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Abstract

Video Temporal Grounding (VTG) seeks to retrieve consecutive intervals or spe-
cific clips from a video based on specified natural language queries. VTG requires
accurately aligning video segments with corresponding natural language instruc-
tions, highlighting the need for effective methodologies to capture semantic cor-
respondence and maintain temporal coherence. Spiking neural networks (SNNs),
previously underexplored in this domain, present a unique opportunity to tackle
VTG challenges from both the architectural and energy-efficiency perspectives. In
this paper, we leverage sparse spike-based communication of SNNs to propose a
multimodal architecture tailored for VTG tasks, namely SpikingVTG, providing
a biologically inspired and efficient solution. Leveraging temporal saliency feed-
back, our proposed spiking video-language model (VLM) achieves competitive
performance with non-spiking VLMs across diverse moment retrieval and highlight
detection tasks. We introduce a Saliency Feedback Gating (SFG) mechanism that
improves performance while reducing overall neural activity. To efficiently train
our spiking VLM, we analyze the convergence dynamics of each neuronal layer
and utilize equilibrium states to enable training using implicit differentiation at
equilibrium. This approach eliminates the need for computationally expensive
backpropagation through time while also enabling the use of knowledge distillation
for efficient model training. To further improve operational efficiency and facil-
itate the on-chip deployability of our model, we leverage a multi-stage training
pipeline that focuses on eliminating non-local computations, such as softmax and
layer normalization, leading to the development of the Normalization Free (NF)-
SpikingVTG model. Additionally, we create an extremely quantized variant, a
1-bit NF-SpikingVTG model, which vastly improves computational efficiency dur-
ing inference while maintaining minimal performance degradation from our base
model. Our work introduces the first spiking model to demonstrate competitive
performance on VTG benchmarks, including QVHighlights and Charades-STA.

1 Introduction

The rapid expansion of various social medias and portable smart technologies has triggered an
unprecedented surge in video content. This vast influx of data has intensified the need for efficient
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methods to retrieve and analyze video information. Consequently, the field of Video Temporal
Grounding (VTG) ([1, 2]) has emerged as a vital area of research. The main objective of VTG
is to identify the precise segment of a video that corresponds to a given natural language query,
enabling more accurate and context-driven video content retrieval. In this paper, we focus on two
tasks: moment retrieval ([3, 4]), which aims to identify video intervals relevant to a given query,
and highlight detection ([5]), which retrieves the best candidate segment of the video in response
to the query. Therefore, our work involves analyzing multimodal data—combining video content
with natural language queries—to develop an effective solution to the problem. With the rise of
foundation models like large language models, the field of VTG has seen significant advancements
([6, 1]). However, these models demand substantial computational power and energy ([7]) to operate.
Furthermore, VTG is inherently resource-intensive, requiring the analysis of long video sequences,
which leads to significant computational overhead. In this work, we leverage sparse spike-based
communication and simplified accumulation-based computation in spiking neural networks (SNNs)
to develop an efficient, lightweight solution for VTG ([8]).

Beyond the computational efficiency of SNN-based frameworks, we also harness their temporal
dynamics to propose a spiking transformer-based VLM architecture (Fig. 1), namely SpikingVTG,
that matches or surpasses the performance of current state-of-the-art non-spiking VLM. The input
video for the VTG task typically consists of a long sequence of segments or clips. A key challenge
in VTG is thus accurately identifying salient segments ([2]) or temporally dependent segments that
exhibit a strong semantic correspondence with the given query. Our SNN-based VLM, operated over a
period of simulation time steps, allows us to leverage its intermediate output as a feedback to identify
the salient segments. We use the average spiking rate (ASR) of the output of the transformer-based
SpikingVTG model to compute a dynamic saliency score of each video segment w.r.t the given query,
which we then leverage as a mask for a multiplicative gating mechanism. This enables the model
to focus on relevant portions of the video, as demonstrated in our experiments, while also reducing
computational overhead by minimizing attention to irrelevant segments.

From a bio-plausibility perspective, as explored by Kar et al. [9], feedback based connection plays
a prominant role in human visual cortex primarily responsible for object recognition. Furthermore,
the feedback connection maintains the layer-wise convergence of ASR at equilibrium, enabling the
implementation of an implicit differentiation framework ([10]), allowing for more efficient training
of our model. This learning framework, leverages layer-wise converged ASR values at equilibrium to
train the spiking model in one backpropagation step, instead of using the computationally expensive
backpropagation through time (BPTT) ([11]). The SpikingVTG framework further involves a multi-
stage training pipeline aimed at developing spiking models to fascilitate potential deployment on
resource-constrained edge-based device enabled with neuromorphic chips. To allow for efficient
training of our spiking model, we employ a knowledge distillation strategy ([12]), enabling knowledge
transfer from a non-spiking UniVTG model, used as the “teacher”, to our “student” SpikingVTG
model. This process utilizes the ASR of converged intermediate states at equilibrium, enabling
efficient training of our multimodal spiking video-language model.

Furthermore, transformer architectures ([13]) utilize non-local normalization operations such as
softmax and layer normalization, which present challenges for implementation on neuromorphic
hardware ([14]). To address this limitation, we introduce the Normalization-Free (NF)-SpikingVTG
model, which eliminates all layer normalization operations and substitutes softmax spiking attention
with a ReLU-based spiking attention mechanism. While ReLU-based attention mechanisms have
previously been explored in non-spiking domains ([15]), we are the first to introduce this concept
within the spiking attention mechanism, demonstrating competitive performance compared to softmax-
based approaches. Additionally, to reduce computational complexity, following works on quantization
in analog LLMs ([16]), we propose a 1-bit quantized variant of SpikingVTG. Our multi-stage training
approach enables minimal performance degradation while enhancing operational efficiency during
inference, in our SpikingVTG models. To our knowledge, this work is the first to evaluate the
performance of an operational spiking VLM framework across various VTG tasks, including moment
retrieval and highlight detection, on datasets such as QVHighlights and Charades-STA.

The primary contribution of our work are as follows:

• SpikingVTG Model and Training Framework: We propose a transformer-based, multi-
modal spiking video language model with a spiking decoder module for moment retrieval
and highlight detection in VTG tasks. We leverage the layer-wise convergence dynamics in
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Figure 1: High-level overview of the proposed SpikingVTG architecture. The spiking Vision-
Language Model (VLM) takes video and textual features as inputs, employing a spiking transformer
core that utilizes Saliency Feedback Gating through temporal feedback connections. The model
incorporates a spiking decoder module that takes the output of the transformer core to predict
parameters for the VTG task.

our model to train our model using implicit differentiation at equilibrium, bypassing mem-
ory intensive BPTT. The result is the first spiking architecture to demonstrate competitive
performance on VTG.

• Saliency Feedback Gating Mechanism: We introduce a saliency feedback gating mech-
anism for input video, that leverages the ASR of the output of the spiking transformer
core at each time step. This temporal feedback enhances task-specific performance while
minimizing neural activity, ultimately reducing overall computational overhead.

• Multi-Stage Training Pipeline: We propose a multi-stage training pipeline for our Spik-
ingVTG framework, utilizing knowledge distillation and architectural modifications to create
lightweight and computationally efficient spikingVTG variants. We replace computationally
intensive non-local operations like layer normalization and softmax with hardware-friendly
alternatives. We further introduce extreme quantization, developing a 1-bit NF-SpikingVTG
model that significantly reduces memory as well as computational overhead.

2 Methodology

The VTG problem formulation is added in Appendix A. In this section we discuss the primary
contributions of our work.

2.1 SpikingVTG: Architecture Overview

The core computational unit of the proposed SpikingVTG model is a leaky integrate-and-fire (LIF)
neuron ([17]) detailed in Appendix B. Neurons communicate with each other using sparse, spike-
based activations instead of real-valued signals, significantly improving energy/power efficiency. The
model architecture includes a spiking transformer core for processing inputs, a saliency feedback
gating mechanism for dynamic input control, and a spiking decoder module (Appendix ??) to predict
the parameters required for the VTG task, as described in Appendix A.

2.1.1 Spiking Transformer Core

The fundamental computational unit in our work is a leaky-integrate and fire neuron (LIF) (see
Appendix A)The high-level overview of each encoder block of our spiking transformer architecture
is demonstrated in Fig. 1. The model consists of N encoder layers, each consists of a spiking
multi-headed attention block, followed by an intermediate layer and an output layer. Communication
within and between encoder layers occurs via spikes. Furthermore, all matrix multiplications involved
in linear layers and attention layer comprises of more efficient fp-accumulative (ACC) operations
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Figure 3: Results obtained upon passing a random input sample from QVHighlights dataset to our
SpikingVTG models. (a) Graph shows convergence dynamics of layer-wise mean ASR against
operating time steps for a randomly selected spiking transformer encoder layer (Fig. 1). It is to be
noted that since we allow ternary spikes ASR can be negative as well. (b) Graph shows, layer-wise
mean spiking activity (acti[t], averaged over number of neurons in that layer) against operating time
steps in x-axis. The model with SFG shows markedly reduced activity in both the input layer and the
spiking attention layer, underscoring its role in minimizing neuronal activity.

instead of fp-MAC operations in conventional neural architectures. Detailed descriptions of each
layer are provided in the appendix. In the following section, we highlight modifications made to the
architecture to facilitate the development of more efficient SpikingVTG variants. In Section E, we
replace non-local normalization operations and introduce a ReLU-based attention mechanism. In
Section F, we quantize all weights in the linear layers, including those in the intermediate and output
layers, to 1-bit precision.

2.1.2 Saliency Feedback Gating (SFG)
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Figure 2: The internal opera-
tions of the saliency feedback
gating mechanism.

SpikingVTG operates over a specific number of convergence time
steps (T ), with the convergence dynamics detailed in the following
section. This temporal processing allows us to leverage intermediate
outputs to dynamically update the input to the model at every time
step for better predictions. This approach conforms to the feedback
connections observed in the human visual cortex ([9]), providing a
bio-plausible explanation for its efficacy. The average spiking rate of
the final transformer encoder layer (atN ) of the Spiking Transformer
module is used to compute a temporal saliency score with the input
query enabling the design of a gating mechanism, allowing selec-
tive focusing on relevant segments of the video while minimizing
computation on irrelevant segments. The operation in the saliency
feedback gating mechanism (Fig. 2) is demonstrated below,

F vi
s [t] = cos(aNv

i [t],M) :=
aNv

i [t] ·M
∥aNv

i [t]∥2∥M∥2
,

V̄ [t+ 1] = V ∗ F v
s [t]

I[t+ 1] = V̄ [t+ 1]⊕Q

(1)

where, using attentive pooling operation, sentence representation M = Softmax(WpQ)Q, M ∈
R1×D, Q ∈ RLq×D, V ∈ RLv×D and Wp is a learnable embedding. F vi

s [t] is the dynamic saliency
score at time t for the segment of i of the video. aNv

i [t] is the ASR of output of the spiking transformer
for the the i corresponding segment of the video. The SFG mechanism not only results in better
performance of our SpikingVTG architecture on evaluation metrics (see Table 2) but also reduces
overall neural activity by sparsifying input spikes (Fig. 3b).
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Figure 4: High-level overview of the multi-stage training framework for our proposed SpikingVTG
models, enabling the development of lightweight and computationally efficient spiking models.
Below each model we have noted the primary operations involved in that architecture.

2.2 Training Leveraging Convergence Dynamics

Following, Eqn. S1 & S3, we can formulate ai[t + 1] = 1
Vthi

(f̂(a(i−1)[t + 1]) + bi − ui[t+1]∑t
j=0 γj ),

where f̂ is operation of layer i. As time approaches t → ∞, the layer-wise ASRs converge to
equilibrium, enabling the derivation of steady-state equations for linear layers ([10]). Moreover,
surrogate steady-state functions can be formulated for non-linear layers ([18]) as,

a∗i = σ(
1

Vthi

(f̂(a∗i−1) + bi)) (2)

where, clipping function σ(x) clamps the values within [−1, 1]. This is because following Eqn. S2,
we allow ternary spikes thus ASR must be with [−1, 1]. The empirical convergence of ASR is shown
in Fig. 3a. To analyze the overall layer-wise neural activity, which includes both positive and negative
spiking event, we present the layer-wise dynamics of the absolute spiking events in Fig. 3b, i.e.
acti[t] =

∑t
i=1 |si[t]|

t . During training, leveraging implicit differentiation ([19]) at equilibrium, only
ASR values at equilibrium are used,

∂L(a∗)

∂θ
= −∂L(a∗)

∂a∗
(J−1

gθ
|a∗)

∂fθ(a
∗)

∂θ
, (3)

where, θ is the model parameters, gθ(a) = fθ(a)− a, f is the steady-state equation of ASR, J−1 is
the inverse Jacobian of gθ when a = a∗, i.e., at equilibrium. Thus, unlike BPTT, we do not need to
store the intermediate computational graph and the model parameters can be updated using a single
backpropagation step.

2.3 Multi-Staged Training Pipeline

Training a multimodal spiking architecture like SpikingVTG is resource-intensive. To enhance the
efficiency of this process and develop computationally efficient variants of our model, we propose
a multi-staged training framework, as illustrated in Fig. 4. We utilize a non-spiking “teacher”
VLM to guide the training of our “student” SpikingVTG model using knowledge distillation (see
Appendix D). After this initial stage, we fine-tune SpikingVTG using the true labels. Once the
base SpikingVTG model is established, we modify its architecture, as outlined in Appendix E
and F, followed by additional fine-tuning to create computationally efficient variants with minimal
performance degradation. The resulting computationally efficient, lightweight models are well-suited
for deployment on neuromorphic chips, enabling efficient inference.

3 Experimentation

We evaluate all proposed spiking video-language models on moment retrieval and highlight detection
tasks using the QVHighlights and Charades-STA datasets. Since, to the best of our knowledge, our
proposed model is the first spiking VLM evaluated on VTG tasks, we benchmark its performance
against state-of-the-art non-spiking video-language models. Additionally, we perform a study
comparing our three model variants—SpikingVTG, NF-SpikingVTG, and 1-bit NF-SpikingVTG—
on task specific performance and computational efficiency. Preliminary energy analysis further
highlights the potential benefits of each model version.
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Table 1: Performance comparison of SpikingVTG model with SFG against other non-spiking VTG
solutions on the evaluation set of the QVHighlights and Charades-STA for moment retrieval task.

2*Method SNN QVHighlights Charades-STA
@0.3 @0.5 @0.7 mAP@avg @0.3 @0.5 @0.7 mIoU

UniVTG+PT ([2]) No 78.58 67.35 52.65 45.44 72.63 60.19 38.55 52.17
M-DETR ([1]) No - 53.94 34.84 32.20 65.83 52.07 30.59 45.54
EaTR ([20]) No - 61.36 45.79 41.74 - - - -
2D-TAN ([3]) No - - - - 58.76 46.02 27.5 41.25
LLaViLo ([21]) No - - - - - 55.72 33.43 -
UMT ([6]) No - 60.26 44.26 38.59 - 49.35 26.16 -
QD-DETR ([22]) No - 62.68 46.66 41.22 - 57.31 32.55 -
UniVTG ([2]) No 71.81 59.74 40.90 36.13 70.81 58.01 35.65 50.1
SpikeMba ([23]) No - 65.32 51.33 44.84 71.24 59.65 36.12 51.74
SpikingVTG (Our Model) Yes 80.72 67.42 50.65 43.81 71.13 58.13 37.02 50.62

3.1 Results

Our model outperforms non-spiking VTG models, including EaTR ([20]), 2D-TAN ([3]), M-DETR
([1]), LLaViLo ([21]), UMT ([6]), QD-DETR ([22]) and non-pretrained UniVTG model ([2]).
Additionally, it achieves competitive results compared to the current state-of-the-art pretrained
UniVTG model. It is important to note that SpikeMba ([23]) is not a fully spiking architecture; rather,
one component of its multi-stage network uses an SNN. The results for each of the compared methods
are taken from their respective papers. Our model establishes a baseline for future spiking VLM
architectures on VTG tasks. The results are shown in Table 1 & S1.

Table 2: Comparing the performance of different SpikingVTG variants on the evaluation set of
QVHighlights dataset.

2*Method QVHighlights-MR QVHighlights-HL Activity
@0.3 @0.5 @0.7 mAP@avg @mAP HIT@1

SpikingVTG w/o SFG 78.65 65.10 47.46 42.56 40.60 67.42 0.41
SpikingVTG w/ SFG 80.72 67.42 50.65 43.81 40.74 68.32 0.34
NF-SpikingVTG w/ SFG 79.87 66.45 48.27 42.68 40.54 67.61 0.25
1-bit NF-SpikingVTG w/ SFG 78.77 65.16 47.35 42.32 40.31 67.29 0.19

3.2 Ablation Study

As shown in Table 2, the use of the Spike Feedback Gating (SFG) mechanism enhances performance
compared to the model without SFG. Furthermore, as highlighted in Fig. 3 it results in reduced
neuronal activity as well. Moreover, the computationally efficient NF-SpikingVTG model with
SFG performs competitively even when compared to other state-of-the-art (SOTA) non-spiking
video-language models (VLMs). Although the 1-bit NF-SpikingVTG variant shows a slight reduction
in performance across evaluation metrics, it is highly memory efficient and involves simpler computa-
tions, making it well-suited for deployment on resource-constrained hardware. Furthermore, Table 2
also presents the average model-wide neural activity of the spiking model, calculated over T = 12
time steps. This metric represents the proportion of active neurons per timestep, averaged across
all layers. This demonstrates that the optimizations aimed at enhancing computational efficiency
(i.e. reducing non-local normalization operation and introducing quantized weights) also effectively
reduce overall neural activity in the model. Preliminary energy analysis is in Appenix H.

4 Conclusions

Our saliency feedback gating-enabled SpikingVTG model offers a computationally efficient approach
for VTG tasks while maintaining competitive performance with state-of-the-art non-spiking models.
By harnessing layer-wise convergence dynamics, we efficiently train our model using implicit
differentiation at equilibrium. We employ a multi-stage training pipeline that incorporates knowledge
distillation, using the non-spiking pretrained UniVTG model as the “teacher” and the SpikingVTG
model as the “student”. This training pipeline further enables architectural optimizations, leading to
the development of Normalization Free (NF)-SpikingVTG and 1-bit NF-SpikingVTG, enhancing
computational efficiency and facilitating the on-chip deployment of these complex models.
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A Video Temporal Grounding (VTG) Formulations

Given a video V and a language query Q, we first divide V into a sequence of Lv fixed-length clips
v1, . . . , vLv

, where each clip vi is of length l and has a centered timestamp ti. The free-form text
query Q consists of Lq tokens, denoted as Q = {q1, . . . , qLq

}. Following previous studies on VTG
([2]), we define three elements for each clip vi = (fi, di, si), where fi = 1 if the clip is in foreground,
i.e. relevant else fi = 0. di = [dsi , dei ] ∈ R2 represent the temporal distance that converts the clip
timestamp ti to its interval boundaries. Here, di is valid when fi = 1. The term dsi denotes the
distance between the start of the interval and ti, while dei denotes the distance between the end of the
interval and ti. Let si ∈ [0, 1] be a continuous score that quantifies the relevance between the visual
content of clip vi and the query Q. Our proposed SpikingVTG model predicts these three parameters
for each video clip. In this paper, we focus on specific VTG tasks, which are carried out as follows:

Moment Retrieval: We rank the predicted clip boundaries {b̃i}Lv
i=1, where bi = [ti − dsi , ti + dei ],

based on their associated probabilities given by {f̃i}Lv
i=1. Since the predicted Lv boundaries are dense,

we employ a 1-dimensional Non-Maximum Suppression (NMS) ([24]) with a threshold of 0.7 to
eliminate highly overlapping boundary boxes, resulting in a final prediction.

Highlight Detection For each clip, we rank all clips based on their combined scores {f̃i + s̃i}Lv
i=1.

This combined value represents how well the chip i match with the underlying query. We then return
the top clips (e.g., Top-1) as predictions.

B Spiking Neural Networks

The discrete time dynamics of an LIF-based spiking neuron can be given as follows,

ui[t+ δ] = γui[t] +W(i−1)(s(i−1)[t]) + bi,

ui[t+ 1] = ui[t+ δ]− Vthi
si[t+ 1],

(S1)

where, at time t, ui[t] is the membrane potential of the ith neuronal layer; bi indicates a bias term
and γ is the leaky term. W(i−1) represents the layer-specific operation; t+ δ is an intermediate time
step to determine if the neuron fired; Vthi

is the threshold of layer i. We use a ternary spiking model
([25]) in our work for spike (s[t+ 1]) generation, thus the spiking operation is given as,

si[t+ 1] =


+1 if ui[t+ δ] ≥ Vthi

,

−1 if ui[t+ δ] ≤ −Vthi
,

0 otherwise
(S2)

This approach enhances performance while avoiding the introduction of additiional floating-point
multiplicative and accumulative (fp-MAC) operations. The average spiking rate (ASR) [10] of LIF
neurons within each layer i at time t can be defined as a weighted-average function:

ai[t] =

∑t
τ=1 γ

t−τsi[τ ]∑t
τ=1 γ

t−τ
. (S3)

C Spiking Decoder

The spiking decoder comprises of stacked modules of 1-D convolution operations followed by
integrate-fire (IF) neuron layers (γ = 1 in Eqn. S1), for spike generation. The decoder layer takes in
the average spiking rate (atN ∈ RLv×D) from the output of the final spiking transformer encoder block.
The spiking decoder used for the foreground indicator (fi) applies n1 1-D convolution operations
with kernel size k1, each followed by an IF layer. The spiking decoder used for di applies n2 1-D
convolution operations with kernel size k2, each followed by an IF layer, and the final convolution
layer has 2 output channels to predict both components in di. The average spiking rate of individual
decoders are used as predictions for the two underlying targets.
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D Leveraging Knowledge Distillation (KD)

To enable efficient training of our spiking multimodal architecture, we utilize Knowledge Distillation
(KD) techniques ([12, 26, 27]). We use the pre-trained UniVTG, currently the state-of-the-art in
VTG, as a “teacher” and rather than distilling based on the prediction layer, we exploit the outputs
of the internal layers of the “teacher”. We establish a one-to-one mapping, by design, between the
internal representations at equilibrium of our spiking transformer and the corresponding layers of the
“teacher”, ensuring that the number of layers in both architectures remains consistent. The internal
representation-based KD is formulated as,

LKD =

N∑
i=1

MSE(a∗riWd, Tri) (S4)

where, Wd ∈ Rds×dt is a linear transformation that aligns the dimensionality of the layer of the
“students” with that of the corresponding layer of the “teacher”. a∗ri denotes the converged ASR of
the internal representation (dimension ds) layer ri, which is the output from the spiking transformer
encoder layer i. Tri is the representation of the the corresponding block i (dimension dt) of the
teacher model. The KD process is an integral part of the framework and serves as the first stage of
our multi-stage pipeline, followed by fine-tuning on the true labels (Fig. 4).

E Replacing Softmax and Removing Layer Normalization

In our work, we use a spiking attention mechanism (detailed in Appendix ) which uses the key
and value inputs as spikes instead of real values. Given d-dimensional queries, keys, and values
{qi[t], ski

[t], svi [t]}Li=1, at time t, the attention weights αij are generally computed as follows:

αij [t] = ϕ

(
1√
d

[
qi[t]

⊤sk1
[t] · · · qi[t]

⊤skL
[t]
])

j

(S5)

where, ϕ is usually the softmax function and output of spiking attention layer at time t is attni[t] =∑L
j=1 αij [t]svj [t]. Given that softmax requires expensive non-local fp-MAC operations, we replace

it with the less costly ReLU() operation and perform a simple scaling with L−1. This replacement,
while maintaining competitive model performance, is only feasible when following the multi-stage
training process outlined in Fig. 4. This highlights the importance of the initial KD and fine-tuning
stages, which help stabilize the model. Additionally, we explore the removal of all layer normalization
layers, from Fig. 1, during training (as shown in Fig. 4), further streamlining the model design for
on-chip deployment. We refer to the resulting model, which uses ReLU in place of Softmax and
omits layer normalization, as a Normalization-Free (NF) spiking model.

F 1-BIT weight quantized SpikingVTG

Following prior work ([16]), 1-bit quantization consists of centering the weights W to achieve a zero
mean, followed by binarization to +1 or −1 using the signum function as shown,

Wq = sgn(W − α),

α =
1

nm

∑
ij

Wij
(S6)

where, W ∈ Rn×m. The signum function, denoted as sgn(x), categorizes the element x based
on its sign. It outputs +1 when x is positive and −1 when x is zero or negative. . Additionally,
the output of the linear layer is scaled by a constant β = 1

nm

∑
ij |Wij |. Thus, with ternary

activations, our model now incorporates binary weights. Following the multi-stage learning approach
illustrated in Fig. 4, our 1-bit SpikingVTG model emerges as a light-weight multimodal spiking VLM
model. Additionally, we empirically demonstrate that employing binary weights while eliminating
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normalization layers achieves competitive performance, resulting in 1-bit NF-SpikingVTG, enabling
on-chip implementation and significantly improving computational efficiency. Thus, in the resulting
model the primary computational operation involve interger accumulations since individual weight
values are Wqij ∈ {−1, 1} and activations are sij ∈ {−1, 0, 1}.

G Additional Experimental Details

The Spiking Transformer core in our model comprises four encoder layers, each with a hidden
dimension of 1024, with 8 attention heads. For the knowledge distillation phase, we employ a
pre-trained UniVTG model ([2] that has been fine-tuned on our specific dataset.

Table S1: Performance comparison of our Spik-
ingVTG model with SFG against other non-spiking
VTG solutions on the evaluation set of the QVHigh-
lights for highlight detection task.

2*Method SNN QVHighlights
mAP HIT@1

UniVTG+PT ([2]) No 41.34 68.77
DVSE ([28]) No 18.75 21.79
XML+ ([1]) No 35.38 55.06
M-DETR ([1]) No 35.65 55.55
EaTR ([20]) No 37.15 58.65
M-DETR + PT ([1]) No 37.70 60.32
UniVTG ([2]) No 38.83 61.81
QD-DETR ([22]) No 39.13 63.03
UMT ([6]) No 39.85 -
SpikingVTG (Our Model) Yes 40.74 68.32

Dateset Details: QVHighlights ([1]) is the only
public dataset that includes ground-truth anno-
tations for moment retrieval and highlight detec-
tion, allowing for a thorough evaluation of the
performance of our model and additional abla-
tion studies. We also employ the Charades-STA
dataset ([29]) to conduct further assessments on
additional moment retrieval tasks.

Evaluation Metrics: For QVHighlights, follow-
ing previous work ([1]) we use Recall@1 with
IoU thresholds of 0.3, 0.5 and 0.7 and average
mean average precision (mAP) as the evaluation
metric for moment retrieval tasks. For highlight
detection, we use mAP and HIT@1, where a
clip is considered a true positive if it receives a score of "Very Good" ([6]). For Charades-STA, we
employ Recall@1 with IoU thresholds of 0.3, 0.5, and 0.7, along with the mean IoU (mIoU).

H Analysis of Energy and Power Efficiency

Figure S1: Graph depicting the performance
of each model type on the QVHighlights high-
light detection task, alongside their potential
energy efficiency (Ef ).

We conduct a preliminary energy analysis of the pro-
posed SpikingVTG variants during inference and
compare it to a non-spiking UniVTG model with
comparable depth and hidden state dimensions (also
hidden dimension (D) is same as intermediate layer
dimension in our implementation). From a simpler
circuit design standpoint, for our analysis we consider
45nm CMOS technology and 32-bit precision, thus
floating point (fp)-MAC operations consume 4.6pJ ,
fp-ACC operations consume 0.9pJ and integer(int)-
ACC operations consume 0.1pJ ([30]). The primary
energy consumption is attributed to the transformer
encoder layers, which consist primarily of the atten-
tion mechanism and multiple linear layers ([16]. The
primary computation cost, calculated for an input se-
quence of length L, of each transformer encoder-layer
of the non-spiking model can be expressed as: CostA = [(3LD2)+(LD2+L2D)+(LD2)+(LD2)]
fp-MAC operations, corresponding to the three projection layers for query, key, and values, the atten-
tion mechanism, the intermediate layer, and the output layer.

For the SpikingVTG model, per spiking transformer encoder layer the energy cost per time step is
given by: CostSt

= [(3 · IFRin · LD2) + (IFRk · LD2 + IFRv · L2D) + (IFRattn · LD2) +
(IFRinterm. · LD2)] fp-ACC operations, where each term is associated for each component similar
to the one specified above. IFRl represents the mean firing rate of the corresponding layer l. The
total energy cost for the spiking model is: CostS = (CostSt ∗ T ) fp-ACC operations, where T
represents the number of time steps. The models that include normalization also have an added cost
of energy for normalization however, it is of the order O(LD) so have not been included in our
computation however it is to be noted that both our NF-SpikingVTG and 1-BIT NF-SpikingVTG
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models are normalization free so they do not incur this added cost. Moreover, for 1-bit spikingVTG,
the core computations in matrix multiplications shift from using fp-ACC to int-ACC operations.

We define energy efficiency of the spiking model as Ef = CostA/CostS . Specific examples of the
energy analysis are provided in the Appendix. When operating the underlying models for T = 12
time steps, the energy efficiency and performance of each model are illustrated in Fig. S1. The
average power efficiency for each model type is calculated as Pf = Ef × T , demonstrating that our
models are significantly more power-efficient (ranging from 15× in SpikingVTG to upto 250×, in
1-bit NF-SpikingVTG) compared to non-spiking models. This efficiency arises from the ability of
SNNs to unroll complex operations over time, thus providing low-powered solutions for complex
tasks. Although this method of analysis does not account for various architectural energy advantages,
it provides a useful approximation to gauge the potential benefits of spiking models over their
non-spiking counterparts.
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