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Abstract

The concern of overconfident mispredictions under distributional shift demands
extensive reliability research on Graph Neural Networks used in critical tasks
in drug discovery. Here we first introduce CardioTox, a real-world benchmark
on drug cardiotoxicity to facilitate such efforts. Our exploratory study shows
overconfident mispredictions are often distant from training data. That leads us to
develop distance-aware GNNs: GNN-SNGP. Through evaluation on CardioTox
and three established benchmarks, we demonstrate GNN-SNGP’s effectiveness in
increasing distance-awareness, reducing overconfident mispredictions and making
better calibrated predictions without sacrificing accuracy performance. Our ablation
study further reveals the representation learned by GNN-SNGP improves distance-
preservation over its base architecture and is one major factor for improvements.

1 Introduction

In recent years, Graph Neural Networks (GNNs) have illustrated remarkable performance in scientific
applications such as physics [Battaglia et al., 2016, Sanchez-Gonzalez et al., 2018], biomedical
science [Fout et al., 2017], and computational chemistry [Duvenaud et al., 2015, Kearnes et al.,
2016]. One important example is the early-phase drug discovery, where GNNs have shown promise
in critical tasks such as hit-finding and liability screening (i.e., predicting the binding affinity and the
toxicity of candidate drug molecules, respectively) [McCloskey et al., 2020, Siramshetty et al., 2020].

However, a key reliability concern that hinders the adoption of GNN in real practice is the overcon-
fident mispredictions. For example, in liability screening, an Overconfident False Negative (OFN
hereafter) prediction leads the GNN model to mark a toxic molecule as safe, causing severe conse-
quences by leaking it to the next stage of drug development. Such concern is further exacerbated
by a second key characteristic of the drug discovery tasks: data distributional shift; drug discovery
tasks often explicitly evaluate novel molecules by moving into regions in the feature space that are
not previously represented in training data. As a result, the testing molecules are characteristically
distinct from the training data, and can carry novel toxic signatures that were previously unseen by
the model. A model with just high in-distribution accuracy is not sufficient under those situations;
quantifying model reliability and designing techniques to improve robustness against overconfidence
under distributional shift become especially relevant.

Currently, there lacks a drug discovery benchmark that targets realistic concerns about model
reliability under distributional shifts. Thus, we introduce CardioTox, a data benchmark based on a
real-world drug discovery problem and is compiled from 9K+ drug-like molecules from ChEMBL,
NCATS and FDA validation databases [Siramshetty et al., 2020]. To evaluate model reliability, we
generate additional molecular annotations and propose novel metrics to measure the models against
the real-world standards around the responsible application of GNN. This is our first contribution.
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Using CardioTox, our second contribution is an exploratory study on the root causes behind the
overconfident mispredictions under distributional shift, and principled modeling approaches to miti-
gate it. In particular, we observe that many overconfidently mispredicted molecules are structurally
distinct from training data (i.e., they are "far" from training data based on molecule-fingerprint graph
distance [Rogers and Hahn, 2010], see Section 3). This failure mode suggests that improving the
distance-awareness of a GNN model would be an effective solution: a test molecule that is far away
from the decision boundary (e.g., a toxic but novel molecule, due to its novelty, may possess few
prior toxic signatures defining the decision boundary) should still get low confidence if it’s distant
from training data. To this end, the recently proposed Spectral-normalized Neural Gaussian Processes
(SNGP) [Liu et al., 2020] demonstrates a concrete approach to achieve this goal. Specifically, it
imposes a distance-preserving regularization (i.e., spectral normalization) to the feature extractor,
and replaces the dense output layer with a distance-aware classifier (i.e., random-feature Gaussian
process). SNGP has shown promising robustness improvements in vision and language problems.
To our best knowledge, this is the first study to bring the distance-aware design principle to GNN
models to to improve reliability performance on the molecule graph.

To summarize, our contributions are the following (Appendix E summarizes the related work):

• Data: We introduce CardioTox, a real-world drug discovery dataset with multiple test sets (IID
and distribution-shifted ones), to the robustness community to facilitate reliability research of
graph models. The distributional shift challenge reflected in CardioTox is realistically faced by
the field: test domain often comes from a data source that’s different from the training source and
has considerable amount of novel molecule graph structures (see also Figure S3 in Appendix D).
We further design distance-based data splits for CardioTox to quantitatively measure model’s
distance-awareness.

• Model: We develop an end-to-end trainable GNN-SNGP architecture as well as its ablated
version GNN-GP. Empirically, this method outperforms its base architecture in not only accuracy
(e.g., AUROC) but also robustness (e.g., ECE) especially in reducing overconfident mispredictions.
Measured by CardioTox’s distance-based data splits, GNN-SNGP shows higher distance-awareness
under data shifts than the baselines, which explains its ability in overconfident misprediction
reduction. Our implementation together with CardioTox dataset will be open sourced via Github.3

• Ablation Study: We carry out extensive ablation studies which confirm that the robustness
improvements come from both distance-aware classifier (GP-layer) and the distance-preserving
latent representations. We also investigate the generalizability of this approach by testing on other
graph modeling domain: molHIV, BBBP and BACE and obtained consistent results.

2 Methods
GNN baseline We use a vanilla Message Passing Neural Network (MPNN) [Gilmer et al., 2017]
as the GNN baseline in this study. Specifically, the message function is modeled by a dense
layer M(hv, hw, evw) = W1[hv||hw||evw], where hv, hw are node features for node v, w respec-
tively, evw is the edge feature vector between nodes v, w, and W1 is the weight matrix. After
getting aggregated message mv for each node, the hidden node feature hv is updated via a Gated
Recurrent Unit U(hv,mv) = GRU(hv,mv). Finally, we read out graph level representation by
R =

∑
v∈V σ(W2[hv||h0v])� (W3hv), where W2, W3 are two weight matrices and σ is the sigmoid

function. The graph level representation is fed into a final dense layer to generate logits.

GNN-GP: improving distance-awareness of classifier Following Liu et al. [2020] who proposed
Gaussian process layer (GP-layer hereafter) in vision and language models, we introduce it to the
graph domain and developed GNN-GP model to increase distance-awareness. Figure S1 (Appendix
A) shows the high-level architectural changes.
As Figure 1 shows in detail, Gaussian processes are made end-to-end trainable with GNN by
approximating GP kernel function via random Fourier feature generation [Rahimi and Recht, 2007].
Specifically, coefficients ωi, bi are randomly sampled at initialization and kept fixed during training.
The distribution that ωi, bi are sampled from depends on what Gaussian processes kernel we’d like
to approximate. Take the Gaussian kernel as an example, we have ωi ∼ N(0, 1); bi ∼ U(0, 2π).

3https://github.com/google/uncertainty-baselines/tree/main/baselines/drug_
cardiotoxicity
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During inference time, each sample would get logit predictions as well logit variances, both of which
are utilized to compute predictive probabilities via mean-field approximation [Lu et al., 2020].

Figure 1: Improving GNN architecture via distance-preserving feature extractor (skip connection and
spectral normalization) and distance-aware classifier (neural Gaussian Processes layer).

GNN-SNGP: incorporating distance-preserving feature extraction Due to feature collapse in
feature extraction [Liu et al., 2020, van Amersfoort et al., 2021], neural representation may not
faithfully preserve distance in the input manifold. Liu et al. [2020] propose to preserve input distance
in feature extraction by applying Spectral Normalization (SN) [Gouk et al., 2021, Miyato et al., 2018]
to the residual networks. As a result, combining SN and GP would increase the model’s overall
distance-awareness, helping OOD detection and other robustness metrics.

Since our vanilla MPNN model (GNN baseline) does not have residual connections, we create
GNN-SNGP through two following changes (Figure 1). First, we model the message function via a
dense layer with SN: M(hv, hw, evw) =WSN

1 [hv||hw||evw] where WSN
1 is the dense layer weight

matrix whose spectral norm is regularized. Second, we add residual connection to the message
passing layer through the node update function: U(hv,mv) = GRU(hv,mv) + hv .

3 CardioTox: Drug cardiotoxicity under distributional shift

Dataset information In early drug discovery stages, two types of models are widely used: hit-
finding model and anti-target (i.e., liability) model. The former scores a molecule based on its
potential of making a drug (e.g., whether a molecule could bind tightly to the disease-causing protein
target), while the latter aims to filter out those molecules with potentially high liability (e.g., whether a
molecule could be toxic). One such liability is cardiotoxicity, which occurs when a molecule inhibits
hERG, a protein target that is related to heart-rhythm control [Smith et al., 1996, Vandenberg et al.,
2012]. Due to previous failing incidents, FDA has required new drugs to pass drug cardiotoxicity
examination [Center for Drug Evaluation and Research, 2005].

Thus in this work, we introduce CardioTox, a benchmark based on a real-world drug discovery
problem and is compiled from 9K+ drug-like molecules from ChEMBL and NCATS databases
[Siramshetty et al., 2020]. To evaluate GNN model reliability, we add graph structural information
(e.g., node features) and set up three test sets that reflect distributional shifts: Test-IID is a set that’s
sampled from the same distribution as the Train set. Test-OOD1 and Test-OOD2 are molecule
sets coming from NCATS and FDA respectively: 84% of Test-OOD1 and 82% of Test-OOD2 are
novel molecules that are distant from Train set (Figure S3). We further generate additional molecular
annotations: close sample or far sample based on Tanimoto fingerprint distance [Bajusz et al., 2015] to
the train set (Appendix D) . This setup allows us to quantitatively assess models’ distance-awareness.

Evaluation metrics We evaluate popular metrics for uncertainty such as Expected Calibration
Error (ECE), Brier score (Brier), Negative Log Likelihood (NLL) (cf. [Ovadia et al., 2019] for
an overview). To assess the models’ abilities in capturing graph distance and mitigating over-
confidence, we also introduce two new metrics: Percentage of Over-confident False Negatives (OFNs
%):

∑
i 1(ŷi<0.1 and ytrue

i =1)∑
i 1(ŷi<0.1) where ŷi, ytruei are predictive probability and label for the positive class

(i.e., toxic class in CardioTox) for the i-th test sample, and Distance-Awareness AUC (DA-AUC) that
evaluates if the model assigns higher confidence to test inputs in close set than those in far set (find
details Appendix B). Note that OFNs % can be "cheated" by making all predictions under-confident,
therefore an ideal uncertainty model should perform well both in calibration metrics and in OFNs %.
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Accuracy and robustness performance Table 1 shows that GNN-GP outperforms GNN baseline
in both AUROC and robustness metrics for the CardioTox task. This is the case for both the in-
distribution (Test-IID) and the shifted test sets (Test-OOD1 and Test-OOD2). GNN-SNGP shows
additional gains in robustness. If resource allows, Deep Ensemble [Lakshminarayanan et al., 2017] of
GNN-SNGP further boosts performance, eliminating all OFNs in Test-OOD2. It is worth noting that
our GNN-SNGP ensemble has outperformed previous state-of-the-art neural models [Siramshetty
et al., 2020] in AUROC performance.

Table 1: Accuracy (AUROC), robustness (ECE, Brier, NLL) and overconfidence (OFNs) performance
for Drug cardiotoxicity benchmark. Results are averaged over 10 seeds.

Test-IID AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓) DA-AUC (↑)
GNN baseline 0.919±0.003 0.037±0.003 0.194±0.007 0.352±0.018 4.05±0.26 0.500±0.004
GNN-GP 0.937±0.001 0.036±0.002 0.176±0.008 0.298±0.015 3.51±0.17 0.523±0.004
GNN-SNGP 0.932±0.001 0.028±0.001 0.179±0.005 0.295±0.005 3.56±0.21 0.517±0.004

GNN-SNGP Ensemble 0.942±0.000 0.013±0.001 0.162±0.000 0.264±0.001 2.54±0.07 0.525±0.002

Test-OOD1 AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓) DA-AUC (↑)
GNN baseline 0.786±0.004 0.102±0.012 0.343±0.071 0.578±0.125 1.68±0.08 0.604±0.006
GNN-GP 0.823±0.003 0.090±0.010 0.327±0.061 0.546±0.107 1.41±0.12 0.632±0.002
GNN-SNGP 0.836±0.003 0.074±0.008 0.316±0.047 0.503±0.072 1.31±0.09 0.635±0.007
GNN-SNGP Ensemble 0.850±0.002 0.039±0.002 0.277±0.005 0.428±0.006 1.22±0.08 0.643±0.003

Test-OOD2 AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓) DA-AUC (↑)
GNN baseline 0.831±0.007 0.082±0.012 0.284±0.060 0.492±0.113 1.73±0.20 0.630±0.008
GNN-GP 0.873±0.006 0.074±0.007 0.261±0.047 0.442±0.086 0.98±0.19 0.656±0.011
GNN-SNGP 0.885±0.007 0.044±0.006 0.238±0.040 0.389±0.068 1.02±0.11 0.678±0.008
GNN-SNGP Ensemble 0.896±0.002 0.021±0.002 0.210±0.003 0.333±0.005 1.06±0.11 0.682±0.003

Why does distance-awareness help reduce overconfident mispredictions? We observe a signif-
icant portion of OFNs are distant from the train set (i.e., 60% of them have Tanimoto distance
> 0.65 [Bajusz et al., 2015], also see Figure S2b). This could happen when a GNN model lacks
of distance-awareness: a toxic but novel molecule can be far away from the wrong side of model’s
decision boundary, due to lacking known toxic signatures that is present in train set. Without being
aware of the distance to train set, the GNN baseline model tends to base its prediction on distance to
the decision boundary and give high confidence for such cases.

To this end, GNN-GP leverages GP’s distance-awareness and is able to naturally incorporate distance
into predictive uncertainty. As shown in Table 1, the SN version GNN-SNGP achieves highest
distance-awareness (DA-AUC) in the two data-source-shifted test sets, correlating well with OFNs
reduction. Figure S2b shows a decreasing trend (from GNN baseline to GNN-GP to GNN-SNGP) of
the percentage of distant samples among OFNs. Overall, using GP is able to improve uncertainty
estimate for over 80% of the baseline OFNs while also improving calibration (Figure S4).

Additional ablations to assess relative contributions of SN and GP In order to understand relative
performance contributions of the two modeling components (i.e., distance-preserving feature extractor
vs distance-aware classifier), we carry out an extensive ablation study in Appendix H. We take the
latent representations learned by GNN baseline, GNN-GP and GNN-SNGP (increasing distance-
preservation) and feed them to classifiers with increasing distance-awareness: Dense layer, GP-layer,
exact Gaussian processes classifier (GPC hereafter). Table S2 suggests there’s synergy between
distance-preservation of neural representation and distance-awareness of the classifier. With the least
distance-aware classifier (i.e., Dense layer), AUROC drops when increasing distance-preservation
in neural representation. With the most distance-aware classifier (i.e., exact GPC), increasing
neural representation’s distance-preservation benefits accuracy, robustness as well as overconfidence
reduction. We find a GNN model achieves best performances when both are present in the architecture
(GNN-SNGP embeddings with GPC). Interesting, naively increasing distance-preservation along is
not sufficient in guaranteeing good generalization; we observe that the pre-defined representation
(i.e., the molecule fingerprint FP) gives relatively low AUROC under data shifts (e.g., on Test-OOD2)
despite being perfectly distance-preserving. This is related to the trade-off in representation learning
between dimension reduction and information preservation. Appendix H discusses in further detail.

Additional results on existing benchmarks Consistent with the results obtained in CardioTox,
GNN-GP also outperforms GNN baseline on three established graph classification benchmarks [Wu
et al., 2018]: molHIV, BBBP and BACE (see Appendix G). We can make a few observations on the
results in Table S1. First, GNN-GP consistently achieves higher AUROC, improves calibration as
well as reduces overconfident mispredictions across all the benchmarks than the baseline. Second,

4



with limited accuracy performance drop, the spectral normalized version GNN-SNGP can further
improve model robustness compared with GNN-GP.

4 Conclusion

In this study, we introduce GNN-GP and GNN-SNGP together with a new benchmark CardioTox from
drug discovery setting. Through evaluation on four datasets, we demonstrate their effectiveness in
reducing overconfident mispredictions and making better calibrated GNN models without sacrificing
accuracy performance. The improved robustness appears to come from the boost in distance-
awareness. We further discover that the embedding space induced by SN and GP addition improves
distance-preservation over its base architecture and is one major factor to bring improvements in
accuracy, general robustness and overconfidence performance.

Moving forward, it would be interesting to carry out a broader empirical study with other base
GNN architectures such as GAT [Veličković et al., 2017] and PNA [Corso et al., 2020]. Another
interesting direction, which is already initiated by the ablation study detailed in Appendix H, is to
find a quantitative way to measure distance-preservation within learned representation and understand
the trade-off between the preservation and task-specific compression via the lens of accuracy and
robustness performance.
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A GNN-SNGP architecture

We present high-level architectural changes based on GNN baseline model in Figure S1: distance-
preserving feature extractor by adding skip connection and spectral normalization regularization,
distance aware classifier using neural GP layer.

Figure S1: Improving GNN architecture via distance-preserving feature extractor (skip connection
and spectral normalization) and distance-aware classifier (neural Gaussian Processes layer).

B Evaluation Metrics

In this study, we examine for each accuracy performance, general robustness performance, overconfi-
dence performance as well as distance-awareness performance.

Accuracy performance AUROC for the classification benchmark.

Robustness performance Expected Calibration Error (abbr. ECE), Brier Score (abbr. Brier), and
Negative Log Likelihood (abbr. NLL).

Overconfidence performance: OFNs% and OFPs% Occurance of overconfident false negatives
and false positives. Depending on actual applications, we may care more about Overconfident False
Negatives (OFNs) in the drug cardiotoxicity task whereas in the molHIV task we care about general
overconfidence, therefore both OFNs and OFPs (Overconfident False Positives). In this study, an
overconfident misprediction is defined as any test sample whose predictive confidence (computed via
Maximum Softmax Probability, i.e., max(pk) is higher than 90% yet its prediction is wrong, namely:

max
k

(pk) > 90% and argmax
k

(pk) 6= ytrue (1)

where k ∈ {0, 1} is class logit index, and ytrue ∈ {0, 1} is the ground truth class.

In this study we measure OFNs% and OFPs%, defined as percentages as follows:

OFNs% =

∑
i 1(ŷi < 0.1 and ytruei = 1)∑

i 1(ŷi < 0.1)
(2)

OFPs% =

∑
i 1(ŷi > 0.9 and ytruei = 0)∑

i 1(ŷi > 0.9)
(3)

where ŷi is i-th sample’s predictive probability for positive class, i.e., pik=1.

Distance-awareness performance: DA-AUC We design a classification task for a given test set:
any molecule belonging to the close set (short distance to Train set, defined in D) gets ground-truth
label 0, any molecule belonging to the far set (long distance to Train set, defined in D) gets ground
truth label 1. We use predictive uncertainty (computed via 1-max(pk)) to classify if a test sample is
in the close set or the far set. DA-AUC is the AUROC measurement for this task.
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C Distance analysis for OFNs in CardioTox

Here we present our analysis on OFNs incurred in GNN baseline model. One of the outstanding
observations is that a good portion of OFNs molecules are distant from the train set. Figure S2a
shows a few such example molecules. More quantitatively, Figure S2b suggests over 60% of OFNs
have Tanimoto distance > 0.65, which is often regarded as a condition of having novel molecule
structure. As we introduce models with more distance-awareness (e.g., GNN-GP, GNN-SNGP),
distant molecules becomes less dominant in OFNs.

(a) (b)
Figure S2: Graph distance analysis for the overconfident false negatives (OFNs) in CardioTox
benchmark. (a) shows five overconfident false negatives with their distance (in 0-1 scale) to the Train
set. (b) Cumulative distributions over fingerprint distance from the OFNs (incurred in corresponding
models) to the Train set.

D Drug cardiotoxicity data split

We re-organized the original hERG (cardiotoxicity anti-target) dataset [Siramshetty et al., 2020] into
CardioTox to facilitate graph model reliability research. The original dataset comes with a Train set,
a compilation from ChEMBL [Gaulton et al., 2012] and NCATS (National Center for Advancing
Translational Sciences), a prospective validation set from NCATS Siramshetty et al. [2020] and a test
set from FDA (see Figure S3).

As a first step, we added graph structural information such as node features, edge features and
adjacency matrix for each molecule record and created three test sets: Test-IID (randomly sampled
20% from the Train distribution), Test-OOD1 (the prospective validation set from NCATS) and
Test-OOD2 (from FDA). The shift is mainly from input distribution (i.e., graph structures): majority
of Test-IID are similar molecules to Train set, while 84% of Test-OOD1 and 82% of Test-OOD2 have
novel structures.

As a second step, we further split each test set into close set and far set. Using Tanimoto graph
distance [Bajusz et al., 2015] defined by molecule fingerprint representation [Rogers and Hahn, 2010],
we group test samples with distance (average distance to top 8 nearest training samples) < 0.7 into
close set and remaining samples go to far set. Figure S3 shows the detailed splitting flow and final
counts.

E Related work

On GNN robustness research, Geisler et al. [2020] proposed a novel GNN aggregation function, Soft
Medoid, to improve robustness against adversarial attacks from edge perturbation. Feng et al. [2020]
constructed a two-branched GNN architecture where the first branch computes model uncertainty
and data uncertainty, the second utilizes those uncertainties to adjust attention during aggregation.
Those studies are organized around defending adversarial attacks, while our work aims to mitigate
overconfidence issue by introducing targeted techniques.

In the area of molecule graph learning, Hwang et al. [2020] have recently applied Deep Ensemble,
Monte Carlo dropout, Stochastic Gradient Langevin Dynamics (SGLD), Stochastic Weight Averaging
(SWA), and Stochastic Weight Averaging Gaussian (SWAG) to GNN models and those techniques can
be categorized as different approaches to create ensemble models. For example, SWA picks ensemble
members along the training procedure. Our work focuses on a single GNN model and introduces
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Figure S3: CardioTox benchmark designed for investigation on accuracy and robustness performance
under various levels of distributional shift. Majority of Test-IID are similar molecules to Train set,
while 84% of Test-OOD1 and 82% of Test-OOD2 have novel structures.

architectural changes to improve its distance-awareness to reduce overconfident mispredictions.
Another related work is from Hirschfeld et al. [2020] where a GNN model is first trained and its
latent representation gets fed to a downstream Gaussian Processes. In contrast to that, we develop an
end-to-end trainable GNN-SNGP without computational constraint of kernel computation and storage
that come with exact Gaussian processes, making GNN-SNGP better suited to processing large scale
datasets such as high throughput screening data in drug discovery [McCloskey et al., 2020].

On the distance-preservation/awareness side, compared with SNGP [Liu et al., 2020] techniques
used in this work, two-sided gradient penalty [Gulrajani et al., 2017, Van Amersfoort et al., 2020]
constrains gradient deviation by placing penalty on the loss and can be sensitive to tune. Deep
Invertible Networks [Jacobsen et al., 2018] achieves high level of distance-preservation via invertiable
layers but are often difficult to train and expensive in memory.

F Uncertainty improvements for OFNs

We have carefully looked into the OFNs generated by the GNN baseline, and assess their uncertainty
improvements by monitoring uncertainty increase ratio (UIR):

UIR =
UGNN-GP

UGNN baseline
(4)

where UGNN-GP, UGNN baseline are the uncertainty estimates by the GNN-GP model and GNN
baseline model. UIR > 1 indicates that the GNN-GP becomes less overconfident than the GNN
baseline. Figure S4 lists UIRs for the 40 top overconfident false negatives from the GNN baseline.
We observe over 80% of them have improved uncertainty estimates (UIR>1). As annotated in Figure
S4, many highly improved OFNs are the ones distant from the Train set, while the ones getting
worse uncertainty estimates often are close to the Train set. This is expected in a model with high
distance-awareness.

G Results on existing benchmarks

In addition to CardioTox, we have applied our GNN-GP and GNN-SNGP models to three established
molecule benchmarks: molHIV, BBBP and BACE. Specifically, molHIV is a dataset of HIV antiviral
activity (each molecule has an active or inactive label), BBBP a dataset of Brain-Blood Barrier
Penetration (each molecule has a label indicating whether it can penetrate through brain cell membrane
to enter central nervous system) and BACE a dataset of binding affinity against human beta-secretase
1 (each molecule has a label indicating whether it binds to human beta-secretase 1). Table S1 shows
the results.
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Figure S4: Uncertainty increase ratio for the top 40 overconfident false negatives. Two distant
(distance = 0.7 and 0.78) and two close (distance = 0.0 and 0.27) OFNs are annotated.

Table S1: Accuracy (AUROC) and robustness (ECE, Brier, NLL) performance for molHIV, BBBP,
BACE benchmark. Results are averaged over 10 seeds.

molHIV AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓) OFPs% (↓)
GNN baseline 0.738±0.004 0.019±0.001 0.058±0.002 0.143±0.009 2.38±0.05 1.58±0.40
GNN-GP 0.756±0.004 0.013±0.001 0.054±0.003 0.125±0.006 2.14±0.05 0.16±0.15
GNN-SNGP 0.745±0.003 0.008±0.001 0.055±0.002 0.122±0.003 2.16±0.05 0.00±0.00

BBBP AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓) OFPs% (↓)
GNN baseline 0.773±0.002 0.202±0.007 0.495±0.029 0.911±0.059 29.50±1.32 11.43±0.88
GNN-GP 0.792±0.005 0.136±0.012 0.427±0.035 0.679±0.066 27.23±1.44 6.05±0.93
GNN-SNGP 0.776±0.007 0.119±0.010 0.426±0.022 0.651±0.032 26.18±4.29 4.33±0.78

BACE AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓) OFPs% (↓)
GNN baseline 0.789±0.004 0.181±0.011 0.460±0.064 0.784±0.101 27.90±1.71 5.77±0.61
GNN-GP 0.807±0.004 0.145±0.010 0.426±0.034 0.674±0.074 24.15±1.79 2.24±0.46
GNN-SNGP 0.803±0.003 0.105±0.013 0.435±0.051 0.642±0.073 21.03±2.08 0.30±0.19

H Ablation study on performance contribution

Distance-preservation in representation learning and distance-awareness in classifier both impact
the performances we care about in this study. In order to understand relative contributions of them
to the performance improvement, we further carried out an extensive ablation study. We take the
latent representations learned by GNN baseline, GNN-GP and GNN-SNGP (increasing distance-
preservation) and feed them to classifiers with increasing levels of distance-awareness: Dense layer
(using logistic regression), GP-layer, exact Gaussian processes classifier (GPC hereafter). We also
added experiments using pre-defined representation (i.e., molecule fingerprint denoted as FPs) which
should provide 100% of distance preservation. Table S2 shows the results.

We find a GNN model achieves best performances when both distance-preservation (via SN) and
distance-awareness (via GP) are present in the architecture (i.e., GNN-SNGP embeddings with GPC).
However, one interesting note is that naively increasing distance-preservation does not guarantee
generalization, either in-domain or OOD. For example, we observe that the pre-defined representation
(i.e., molecule fingerprint denoted as FPs) offers perfect distance-preservation, but tends to give
relatively low AUROC (compared with neural representation) under data shifts such as Test-OOD2
even with exact GPC as its classifier. We hypothesis that this is related to a general trade-off in
representation learning between dimension reduction and information preservation. The dimension
reduction aspect tries to discard information noisy and/or less relevant to prediction task so that given
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limited data, models could escape the curse of dimensionality and achieve good performance under
finite data. However, this could also lead to the feature collapse phenomenon that harms model
robustness especially under distributional shifts. On the other hand, the information preservation
aspect recovers robustness by mitigating feature collapse, but keeping around noisy/irrelevant features
may demand more data for convergence and thus negatively impact accuracy given limited data.
This work tries to find a good balance between these two aspects by designing a distance-preserving
representation that can be optimized toward the task at hand.

Table S2: Ablation study results for Accuracy (AUROC), robustness (ECE, Brier, NLL) and over-
confidence (OFNs) performance for CardioTox benchmark. Note that since Dense (implemented by
logistic regression) and GPC use deterministic optimization instead of stochastic gradient descent,
the error bars are zero.

Test-IID AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓)
FPs + GPC 0.921±0.000 0.024±0.000 0.201±0.000 0.332±0.000 4.74±0.00
FPs + GP-layer 0.881±0.001 0.020±0.003 0.250±0.012 0.396±0.015 4.97±0.46
FPs + Dense 0.895±0.000 0.065±0.000 0.221±0.000 0.436±0.000 6.43±0.00

GNN-baseline embed + GPC 0.923±0.000 0.035±0.000 0.181±0.000 0.335±0.000 4.29±0.00
GNN-baseline embed + GP-layer 0.920±0.001 0.037±0.002 0.189±0.003 0.328±0.005 4.36±0.00
GNN-baseline embed + Dense 0.919±0.000 0.037±0.000 0.194±0.000 0.352±0.000 4.05±0.00
GNN-GP embed + GPC 0.934±0.000 0.005±0.000 0.169±0.000 0.282±0.000 2.98±0.00
GNN-GP embed + GP-layer 0.933±0.001 0.033±0.002 0.177±0.003 0.298±0.007 3.77±0.00
GNN-GP embed + Dense 0.904±0.000 0.042±0.000 0.217±0.000 0.377±0.000 4.37±0.00
GNN-SNGP embed + GPC 0.935±0.000 0.002±0.000 0.172±0.000 0.280±0.000 2.92±0.00
GNN-SNGP embed + GP-layer 0.932±0.001 0.028±0.001 0.179±0.005 0.295±0.005 3.56±0.21
GNN-SNGP embed + Dense 0.894±0.000 0.021±0.000 0.223±0.000 0.375±0.000 4.63±0.00

Test-OOD1 AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓)
FPs + GPC 0.834±0.000 0.097±0.000 0.133±0.000 0.248±0.000 1.21±0.00
FPs + GP-layer 0.764±0.009 0.076±0.010 0.192±0.099 0.325±0.124 1.87±0.39
FPs + Dense 0.761±0.000 0.112±0.000 0.326±0.000 0.611±0.000 2.67±0.00

GNN-baseline embed + GPC 0.794±0.000 0.069±0.000 0.290±0.000 0.487±0.000 1.83±0.00
GNN-baseline embed + GP-layer 0.796±0.001 0.094±0.006 0.334±0.034 0.540±0.052 1.47±0.05
GNN-baseline embed + Dense 0.786±0.000 0.102±0.000 0.343±0.000 0.578±0.000 1.68±0.00
GNN-GP embed + GPC 0.805±0.000 0.050±0.000 0.279±0.000 0.463±0.000 1.48±0.00
GNN-GP embed + GP-layer 0.810±0.001 0.072±0.004 0.295±0.023 0.472±0.039 1.55±0.03
GNN-GP embed + Dense 0.773±0.000 0.084±0.000 0.315±0.000 0.523±0.000 2.15±0.00
GNN-SNGP embed + GPC 0.841±0.000 0.034±0.000 0.270±0.000 0.429±0.000 1.17±0.00
GNN-SNGP embed + GP-layer 0.836±0.003 0.074±0.008 0.316±0.047 0.503±0.072 1.31±0.09
GNN-SNGP embed + Dense 0.769±0.000 0.073±0.000 0.324±0.000 0.506±0.000 1.16±0.00

Test-OOD2 AUROC (↑) ECE (↓) Brier (↓) NLL (↓) OFNs% (↓)
FPs + GPC 0.784±0.000 0.074±0.000 0.167±0.000 0.287±0.000 0.00±0.00
FPs + GP-layer 0.716±0.016 0.051±0.004 0.219±0.080 0.357±0.101 4.10±0.55
FPs + Dense 0.604±0.000 0.176±0.000 0.397±0.000 0.783±0.000 5.71±0.00

GNN-baseline embed + GPC 0.842±0.000 0.081±0.000 0.265±0.000 0.451±0.000 1.89±0.00
GNN-baseline embed + GP-layer 0.838±0.004 0.081±0.006 0.266±0.028 0.426±0.042 1.95±0.14
GNN-baseline embed + Dense 0.831±0.000 0.082±0.000 0.284±0.000 0.492±0.000 1.73±0.00
GNN-GP embed + GPC 0.853±0.000 0.024±0.000 0.253±0.000 0.434±0.000 0.00±0.00
GNN-GP embed + GP-layer 0.850±0.003 0.064±0.004 0.257±0.018 0.417±0.032 1.42±0.15
GNN-GP embed + Dense 0.825±0.000 0.087±0.000 0.284±0.000 0.512±0.000 2.04±0.00
GNN-SNGP embed + GPC 0.891±0.000 0.021±0.000 0.208±0.000 0.347±0.000 0.00±0.00
GNN-SNGP embed + GP-layer 0.885±0.007 0.044±0.006 0.238±0.040 0.389±0.068 1.02±0.11
GNN-SNGP embed + Dense 0.824±0.000 0.050±0.000 0.253±0.000 0.414±0.000 1.10±0.00

12


	Introduction
	Methods
	CardioTox: Drug cardiotoxicity under distributional shift
	Conclusion
	GNN-SNGP architecture
	Evaluation Metrics
	Distance analysis for OFNs in CardioTox
	Drug cardiotoxicity data split
	Related work
	Uncertainty improvements for OFNs
	Results on existing benchmarks
	Ablation study on performance contribution

