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ABSTRACT

We present a target-aware video diffusion model that generates videos from an
input image, in which an actor interacts with a specified target while performing
a desired action. The target is defined by a segmentation mask, and the action
is described through a text prompt. Our key motivation is to incorporate target
awareness into video generation, enabling actors to perform directed actions on
designated objects. This enables video diffusion models to act as motion planners,
producing plausible predictions of human-object interactions by leveraging the
priors of large-scale video generative models. We build our target-aware model
by extending a baseline model to incorporate the target mask as an additional
input. To enforce target awareness, we introduce a special token that encodes the
target’s spatial information within the text prompt. We then fine-tune the model
with our curated dataset using an additional cross-attention loss that aligns the
cross-attention maps associated with this token with the input target mask. To
further improve performance, we selectively apply this loss to the most semantically
relevant attention regions and transformer blocks. Experimental results show that
our target-aware model outperforms existing solutions in generating videos where
actors interact accurately with the specified targets. We further demonstrate its
efficacy in two downstream applications: zero-shot 3D HOI motion synthesis with
physical plausibility and long-term video content creation.

1 INTRODUCTION

Video diffusion models have demonstrated remarkable capabilities in simulating complex real-
world scenes. Ideally, such models can serve as motion planners, in line with the concept of world
models (Ha & Schmidhuber, 2018; Bar et al., 2024), by producing plausible predictions of interactions
between an actor (human or robot) and target objects using priors learned from large-scale video
datasets. However, existing image-to-video diffusion models (Yang et al., 2025b; Kong et al., 2024;
HaCohen et al., 2024), which generate videos from an input image guided by text prompts, are
target-unaware. An alternative line of work attempts to explicitly control actor–target interactions
using dense structural or motion cues, such as depth maps (Esser et al., 2023; Zhang et al., 2024),
edges (Chen et al., 2023; Khachatryan et al., 2023), optical flow (Ni et al., 2023; Burgert et al.,
2025; Gu et al., 2025), motion trajectories (Yan et al., 2023; Shi et al., 2024a), or drag-based
manipulation (Deng et al., 2024; Teng et al., 2023; Shi et al., 2024b). While effective for certain tasks,
these approaches do not meet our needs. Our goal is to use video diffusion models to infer plausible
actor-target interactions, where action guidance for the actor is not available in advance and thus
cannot be provided as input. Ultimately, we aim to leverage video generative models for high-level
action planning, inferring realistic interaction cues for the actor within the current scene, as explored
in recent robotics research (Black et al., 2024; Du et al., 2023; Ajay et al., 2023; Ni et al., 2024).

In this paper, we present a target-aware video diffusion model that generates videos from an input
image, where an actor performs a desired action directed at a specified target. The target is defined by
a segmentation mask, and the action is described with a text prompt. We use the mask as a means to
specify the target object in the scene, which can be obtained with minimal effort (e.g., a single click),
or automatically from text input using off-the-shelf tools (Ren et al., 2024), and we show that our
method is robust to variations in mask quality. By providing an explicit way to designate the target,
our model can serve as an effective motion planner, enabling the actor to perform diverse interactions
with the specified object. While our training uses videos with human actors, we also demonstrate that
the model generalizes seamlessly to other agents, including animals and robotic hands.
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To integrate spatial information of the target mask, we extend a base image-to-video diffusion
model (Yang et al., 2025b) to take the mask as an additional input, and fine-tune it on our newly
curated dataset. However, simply fine-tuning the model with the extra mask input does not ensure the
target awareness of the model. To address this, we introduce a special token, [TGT], into the text
prompt to describe the target and enforce an alignment between the [TGT] token’s cross-attention
maps and the input target mask by applying a loss on the model’s cross-attention. This cross-attention
loss enables the model to associate the [TGT] token with the spatial information of the target,
improving the precision of the generated interactions with the target by injecting spatial grounding
into the text-conditioning mechanism of the model. We selectively apply this loss to specific attention
regions and transformer blocks that are most semantically relevant for effective supervision.

Experimental results demonstrate that our target-aware video diffusion model outperforms existing
solutions in synthesizing videos where actors precisely engage with designated targets. To further
demonstrate the strength of our target-aware model, we apply our model to two downstream applica-
tions: (1) zero-shot 3D human-object interaction (HOI) motion synthesis with physical plausibility,
simulating physical agents performing plausible actions in a given environment, and (2) video content
creation, generating long-term videos covering navigations and interactions with minimal user input.

Our contributions can be summarized as follows: (1) We present a target-aware video diffusion
model that generates videos of interactions between the actor and the target using a segmentation
mask and a text prompt; (2) We propose to utilize a cross-attention loss to enable the base model to
effectively incorporate the mask input and achieve target awareness, and provide a comprehensive
analysis of its effects across different parts of the model; (3) We present a newly curated dataset
specifically designed to train and evaluate our target-aware model; and (4) We demonstrate two
real-world applications of our target-aware model: zero-shot 3D HOI motion synthesis for controlling
physical agents and video content creation.

2 RELATED WORK

Controllable Video Generation Building on early work (Ho et al., 2022; Esser et al., 2023; Guo
et al., 2024) that extends text-to-image diffusion models to video generation, the community has
shown significant interest in producing videos with enhanced controls. Several methods, inspired by
ControlNet (Zhang et al., 2023b), have been adapted for videos, where structural cues, such as depth
maps (Esser et al., 2023; Zhang et al., 2024), edge information (Chen et al., 2023; Khachatryan et al.,
2023), optical flow (Ni et al., 2023; Gu et al., 2025), or motion (Yan et al., 2023; Shi et al., 2024a; Cha
et al., 2025a), are integrated into the generation process via additional modules to produce structure-
consistent outputs. Another line of research focuses on manipulating the internal representations of
diffusion models to achieve controls without extra modules. Attention modulation approaches (Yang
et al., 2024; Wu et al., 2024a; Jain et al., 2024) adjust cross-attention maps of predefined regions to
steer subject movements. Inversion-based feature injection methods (Liu et al., 2024; Wang et al.,
2023a; Jeong & Ye, 2024) edit videos in a zero-shot manner by leveraging cross-attention control,
allowing for content editing without training. Other work (Teng et al., 2023; Deng et al., 2024;
Wu et al., 2024b; Yin et al., 2023) extends drag-based image editing techniques (Pan et al., 2023;
Shi et al., 2024b; Shin et al., 2024) to video, by either adding an extra drag-embedding module or
optimizing video latents to align with drag inputs. While existing approaches focus on generating
videos that faithfully follow the dense input cues, either from source video or user inputs, we aim to
extract those motion cues from video diffusion models with minimal extra input, a mask of the target.

Human-Scene Interaction Synthesis. Synthesizing natural human motions within a given scene
remains challenging, requiring a high-level semantic understanding of human-scene interactions and
affordances. Early work primarily focuses on posing a static 3D human in a 3D environment (Kim
et al., 2014; Savva et al., 2016; Li et al., 2019; Hassan et al., 2019; Zhang et al., 2020b;a; Hassan
et al., 2021b; Huang et al., 2022; Zhao et al., 2022) or generating short-term, predefined motions,
such as reaching or sitting, given a static object (Starke et al., 2019; Taheri et al., 2020; Zhang et al.,
2021; 2022; Taheri et al., 2022). More recent work (Wang et al., 2021a;b; Hassan et al., 2021a;
Lee & Joo, 2023; Jiang et al., 2024a; Cha et al., 2025b; Kim et al., 2025) has extended this to
synthesizing human motions in 3D scenes with multiple objects, while other work has explored
human motion generation involving dynamic objects (Li et al., 2023a; Xu et al., 2023; Ghosh et al.,
2023; Li et al., 2023b; Xu et al., 2024; Jiang et al., 2024b; Xu et al., 2025). These methods leverage
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(a) Injecting the extra mask condition

“The person interacts with [TGT] object.” Original text prompt

Target mask Cross-attention map
for [TGT] token

Initial frame

Target mask

GT video

Pretrained
I2V Diffusion Model

ℒ!"#
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(b) Target awareness via cross-attention loss

Figure 1: Target-aware video diffusion models. (a) We condition the noisy video latent with a
segmentation mask of the target to incorporate spatial information during generation. (b) We fine-tune
the pretrained video diffusion model to utilize the mask input via additional cross-attention loss.

3D motion-scene paired datasets (Savva et al., 2016; Monszpart et al., 2019; Hassan et al., 2019; Yi
et al., 2024; Kim et al., 2024b) or 3D human-object interaction datasets (Taheri et al., 2020; Bhatnagar
et al., 2022; Jiang et al., 2023; Wang et al., 2023b; Kim et al., 2023a; Xie et al., 2024; Baik et al.,
2025) to enable such scene-conditioned motion generation. To address the scarcity of large-scale
3D datasets, some approaches (Han & Joo, 2023; Kim et al., 2024a; Li & Dai, 2024; Kim et al.,
2024c) leverage the knowledge of 2D generative or vision language models, yet are limited to static
human-scene interactions. In this work, we synthesize 3D HOI motions from the 2D scene, utilizing
our target-aware video diffusion model.

3 PRELIMINARIES: VIDEO DIFFUSION MODELS

Building on the success of text-to-image latent diffusion models (Rombach et al., 2022b; Black Forest
Labs, 2023; Esser et al., 2024), recent text-to-video (T2V) diffusion models (Blattmann et al., 2023;
Yang et al., 2025b; HaCohen et al., 2024) generate videos in a latent space. Given a video x, an
encoder E maps it to its latent representation z. During the forward process, Gaussian noise is added
to z at each timestep t, as zt = αtz + σtϵ, where ϵ ∼ N (0, I) and αt, σt are noise scheduling
coefficients. In the reverse process, the model is trained to predict the noise added to the video latent,
guided by input conditions such as text prompt, by minimizing the following objective:

LVDM = E
[
∥ϵ− ϵθ(zt;y, t)∥22

]
, (1)

where y denotes the text prompt. T2V diffusion models can be fine-tuned for image-to-video (I2V)
tasks by conditioning the model on an extra input image, allowing the video to start from the given
image (Xing et al., 2024; Yang et al., 2025b; Kong et al., 2024; HaCohen et al., 2024). In this work,
we use CogVideoX (Yang et al., 2025b), one of the SOTA open-sourced video diffusion models based
on diffusion transformers (Peebles & Xie, 2023).

4 TARGET-AWARE VIDEO DIFFUSION MODELS

Given an image, a mask of the target, and a text prompt describing an action, our target-aware video
diffusion model generates videos where an actor accurately interacts with the specified target. We first
extend our base video diffusion model to accept the mask as an additional input (Sec. 4.1). To make
the model utilize the extra mask information, we augment the text prompt by adding a sentence, “The
person interacts with [TGT] object.”, where the [TGT] token is used to encode the spatial information
of the target. We then apply a cross-attention loss to align the cross-attention maps of the [TGT]
token with the mask input and make our model target-aware (Sec. 4.2). This loss is selectively applied
to specific cross-attention regions and transformer blocks to maximize its effectiveness (Sec. 4.3).
Finally, we curate a dedicated dataset tailored to train our target-aware model (Sec. 4.4).

4.1 SPECIFYING THE TARGET WITH A MASK

To encode the spatial information of the target, we extend our base I2V diffusion model (Yang et al.,
2025b) to incorporate a binary segmentation mask of the target. Our base model takes an input image
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I ∈ RH×W×3 and generates an output video V ∈ RF×H×W×3, where F denotes the number of
frames. To enforce the input image as the first frame of the video, the latent noise zt ∈ Rf×h×w×c is
concatenated channel-wise with the latent encoding of the input image E(I) ∈ R1×h×w×c for the
first frame, with zero-padding applied for the remaining frames. The concatenated representation is
then projected through an image projection layer to align with the text embedding dimension.

To integrate the target mask M ∈ RH×W×1 into this process, we downsample it to M̃ ∈ Rh×w×1

and concatenate it alongside the input image condition, again applying zero-padding for the other
frames. To support the extra mask channel, we extend the original image projection layer by adding
an input channel, and initialize the new weights to zero while preserving the pretrained parameters,
following InstructPix2Pix (Brooks et al., 2023). The overall pipeline is shown in Fig. 1a.

4.2 TARGET AWARENESS VIA CROSS-ATTENTION LOSS

We make our model target-aware by applying a cross-attention loss that aligns the model’s attention
on the target with the additional input mask during fine-tuning. For every text prompt in our training
dataset, we append a general sentence “The person interacts with [TGT] object.”, where the [TGT]
token is intended to encode the target’s spatial information. We then encourage the cross-attention
weights between the latent noise corresponding to the first frame of the video and the [TGT] token to
align with the provided target mask M as demonstrated in Fig. 1b. Specifically, we minimize the
following loss:

Lattn = E
[
∥A(z0

t , [TGT])− M̃∥22
]
, (2)

where A(z0
t , [TGT]) denotes the cross-attention weights between the latent noise for the first frame

of the video and the [TGT] token. In addition to the cross-attention loss, we employ the standard
diffusion objective:

Lrec = E
[
∥ϵ− ϵθ(zt;y, I,M̃ , t)∥22

]
, (3)

where notations remain consistent with those used in Eq. (1). Our overall objective is defined as:

Ltotal = Lrec + λattnLattn, (4)

where λattn balances the two loss terms. During inference, we prepend the [TGT] token to words
referring to the target, enabling the model to leverage the spatial cue provided by the segmentation
mask. As presented in Fig. 2a, the cross-attention loss effectively guides the [TGT] token to focus
on the target region, enabling precise interactions with it.

4.3 SELECTIVE CROSS-ATTENTION LOSS

For effective and efficient supervision, we selectively apply the cross-attention loss to the model by
identifying (1) the cross-attention regions that most influence target awareness of the model and (2)
the transformer blocks that best capture semantics. We validate these design choices via ablations.

Selective Cross-Attention Regions. The multi-modal diffusion transformer architecture, employed
by state-of-the-art image and video diffusion models (Black Forest Labs, 2023; Esser et al., 2024;
Kong et al., 2024), including our base model (Yang et al., 2025b), concatenates text and video
embeddings into a unified sequence and computes attention over the combined representation.
This process yields four distinct attention regions: text-to-text self-attention, text-to-video (T2V)
cross-attention, video-to-text (V2T) cross-attention, and video-to-video self-attention. While both
T2V and V2T cross-attention maps encode semantic information (Fig. 2b top row), we apply
the cross-attention loss on V2T cross-attention regions to maximize its impact since V2T cross-
attention directly influences the video latent representations during the dot product computation of the
attention weights and value features. In contrast, T2V cross-attention primarily affects the text latents,
offering less direct influence on the video content. Details on attention mechanisms are provided in
Appendix Sec. C.3.

Selective Transformer Blocks. Motivated by prior work (Hertz et al., 2022), we observe that
certain transformer blocks capture richer semantic details than others, as shown in the bottom row
of Fig. 2b. We therefore apply the cross-attention loss to those blocks whose cross-attention maps
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Target mask person [TGT]

Initial frame person [TGT] bottle
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“The person picks up the [TGT] plastic bottle with a red cap.”
bottle

(a) Effect of the cross-attention loss

Initial frame Segmentation T2V cross-attn. V2T cross-attn.

1st block 12th block 25th block 36th block
“The person repairs a bike.”

(b) Selective cross-attention loss

Figure 2: Cross-attention visualization. (a) The cross-attention loss successfully guides the model
to focus on the target region. (b) We apply the loss on transformer blocks and cross-attention areas
that largely impact target awareness of the model.

closely resemble the segmentation masks of the corresponding token. To empirically identify these
blocks, we evaluate the semantic alignment of each transformer block by first generating 100 videos
from a subset of our training images. We then compute the mean squared error between each block’s
cross-attention map and the segmentation mask for a predefined token. Our analysis shows that blocks
5 through 23 of the base model (Yang et al., 2025b) yield the smallest errors, and we consequently
apply the loss to uniformly sampled blocks (every 5th) within this range, constrained by GPU VRAM
limitations.

4.4 DATASET CURATION FOR TRAINING THE TARGET-AWARE MODEL

To train our target-aware model, we require videos that satisfy two conditions: (1) the initial frame
should depict a scene where an actor is present but not yet interacting with the target, and (2) subse-
quent frames must capture the actor engaging with the target. Directly collecting such data through
one’s own captures is infeasible, since it would not provide sufficient scale or diversity. To this end,
we curate a dedicated dataset for target-aware video generation, designed to cover diverse interaction
scenarios and align with our training pipeline. Each video, sourced from BEHAVE (Bhatnagar et al.,
2022) and Ego-Exo4D (Grauman et al., 2024) datasets, is annotated with a segmentation mask of
the target in the initial frame and paired with text prompts describing the action. BEHAVE dataset
features videos where a single person interacts with a clearly defined target object in a relatively
simple setting, whereas Ego-Exo4D contains more complex scenarios, such as cooking or bike
repairing, where multiple objects, including those of the same type, may be present. In total, we
extract 1290 clips that meet our criteria. We obtain the mask for the target object in the initial frame
using an off-the-shelf segmentation model (Kirillov et al., 2023) and generate text prompts with
CogVLM2-Caption (Yang et al., 2025b), the same captioning tool used for training our base model.
While it is ideal to prepend [TGT] tokens to the target object nouns during caption generation, we
find that current video captioning tools cannot reliably identify the target object in complex scenes.
Therefore, we add a general sentence, “The person interacts with [TGT] object.” to the generated
captions as described in Sec. 4.2, which we find sufficient to train our target-aware model.

5 PRACTICAL APPLICATIONS OF OUR TARGET-AWARE MODEL

The core strength of our target-aware model lies in its ability to generate plausible and diverse
interaction motions between actors and specified target objects, without requiring additional guidance.
Leveraging this capability, we present two practical pipelines: (1) zero-shot 3D HOI motion synthesis
for a target object with physical plausibility and (2) long-term video content creation with minimal
user input. See the detailed pipelines in Appendix Sec. A.2.

5.1 ZERO-SHOT 3D HOI MOTION SYNTHESIS WITH PHYSICAL PLAUSIBILITY

Given an actor in a 2D scene and a desired target object, our model produces realistic HOI actions
aligned with text prompts, providing strong planning cues for robotics control (Du et al., 2023;
Ajay et al., 2023; Black et al., 2024; Ni et al., 2024). To validate this connection, we present a
pipeline that first applies an off-the-shelf 3D human pose estimator (Shen et al., 2024) to videos
generated by our model, extracting 3D human motion sequences. We then perform a physics-based
imitation learning (Wang et al., 2023b) to train a policy that mimics these motions in the Isaac
Gym simulator (Makoviychuk et al., 2021). As shown in Fig. 3, the resulting agents reproduce
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Generated HOI videos using our target-aware model

Estimated 3D human poses

Physics-based imitation learning outputs

Figure 3: Zero-shot 3D HOI motion synthesis.
We perform imitation learning on 3D poses of
a person interacting with a target in the scene,
obtained from videos generated with our model.
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“The man walks towards the [TGT] orange chair by the windows and sits on it.”
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Figure 4: Comparison over drag-based meth-
ods. Ours with less extensive inputs outperforms
drag-based editing methods (Shi et al., 2024b;
Burgert et al., 2025).

human–object interactions in a physically plausible manner, demonstrating the potential of our
approach to bridge between video generation and robotics.

5.2 LONG-TERM VIDEO GENERATION WITH TARGET-AWARE INTERACTIONS

Our target-aware model serves as a key component for video content creation, enabling effective
control over an actor’s actions in a scene without extensive manual effort. We introduce a simple yet
robust pipeline that combines a video interpolation technique between keyframes and our target-aware
video diffusion model to support two types of actions: navigating the scene and interacting with
target objects. For navigation, we interpolate between two keyframes using an off-the-shelf frame
interpolation model (Fei, Zhengcong, 2024). Each keyframe is constructed by placing the actor at a
desired location in the scene via our depth-aware 3D insertion method. To generate HOI actions with
a specified target object, we first position the actor using the same insertion method, specify the target
with an off-the-shelf segmentation tool (Kirillov et al., 2023), and finally employ our target-aware
model to synthesize realistic interactions. Importantly, our target-aware model provides a convenient
way to produce plausible HOI scenes by simply specifying a target, which can then be connected
through interpolation-based models for long-form video synthesis. The overall pipeline is illustrated
in Fig. 10 of Appendix Sec. A.2.

6 EXPERIMENTS

We are the first to introduce a target-aware video diffusion framework that explicitly models ac-
tor–target interactions. To rigorously evaluate this new task, we construct a dedicated benchmark,
introduce metrics, and establish strong baselines for comparison.

6.1 EXPERIMENTAL SETUP

Dataset. We construct a benchmark set of 80 images depicting scenes with a person, where each
image is paired with a text prompt describing an interaction between the person and a target object.
For all pairs, we ensure that the target can be clearly distinguished with text prompts using a noun, a
color descriptor, or a spatial detail (e.g., soda bottle on the table, blue box at the center). Text prompts
follow the format “The person {action} with {object}.” for baselines and “The person {action} with
[TGT] {object}.” for ours. These prompts are further refined using GPT-4o, following the prompt
enhancement procedure of CogVideoX (Yang et al., 2025b). For each test image, we generate 5
videos with random seeds, comparing results with a total of 400 samples.

Metric. We evaluate our approach along two dimensions: target alignment and generation quality.
To measure target alignment, we assess whether the generated video captures an accurate interaction
between the person and the target object. Specifically, we employ an off-the-shelf contact detec-
tor (Narasimhaswamy et al., 2020) to identify human-object contact in each frame of the generated
video and consider the interaction accurate if the detected contact regions overlap the target object’s
mask in at least one frame. We report the rate of accurate interactions over all generated videos
(Contact Score). In addition, we perform two types of user studies (Hum. Eval. and User Pref.) to
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Initial frame

“The girl turns and picks up the [TGT] teddy bear resting on the bed.”
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Figure 5: Qualitative comparison on target alignment. Each set displays generated videos using
different methods. While baselines tend to hallucinate the target, our target-aware model produces
videos where the actor interacts accurately with the actual target in the scene.

“The rabbit turns its head towards the [TGT] carrot and takes a bite of it.”

Initial frame

“The dog bites onto the [TGT] frisbee and lifts it off the ground.”

Initial frame

Figure 6: Non-human interactions. Our target-aware model generalizes to non-human cases despite
being fine-tuned on human-scene interaction videos.

further assess the target alignment of each method. For generation quality, we adopt the evaluation
metrics from VBench (Huang et al., 2024), which break down video quality into subject consistency
(SS), background consistency (BC), dynamic degree (DD), motion smoothness (MS), aesthetic quality
(AQ), and imaging quality (IQ). The final score (Avg.) is computed by averaging them.

Baselines. Since our method uses a single mask to specify the target, direct comparisons with
state-of-the-art approaches that rely on heavy temporal conditioning on the actors are not appropriate.
Instead, we evaluate against three representative baselines. First, we evaluate against our base
image-to-video diffusion model, vanilla CogVideoX (Yang et al., 2025b). Second, we assess against
a version of CogVideoX fine-tuned on videos of our dataset to isolate the effect of our method from
that of the additional data (CogVideoX w. data). Finally, we compare with the attention modulation
method from Direct-a-video (Yang et al., 2024), which enforces a subject’s trajectory by amplifying
cross-attention weights within predefined bounding box regions (Attn. Mod.). Since we assume that
trajectory annotations for actors and targets are unavailable in our evaluation setting, we adapt this
method by prepending the keyword “target” to the object description in the prompt and amplifying
cross-attention weights in the target object mask region for that keyword.

6.2 QUALITATIVE EVALUATION

Target Alignment. Fig. 5 compares our method with baselines in terms of targeting accuracy. In
rows 1 and 2, baseline methods occasionally hallucinate the target described in the prompt, rather
than incorporating the actual target from the input image. In contrast, our approach generates videos
where the actor accurately interacts with the specified target.

Multiple Objects of the Same Type. Fig. 7 highlights our key advantage where the scene contains
multiple target objects of the same type. By enabling the usage of an explicit segmentation mask to
identify the target, our method ensures precise selection and manipulation of the intended target.

Non-Human Interactions. While our model is fine-tuned on human-scene interactions, it generalizes
well to interactions involving non-human subjects, as shown in Fig. 6.

Specifying Both the Actor and the Target. Our approach enables simultaneous control over both
the source actor and the target object, as demonstrated in Fig. 8. We extend our model to accept two
separate segmentation masks as additional inputs and introduce two tokens, [SRC] and [TGT]. Each
token is encouraged to attend to each mask with our cross-attention loss during fine-tuning. During
inference, we prepend each token to the actor and target descriptions, respectively.

Comparison with Drag-Based Methods. Fig. 4 shows a qualitative comparison with two drag-
based image/video editing methods, which require additional user inputs to directly control the actor.
DragDiffusion (Shi et al., 2024b) adjusts image latents based on drag operations. Since a single
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Targeting Quality Video Quality
Contact Score↑ Hum. Eval.↑ User Pref.↑ SC↑ BC↑ DD↑ MS↑ AQ↑ IQ↑ Avg.↑

CogVideoX 0.560 0.456 28.4% 0.893 0.898 0.883 0.988 0.502 0.694 0.810
CogVideoX w.data 0.638 0.596 36.2% 0.914 0.907 0.907 0.990 0.492 0.653 0.810
Attn. Mod. 0.546 0.508 22.2% 0.872 0.889 0.786 0.986 0.499 0.687 0.786
Ours 0.878 0.892 (100%-above) 0.933 0.919 0.899 0.937 0.496 0.656 0.807

Table 1: Quantitative comparison. Our method enables the generation of videos containing
accurate interactions with the specified targets. We also report generation quality with measures from
VBench (Huang et al., 2024), confirming that our approach does not compromise video quality.

“The woman picks up the [TGT] mug cup and takes a sip of coffee.”

Initial frame

Figure 7: Multiple objects of the same type.
Our method ensures accurate interaction with
the intended target by leveraging its mask.

“The [SRC] robotic arm picks up the [TGT] blue can with its robot hand.”

Initial frame

Figure 8: Control over multiple entities. Our
model can be extended to specify both the source
actor and the target object using two masks.

large drag is ineffective, we gradually move the actor toward the target using multiple small drags.
While DragDiffusion produces reasonable results for small translations, it fails for larger adjustments.
Go-with-the-Flow (Burgert et al., 2025) controls motion by warping the initial noise sequence to
follow a desired flow, which we implement by dragging the actor’s segmentation mask toward the
target. Although this method enables the actor to make contact with the target, the output video
lacks plausible motion due to its coarse conditioning. In contrast, our approach produces realistic
interactions even without explicit motion guidance.

6.3 QUANTITATIVE EVALUATION

Target Alignment and Video Quality. As presented in Tab. 1 Contact Score, our method substan-
tially outperforms all baselines in generating accurate interactions with target objects. At the same
time, ours maintains video generation quality, achieving comparable scores to baselines across the
Video Quality metrics in Tab. 1. The attention modulation approach fails to maintain the temporal
consistency of videos since the amplified cross-attention values adversely affect the self-attention
values, resulting in low contact scores. Additional details are provided in Appendix Sec. C.3.

User Study. We conduct two types of user studies via CloudResearch Connect. In (Hum. Eval.),
each generated video is presented together with the corresponding input image and target object
specification. Participants then make a binary judgment on whether the actor interacts accurately
with the specified target. A total of 50 participants evaluate 10 videos per method, and we report the
overall rate of accurate interactions in Tab. 1. In (User Pref.), each input image is presented alongside
two generated videos: one produced by our method and the other by a baseline. Participants are
asked to choose which video better reflects accurate interaction with the target. Again, 50 participants
answer 10 questions per baseline, and we report in Tab. 1 the proportion of times each baseline is
preferred over ours. In both studies, participants consistently favor our outputs by a large margin.

Contact Score↑ Video Quality↑
Random 0.819 0.807
Equally-Spaced 0.816 0.800
Ours 0.878 0.807

Table 2: Cross-attention loss on selective
transformer blocks. We apply the loss to
blocks that best capture semantics.

Contact Score↑ Video Quality↑
T2V Cross-Attn. 0.740 0.806
Both Cross-Attn. 0.860 0.810
Ours (V2T Cross-Attn.) 0.878 0.807

Table 3: Cross-attention loss on selective atten-
tion regions. We apply the loss to the attention
regions that most influence target awareness.

8
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Contact Score↑ Video Quality↑
λattn = 0.0 0.647 0.815
λattn = 0.05 0.727 0.811
λattn = 0.1 0.878 0.807
λattn = 0.25 0.890 0.806
λattn = 0.5 0.888 0.807
λattn = 1.0 0.888 0.804

Table 4: Effects of different cross-attention
loss weights. Incorporating our cross-attention
loss is crucial for achieving target awareness.

Contact Score↑ Video Quality↑
original 0.896 0.812
dilate-3 0.884 0.808
dilate-5 0.872 0.815
erode-3 0.904 0.815
erode-5 0.880 0.813

Table 5: Effect of the mask quality. Even when
masks are expanded or shrunk, the Contact Score
remains stable, supporting that our method is not
sensitive to precise segmentation.

6.4 ABLATION STUDIES

Cross-Attention Loss on Selective Blocks. We evaluate the impact of applying cross-attention loss
on different transformer blocks. For all experiments, we fix the number of blocks receiving the loss
per training step to seven. We compare three strategies: (1) random seven blocks at each training
step, (2) seven equally spaced blocks, and (3) blocks chosen using our proposed method. As shown
in Tab. 2, our approach shows improved target alignments.

Cross-Attention Loss on Selective Regions. In Tab. 3, we examine how applying cross-attention
loss on various regions of the cross-attention influences performance. The results indicate that the
loss should be applied on the V2T cross-attention for better target alignment.

Cross-Attention Loss Weight. In Tab. 4, we analyze the impact of cross-attention loss coefficient
λattn. When λattn = 0.0, meaning the model is trained solely with the reconstruction loss, the target
alignment performance is nearly identical to that of the CogVideoX fine-tuned on our dataset (Tab. 1,
second row). This demonstrates that simply introducing the mask does not, by itself, improve the
target awareness of the model, and incorporating the cross-attention loss is essential. As we increase
the loss weight, we observe a saturation of the contact score and set λattn = 0.1.

Quality of Masks. To evaluate the effect of segmentation quality on target alignment, we dilate
and erode the masks at varying levels. As shown in Tab. 5, our method remains robust to these
perturbations, as even coarse masks effectively guide the model by narrowing the region of interest.

Contact Score↑ Video Quality↑
original 0.896 0.812
circular-15 0.838 0.813
circular-30 0.888 0.809

Table 6: Effect of the mask shape. Our method
does not depend on the exact mask shape.

Shape of Masks. We further assess the
model’s robustness to mask shape by replac-
ing the original mask with a circular mask
centered at the original mask’s bounding box
center, with a radius of 15 or 30 pixels. As
demonstrated in Tab. 6, our model allows ab-
stract spatial cues as input.

7 DISCUSSION

We presented a target-aware video diffusion model that generates videos where an actor plausibly
interacts with a specified target, defined by a segmentation mask in the first frame. Our goal is to
establish target awareness as a core capability of video generative models. Under this formulation, our
model naturally guides the actor to interact with the designated targets in realistic and semantically
consistent ways. Experiments demonstrate the strengths and advantages of our model compared to
baseline methods and alternative solutions. Finally, we present key applications of zero-shot 3D HOI
motion synthesis and video content creation using our target-aware video diffusion model.
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A IMPLEMENTATION DETAILS

A.1 TRAINING AND INFERENCE DETAILS

We use the CogVideoX-5B-I2V model (Yang et al., 2025b) as our base image-to-video diffusion
model, producing output videos at a resolution of 720 × 480 with a total of 49 frames. For model
fine-tuning, we employ LoRA (Hu et al., 2022) with a rank of 128 and α = 64 to the diffusion
transformer and designate the word “target” as our [TGT] token. We optimize the added LoRA layers
and the extended image projection layer while keeping the other parts of the model frozen and train
for 2,000 steps using an AdamW optimizer with a learning rate of 1× 10−4, and an effective batch
size of 4. The addition of a single channel to the image projection layer for incorporating the target
mask introduces 15,360 additional parameters to the 5B-parameter base model, resulting in negligible
extra computational overhead. We set the cross-attention loss coefficient λattn = 0.1 and apply the
loss to the video-to-text (V2T) cross-attention regions of every third transformer block from the 5th
block to the 23rd block of the total 42 blocks. This selective application reduces VRAM usage by
71% compared to applying the loss across all blocks. We average the attention maps of these selected
blocks and regions and normalize them to [0, 1]. The overall training takes approximately 6 hours on
4 NVIDIA A100 GPUs. For inference, we employ a DPM sampler (Lu et al., 2022) with T = 50
sampling steps and set the classifier-free guidance scale (Ho & Salimans, 2022) to 6 with the same
dynamic guidance strategy as the original work (Yang et al., 2025b). The inference for a single video
approximately takes 249.8 seconds on a single NVIDIA A100 GPU.

A.2 DETAILS ON APPLICATIONS

Application 1: Physics-Based Imitation Learning. We use the official code of PhysHOI (Wang
et al., 2023b) to implement physics-based imitation learning on 3D human poses extracted from our
output videos. Since our goal is to learn a policy for human motion, we disable modules related to
object motions during training. Joint training of full modules by obtaining paired data of 3D human
pose and 3D object pose via an off-the-shelf object 6D pose estimator (Zhang et al., 2023a; Wen
et al., 2024) could be a possible extension. Also, our current imitation learning outputs, as shown in
Fig. 27, are manually aligned with the 3D scene due to different scales between estimated 3D human
pose translations and the scene. Since the 3D location of the initial pose is given through 3D insertion
of humans, we may adjust the scale of the subsequent translations, leveraging the depth information,
which we leave as future work.

Application 2: Inserting Humans into Scenes. As demonstrated in Fig. 9, we perform human
insertion in 3D space rather than in 2D pixel space to handle depth ordering and occlusions between
the human and objects in the scene. Given an input human image, we use a single-view 3D human
reconstruction method (AlBahar et al., 2023) to obtain a 3D reconstruction of the person. For the
input scene image, we first apply a segmentation tool (Kirillov et al., 2023) to identify and segment
the ground. We then use a metric-depth estimation method (Bochkovskii et al., 2024) to generate the
real-scale 3D pointcloud. From the 3D pointcloud, we extract the points that belong to the ground
when projected to the image and perform RANSAC-based plane fitting on these points to derive
a 3D ground plane. Using the mapping between pixels and the 3D pointcloud, we obtain the 3D
coordinates of the pixel to place the human. The reconstructed 3D human is positioned at its 3D
point, perpendicular to the ground plane. To manage occlusions between the 3D human and the 3D
scene pointcloud, we discard cases where significant overlap occurs and ask the user for alternative
input coordinates. Once occlusion handling is complete, we render them together to obtain the
human-inserted scene images.

Compared to 2D-based solutions using inpainting, where a specific region of the scene is masked
and the person is inserted via personalized diffusion models (Rombach et al., 2022a; Ye et al., 2023),
our 3D approach better preserves the appearance of the original inputs. As shown in Fig. 11,
inpainting-based methods often fail to maintain consistency with the original scene, resulting in
undesired removal of objects in the scene. Additionally, inpainting can generate random details for
occluded parts of the person in the input image, leading to inconsistencies between frames.
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Input 
human image

Reconstructed
3D human

Human inserted
3D scene

Estimated
3D ground plane

Input
scene image

Back-projected
3D scene

Depth Est.

Rendering for

Rendering for

Figure 9: Inserting humans into scenes. We perform a 3D depth-based insertion of the human into
the scene by performing single-view 3D reconstruction of the human and estimating the depth of the
scene.

Interaction: “The person picks up the [TGT] books.”

Navigation: “The person walks in the room.”

Interpolation
VDM

Target-Aware
VDM

Initial frame

Final frame

Target mask

Input person

Input scene

Depth-based
3D insertion

Figure 10: Video content creation. Given images of a person and a scene, we perform depth-based
3D insertion of the person into the scene and render them together to produce frames for video
diffusion input. We interpolate generated initial and final frames to synthesize navigation contents,
and utilize our target-aware video diffusion model to synthesize interaction contents.

Input person & scene Ours 2D inpainting

Figure 11: Comparison with 2D inpainting. Our 3D-based human insertion effectively inserts the
human into the scene while preserving both identities and handling occlusion.
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Figure 12: Evaluation data example. We show a subset of our evaluation dataset, where the target is
indicated with a green mask. We confirm that the target is fully distinguishable with the input text
prompt.

Input image Success Failure

Figure 13: Contact score based on detection. Green masks in the input image indicate the target,
and yellow masks in output video frames indicate the detected object contact regions. We consider
the interaction with the target accurate if the detected object contact region overlaps with the target
mask.

A.3 EVALUATION DETAILS

Evaluation Dataset. We construct a set of images of a scene containing a person paired with the
prompt depicting an interaction between the person and the target. In the prompt, the person is
described to interact with (1) an object placed at different locations of the scene relative to the person’s
position, or (2) a specific object among several different objects in the scene. For all images, we
ensure that the target can be precisely determined with text prompts by a noun, a color description, or
a spatial description. To get the target mask, we first perform instance segmentation on the image
using SAM (Kirillov et al., 2023), and manually select the masks that belong to the target. Some
image and mask samples of our evaluation dataset are presented in Fig. 12.

Contact Score. To detect physical contact between the actor and objects, we use the official code of
ContactHands (Narasimhaswamy et al., 2020). We set the hand detection threshold to 0.5 and the
object contact detection threshold to 0.5. We consider the interaction between the actor and the target
to be successful when the detected object contact region overlaps with the segmentation mask of
the target. Detection results for success and failure cases are presented in Fig. 13, where the yellow
masks indicate the detected object contact regions.

User Study. We conduct two types of user studies to validate our comparisons. First, we perform
human evaluation on videos generated by each method to assess whether the depicted person
accurately interacts with the target. Fifty participants are presented with 10 videos per method. In
each video, we show an input image with the target object highlighted with a green mask for 2
seconds, followed by the generated video. A screenshot of the human evaluation interface is shown in
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(a) Human evaluation on target alignment. (b) User preference study on target alignment.

Figure 14: User studies on target alignment. (a) We ask participants to assess whether the person in
the video accurately interacts with the target. (b) We ask participants to select the video that better
demonstrates accurate target alignment.

Fig. 14a. We also perform an A/B test to measure user preference of our method over each baseline
method in terms of target alignment. Fifty participants are asked 10 questions per baseline method,
where each question displays an input image with the target in a green mask, alongside the generated
videos from our method and a baseline in a random order. The screenshot of the user preference
study interface is shown in Fig. 14b.

B ADDITIONAL QUALITATIVE RESULTS

Non-human Interactions. Fig. 15 is an extended figure of Fig. 6 in the main paper, demonstrating
that our model generalizes to non-human interactions. Although the model is fine-tuned solely on a
relatively small set of human–scene interaction videos and has never been exposed to actors other
than humans during training, it can generate coherent and plausible non-human interactions. This
generalization ability arises from the strong generative priors of the base video diffusion model,
enabling the itself to adapt to novel agent types with target awareness.

Targeting Objects in Outdoor Scenes. Fig. 16 presents additional results of our target-aware model
applied to outdoor scenes. Although the model is trained exclusively on indoor interaction videos, it
generalizes well to diverse outdoor environments, successfully grounding the target and producing
coherent actor–target interactions.

Targeting Objects in Complex Scenes. In Fig. 17, we present additional results of our target-
aware video diffusion model applied to complex scenes such as a bike repair shop or kitchen, where
describing the target with text prompts is challenging. We also present the results of the original
CogVideoX (Yang et al., 2025b). Our model successfully generates videos that capture accurate
interactions with the target object, even when the target occupies only a small portion of a complex
scene. Note that the scene, sourced from the Ego-Exo4D dataset (Grauman et al., 2024) is unseen
during fine-tuning.

Egocentric View Generation. For robotics applications, generating videos from an egocentric
perspective is particularly beneficial for capturing fine-grained actions. In Fig. 18, we demonstrate
egocentric video generation using our approach. To better adapt the base model for this setting, we
first fine-tune it on egocentric videos of the EgoIT-99 dataset (Yang et al., 2025a). We then apply
our target-aware LoRA module to the fine-tuned model (CogVideoX-Ego) without any additional
training. Notably, the target awareness generalizes seamlessly to the fine-tuned model.

Providing Motion. The output videos produced with our method, where the actor precisely interacts
with the target, can serve as a source of motion data for existing controllable video generation
approaches (Gu et al., 2025). Diffusion as Shader (Gu et al., 2025) uses 3D tracking video (Xiao
et al., 2024) of a source clip to condition the motion in generated videos such that they follow the
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“A metallic orange beetle walks toward the [TGT] pebble and leans on it.”

Initial frame and mask

Initial frame and mask

“A small sad-faced cartoon octopus lifts the [TGT] chest and runs away.”

“A white wolf walks toward the [TGT] pumpkin/vase and bites it firm.”

Initial frame and mask

Figure 15: Non-human interactions. Our target-aware model generalizes well to non-human
interactions despite being fine-tuned solely on 1K+ human-scene interaction videos.
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Initial frame and mask

“A woman turns around before bending down to pick up the [TGT] acorn.”

“A young girl walks and steps onto the [TGT] stone, her foot pressing gently onto its surface.”

Initial frame and mask

Initial frame and mask

“A man climbs the dusted rock and investigates the [TGT] wooden boat perched at the top.”

“A man in a red jacket pulls the [TGT] wooden signpost from the ground.”

Initial frame and mask

Figure 16: Target-aware generation in outdoor scenes. Despite being fine-tuned only on indoor
interaction videos, our model generalizes to interactions in diverse outdoor scenes.
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“The man picks up the [TGT] tumbler bottle from the table and takes a drink of water.”
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“The man picks up the tumbler bottle from the table and takes a drink of water.”

Initial frame

O
ur

s

“The woman picks up the [TGT] red carton.”

“The woman picks up the red carton.”

O
ur

s
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og
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id
eo

X

Initial frame

“The man picks up the [TGT] empty stainless-steel bowl.”

“The man picks up the empty stainless-steel bowl.”

O
ur

s
C

og
V

id
eo

X

Initial frame

Figure 17: Targeting objects in complex scenes. We compare results of original CogVideoX (Yang
et al., 2025b) and our target-aware model in complex scenes. Our model successfully generates
target-aligned videos even when the target appears small in complex scenes. Best viewed with zoom.
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“The person picks up the [TGT] pen with a red lid.”
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“The person picks up the pen with a red lid.”

Initial frame

C
og

V
id

eo
X

-E
go

+
O

ur
s

“The person picks up the [TGT] blue Marvel box with a star.”

“The person picks up the blue Marvel box with a star.”
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Initial frame

Figure 18: Targeting objects in egocentric view. We fine-tune the base model on egocentric videos
and then apply our target-aware LoRA module. The target awareness seamlessly generalizes to the
egocentric setting without additional training, enabling precise interactions with the specified object
from the actor’s viewpoint.

“The girl picks up the [TGT] orange bean bag and puts it on the bed.”

“The girl sits on the [TGT] orange bean bag.”

“The girl picks up the [TGT] orange bean bag and throws it high.”

Initial frame

Figure 19: Diverse actions with the same target. Our method can generate diverse actions with the
same target using different prompts.
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“The [SRC] rubber duck swims toward the [TGT] lily pad and sits on it.”

Initial frame and mask

“A white wolf walks toward the [TGT] pumpkin/vase and bites it firm.”

“The [SRC] car moves toward the [TGT] space.”

Initial frame and mask

Figure 20: Control over multiple entities. Our model can be extended to specify both the source
actor and the target object using two masks.
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Initial frame and mask

“The driver drifts the [TGT] car away.”

“A person picks up the [TGT] toy car.”

“The person picks up the [TGT] teddy bear with both hands.”

Figure 21: Large target in a scene. Our method can handle targets that takes up a significant portion
of the input frame.

motion of the source. However, acquiring appropriate source videos for complex motions, such as
human-object interactions or robot manipulations, is often challenging. In such cases, our method
can generate the desired interactions and provide sufficient motion conditions, as demonstrated in
Fig. 26. We use Flux (Black Forest Labs, 2023) with a canny-edge ControlNet (Zhang et al., 2023b)
to generate the initial frames for running Diffusion as Shader.

Diverse Actions with the Same Target. We demonstrate in Fig. 19 that our method can generate
diverse actions with the same target by varying the prompt. The action quality depends on the base
model, while the target awareness is applied via our method.

Specifying Both the Actor and the Target. Fig. 20 is an extended figure of Fig. 8 in the main
paper. As demonstrated, our model can be extended to specify both the source actor and the target
object using two masks for interaction.

Scenes with Large Targets. We demonstrate in Fig. 21 that our method can handle targets that takes
up a large portion of the input frame. Our model continues to interpret the mask with the [TGT]
specification correctly and generates interactions focused on the large target region.

Applications. Fig. 27 is an extended figure of Fig. 3 in the main paper, demonstrating the downstream
applications of our method. Given images of a person and a scene, we first synthesize human-inserted
images as described in Sec. A.2. As mentioned in the main paper, to achieve human navigation
contents, we use a frame interpolation video diffusion model (Fei, Zhengcong, 2024) to interpolate
two synthesized images where the person is inserted in different positions of the scene. For human
action or manipulation content, we similarly start from a human-inserted image and utilize our
model to achieve precise interaction with the target. From the generated contents, we extract the 3D
human pose sequences (Shen et al., 2024) and use them to learn a policy via physics-based imitation
learning (Wang et al., 2023b) given a target motion.

Target Alignment. Figs. 28 to 33 are extended figures of Fig. 5, demonstrating that our model
enables accurate interactions between the actor and the target. We also provide generation outputs of
the vanilla CogVideoX (Yang et al., 2025b) for comparison.
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Contact Score↑ Video Quality↑
Original 0.896 0.812
Automatic 0.864 0.810

Table 7: Automatic pipeline. Our method stays robust even when target masks come from an
automated pipeline, demonstrating that it does not rely on high-quality manual segmentation.

Contact Score↑ Video Quality↑
General sentence only 0.705 0.760
General sentence with noisy descriptions 0.878 0.807

Table 8: Effect of removing captioner-generated descriptions during training. Despite their
noise, automatically generated captions help preserve the priors of the pre-trained backbone during
fine-tuning.

C DISCUSSIONS

C.1 MASKS

Automatic Acquisition of Masks. Although fully automating the inference pipeline is not the
main focus of our work, we construct an automated pipeline to generate target masks from an input
image and prompt, and evaluate its effectiveness. Specifically, we use GPT-4o (Hurst et al., 2024)
to identify the target object noun from the input, and Grounded-SAM (Ren et al., 2024), an open-
vocabulary segmentation tool, to obtain the corresponding mask. The pipeline runs in approximately
15 seconds on a single RTX 3090 and achieves 93.14% IoU accuracy on our evaluation set. We then
use the automatically generated mask as input to our model and find that they achieve comparable
performance, as presented in Tab. 7. For this experiment and the following mask ablations, we use a
subset of 50 images from our evaluation set and similarly generate 5 videos per image.

C.2 ROBUSTNESS TO NOISY CAPTIONS

Training. Our training dataset contains captions that may incorrectly describe which object the
actor is interacting with, due to limitations of current video captioning models (Yang et al., 2025b).
To handle this, we prepend a simple, but always true sentence, “The person interacts with [TGT]
object.” to the generated captions as mentioned in Sec. 4.4. This guarantees that the [TGT] token is
semantically linked to the object under interaction, while the generated part of the caption mainly
provides information about the actor’s appearance, the scene, and coarse motions in the video.
These descriptive details help preserve the priors of the pre-trained backbone during fine-tuning.
To explicitly assess the role of these descriptive, but noisy details, we fine-tune the model using
only the general sentence, “The person interacts with [TGT] object.”, completely removing the
captioner-generated descriptions. As demonstrated in Tab. 8, the variant trained with the general
sentence only, maintains target awareness to some extent but exhibits degraded target alignment and
video quality compared to the full setting with descriptions. This indicates that, despite their noise,
automatically generated captions still contribute for the model to be target-aware while maintaining
its priors.

Inference. We evaluate our model’s robustness to noisy captions during inference by corrupting the
textual descriptions while keeping the same target mask. In particular, we test (1) omitting the noun
after [TGT], and (2) replacing the noun after [TGT] with an object name that does not correspond to
the target. Qualitative results in Fig. 22 show that the model continues to interact with the masked
target region under both perturbations. This further confirms that spatial grounding primarily arises
from the [TGT] token and its alignment with the mask, rather than the specific noun used in the
prompt.

C.3 ATTENTION

Attention Mechanisms in MM-DiTs. State-of-the-art diffusion models (Black Forest Labs, 2023;
Esser et al., 2024; Kong et al., 2024) including our base model (Yang et al., 2025b), utilize multi-
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“The girl turns and picks up the [TGT] pink bunny resting on the bed.”

“The girl turns and picks up the [TGT] resting on the bed.”

“The girl turns and picks up the [TGT] teddy bear resting on the bed.”

Initial frame and mask

Figure 22: Inference with perturbed prompts. Our model continues to generate correct interactions
with the specified target even when the noun following [TGT] is removed or replaced, demonstrating
robustness to noisy captions at inference.

Figure 23: Attention mechanisms in MM-DiTs. Attentions of MM-DiTs can be divided into
text-to-text self-attention, text-to-video (T2V) cross-attention, video-to-text (V2T) cross-attention,
and video-to-video self-attention. Since V2T cross-attention weights directly influence the values of
video latents, we apply our cross-attention loss on V2T cross-attention regions.
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λ = 10 λ = 25 λ = 50 λ = 100

τ = 0.80T 0.493 0.473 0.527 0.513
τ = 0.85T 0.480 0.507 0.520 0.480
τ = 0.90T 0.533 0.520 0.573 0.520
τ = 0.95T 0.487 0.533 0.613 0.553

Table 9: Contact scores for attention modulation. We report contact scores for different combina-
tions of attention control weights and cut-off timesteps.

modal diffusion transformers (MM-DiTs) (Esser et al., 2024) for denoising. In MM-DiTs, text and
video latents are concatenated into a single sequence, and attention computations are performed over
the combined representation. Specifically, given query features Q, key features K and value features
V, each obtained by passing the combined representation through separate linear layers, the attention
in a transformer block is computed as,

Attn(Q,K,V) = Softmax(
QKT

√
d

)V, (5)

where d is the channel dimension of Q. The resulting Attn(Q,K,V) is normalized, projected
through linear layers, and used as the combined representation for the next transformer block. The
attention weights are formed by Softmax(QKT

√
d
), where the value at index [i, j] indicates the influence

of the i-th token on the j-th token. As illustrated in Fig. 23, this process results in four distinct
attention regions: text-to-text self-attention, text-to-video (T2V) cross-attention, video-to-text (V2T)
cross-attention, and video-to-video self-attention.

As discussed in the main paper, while both T2V and V2T cross-attention maps encode semantic
information, we find that applying our loss to the V2T cross-attention is more effective for enhancing
target awareness. As demonstrated in Fig. 23, V2T cross-attention weights directly influence the
video latents during the dot product computation of the attention weights and value features, whereas
T2V cross-attention weights primarily affect the text latents. Although the influenced text latents can
affect subsequent V2T cross-attention weights through QKT computation, their impact is diminished,
as shown in Tab. 3 of our main paper.

Attention Modulation. Prior work on controllable text-to-image generation (Hertz et al., 2022; Kim
et al., 2023b; Ma et al., 2023; Chen et al., 2024; Xie et al., 2023) demonstrates that by modifying
cross-attention maps during inference, it is possible to control the placement of subjects in specific
regions of the output image. Cross-attention modulation is applied as follows:

CrossAttnMod(Q,K,V) = Softmax(
QKT + λS√

d
)V, (6)

where λ denotes attention control weight, S is the modulation term with the same dimensions as the
attention maps. The modulation term S takes positive values within the desired region for the subject
and negative values outside that region. Formally, given a bounding box B that specifies the desired
region for the object, S is defined as follows:

S[i, j] =


1− ∥B∥

|QKT | , if i ∈ B, j ∈ P, t ≥ τ

0, if i ∈ B, j ∈ P, t < τ

−∞, otherwise
(7)

where ∥B∥ is the size of the bounding box, |QKT | is the number of elements in QKT , P represents
the indices of prompt tokens for subjects, and τ is a cut-off timestep. Since diffusion models form the
subject layout in earlier steps (Xie et al., 2023; Hertz et al., 2022), the amplification is only applied in
the early stage. Recently, the technique has been extended to text-to-video diffusion models, enabling
control over object trajectories in generated videos by modulating attention map weights of every
frame (Yang et al., 2024; Wu et al., 2024a).

As mentioned in the main paper, we adapt this attention modulation concept as a baseline. In our
setting, since trajectories for actors and targets are not available, we add the word “target” to the object
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description in the prompt and amplify cross-attention weights in target mask regions for the new
keyword. This modulation should mirror our approach without additional training. Since attention
modulation modifies the internal attention computation during the denoising process, it is highly
sensitive to hyperparameters such as the attention control weight λ and the cut-off timestep τ . We
report the contact scores of each setting in Tab. 9, evaluated by generating three videos per image
from our evaluation dataset. The results consistently show that the scores remain low even compared
to the original CogVideoX (Yang et al., 2025b) without any modification. This degradation stems
from the attention mechanisms in MM-DiTs: since the attention computation contains a row-wise
softmax operation, modulating the cross-attention values affects the self-attention values of the video,
ultimately leading to degraded output video quality and low contact scores, highlighting the necessity
of our method for building target-aware models.

C.4 LIMITATIONS AND FUTURE WORK

The quality of our generated videos is inherently constrained by existing open-sourced video models,
which often produce noticeable visual artifacts when synthesizing complex appearances. Given
that closed-sourced commercial models (Kli, 2024; Veo, 2024) yield more convincing results, we
expect this limitation to be alleviated as more advanced open-sourced models become available.
Nevertheless, enhancing video quality by incorporating interaction motion cues (Jeong et al., 2025;
Chefer et al., 2025) could be an interesting future work.

Also, due to the static camera setting of our dataset, videos generated by our model tend to exhibit
fixed camera trajectories. Given the scarcity of interaction datasets with dynamic cameras, integrating
camera control techniques (Wang et al., 2024; Yang et al., 2024; He et al., 2025) into our model could
be a possible future direction.

Another current limitation is that our architecture requires adding an extra channel per specified
target, which poses scalability challenges when dealing with a large number of targets. Designing a
unified model that supports an arbitrary number of target specifications in a more memory-efficient
manner presents an exciting future research direction.

Moreover, since our dataset contains masks that cover a single target object per video, our model
mostly finds it difficult to handle cases where a single mask covers multiple objects (whether of the
same or different categories), as demonstrated in Fig. 24. Robust multi-instance handling under a
single mask remains future work.

Our current framework also assumes a fixed target specification throughout the whole video, which
limits its ability to model complex interactions involving multiple objects over time (Fig. 25). A
natural next step would be to support temporal target switching, enabling fine-grained control over
which object is interacted with at each point in time. This would open new possibilities for long-
horizon planning and action sequencing, especially in domains like robotics or instructional video
generation.

Finally, our contact-based metrics rely on an off-the-shelf contact detector (Narasimhaswamy et al.,
2020) that is designed specifically for human–object interactions and, in practice, only detects contacts
involving human hands. As a result, these metrics cannot be directly applied to videos where the
interacting agent is non-human (e.g., animals, robotic arms, tools). In such cases, the detector fails to
produce meaningful contact predictions even when the generated interaction is qualitatively correct,
leading to unreliable scores.
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Initial frame

“The person reaches out and picks up both [TGT] objects with each hand.”

“The woman picks up both [TGT] cups with each hand.”

Figure 24: Failure case: targeting multiple objects with a single mask. Since our model is trained
on masks that contains a single object, it struggles when a mask spans multiple objects.

“The woman picks up the [TGT] cup and puts it back down. She then picks up the [TGT] cup and takes a sip of coffee.”

Generation output

[TGT] attention visualization

Initial frame First frame mask Middle frame mask

Figure 25: Failure case: targeting multiple objects over time. Our framework assumes a single
fixed target per generated video, preventing it from switching to new targets partway through the video.
Even though an additional mask is provided at the middle frame, the model ignores it and continues
to rely on the first-frame mask. As a result, it cannot handle sequential interactions with different
targets within a single video. Nonetheless, target switching may still be achieved by generating a
new video from the last frame of the previous one, enabling multi-target interactions through chained
generation.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

“The person sits on the [TGT] chair.”

Tracked 3D points

“The person sits on the chair.”

“The rabbit turns its head towards the [TGT] carrot and takes a bite.”

Tracked 3D points

“The rabbit turns its head towards the carrot and takes a bite.”

Figure 26: Acting as a source video. Our outputs can provide sufficient motion data for existing
controllable video generation methods (Gu et al., 2025) that require dense structural conditions over
frames.
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“The person walks in the room.”Input person and scene

“The person picks up the [TGT] glass of water and takes a sip.”Input person and scene

Estimated 3D human pose

Physics-based imitation learning outputs

Estimated 3D human pose

Physics-based imitation learning outputs

Figure 27: Applications. Given images of a person and a scene, we perform 3D insertion of the person
into the scene and render them together to produce frames for video diffusion input. We interpolate
synthesized initial and final frames to generate locomotion contents and utilize our Target-Specified
video diffusion model to generate action and manipulation contents. We further demonstrate that
extracted 3D human poses from our generated contents can be used as training data for physics-based
imitation learning.
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“The woman lowers her hand toward the table, wraps her fingers around the [TGT] red cup resting beside the vase, and picks it up.”

C
og

V
id

eo
X

“The woman lowers her hand toward the table, wraps her fingers around the red cup resting beside the vase, and picks it up.”

Initial frame
O

ur
s

“The woman steps closer to the couch and gently picks up the [TGT] blue cushion with both hands..”

“The woman steps closer to the couch and gently picks up the blue cushion with both hands.”

O
ur

s
C

og
V

id
eo

X

Initial frame

“The woman reaches out the [TGT] ceramic vase and cradles it close to her body.”

“The woman reaches out the ceramic vase and cradles it close to her body.”

O
ur

s
C

og
V

id
eo

X

Initial frame

Figure 28: Additional qualitative comparison on target alignment. We compare results of original
CogVideoX (Yang et al., 2025b) and our target-aware model. Our model successfully generates
videos where the actor interacts accurately with the desired target. The target is colored in green
every second row.
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“The man grips the [TGT] book with the bold title, ‘BIG BEND’ on its cover and lifts it up.”

C
og

V
id

eo
X

“The man grips the book with the bold title, ‘BIG BEND’ on its cover and lifts it up.”

Initial frame
O

ur
s

“The woman steps toward the coffee table, lifts the [TGT] handbag by its handles, and brings it close to her side..”

“The woman steps toward the coffee table, lifts the handbag by its handles, and brings it close to her side..”

O
ur

s
C

og
V

id
eo

X

Initial frame

“The man leans forward, grasps the [TGT] handbag placed beside his feet, and lifts it off the ground..”

“The man leans forward, grasps the handbag placed beside his feet, and lifts it off the ground..”
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ur
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V

id
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X

Initial frame

Figure 29: Additional qualitative comparison on target alignment. We compare results of original
CogVideoX (Yang et al., 2025b) and our target-aware model. Our model successfully generates
videos where the actor interacts accurately with the desired target. The target is colored in green
every second row.
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“The man turns around and lifts the [TGT] vase filled with vibrant hydrangeas off the table.”

C
og

V
id

eo
X

“The man turns around and lifts the vase filled with vibrant hydrangeas off the table.”

Initial frame
O

ur
s

“The man reaches out to the [TGT] yellow bottle on the table and lifts it smoothly off the surface.”

“The man reaches out to the yellow bottle on the table and lifts it smoothly off the surface.”

O
ur

s
C

og
V

id
eo

X

Initial frame

“The man wraps his fingers around the [TGT] red cup resting on the table and holds it in front of him.”

“The man wraps his fingers around the red cup resting on the table and holds it in front of him.”
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X

Initial frame

Figure 30: Additional qualitative comparison on target alignment. We compare results of original
CogVideoX (Yang et al., 2025b) and our target-aware model. Our model successfully generates
videos where the actor interacts accurately with the desired target. The target is colored in green
every second row.
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“The man reaches forward, clasps the [TGT] blue cushion on the couch, and lifts it up from the seat.”
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X

“The man reaches forward, clasps the blue cushion on the couch, and lifts it up from the seat.”

Initial frame
O

ur
s

“The woman shifts her attention to the [TGT] keyboard lying on the table and carefully lifts it up with both hands.”

“The woman shifts her attention to the keyboard lying on the table and carefully lifts it up with both hands.”
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Initial frame

“The man turns his body toward the shelf and picks up the [TGT] toy turtle resting on the shelf with a firm grip.”

“The man turns his body toward the shelf and picks up the toy turtle resting on the shelf with a firm grip.”

O
ur

s
C

og
V

id
eo

X

Initial frame

Figure 31: Additional qualitative comparison on target alignment. We compare results of original
CogVideoX (Yang et al., 2025b) and our target-aware model. Our model successfully generates
videos where the actor interacts accurately with the desired target. The target is colored in green
every second row.
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“The woman picks up the [TGT] vase with yellow flowers on the glass table.”
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X

“The woman picks up the vase with yellow flowers on the glass table.”

Initial frame
O
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s

“The man shifts his stance closer to the table and carefully lifts the [TGT] monitor from its base.”

“The man shifts his stance closer to the table and carefully lifts the monitor from its base.”
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Initial frame

“The man reaches forward to the [TGT] large orange pumpkin resting on the glossy black countertop and lifts it up.”

“The man reaches forward to the large orange pumpkin resting on the glossy black countertop and lifts it up.”
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Initial frame

Figure 32: Additional qualitative comparison on target alignment. We compare results of original
CogVideoX (Yang et al., 2025b) and our target-aware model. Our model successfully generates
videos where the actor interacts accurately with the desired target. The target is colored in green
every second row.
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“The man reaches for the [TGT] frame hanging above the couch and lifts it from its mounted position.”
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“The man reaches for the frame hanging above the couch and lifts it from its mounted position.”

Initial frame
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Initial frame

“The man grasps the [TGT] ceramic vase filled with pink and purple hydrangeas and lifts it carefully.”

“The man grasps the ceramic vase filled with pink and purple hydrangeas and lifts it carefully.”
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“The woman grasps the [TGT] yellow cushion resting against the blue couch and holds the cushion up.”

“The woman grasps the yellow cushion resting against the blue couch and holds the cushion up.”
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Initial frame

Figure 33: Additional qualitative comparison on target alignment. We compare results of original
CogVideoX (Yang et al., 2025b) and our target-aware model. Our model successfully generates
videos where the actor interacts accurately with the desired target.
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