance) during backwards pass through components of transformer model.

Component ol
Embeddings -
FFN (dy.dy) 07,03,
ReLU 102
2 Gout
2 2 2
1 1 a1 U”in amln (50-"'in+3) 2
GeLU 11T 3,8 (ggi‘1+1) + 2n(o2 +1)(202 118 T Gou
2
LayerNorm (d) Pgom
2.
Dropout (p) L02
1 —-p YGout
o2 (1—rl ) L_ 202 (1—rl )L
(e Tin Tin Lfl—l)e Tin Tin’ L—1 1 2
SOftmaX ( ((L_l)ea%in(liréi“)_lrl)? + L2 )Ugoul
. dincy,, 1
SHA Block (without V) ﬁ(l + (L= 1)rg, (1 =p))
(1-p)
d2o? o252
Attn Block (A g T2 (1 4+ (L —1)rl (1—
n Block (Approx) L0 = )2 (1+( )T g0 (1= D))
FFN Bl k 2dl2no—'l2ul 0—721)2 O’éoul
oc —_—
(1-p)
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Table 18. Covariance (along sequence length) propagation through the components of transformer model.

!
Component Cov,,,

NZ*(Nl—l) 2

Embeddings > L+ (L—1)) *Og
FEN (d;.ds) dio2,(Covh + 42 )
1 sin t(rl) . o2
ReLLU 4+ ———"Cov,, — (1 — 1—(rk )2))-
: (G + g mhcort, — (-0 () 2
o2 1, o2 202 (02 (1—(rL Y +1+(rL )?) 202,
GeLU TTll'n(ﬂ’ri:in + 2rlwin s ' ( Ué[:“*‘rlln ) + (U:?;::J'_l)m\/(agm—:l)2_(T:lzr:i“oé:“)Q - (G-;%in:‘ljl
LayerNorm (d) (1 1)Covi”i"
ayerNorm - =
y d U%in
Dropout (p) COV;in
7’I‘l 2din(74v 0_20_2 7711'
SHA (Wlthout V) dinagin (rlmi“ 4 (2(1 Iin) I‘i q (1 Im)))
(20—rk Vol 020t +(1-rL )
Attn Block (Approx) d2ololo? (rfvm + [
z 1 (k)2 1 gyt
2 2 2 (Tan %in Tz, Sin(rg)
FFN Block ddinoy, 07,07 ( 1 + o + o )

7)

Table 19. Covariance (hidden dimension) propagation through the components of transformer model.

Component Covim

Embeddings 0

FEN (d;.d2) 0
1 sin!(r? ,

ReLLU (= + ( m‘“))Covi, — (1= /(1= (rd )2))2
4 27]' in in T

GeLU

LayerNorm (d) 1

Y d—1

Dropout (p) Covii"

SHA Block(without V) 0

Attn Block 0

FFN Block 0
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Table 20. Gradient covariance (along sequence length) propagation through the components of transformer model.

Component Covlgi“
Embeddings -
FEN (d1.d2) dz02,Cov!,
1 sin t(rl) .
RCLU (Z + T)Covgou(
l 2 l 2 2 2 l 2 2
1 1 in—1 (Tay %oy Ty Oy (200, +3) (00, +1)—2(ry 00, )7) | 2
GeLU 1 + brs Sin ( Ugin+1 ) + 277(0'%"“1’1)((0'%““1’1)2*(Téinggin)Z)% YGout ~ Gout
Cov’
LayerNorm (d) - 2gom
thin
Dropout (p) Cov.f]om
. din0'2
SHA Block (without V) = (1 (L= 1)rg,,)
d2o? o202
Attn Block (Approx) %(1 + (L - 1)7"20.,[)
1]
sin™(r,
FEN Block ddi,o7, 0%, Covg, (5 + %)

D Numerical Verification

We perform numerical verification for the formulae reported in Table 15, Table 16, Table 17, Table 18, Table 19 and Table 20.
The parameter ranges have been provided in Table 22. For each parameter, 3-5 values were sampled uniformly (or log
uniformly) across the range for numerical simulation. Table 21 provides the percentage error corresponding to the 50,
90;p, and 99,;, percentile. These simulation results are all fully reproducible using our released code. Even at 99 percentile,
no error (other than SHA backwards) is larger than 10%, verifying our assumptions.

Table 21. Percentage Errors [50th, 90th, 99th percentile] for the theoretical formulas corresponding to forward and backward pass through
components of the transformer model.

Component P oz o2 Covlh Covl,
FFN [0.0,0.4,1.3] [04,14,2.8] [0.2,1.0,2.2] [04,14,2.8] [0.2,1.0,2.2]
ReLU [0.3,1.3,2.3] [0.5,1.9,3.4] [0.6, 1.5, 2.6] [0.3,1.6,3.1] [0.2,1.1,2.3]
GeLU [0.1,1.0,2.4] [0.2,0.6, 1.3] [0.2,0.6,1.1] [0.1,0.5,1.2] [0.1,0.4,0.9]
LayerNorm [0.0,0.0,0.0] [0.0,0.0,0.0] [0.4,1.5,3.2] [0.1,0.5,1.0] [0.2,0.9,2.2]
Dropout [0.0,0.1,0.5] [0.1,0.5,1.5] [0.1,0.7,1.5] [0.0,04,1.3] [0.1,0.5,1.2]
Softmax [0.0,0.0,0.0] [0.2,0.9,4.0] [0.1, 0.6, 4.5] - -
Single-Head Atten. [0.2,1.0,2.5] [1.4,4.1,7.8] [2.2,13.3,44.5] [1.3,3.9,74] [l.6,4.5,8.2]

64



Transformers Get Stable: An End-to-End Signal Propagation Theory for Language Models

Table 22. Range of input variance/correlations used for theoretical formula verification reported in Table 21 for the theoretical formulas
corresponding to forward and backward pass through components of the transformer model. The dropout probability range was [0, 1) for

Dropout and Single-Head Attention, and o2, for FEN was [1072,10%]/di.

Component . o2 ol Corr;m Corrgm din dout L

FEN [-10,10] [0.1,10] [0.1,10] [0,1.0) [0,1.0) [10%,10%] [10%, 10%] [10%, 10%]
ReLU [0] [0.1,10] [0.1,10] [0,1.0) [0, 1.0) - - (102, 10%]
GeLU [0] [0.1,10] [0.1,10] [0,1.0) [0, 1.0) - - (102, 10%]
LayerNorm [-10,10] [0.1,10] [0.1,10] [0,1.0) [0,1.0) [10% 10%] - (102, 10%]
Dropout [-10,10] [0.1,10] [0.1,10] [0,1.0) [0,1.0) [10% 10%] - (102, 10%]
Softmax [0] [10~4,1] [0.1,10] [0, 1.0) - - - [300, 10%]
Single-Head Atten. [0] [1] [0.1,10] [0,1.0) [0,1.0) [10% 10%] [32,64,128,256] [300,10%]

E Moment Propagation through the Entire Transformer Model
E.1 Vanilla Pre-LN

We will use the approximations listed in Table 2 here.

E.1.1 FORWARD PASS

For forward pass, a Transformer Pre-LN has LayerNorm followed by the Attention block, residual connection, LayerNorm,
and then the FFN block. Let aiyer be the output variance after 1 such layer, and 02, ., be the output variance after the entire

model of N layers.
g2 d*o20? x ré
Zattn (1 _ )
2 2d201201012[,2
Uwffn - (1 _ )
2 _ 2 2
Tlayer U + Uw attn + UIft'n
2y d*c%o? « rl - 2d%c? o7,
o (1-p) (1-p)
Let. Cr — d%ﬁ g 2d201201012u2
e ¢ - 77
1= (1 D)’ (1 —p)bu
Then, UIIW oi +Cy*rl .t C

As we discuss in Section 3.4, the correlation 7, . quickly reaches a stable constant maximum value rl
using the calculations in Appendix F. Let Txm;n > 0 be the minimum value of this correlation, let Cg
Cy = Cy xrl +Cy. Then,

Hence after N layers,

, which can be found
01 * rimax + (5, and
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= s = O(N) @
This shows that output variance of Pre-LN will increase linearly with number of layers N.

In practice, because the correlation quickly reaches v, , the variance of the entire model 02~ 02 + N * Cs.
‘max model Lin

Discussion: This has the effect that transformer blocks near the output can affect the model output much less, as the skip
connection variance increases but block output variance is constant. We conjecture that parameters in these are hence not
being utilized to their full potential. Specifically in case of Xavier initialization, C; = 2.2,Cy = 0.4, rémax = 0.85. For
large d, agm will be negligibly small compared to aglayer, so we have -

02 ~C3xN~(22%085+04)N ~ 22N

Zmodel

E.1.2 BACKWARD PASS

For the backward pass, a Transformer Pre-LN gradient will first backpropagate through the FFN block, then gets rescaled
by Layernorm, and added with the skip connection. It then backpropagates through the Attention block, gets rescaled by
Layernorm, and finally added with the skip connection. Let ag_n be the gradient variance backpropagating from the n!"

layer, and agmodd be the gradient variance after the entire model of N layers.

For the Attention block, let o2 ; be the gradient backpropagating from the block. Then for long sequence length L we

Gattn, 0 —
have -
d*c202 * o2
2 —_ 9V “Yun — 1)yt
agaltnyn_l - L(l _ p) (1 + (L 1)Tgollt7")
2.2 2 1 2
~ d 050, * Tgou[,l * T gou,n
(1-p)
ng n—1 18 then rescaled by the Layernorm to give Ug..‘[n,|uyem.,.-.n n—1- As Layernorm scales gradient by the inverse of the input
variance Jgi“ n—1> which from the section above, we know is approximately agin n1 = Csx(n—1). Then
2 _ l 2
Uyatln7n_1 - 01 * Tgnuun * O’goutvn
l 2
0_2 _ Cl * Tgom-,n * O—guul-,'n«
Jattn-layernorm, 0 —1 2
al layerno O-Ii“7n_1
l 2
~ Cl * Tgouun * ggoulvn
Csx(n—1)
Therefore, the final gradient agmrhyer 1 after addition with the skip connection is
Cy 1t
0_2 _ (1 + 1 Gout, 1 ) 2
gmln—li\yer-,'n'_l - 03 * (n _ 1) Gout, M
. . 2 . . 2
Similarly, we can get o itntagersni— 1 for the ffn block. Then to get the gradient backpropagated through the entire layer o ,,_,
we have,

Cy

2 - 2
Ugrfn-layerm*l o (1 + m

Gout ;T

o
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Cl * Tl C
2 Gout, T 2 2
=14 =—)(14+ —
O gou,n—1 ( + Cs * (n _ 1) )( + Cs * (n _ 1))090.“,71
Cy 7t C
02 A (1+ 1 Gout ;T 2 )0_2 .
Gouts 03 * (TL — 1) 03 * (n — 1) Gouts
Cy x 1t + Cs

=(1 Gout, T 2
( + 03 * (n — 1) )o-gounn
Cl * Téouhn + 02 )0_2
(Cyxrt .+ Co)x(n—1)" Jown

Tin,

—(1+

C
= (1 + ngp_ 1” )O.jouhn

Cl*rl

. . +C2
A\ — Jout>™
here we 1gnore hlgher order terms for large n, and define ngru” C *7"5.‘: ntCa”

Since Cy,, . .n > 0, we will witness an increase in gradient going backward, and this increase is inversely proportional to the
current layer n, matching with empirically observed growth (Figure 2).

Let Cy,.. min = QCTQC,Z = 0.15 be the minimum value of Cy _ »,and Cy . maz = 01%202 = 6.5 be the maximum. Then
the above equation is bounded by:

C ; C ;
Ipre,min 2 2 Gpre,Mmin 2
(1 Comaminyn g2 1y iy

Applying the above equation repeatedly until the final layer IV, this recurrence can be approximately solved by treating

aéom_n as a continuous function of n, taking logarithm of both sides, and integrating. This gives the following solution for
gom-,n:
C ; c .
N gpre,min N gpre,max
2 2 2
JguuuN * (ﬁ) S O—Qt)uhn é o-g(!uhN * <;)

If the correlation rlgou“n quickly reaches a stable constant maximum value rém (approximately equal to but slightly less than
rimx (Appendix F)), C,, . =~ 1, and we get exactly hyperbolic growth as shown below:

2 2 N

a-goulyn = O—goulyN * (;)

The gradient variance will increase hyberbolically with number of layers /N while going backwards.

Discussion: This has the effect that much lower learning rate is required for the entire model, because the gradients near
the input layers are much higher, slowing down learning and making the model unstable.

E.2 Vanilla Post-LN
E.2.1 FORWARD PASS

The forward pass of Post-LN is trivially always 1 at initialization, because the skip connection does not cross the LayerNorm.

E.2.2 BACKWARD PASS

Following an analysis similar to that for Pre-LN, we get

2 . 1+ Cs 9
Jgﬂ’n—layennfl - 1 + Cl * Tl Ugon|l7n

Tou,n—1
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l
o2 _ 1+ CiHrgm
gunn—lz\ycnn—1 1 + C2 Gout,
l
2 _ 1 + Cl * Tgouhn * 1 + 02 % 2
O‘Qounn*1 - 1 + C 1 + C, * T‘l Ugoulyn
2 1 Tout,m—1
!
_ 1 + Cl * Tguuu" 0,2
- 1 + C * ,r,l YGout, T
1 Tout,n—1

14Cyrl . . . . . .
LetC5,, = HC‘T%N As we discuss in Appendix F, the correlations both quickly reach a maximum stable value. But
’ 1 Toyut,m—1
1
1 N . 1 . . . 1 _ 1+Cl *Tgmax .
the ¢ ,,’s maximum value ry - is slightly different than r;, . Let C5 = == Crorts then Cs can be either greater or
smaller than 1. Hence, we get
2 _ 2
O—gmlln—laycrynfl - CS’no—gouun
N
— 2
- H 0577’0-90L117N
i=n
o OWN-N) 2
~ 05 UgoulyN
2 _ (N=n) 2
Ogaun—layervn_l - 05 UgounN (3)

This shows that gradient variance of Post-LN will decrease/increase exponentially with number of layers N while going
backwards. Even very slightly different value of C5 from 1, such as 0.96, will cause a 2000« fall in gradient after 200 layers.

Discussion: This shows why Post-LN transformer is much more difficult to train for deeper models than Pre-LN. While
for Pre-LN the backwards gradient increases hyber-bolically to a maximum of NV, in Post-LN the gradient can increase or
decrease exponentially, stopping the model from converging.

E.3 DeepScaleLM Pre-LN
E.3.1 FORWARD PASS

In DeepScalelLM, the weight initialization are chosen specifically so that aga‘m and agfm are both equal to 1 for all layers, by

iteratively calculating rém as detailed in Appendix M. Also, the embeddings are initialized so that Ugm is also 1. Hence,
2 2, 2 2, 2
Olayer = A% x O skip + B * Opock
— )\2 4 ﬂ2 =1

Hence the forward pass variance remains 1 throughout the model.

E.3.2 BACKWARD PASS

For the FFN-block, we have agimnfl = agmmnfl = 1, as per equations in Table 2 of the main paper.

Similar to Vanilla-PreLLN, we arrive at

l 2
2 . Cl * Tgouun * O—goutvn
Jattn-layernorm,M—1 2

Uﬂjin)n*l

1
. . T r n
Here, Ugm,nq = 1 as shown above, and since weights are initialized so that C'1 * r;m = 1. Let Cs , = por—:

ZTout,m—1
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l

2 _ rgout, n 2
Gattn-layernorm , 70— 1= Gout, T
Tin,n—1
_ 2
- 06,71 * Ugou!;n

Therefore, assuming no covariance between block gradients and skip connection (which will be true at initialization), the
final gradient o7 . after addition with the skip connection is

Gattn-laye

2 _ 2 2 2 2
o'gaun—laycr-,nfl - >\ agoulan + O-Qulln—lmycmormy'n*l
_\2 2 2 2
- >\ Ugouhn + 5 Cﬁ7no.gnul7”
_ 2 2 2
- ()\ + /8 CG,TL) * Ugou!;n
Cen—1
— ~-%n - 2
- (1 + N ) * a-gou!;n
E 2 _ 2 2 — 42 —
Similarly for the FFN layer, O gmmtgern—1 = g A Oy 1 =0 g = 1.
Hence,
> _ Con =1, >
T gou,n—1 = (1 + N ) * G Gour,n?
o _ Comn —1, >
O gous1 = H(l + N ) * 0 gou, N

~ (1 + N ) Gour, N
_ Cs—1 2
¢ UgounN
~ 2
~ o-g(!ulyN

, where we applied (1 — £)" ~ e™*, and Cs ~ 1.

Discussion: Hence for DeepScalelLM, the backward variance of gradient remains constant (bounded by a constant) across
all layers.

E.4 DeepScaleLM Post-LN
E.4.1 FORWARD PASS

Same as vanilla Post-LN, this will remain preserved at 1.

E.4.2 BACKWARD PASS

Following an analysis similar to that for Vanilla Post-LN, we get

2 _ 2

Gifn-layer,n—1 T O-Qn)uhn

2 _ 2 2 l 2
O-galln»]aysnnfl - (>\ *1 + B * Cl * Tgouhn)o-gouhn
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rt

_ 2 2 Gout, 1 2
- ()\ + 6 * ,r.l )Jgouun
Tin, T
,r,l
2 _ 2 2 Gout, 2
O-gouhn_1 - (A + ﬂ * l )Ugoul;n
Lin, M

Similar to Pre-LN, we use the maximum value of these correlations, and assume Cs = 1. We get

l

r

2 _ 2 2 YGmax 2
o—g()ulyn71 - ()\ + ﬂ * lm )o-gouun
Lmax

— ()\2 +5206>0-2

YGout, 1
~ 2 2\ 2
~ ()\ + ﬂ )o—gouun
2

U_L] out , T

Hence for DeepScaleL.M, the backward variance of gradient remains constant across all layers.

Discussion: Similar to DeepScale-LM Pre-LN, the assumption C's = 1 is not required, and yields the same constant bound
if we do not assume it to be 1.

E.5 DeepScaleLM (Simplified) Pre-LN

E.5.1 FORWARD PASS

For simplified DeepScaleLM, the initialization for the FFN block does not change, so its output remains 1 same as
DeepScaleLM. For the Attention block, we changed its initialization to mimic that of the FFN block. We will show that
initially, simplified DeepScaleLM’s forward pass is bounded.

1

T . .
o2 .. = 1 as DeepScalelL.M, Uﬁmm = —". Therefore, the output variance after layer n will be
2 22, 2 2 2
Uxﬂlln—skip m o )\ * O-mluycr,n—l + ﬂ * O—xaun
2 1
_(1_ = 2 I
- (1 N) * O-xlayer,n—l + N * Tin

Similarly after the FFN block, the output skip will be -

O—fl%layeryn = )\2 * O—-’%ulln—ﬂkipan + 52 * O—-’%ffn
2 2 9 1 . 2
= (1 — N) % ((1 — N) * leayer,n—l —+ N * Tlﬂin) + N * 1
2.9 o 2 1 2
=(1- N) * 0 T (1= N) * 5 * T + N
As correlation coefficient rfci" <1, we get,
2 2 1 2
pen S (L= )20, (=)l
2.9 9 3 2
== * e Ty T W2
2.9 9 3
< (]‘ - N) * Jmluyer,n—l + N
Applying the above recurrence equation N times, we get
N
2 3 2 .
2 2N, 2 2i
a.xlayervN S (1 - N) * O-x]ayer,() + N * ;(1 - N)
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2 1—(1—2)2N
= (1 - 7)2N * U?C]ayero + E * ( NQ) 2
N N 1-(1-%)
Since A2 + 32 = 1 and 3? is small for large N. We can rewrite the above equations completely in terms of 3 as follows
3,0 1—(1-p2)2N
2 22N | 2 2
O-Ilayer;N = (1 - /B ) * Uﬂj]ayer,U + 5/3 * 1 _ (1 _ ﬂ2)2 (4)
3
~ (1— )2 « ggw‘_ﬁ + 1(1 — (1= B2 )
For large N, we know (1 — £)N ~ e=*. So the above becomes -
3 1—e4
2 o =4, 2
O—xlaycryN ~e N Jiﬂlayer,o + N * % o %
3 1—e?
< e x Jimyer,o + ﬁ * 4
N

2674*14—%*(1—674)
3 1

_1+4e4

This gives us an upper bound on the output variance after /V layers. By setting rii" = 0 instead of 1 in the equation above,

and proceeding similarly, we can also arrive at a lower bound of % + ﬁ

3 1
2
5e1 = OmeN < 71 7 (6)

Discussion Informally, this is because the attention block output variance will be between 0 and 0.5, and ffn block output
always 1. Because of our )\, 3 scaling, the output will slowly converge to be in between the two outputs.

Note that the above derivation assumes no correlation between the block output and the skip connection. As we mentioned
in our main paper, we do observe correlation between the input and the output. As such, theoretically, after every block,

the variance o2 can increase by 02+ /U%hyer _ - This will cause the final output variance to increase by factors of

Tlayer,n Tblock

2 % v/ N. In practice however, we observe the output variances to not grow too large.

E.5.2 BACKWARD PASS

Similar to DeepScaleLM Pre-LN, we arrive at

l 2
2 — Cl * Tgoul:n * Ugou[,n
Gattn-layernorm, 2 —1 2
' ’ Uz;n,n—l
05%xCs
~ 0'7 O—guuun
Tin,m—1
2 — 2,2 2 2
O gumgeri—1 = A Ogoin 870G o1
o 2 2 05 * C6 2
=W 4B O Gou,n
Zin,m—1
2 0.5 * 06
= — i A 2
=(1+ ¥ * (02 1)) * Ofin
Tin,m—1
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Similarly, for the FFN layer, we get

2 1
2 2
o'gl'fn—lmycran*l = (1 + N * ( 2 1 - 1)) * O—goulgn
Lin,N—
Multiplying these, we get
2 0.5 % C 2 1
2 6 2
o =14+ =%x(—— 1)1+ —=%(————-1)) %0
Gout,m—1 ( N (Ugm,n_l )) ( N (U%m,n_l )) Gout,T
2 0.5 % Cg 1 9
~ 1+ —x=( + —2))*0[““
N gin,nfl Ugm,nfl Gous 11
As 0.5 < ofcin n_1> we get =4 < ((72 Co 4 p: 2 —4) < 2Cg + 2. Hence, on applying the above recurrence N times,
” ip,m—1 zjp,n—1
we get
6_4 * U;t}uhN é 0-3(“,[,71,71 S 6206+2 * o-guuuN

Hence, we show that even for simplified DeepScaleLM Pre-LN, the maximum relative increase/fall in gradient variance is
bounded across layers.

Discussion: The above derivations will also be valid if there is correlation in the input. Correlation will cause Uim,nq
to increase, effectively decreasing the backpropagated gradient through the block to decrease (as Layernorm will scale by
inverse of Ugm,n—l)- However, even in that case, our gradient will still be bounded by the above lower-bound.

Intuitively, as the gradient can flow freely through the skip connection, hence, O'gom_’n_l >\ x Ug(m.,n’ which when applied
N times, yields Ung >e 4 x ogmu N

E.6 DeepScaleLM (Simplified) Post-LLN
E.6.1 FORWARD PASS

The forward pass variance for Post-LN is trivially bounded.

E.6.2 BACKWARD PASS

Following an analysis similar to that for DeepScaleLM Post-LN, we get

A2 4+0.5% 527!

0_2 _ Jou, 2
Gou,m—1 A2 + 0.5 % 62 x 7l Gout, 1

Zin,M

14050 -1,

YGout ;1

= o
1+ %(0.57“1. — 1) gm

Lin, T

Applying taylor expansion, we get,

2
Ot ~ (14 (057, —1) = (0.5, , —1)))o>

N Gout ;1 7 T, Gout ;T
1
- ! l 2
- (1 + N(rgoul,n - rIinan))o—gouun
The above equation can be rewritten in terms of 3 as follows
2 B l 2
a-gounnfl = (1 + 7<rgou|,n - riin;n))o-gout;n (7)
As -2 < (réﬂm’n — Té;n,n) < 2, applying the above recurrence N times we get

-2 2 2 2 2
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Discussion: The above derivations assume no correlation in the input, and hence is only correct at initialization. However,

if there is correlation between the block output and skip connection (r,,), the layernorm will cause ngmn_ 1 to be down-scaled

by a factor of 1 + 2*;; , where c is some constant, as opposed to 1 + % above. However, if there is also correlation in the

gradients of the block and skip connection (rg), the numerator in the equations above for Ugou“n_l will also be increased, by

a factor of 1 + (‘)*ﬁ
will remain. If 52 is set as % then even if input correlations exist, the backward gradient will be bounded, following a
similar derivation as above. However, we conjecture that this decreases the ability of the transformer layers to modify the
skip connection too strongly, decreasing the “expressivity” of the model. This is similar to the approach of DSInit, which we

show in our main paper does indeed decrease model performance.

Hence if the correlations among the gradients and among the output are similar, the above bounds

F Rank Collapse and Correlation Analysis

In the previous sections, we derived the formulas that determine how the correlation will change through the Attention and
FFN blocks both for forward and backward pass. Both attention and FFN blocks modify the correlation as shown in the
Table 2.

2

Tin?

Simplifying the formulae in the table above, we rewrite the output variance for the attention block as aim =(C * rim * 0
and the output of the FFN block is agﬁ" = Cqy % agm, where C; and Cy are defined as follows.

o = d*0202 C = 2d%c2 o2,
1= Oy = ————,
(1-p) (1-p)
This also helps us to rewrite the backward pass as the 02 = Cy 7} 02 ando2 =Chxop .

Specifically in case of Xavier initialization with 0.1 dropout, C; = 2.2, Cs = 0.4.

Assuming a dropout of 0.1, the FFN block (with the ReLU) will reduce the correlation if it rises above 0.64 (where

rl < riin for FFN block). And the attention block will never output a correlation higher than 0.9. Hence correlation

Zout

will never reach 1, but rather a steady, stable value between ReLLU’s maximum correlation and that of the attention block.
Dropout’s effect in preventing rank collapse was also observed in (Rong et al., 2020).

We can approximate the stable value of correlation after many layers based on the weightage average of the correlation in
the Attention output and FFN output. When the attention output is added to the skip connection, the new correlation will be
a weighted (by variance) average of the correlation among the tokens of attention output and among the tokens in the skip
connection. And the same will happen after the FFN block.

l

Tmax

A weighted average of the correlations of FFN and attention blocks gives the stable asymptotic correlation 7

1 7 1 1 2
1— 1— o Zmax [ PV
701*( p) + Cax ( p)(ﬂ+ +(2 W)?“gcmax )

l 2

Tmmax - Cl + 02

Specifically for the case of xavier initialization, solving the above equation with C; = 2.2, Cy = 0.4, gives rimx ~ 0.88, as
empirically verified in Figure 8.

Similarly, the correlation for backward gradient will also converge at a stable value rlgmax, obtained by solving the below
equation -

sin™?! (r!
Tl = Cl*(1_p)+02*(1_p>(%+¥)rémax
gmmx - Cl + 02

Specifically for the case of xavier initialization, this gives 7/ = 0.87. Note how r! = r!

YGmax Gmax Tmax *
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Discussion on rank collapse observed in Noci et al. (2022) Noci et al. (2022) focuses primarily on linear activation, we
theoretically analyze the change in output correlation caused by ReLU. We find that ReLU (or any asymmetric non-linearity
in general) critically affects correlation. As our closed form expressions suggest, both FFN block (because of ReLU) and
dropout reduce the correlation. While Noci et al. (2022) mentions the use of dropout, as we show above and observe
empirically in Figure 8§, rank will not collapse with dropout, and perhaps Noci et al. (2022) did not use dropout.

We replicated the experimental settings of Noci et al. (2022) without dropout, and observed that the rank collapse occurs due

to incorrect initialization. They use a rather non-standard version of xavier initialization - instead of Faniifanom f Fanor they use
in out
1

Fanom Hence, they initialize a much higher value for V as fan;, is much greater than fan,,; (“Number of heads” times
greater), and this results in variance of the output of the attention block C'1 being much higher than FFN C2. As attention
block outputs a much higher correlation than the FEN block, increasing its output variance without using dropout will result
in rank collapse. This highlights the criticality of correct initialization, as well as the explainability power of our theoretical
framework proposed in the paper.

G Discussion of Relative Strength

In Equation 4, we discussed that the backward recurrence equation for PreLN can be written as

2 - 2\2N | 2
O Zyger, N 7~ (1 -B ) * 0 L rager,0 +

(1—(1-p%))

NI

Replacing 32 = & and using (1 + )N = *V' ", we get

2  _2cN'~« 2 3 2eN1—«
Um]aysraN ~e * ZTlayer,0 + Z(l € )
_ _2cN'7« 2 § §
=e€ * (O-mlayer,o 4) + 4

Hence, the fall in gradient for 52 = & is O(e"V e ).

Similarly for PostLN, we can use Equation 7

B

l
O-Eouu"—l = (1 + ?(r!]nm,n - TIin,n))a-gnuu"

(1=B)xos, n< 05 n1<(1+B%)xas

Hence, for N layers, the gradient fall/growth is again O(e=*FN'™%).

H Applying DeepscaleLM to Vision Transformers

Applying our method to vision transformers (for eg. ViT (Dosovitskiy et al., 2021) or DeiT (Touvron et al., 2021a)) will
only require handling the input embeddings section Appendix A.l - For ViT, this is a simple linear projection. Given
normalized image inputs, our Linear section Appendix A.2 provides formulae to calculate the variance and correlation of the
embeddings which are input to the model.

We empirically verified that for images from ImageNet, the embeddings after the linear projection do indeed follow the
normal distribution, with an R? of 0.95. Furthermore, normalizing images to have approximately unit variance, given

linear weights initialized by \/% , the output variance was observed as 1.02 (within 2% error). While we used Zipf’s law to

estimate input embedding correlation for text, this could simply be empirically measured for vision after the embedding
layer — we measured this to be 0.46 using the code provided by Beyer et al. (2022).

Using this measured value of input correlation, we can apply our DSLM method to ViT. As we show in Figure 11, our
method successfully controls both the forward and backward moments for the ViT model with 100s of layers.
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Figure 11. DeepScaleLM: The variances remain conserved for both backward and forwards for ViT, using ImageNet data, after even 192
transformer layers

I Compute

I.1 Theoretical compute

Table 23 provides the exact compute for the models reported in Table 4. We follow the code provided by Electra (Clark
et al., 2020) to calculate the each model’s compute (FLOPs). We observe that up to 200 layers, the extra compute is within
6 — 7% of the original shallow model.

Table 23. Model compute with increasing depth (keeping Nd? constant).
Layers (N) Hidden Dim (d) Params Compute (Flops) % Extra

12 1024 185M 1.06e20 -

48 512 168M 1.03e20 -2.5%
192 256 160M 1.12e20 6.3%
784 128 156M 1.38e20 30.6%
24 1024 336M 1.92e20 -

96 512 319M 1.96e20 2.3%
384 128 311M 2.19e20 14.5%

1.2  Wall Clock times

We also compared wall clock time overheads, and found them to not be too large. For example, the 48-layer-512-d model
has only 9.8% overhead in wall clock time compared to 12-layer-1024-d model. Even when larger number of layers, such as
96-layer-512-d, the overhead is only 14.9% compared to 24-layer-1024-d model. Profiling revealed majority of the overhead
was due to extra latency of added GPU kernel launches. Hence, approaches such as cudaGraphs (which batches kernel
launches together) or graph compilation techniques may decrease this overhead further.

This overhead will decrease the bigger the original model size, and become much smaller. For example, for a 5B params
model with 24-Layers-4096d (a reasonable shape in contemporary models, for example, LLaMA 7B has 32L.-4096D) has
much less compute overhead - only 6.6% overhead at 96 layers, and 13.6% overhead at 192 layers.

Despite this wall-clock time overhead, due to large performance gains from increasing depth, the 160M params 192-L model
from Table 4 outperforms the vanilla 336M BERT-large 24-L. model with 2z more params, even at equal wall times.

Furthermore, a large fraction of the performance improvements mentioned happen when increasing the number of model
layers by 4x - and as shown above, the wall clock time overhead is minimal. Making standard models 4z more deep to
50 — 100 layers, will provide a large fraction of performance gains without much overhead.
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Note that this performance overhead seems to be dependent on the framework used — some frameworks may be less
optimized for such deeper models and may incur additional overhead for small but deep models.
J Statistical Significance

J.1 Error Bars for Pre-Training Experiments

In our initial experiments, we observed very little variation in performance across different runs — we conjecture that the
model is trained on a large enough number of tokens for differences in initialization/data seed to not matter. We provide
mean and standard error for the 12L.-1024D Post-LN and DSLM models from Table 4 below:

Table 24. Standard error across runs for pre-training.

Model Mean Standard Error
Post-LN Baseline 14.33 0.14
DSLM 15.56 0.08

As the variation was so small, and due to compute limitations, we did not run multiple runs for other experiments thereafter.
We also reported the best score for Baseline Post-LN, and the worst score for DSLM for the 121.-1024D models Table 4 for
a conservative comparison.

J.2 Statistical Significance for Fine-tuning Experiments

Mean and standard errors for all downstream fine-tuning experiments were reported in Table 6. The differences are
statistically significant at p < 5% for all datasets except QQP.

K Related Works

K.1 Initialization

Several works, such as Glorot & Bengio (2010); He et al. (2015); Brock et al. (2021a) improved the initialization of
ResNets/ReLU networks, but crucially these works do not consider the impact of correlation in the input, which is large in
Transformer models. Poole et al. (2016) takes correlation into account, and Schoenholz et al. (2017) initializes weights for
networks with bounded activations so that correlation reaches 1 asymptotically.

Some works, such as Mishkin & Matas (2016), sequentially profile each layer empirically by running forward passes through
the model, and scaling the weights and/or output to achieve unit variance, and Liu et al. (2020a;b) applied the same method
for Transformers. Blake et al. (2023) also tries to achieve unit variance, but does not consider correlation in input or across
tokens, and ignores the non-zero mean of ReLU. Bachlechner et al. (2021) shows unit variance leads to faster convergence
at the start of the training.

We demonstrate that this profiling is unnecessary, and can instead be done theoretically in DeepScaleLM. Furthermore,
where output or gradient increases in some prior works with more layers (eg. for ADMIN (Liu et al., 2020a), grad decreases
by O(N) (increases by O(log(N)) for Pre-LN)), our method allows maintaining both unit output and equal gradient across
all layers at initialization, and bounded during training.

Yang et al. (2021) proposed P initialization such that updates to a layer are of the same order regardless of width. Their
work was focused on enabling transfer of hyper-parameters across model widtd, and does not target solving pathologies
inherent in deeper architectures — they do not model the impact of ReLU and Attention on correlation, and hence are unable
to prevent rank-collapse at large depths. When applied to 100s of layers, uP diverges with rank collapse at initialization.

K.2 Signal Propagation

Signal propagation in Neural Networks has a long history, such as Neal (1995); LeCun et al. (1996). More recently, several
works have focused on signal propagation for ResNets, such as He et al. (2015); De & Smith (2020); Brock et al. (2021a);
Schoenholz et al. (2017); Hoedt et al. (2022); Labatie et al. (2021); Marion et al. (2022); Klambauer et al. (2017); Balduzzi
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et al. (2017).

For transformers, signal propagation was studied in Xu et al. (2019); Dong et al. (2021); Davis et al. (2021); Noci et al.
(2022). Our work also considers previously neglected effects of dropout, input correlation between tokens, non-linearity,
QK initialization, and provides closed forms with verifiable correctness of this signal propagation. Ours is the first work to
theoretically constrain the output and gradient to almost exactly unit without any profiling passes, showing the validity of
our formulae and of our assumptions.

He et al. (2023) extends neural kernel methods of DKS (Martens et al., 2021) to Transformers to model network behaviour,
assuming the MLP to be linear in its effect on attention with respect to correlation. () /C maps in kernel methods are similar
to signal propagation, as expected moments are equivalent to ¢ and m values of kernels (Martens et al., 2021). Our method
relaxes these assumptions, and we show that considering the impact of ReLU/GeLU on correlation is critical to correctly
modelling attention. In particular, our formulae show that an MLP block with GeLLU will also increase correlation in the
absence of dropout (the same setting as used in He et al. (2023) ). At large depths, He et al. (2023)’s method suffers from
rank collapse (with their deeper models under-performing shallower ones), which our method successfully prevents.

We also account for cases with non-IID inputs that may occur due to segment/position embeddings or due to non-uniform
token distributions in real data (that are distributed approximately per Zipf’s law Kingsley (1935)) — and find that this
strongly affects output variance of the attention block.

K.3 Moment Control & Residual Scaling

Bounded gradients, or normalizing per-layer gradients, have been shown to results in better/faster convergence (Shen et al.,
2020; Yu et al., 2017; You et al., 2017; 2020). Woks such as Takase et al. (2022); Shleifer et al. (2021); Hayou et al. (2019)
also achieved improved training by empirically mitigating the gradient explosion.

Scaling with A2+ 52 = 1 to control moments have often been used for ResNets (Balduzzi et al., 2017; Szegedy et al., 2017;
Hanin & Rolnick, 2018; Arpit et al., 2019; Zhang et al., 2019b; Hoedt et al., 2022). Szegedy et al. (2017) proposed to use
any small 3, Balduzzi et al. (2017) proposed to set 32 = 0.5, Bachlechner et al. (2021) sets 3 = 0 and learnable. De &
Smith (2020) showed that A2 = 0.5 is not sufficient to solve vanishing gradients.

8% = % was used to control growth of moments in Arpit et al. (2019); Brock et al. (2021a); Marion et al. (2022); Zhang
et al. (2022b); Noci et al. (2022); He et al. (2023); Yang et al. (2024)) . B2 = % where n is the current layer, was used in De
& Smith (2020); Liu et al. (2020a;b); Davis et al. (2021); Blake et al. (2023), but this results in logarithmic bounds instead
of constant for forward propagation if A = 1 is used, and vanishing gradient for backward propagation otherwise.

Values of 32 < %, such as (effectively) # for DSInit (Zhang et al., 2019a) or ﬁ for DeepNet (Wang et al., 2024) decrease
sensitivity of the model, and may result in the model becoming “too linear”. DeepNet shows performance improvements by
making the model deeper, but keeping the hidden dimension constant. Our setting is much more strict — we keep the number
of parameters (and hence compute) constant, and our method still show performance improves on making the model deeper.

For example, DeepNet‘s 200 layer model is 3.2B params, whereas our 192 layer model is 160M params (20x smaller).

Sometimes, these [ values are used in conjunction with A = 1, such as in Liu et al. (2020a;b), but as shown in He et al.
(2023), fully normalized residual connections with A? + 32 = 1 often perform better than those with A\ = 1. We also
observed lower performance with A = 1 in our initial experiments, and hence we fully normalize the residual connections.

Our contribution goes beyond providing an optimal scaling scheme. Using the theoretical framework and closed-form
expressions for moment propagation through both Pre-LN and Post-LN developed in this work, practitioners can make
informed choices about using any of the scaling factors above based on the stability-performance tradeoffs, such as using a
lower (3 for scenarios with high correlation, or using higher $ with uncorrelated inputs.

K.4 Other Network modifications for Deep Networks

Shi et al. (2022); Zhou et al. (2021); Wang et al. (2022); Dong et al. (2021) showed that attention causes rank collapse in
deeper models, and Chen et al. (2020); Zhao et al. (2023) showed the same for graphs. Takase et al. (2022) added some
extra skip connections from the input of the model, Nguyen & Salazar (2019) modified layernorm slightly, Zhai et al. (2023)
normalized all linear layers by their spectral norm, and Shleifer et al. (2021) added extra layer norms. Some works in
particular, such as Zhai et al. (2023); Zhou et al. (2021) can only prevent attention entropy collapse later during training,
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but our work will also prevent rank collapse at initialization caused by the very structure of the transformer model, in
particular increase in correlation caused by both attention and ReLU/GeLU. The methods in these works are orthogonal to
our approach, and our equations can be easily extended to cover the architectural modifications suggested in these.

L Discussion of Approximations and Assumptions

L.1 TIllustrative Approximations of Full Formulae in Main Paper
Some values listed in Table 1 are approximations/illustrative simplifications of their full closed forms in Appendix C and

Appendix A. We discuss all of these below.

e For ReLLU forward correlation, we used a simple polynomial regression of the closed form formula. This simple
regression is a remarkably good fit, as shown in figure Figure 12, and can be reproduced in using our released code.

¢ For layernorm, we ignored the factor of 1 compared to d, or 1/d compared to 1, assuming large enough hidden
dimension d.

» For SHA without V, we used the final simplified formulae for agm and output correlation from Appendix A.8. For the
gradient, we further simplified the formulae in Appendix A.8, assuming L ~ L — 1.
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Figure 13. Approximation of the FEN forward correlation for-
Figure 12. Approximation of the Relu forward correlation for- mula, without dropout. Dropout will reduce the above correla-
mula tion by 1 — p.

Furthermore, the formulae provided in Table 2 are approximate versions of the full formulae provided in Appendix C. In
Table 2, we applied a similar approximation as done in Table 1 for ReLU, from the full formula in Appendix C for output
correlation. This polynomial approximation is also a very good fit, as shown in Figure 13, and can be reproduced using our
released code.

Our exact formulae for blocks and components also account for IID cases - as can be verified by our simulations, in which
we do cover cases IID inputs with exactly 0 correlation, as noted in Corrfl/,m column in Table 22. In the simplified formulae,
and in DeepScaleLLM initialization and model, we simplified our formulae so that they only remain accurate for non-IID
inputs. This was because of three considerations:

1. In NLP domain, most text will inevitably be non-IID due to repeated common words. This was encountered in all our
experiments.

2. In Vision domain, for ViT in particular, there will be correlation among pixel intensities across patch embeddings, as
discussed in common response section.

3. In Speech domain, similar to text, most speech will inevitably be non-IID due to repeated common sounds.
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4. Lastly, even if there is exactly 0 correlation in input, the very first attention layer and the first FFN layer in particular,
will add correlations to the output, ensuring our simplified formulae hold reasonably accurately.

L.2 Assumptions and Approximations in Derivations

» Except for attention, softmax and LayerNorm all other derivations of transformer components — Embeddings, FFN,
ReLU/GeLU, Dropout, FFN Block are fully exact, assuming only normal distribution of inputs, weights and gradients.
We justify this normality assumption below:

1. Inputs: As the embeddings are lookup tables of token-ids, and embedding weights are initialized from Normal
distribution in Xavier, the inputs to the transformer are normally distributed.

2. Gradients: As the model outputs are Normal, the softmax of the classification head results in a Log-Normal
distribution for probabilities p, as shown in Appendix A.7. Since the cross-entropy loss is —log(p), we expect the
loss (and hence the final gradient being back-propagated) being log(Log-Normal distribution), to be a Normal
distribution. We also verify this empirically by checking the normality of the backpropagated gradients to the
deepest transformer layer, and the gradients match the best-fit Normal distribution with an R? of 0.999, showing
that the gradients are indeed Normally distributed.

3. Weights: Weights are initialized from Normal distribution in Xavier, and are hence Normal.

« For attention, softmax and LayerNorm, we assume the sequence length L and the hidden dimension d are large.

* For embeddings, we assumed Zipf’s law to calculate initial input correlation in tokens, as well as assumed uniform
distribution for segment lengths for next sentence prediction task of BERT. Note that this assumption is not strictly
required, and can also be empirically observed and given as input to our method.

M DeepScaleLM Pseudocode

## Define constants of DeepScalelM
2 _ 2 . B2 - 2
2 1—p

= g2 =
U'e—T,O'qk—

-
Q
oy

## Scale skip connection and block output
def add_skip(x, £(x)):
return A * x + 3 x f(x)

## Stable initialization of weights
def init(w):
if w is ['ffn', 'v_proj', 'out_proj'l:
nn.init.normal_(w, gain = o¥)
elif w is ['gq_proj', 'k_proj'l:
nn.init.normal_(w, gain = oqk)
elif w is ['embd']:
nn.init.normal_(w, gain = oe)

Figure 14. Pseudo-code for simplified version of our DeepScaleLM method.
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## Define constants for scaling residual and output
N=1-2,;p5=2
N N
## Define constants for embedding and FFN block
2 1— 2 1
g = 3P 5 0p = gy 5"
## Scale skip connection and block output
def add_skip(x, £(x)):
return A * x + 3 x f(x)

## Find layerwise input correlation upto N layers
def corr_input_layerwise(r, N):
rn = []
for i in range(N):
r=X .r+ B*1-p)

r=X .r+ 62(1—1))(7“

rn . append(r)
return ry

1— (L )H%5 b cosTi(rl,
L () rheos™ (),

Tin

™ ™

## Define constants for attention block

2 _ 1 1—p . 2 _ 1 . . _ .1
Ul,o - d * I,n qu - d =Tz,
TZin
where rL” = corr_input_layerwise(r, N)[n]
Tin - -

## Stable initialization of weights
def dslm_init(w, 1):
if w is ['ffn']:
nn.init.normal_(w, gain = or)
elif w is ['v_proj', 'out_proj']:
nn.init.normal_(w, gain = o1,,)
elif w is ['q_proj', 'k_proj'l:
nn.init.normal_(w, gain = oqx)
elif w is ['embd']:
nn.init.normal_(w, gain = oe)

Figure 15. Pseudo-code for our proposed method DeepScaleLM: We scale the block output and the skip connection before adding, and
keep track of correlation across layers. We appropriately initialize the weights. (IN: num of layers, d: model hidden dimension, p: dropout
probability, riin is calculated based on expressions provided in subsection A.1.)

N Hyper-parameters

BERT Pretraining We used Megatron-LM’s default BertWordPieceLowerCase tokenizer, with the original BERT lower-
cased vocab, and with trainable position embeddings. The same hyper-parameters (including LR schedule, warmup) were
used for all models, and LR search over the range below was performed for all models. The final best models always had
optimal LR within the range and not at the boundary of the LR range for all of our experiments. Detailed hyper-params are
provided in Table 25.
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Table 25. Training Hyper-Parameters. We use all original hyper-parameters of BERT, except for learning-rate(LR).

Parameters

Values

Optimizer

P, B2

Effective Batch Size
Drop-out (p)
Sequence Length
Train Iters

Num GPUs
Learning rate
Schedule

LR Decay Iterations
Warmup steps

Min LR

Gradient clipping
Batch Size / GPU
Grad Accum Steps

Adam
0.9, 0.999
256
0.1
256
100,000
8
[1,3,5,7,10]*10~4
Linear
98%
1%
1%107°
1.0
2
16

Reproducible Longer Pre-training and Finetuning Our released code provides exact scripts for both pre-training and
all fine-tuning. We used all original/official hyper-params of BERT, except LR was increased for DSLM as mentioned

previously.

Downstream Low Rank Finetuning Following QLoRA (Dettmers et al., 2023), we apply LoRA on all linear modules,
with r = 32, a = 16, and searched for LR. All other hyper-parameters were kept the same as finetuning. We used the same
number of epochs as finetuning for LoRA, but perhaps more epochs may result in even better scores — Hu et al. (2022) used

30 epochs for LoRA.

Vision ViT Training We used ViT-S Baseline from (Beyer et al., 2022) for ImageNet-1k along with its default hyper-
parameters. It uses an MLP head, a Global AvgPool and a fixed 2D sin-cos position embeddings. The same hyper-parameters
were used for all the models. Detailed hyper-parameters are provided in Table 26
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Table 26. Training Hyper-Parameters for ViT Training. We use all original hyper-parameters of (Beyer et al., 2022), except for learning-rate

LR.

Parameters Values
Optimizer Adam

b1, B2 0.9, 0.999
Weight Decay 10~
Effective Batch Size 1024
Drop-out (p) 0.0

Patch Size 16
Training Image Size 224x224
Evaluation Image Size 224x224
Train Epochs [90, 300]
Num GPUs 8
Learning rate [1,2,3.5,4]*%1073
Schedule Linear

LR Decay Schedule Cosine
Warmup steps 10000

Min LR 0.0
Gradient clipping 1.0

Batch Size / GPU 128
Augmentation RandAug(n=2,mag=10)+MixUp(p=0.2)

Speech Fairseq Training Table 27 provides the hyperparameters used to train the Speech translation models, following
those of official fairseq. The same hyper-parameters were used for all the models. We report the BLEU by averaging the
weights of the last 10 checkpoints at the end of training.

Table 27. Training Hyper-Parameters for speech-to-text translation. We use all original hyper-parameters in Fairseq, except for effective

batch size and learning-rate(LR).

O Notations

Parameters Values
Optimizer Adam

B1, B2 0.9, 0.999
Source tokens per Batch [30k, 40Kk]
Drop-out (p) 0.1

Text Sequence Length 1024
Speech Sequence Length 6000

Train Iters [66k, 100k]
Num GPUs 1
Learning rate [3, 51%10~4, [1, 2, 3, 4]*103
Schedule Inverse Square-root
Warmup steps 20%
Gradient clipping 10.0

Batch Size / GPU [52, 80]

Grad Accum Steps 8,16

Helpful definitions for notations used in this Manuscript.

N - Number of layers in the transformer network
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L - Maximum sequence length for the transformer network
d/d;, - Hidden dimension used to represent a token

Iz, - Expected value of single element in the input tensor to a layer/block

2

ag.

=, - Variance of single element in the input tensor to a layer/block

Iz, - Expected value of single element in the output tensor of a layer/block

2

ag

2. - Variance of single element in the output tensor of a layer/block

g, - Expected value of single element in the gradient of input tensor to a layer/block
agm - Variance of single element in the gradient of input tensor to a layer/block

go - Expected value of single element in the gradient of output tensor of a layer/block

agom - Variance of single element in the gradient of output tensor of a layer/block

l

ry. - Correlation between two elements in the input tensor to a layer/block having same hidden dimension index but

corresponding to different tokens

l

Ty, - Correlation between two elements in the output tensor of a layer/block having same hidden dimension index but

corresponding to different tokens

rém - Correlation between two elements in the gradient of input tensor to a layer/block having same hidden dimension index
but corresponding to different tokens

rf]m - Correlation between two elements in the gradient of output tensor of a layer/block having same hidden dimension

index but corresponding to different tokens

re - Correlation between two elements in the input tensor to a layer/block having different hidden dimension indices but

Lin

corresponding to same token

d

g, - Correlation between two elements in the output tensor of a layer/block having different hidden dimension indices but

corresponding to same token

rgm - Correlation between two elements in the gradient of input tensor to a layer/block having different hidden dimension
indices but corresponding to same token

rgom - Correlation between two elements in the gradient of output tensor of a layer/block having different hidden dimension

indices but corresponding to same token
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