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ABSTRACT

With the rapid development of language models, the number of small language
models (SLMs) has grown significantly. Although they do not achieve state-of-the-
art accuracy, they are more efficient and often excel at specific tasks. This raises
a natural question: can multiple SLMs be orchestrated into a system where each
contributes effectively, achieving higher accuracy than any individual model? Ex-
isting orchestration methods have primarily targeted frontier models (e.g., GPT-4)
and perform suboptimally when applied to SLMs. To address this gap, we propose
a three-stage approach for orchestrating SLMs. First, we introduce SLM-MUX,
a multi-model architecture that effectively coordinates multiple SLMs. Building
on this, we develop two optimization strategies: (i) a model selection search that
identifies the most complementary SLMs from a given pool, and (ii) test-time
scaling tailored to SLM-MUX. Our approach delivers strong results: Compared to
existing orchestration methods, our approach achieves up to 13.4% improvement on
MATH, 8.8% on GPQA, and 7.0% on GSM8K. With just two SLMs, SLM-MUX
outperforms Qwen 2.5 72B on GPQA and GSM8K, and matches its performance
on MATH. We further provide theoretical analyses to substantiate the advantages
of our method. Additional experiments show that the core principle of SLM-MUX
extends to open-ended generation tasks (e.g., HumanEval) and benefits other model
classes, including frontier LLMs and domain-specific fine-tuned SLMs. In sum-
mary, we demonstrate that SLMs can be effectively orchestrated into more accurate
and efficient systems through the proposed approach.

1 INTRODUCTION

Recent years have witnessed a surge of small-sized language models (SLMs) containing billions
to tens of billions of parameters (Wang et al., 2024a; Javaheripi & Bubeck, 2023; Guo et al., 2025;
Allal et al., 2025). While these models may underperform state-of-the-art frontier language models,
which usually contain hundreds of billions to trillions of parameters, on any given query, they
offer substantially lower inference costs, are more affordable to train and finetune, and allow edge
deployment due to their small size (Belcak et al., 2025). Meanwhile, frontier models have reached
trillion-parameter scales where further increases in size and training data yield diminishing returns.
This mirrors a well-known challenge in computer architecture two decades ago: when enlarging
single CPU cores no longer delivered proportional performance gains, computer architects turned to
designing multi-core processors, where multiple smaller cores working together enabled sustained
improvements. This parallel suggests that combining multiple SLMs could offer a promising
alternative to scaling ever-larger frontier models.

Recent works have explored orchestrating multiple LLMs (e.g., GPT-3.5 and GPT-4o), combining
them into one system to process an input collaboratively. Representative approaches include Mixture-
of-Agents (Wang et al., 2024b), LLM-Debate (Du et al., 2023), and Multi-Agent Verification (Lifshitz
et al., 2025). These approaches share a key assumption: that models possess strong reasoning and
deliberation abilities, so that interaction through natural language can reliably correct mistakes.
However, when applied to SLMs, this assumption no longer holds. Our study finds that such
discussion-based orchestration often fails to improve performance for SLMs, and in some cases even
reduces accuracy by over 5%. Instead of correcting mistakes, SLMs tend to fall into groupthink
during interaction, amplifying errors rather than mitigating them. The assumptions that language
models can correct each other’s answers behind existing orchestration methods do not hold for
SLMs (Taubenfeld et al., 2024; Huang et al., 2024; Liu et al., 2023; Fu et al., 2025).
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To address this issue, we propose SLM-MUX, a multi-model architecture for effectively orchestrating
SLMs while avoiding explicit text exchanges between models. Our key insight is that SLM-MUX
leverages complementary abilities from different models by selecting outputs based on confidence
scores without any model training.
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Figure 1: Head-to-Head Comparison of SLM-MUX
with Other Methods. SLM-MUX outperforms exist-
ing methods such as Self-Consistency (SC) (Wang et al.,
2023), Mixture-of-Agents (MoA) (Wang et al., 2024b),
LLM-Debate (Du et al., 2023), Multi-Agent Verification
(MAV) (Lifshitz et al., 2025), and Agent Forest (Li et al.,
2024). Results reported on MATH dataset with SLMs.

After introducing SLM-MUX, another question
arises: which models should be orchestrated to-
gether? Not all combinations are effective – if
one model is weaker across all dimensions, it
provides no benefit when paired with a stronger
one. In contrast, combining models with com-
plementary strengths (e.g., one stronger in alge-
bra, another in geometry) allows the system to
succeed where a single model would fail.

To address this, we develop a model selection
search strategy for SLM-MUX, which system-
atically evaluates and identifies model subsets
with complementary strengths. By maximizing
union accuracy while penalizing overconfident
contradictions, the search procedure finds the
most suitable models for a given model budget.

In addition, we explore compute scaling strate-
gies for the selected model ensembles to further enhance performance. By adjusting the number of
models and samples at inference time, we further boost performance and identify practical sweet
spots in the accuracy-compute tradeoff.

Our experiments demonstrate significant improvements across multiple benchmarks. By combining
only two SLMs, we achieve accuracy improvements of up to 6.7% on MATH, 5.7% on GPQA,
and 4.8% on GSM8K, compared to the best-performing single SLMs in the system. Our method
consistently outperforms existing discussion-based approaches for SLMs, with gains of up to 13.4%
on MATH, 8.8% on GPQA, and 7.0% on GSM8K. Most importantly, with just two SLMs, SLM-
MUX outperforms Qwen2.5-72B on GPQA and GSM8K, and matches its performance on MATH.

Finally, we complement these empirical findings with theoretical and experimental analyses. Our
approach shows superiority in multiple scenarios compared with previous methods (Figure 1).

Our main contributions are as follows: (i) We identify a fundamental limitation of existing
orchestration methods: Through systematic evaluation, we demonstrate that existing discussion-
based methods, which show consistent improvements for frontier LLMs, actually harm performance
when applied to SLMs. This counterintuitive finding challenges the assumption that orchestration
methods transfer across model scales and reveals the need for SLM-specific method. (ii) We propose
SLM-MUX, a novel multi-model architecture designed specifically for SLMs that avoids the error
amplification problems of discussion-based methods. SLM-MUX achieves consistent gains across
multiple benchmarks (MATH, GPQA, GSM8K) and significantly outperforms existing discussion-
based methods by large margins (up to 11.6% on MATH). (iii) We develop principled optimization
strategies for the SLM-MUX, including model selection search that identifies complementary model
selections and compute scaling strategies, further boosting performance while maintaining efficiency.

2 RELATED WORK

Discussion-based Orchestration Methods. We use discussion-based orchestration to refer to
orchestration schemes where multiple LM instances exchange or evaluate natural-language mes-
sages (Fu et al., 2025)—such as proposing answers, critiquing or debating, verifying from different
aspects, and finally aggregating into one output. Representative approaches include Mixture-of-
Agents (Wang et al., 2024b), which uses a dedicated LLM to aggregate outputs from several models;
LLM-Debate (Du et al., 2023), where models critique and refine each other’s reasoning; and Multi-
Agent Verification (Lifshitz et al., 2025), which assigns models to independently evaluate candidate
solutions before selecting the final answer. These methods assume that participating models have
sufficient reasoning ability to self-correct through interaction. Prior evaluations have been conducted
on frontier LLMs, while their effectiveness for SLMs remains unstudied.
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Figure 2: Comparing SLM-MUX (Ours) with Existing LLM Orchestration Methods. (a) Mixture-of-
Agents, (b) LLM-Debate, (c) Multi-Agent Verification, (d) SLM-MUX (Ours).

Optimization for Multi-LM Orchestration. Given these orchestration methods, some works study
how to further improve their performance—e.g., how to select models to include, how to optimize
prompts, or how to adapt the architecture for specific tasks (Chen et al., 2023a; Ong et al., 2025; Chen
et al., 2024). Prompt and workflow optimization methods (Khattab et al., 2023; Opsahl-Ong et al.,
2024; Saad-Falcon et al., 2025; Zhang et al., 2025a) generally assume strong instruction-following
ability, which makes them less effective for smaller models with limited such capabilities..

Another line of work is model selection for orchestration (Chen et al., 2025; Poon et al., 2025).
These methods often select models based on accuracy, assuming that combining models with higher
standalone accuracy will yield stronger orchestrations. However, most selection criteria are not end-
to-end: they evaluate models independently without directly assessing the performance of the overall
orchestration. This overlooks how models interact with each other—overconfident but incorrect
predictions from one model can dominate and suppress correct predictions from others, meaning that
the best standalone models may not yield the best orchestration.

Test-time Scaling Strategies. Test-time scaling methods improve performance by using additional
computation during inference without retraining (Snell et al., 2024; Muennighoff et al., 2025;
Zhang et al., 2025b). A common single-model approach is self-consistency (Trad & Chehab, 2025;
Thirukovalluru et al., 2024; Chow et al., 2024), which draws multiple samples from one model and
selects the majority answer; accuracy typically improves as the number of samples increases. Agent
Forest (Li et al., 2024) extends this idea to multiple models by collecting one output from each model
and applying majority voting across all answers.

3 METHODS

In this work, we set out to ask two critical questions: given a pool of available SLMs, how can we (i)
orchestrate their outputs to achieve the best overall performance, and (ii) select an effective subset of
models that maximizes accuracy?

To answer question (i), we present the SLM-MUX (Section 3.1), a simple yet effective orchestration
method. To answer question (ii), we propose model selection search (Section 3.2) that identifies
complementary subsets from dozens of available SLMs. Finally, we explore compute scaling
strategies (Section 3.3) to further enhance the reasoning accuracy during inference.

3.1 SLM-MUX FOR ORCHESTRATING MULTIPLE SMALL LANGUAGE MODELS

At a high level, our intuition is that we do not need to let SLMs discuss with each other. Instead,
we can develop a simple rule-based method that estimates the confidence of each model’s answer
and then selects the final output from the model with the highest confidence. We term our method
SLM-MUX, which operates in two phases.

Independent Generation Phase. For a given question, we first let each SLM independently generate
multiple candidate responses to the same query prompt with temperature > 0, producing a pool of
sampled answers per model.

Confidence Estimation Phase. We evaluate the confidence of each SLM’s outputs by measuring
their consistency across their own outputs. Intuitively, a model that places higher probability mass on
the correct answer will reproduce equivalent answer across samples, whereas an uncertain model will
produce varied outputs. For instance, if SLM A produces three equivalent answers while model B
produces three different ones, the answers from model A are more consistent and should be selected.
This correlation between consistency and correctness is observed by previous papers. (Wang et al.,
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SLM 1: SLM 2: SLM 3:
Output 1: … , the final answer is (A)
Output 2: … , the final answer is (A)
Output 3: … , therefor the correct 
                  answer is (B)

Output 1: … , the final answer is (A)
Output 2: … , the correct choice is (B)
Output 3: … , I think the best answer 
                  is (B)

Output 1: … , the final answer is (A)
Output 2: … , the correct choice is (B)
Output 3: … , I think the best answer 
                  is (C)

Confidence: 67% Confidence: 67% Confidence: 33%
Historical Accuracy: High Historical Accuracy: Low Historical Accuracy: Low

Question: Which of the following physical theories never requires regularization at high energies?
(A) Superstring Theory
(B) Classical Electrodynamics
(C) Quantum Electrodynamics (QED)
(D) Quantum Chromodynamics (QCD)
Correct Answer: (A)

Independent Generation Phase

Reliability Estimation Phase

Figure 3: Illustration of SLM-MUX Workflow. (1) Each SLM first independently generates multiple outputs
for the same question. (2) The most frequent answer from each SLM is selected, and its frequency in the answer
pool is used as the confidence score. (3) The answers with the highest confidence score are selected. (4) If
multiple answers share the same confidence score, the tie is broken by selecting the answer from the SLM with
the highest accuracy on the validation set.

Algorithm 1 SLM-MUX Working Flow
Input: Models M1, . . . ,Mn, query x, samples per model k, validation accuracies a1, . . . , an
Output: Final answer ŷ

Independent Generation: each model produces multiple candidate answers independently
1: for i = 1, . . . , n do
2: Sample k answers Yi = {y(1)i , . . . , y

(k)
i } from Mi

3: Compute fi(y) =
1
k

∑k
j=1 1

(
y
(j)
i = y

)
4: Let y∗i = argmaxy fi(y) and set si = fi(y

∗
i )

Confidence Estimation: measure confidence and break ties by validation accuracy
5: Smax = maxi si, I∗ = { i | si = Smax }
6: if |I∗| = 1 then
7: i∗ ← the unique index in I∗

8: else
9: i∗ ← argmaxi∈I∗ ai

10: return ŷ = y∗i∗

2023; Xie et al., 2024; Taubenfeld et al., 2025; Chen et al., 2023b), and we empirically revalidate
this observation in Appendix D.1.

In cases where two SLMs are equally consistent but disagree, we use their validation accuracy as
a tie-breaker. Prior work has shown that consistency is strongly correlated with correctness, which
provides a rationale for this design.

For more details, Algorithm 1 summarizes the workflow step by step. Figure 3 provides a visual
example of the workflow. The evaluation of SLM-MUX is presented in Section 4.2.

3.2 MODEL SELECTION SEARCH FOR SLM-MUX OPTIMIZATION

At a high level, the idea of model selection search is to combine models with complementary skills.
The goal is not simply to add more models, but to bring new capabilities as we add models. Figure 4
illustrates this intuition: Qwen2.5-7B consistently outperforms Llama3.2-3B across all subjects, so
combining them offers no capability beyond what Qwen2.5-7B already provides. In contrast, Mistral
Small 24B and Qwen2.5-7B excel in different subjects, making their combination more effective than
either model individually.

We frame model selection as a search problem on the validation set with two competing objectives.
Our first objective is Union Accuracy, which reflects the overall accuracy of the system. The
higher the union accuracy is, the more questions a system can potentially answer. Formally, let
M = {m1, . . . ,mK} denote the set of candidate models and D the validation set. For each model

4
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mi ∈M, we record the subset of validation instances it solves correctly. Given a candidate subset
S ⊆M, the union accuracy is defined as

UnionAcc(S) =
1

|D|
∑
x∈D

1{∃m ∈ S : m(x) is correct}

The second objective is the Contradiction Penalty. It captures problematic cases where overconfident
wrong answers suppress correct predictions from other models. Consider two SLMs answering the
same multiple-choice question three times: the first model consistently outputs “A” (correct), while
the second consistently outputs “B” (incorrect but confident). Since SLM-MUX selects based
on consistency, both models would appear equally confident, making it impossible to distinguish
the correct answer from the confident but wrong one. We define this penalty as the percentage of
questions where at least one model consistently gives the wrong answer while another provides the
correct answer:

Contradiction(S) =
1

|D|
∑
x∈D

1

{
∃m1 ∈ S : m1(x) consistently wrong,
∃m2 ∈ S : m2(x) correct

}
Here, a model is “consistently wrong” if it produces the same incorrect answer across all sampled
generations for that question. The final objective balances these competing factors:

O(S) = UnionAcc(S) − λ · Contradiction(S),

Where λ is a hyperparameter. Since the number of candidate models is not very large, we perform
an exhaustive search. We present visualization of the two search objectives and evaluation of the
searched model selection in Section 4.3.

The rationale behind this search objective is as follows: UnionAcc represents an optimistic upper
bound for SLM-MUX performance. It assumes an ideal selection mechanism capable of identifying
the correct answer whenever at least one model provides it, which is unrealistic in practice. Conversely,
when λ = 1, the search objective represents a pessimistic lower bound of SLM-MUX accuracy. This
setting assumes that in cases involving confidently wrong answers, the system will invariably select
the incorrect one. In practice, due to factors such as tie-breaking rules and the presence of confidently
correct answers, such a worst-case scenario will not always happen. Consequently, by employing
the objective O(S) = UnionAcc(S)− λ · Contradiction(S), we estimate an approximate accuracy
between the theoretical upper and lower bounds of the SLM-MUX accuracy.
3.3 COMPUTE SCALING STRATEGIES

A

B

C

DE
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G

0.2 0.4 0.6 0.8 1.0

Qwen 2.5 7B
Llama 3.2 3B
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B

C

DE

F

G

0.2 0.4 0.6 0.8 1.0

Qwen 2.5 7B
Mistral Small 24B

Figure 4: Comparison of Model Choices. Accuracy on 7 subjects
for two model selection settings on MATH dataset. Subjects are
denoted as: A = Prealgebra, B = Algebra, C = Intermediate Algebra,
D = Number Theory, E = Counting & Probability, F = Geometry, G
= Precalculus.

Next, we empirically investigate two
dimensions of test-time scaling to fur-
ther enhance the performance of our
SLM-MUX with selected models.

Adding More Participating Model
Types: As we increase the number
of participating model types in the
system by adding more SLMs with
complementary strengths, we expect
the overall accuracy to improve. For
each budgeted number of models,
we use the search method proposed
in Section 3.2 to identify the best
selection from the pool.

Drawing More Samples per Model:
For a fixed model selection, we can
increase the compute budget by scaling the number of samples drawn by each model. Since confidence
is evaluated by counting the frequency of majority answers, adding more samples per model is
expected to provide a more accurate confidence estimate.

These two compute scaling dimensions are evaluated in Section 4.4.

4 EXPERIMENTS

In our experiments, we first demonstrate the fundamental limitations of existing discussion-based
orchestration methods when applied to SLMs (Section 4.1). We then evaluate the proposed SLM-
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MUX in Section 4.2. In Section 4.3, we access our proposed search strategy. Finally, in Section 4.4,
we examine the compute scaling strategies.

4.1 EXISTING DISCUSSION-BASED ORCHESTRATION METHODS HARM SLM PERFORMANCE

To understand whether orchestration methods developed for frontier LLMs are suitable for SLMs, we
conduct a systematic comparison across model scales. We evaluate three prominent discussion-based
methods—LLM-Debate (Du et al., 2023), Mixture-of-Agents (Wang et al., 2024b), and Multi-Agent
Verification (Lifshitz et al., 2025) —using identical experimental settings on both SLMs (Llama 3.1
8B (Grattafiori et al., 2024), Mixtral 8×7B (Jiang et al., 2024), Gemma 2 27B) and frontier LLMs
(DeepSeek V3 (DeepSeek-AI et al., 2025), Gemini 2.0 Flash (Google Cloud, 2025), GPT-4o (OpenAI
et al., 2024)). Evaluation is conducted on MATH and GPQA datasets using original code and prompts.

Results. As shown in Figure 5, discussion-based methods generally outperform the single best-
performing models in the frontier LLM group, achieving up to a 2% increase in accuracy. However,
when applied to SLMs, these discussion-based methods fail to outperform the best single model in
the orchestration, and even incur accuracy drops of up to 5.5%. This performance gap is observed
across all three methods and both benchmarks.

To understand this counterintuitive result, we analyze SLM behavior in discussion settings. We find
that discussion-based methods amplify rather than correct errors in SLMs due to a key limitation:
SLMs tend to exhibit groupthink, reinforcing incorrect reasoning during discussions rather than
correcting mistakes. In Appendix C, we provide detailed analysis showing that 59.5% of failures
are attributed to groupthink, and that the performance gap persists even after extensive prompt
optimization.
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Figure 5: Comparison of discussion-based orchestration when invoking SLMs and LLMs. We compare
three orchestration methods (Mixture-of-Agents, LLM-Debate, and Verification) using (a) SLMs (Llama 3.1 8B,
Mixtral 8×7B, Gemma 2 27B) and (b) frontier LLMs (DeepSeek V3, Gemini 2.0 Flash, GPT-4o) on the MATH
and GPQA datasets. The baseline (Single-Model Max) reflects the best performance of individual models. An
orchestration is considered successful if it surpasses Single-Model Max. All discussion-based methods are
evaluated with temperature=0. The standard deviations of the accuracies are presented in Appendix B.3.

4.2 SLM-MUX ACHIEVES SLM ORCHESTRATION WHERE EXISTING METHODS FAIL

21.2%

38.8%

38.0%

2.0%

No Disagreement
Llama 3.1 8B
Gemma-2 27B
Mixtral-8x7B

Figure 6: Final Output Attribution. We
report the percentage of outputs contributed
by each model on the MATH dataset for our
SLM-MUX. These results are from the same
run as in Table 1.

To evaluate whether our proposed SLM-MUX can suc-
cessfully orchestrate SLMs, we test it against the same
baselines from Section 4.1. We use Mixtral 8×7B,
LLaMA 3.1 8B, and Gemma 2 27B (Team et al., 2024)
as base models. We implement the SLM-MUX as fol-
lows. First, we generate three rounds of answers with a
temperature of 0.3. Next, we compute a confidence score
by counting how often the most common answer appears
across these rounds. The final answer for each model is
chosen as the most frequent one; in the case of a tie, we se-
lect the answer from the model with the highest validation
accuracy.

We evaluate three types of baselines. First, we measure
the accuracies of individual models and report the best-performing ones. Second, we apply
self-consistency to each of the three base models independently, reporting the best-performing result
as the Single-Best-SC baseline. Next, for comparison with existing discussion-based methods, we
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include LLM-Debate (Du et al., 2023), Mixture-of-Agents (Wang et al., 2024b), and Multi-Agent
Verification (Lifshitz et al., 2025). We follow the original code and prompts described in their
papers. Experiments are conducted on three benchmark datasets: MATH (Hendrycks et al., 2021),
GPQA (Rein et al., 2023), and GSM8K (Cobbe et al., 2021).

Results. Table 1 summarizes the results. In our experiments, we find that for SLMs, existing
orchestration methods do not consistently outperform the strongest individual base models or
self-consistency approaches. In contrast, our SLM-MUX yields consistent gains on MATH and
GSM8K, and is comparable to Single-Best-SC on GPQA. Compared with other approaches, our
method yields up to a 13.4% improvement on MATH, up to 8.8% on GPQA, and up to 7.0% on
GSM8K. These results demonstrate that the SLM-MUX itself provides a clear advantage over
alternative orchestration approaches at the architectural level.

To better illustrate our proposed SLM-MUX, we plot the output attribution for the MATH experiment
(Table 1) in Figure 6. By selecting diverse outputs from the generation, SLM-MUX leverages the
complementary strengths of different SLMs.

Method MATH Acc (%) GPQA Acc (%) GSM8K Acc (%)
Mixture-of-Agents 51.4 ± 2.2 33.3 ± 3.4 81.6 ± 1.7
LLM-Debate 51.6 ± 2.2 36.8 ± 3.4 80.8 ± 1.8
Multi-Agent Verification 48.4 ± 2.2 35.3 ± 3.4 86.4 ± 1.5
SLM-MUX (Ours) 61.8 ± 1.2 42.1 ± 0.3 87.8 ± 0.6
Single-Best 56.8 ± 2.2 38.9 ± 3.5 84.2 ± 1.6
Single-Best-SC 58.0 ± 2.2 42.4 ± 3.5 86.8 ± 1.5

Table 1: Quantitative Results. Accuracy and standard deviation across MATH, GPQA, and GSM8K. “SC”
denotes self-consistency decoding (majority vote over samples from a single model), and “Single-Best-SC”
reports the highest accuracy among the three base models when each applies self-consistency individually.

4.3 MODEL SELECTION SEARCH BOOSTS SLM-MUX PERFORMANCE
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Figure 7: Union Accuracy and Contradiction Penalty both Increases as more models are added. We plot
the search objectives as the number of models (K) increases from 2 to 5 across three benchmarks. The green line
denotes the union accuracy across models, the grey area indicates the contradiction penalty, and the blue line
represents the overall search objective score. For each value of K, the plotted quantities are computed for the
single model combination that maximizes our model selection objective defined in Section 3.2.

To examine whether model selection search benefits SLM-MUX, we construct a validation set
of 500 questions sampled from the training splits of MATH, GPQA, and GSM8K. The candidate
pool consists of five SLMs: Gemma 2 27B, Llama 3.1 8B, Mistral Small 24B (Mistral AI, 2025),
Mixtral 8×7B, and Qwen2.5-7B (Qwen et al., 2025). For each question, we collect three independent
generations per model with temperature 0.5, repeating this process three times to obtain stable
accuracy estimates. The search procedure considers orchestrations with K = 2 to 5 models and is
guided by an objective function mentioned in Section 3, with hyperparameter λ = 1. The behavior of
this objective is illustrated in Figure 7, showing the trade-off as K increases. For simplicity, we select
two representative two-model combinations from the search results for evaluation on the test set.

Results. Table 2 summarizes the outcome of the search. The table lists the top-performing two-model
combinations identified on the validation set, along with their evaluation on the held-out test set.
Across benchmarks, these optimized orchestrations yield consistent improvements over the strongest
individual models: accuracy increases by 4.5% on MATH, 4.4% on GPQA, and 4.3% on GSM8K.
This contrasts with Section 4.2, where naive three-model combinations provide little to no benefit
on GPQA. Figure 7 further illustrates the underlying trade-off: while union accuracy rises with
additional models, the contradiction penalty also grows, emphasizing that effective orchestration
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Benchmark Group Model Selection Best Single
Acc (%)

Composed
Acc (%)

∆
(Gain)

MATH 1 Mistral Small 24B
Qwen2.5-7B 75.5± 1.5 80.0± 0.7 +4.5

2 Qwen2.5-7B
Llama 3.1 8B 75.5± 1.5 77.7± 0.7 +2.2

GPQA 1 Gemma 2 27B
Mistral Small 24B 45.1± 2.8 49.5± 1.8 +4.4

2 Llama 3.1 8B
Mistral Small 24B 45.1± 2.8 48.8± 0.8 +3.6

GSM8K 1 Mistral Small 24B
Qwen2.5-7B 88.5± 0.7 92.8± 0.6 +4.3

2 Llama 3.1 8B
Mixtral 8×7B 80.8± 2.1 85.2± 0.7 +4.4

Table 2: Model Selection Search and Evaluation Results. We show the top two model groups identified by our
search for each benchmark. For each group, we report the accuracy of the best-performing single model within
the orchestration, the accuracy achieved by our SLM-MUX, and the resulting performance gain.

requires balancing these competing factors rather than simply enlarging the orchestration size. In
Appendix D.3, we show that the SLM-MUX architecture itself yields consistent gains even with
randomly selected model combinations; the search procedure provides an effective and data-efficient
way to further boost accuracy.

4.4 COMPUTE SCALING STRATEGIES REVEAL OPTIMAL RESOURCE ALLOCATION

To evaluate the “Adding More Participating Model Types" dimension of compute scaling, we assess
how performance changes as the number of models in the orchestration increases. For each number
of models from 2 to 5, we first apply the search method from Section 3.2 to identify the optimal
model selection from our pool. We then evaluate SLM-MUX with selected models on the validation
set. Figure 9 plots the resulting mean accuracy (blue line, left y-axis) for each value of K. To illustrate
the theoretical performance ceiling of each ensemble, we also plot the union accuracy (grey line, right
y-axis), defined as the percentage of questions solved by at least one model in the group. For each
value of K in Figure 9, we show the single model combination that achieves the highest value of our
model selection objective from Section 3.2; the search procedure is used to find the best combination
under a fixed K, rather than to choose K itself.

Benchmark Samples SLM-MUX Agent Forest ∆ (Gain)

MATH 2 76.8± 0.7 72.3± 1.5 +4.5
Best 79.5± 0.4 79.2± 0.4 +0.3

GPQA 2 46.3± 2.3 40.4± 2.3 +5.9
Best 48.8± 1.2 47.6± 1.4 +1.2

GSM8K 2 82.1± 0.7 77.7± 0.2 +4.4
Best 86.5± 0.8 84.3± 0.8 +2.2

Table 3: Comparison of SLM-MUX and Agent Forest. We compare SLM-MUX and Agent Forest in two
settings: (1) with 2 samples per model (Samples=2), and (2) using the best accuracy found during scaling for
each method (Samples=best). In the second setting, the number of samples per model may vary.

For the “Drawing More Samples per Model” dimension, we reuse the two groups of models listed
in Table 2. We vary the number of samples per model from 2 to 9 and report the mean accuracy of
SLM-MUX over three runs for each sample budget. The results are presented in Figure 8, along
with a baseline, Agent Forest (Li et al., 2024), for comparison. To ensure fairness, Agent Forest
is reproduced using the same models from Group 2. We report the best accuracy achieved by the
SLM-MUX when scaling with Samples per Model and compare it to the accuracy of the single best
model in the orchestration, as shown in Table 2.

Results. The effect of “Adding More Participating Model Types” varies substantially across bench-
marks. On GPQA, accuracy peaks when combining two models and declines thereafter. On GSM8K,
accuracy quickly saturates at two models without further gains. In contrast, on MATH, accuracy
continues to improve as additional models are included. Despite these differences, the union accuracy
of model orchestration consistently increases with more models, emphasizing the role of output

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8 9
Samples per Model

40
41
42
43
44
45
46
47
48
49
50

Ac
cu

ra
cy

 (%
)

Drawing More Samples per Model for GPQA

Group 1
Group 2
Agent Forest

2 3 4 5 6 7 8 9
Samples per Model

78

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Drawing More Samples per Model for GSM8K

Group 1
Group 2
Agent Forest

2 3 4 5 6 7 8 9
Samples per Model

72
73
74
75
76
77
78
79
80
81
82

Ac
cu

ra
cy

 (%
)

Drawing More Samples per Model for MATH

Group 1
Group 2
Agent Forest

Figure 8: Drawing More Samples per Model Improves Accuracy. We report mean accuracy of SLM-MUX
as the number of samples per model increases from 2 to 9 across three benchmarks. Group 1 and Group 2 are
from Table 2. We also plot the mean accuracy of Agent Forest (Li et al., 2024) in grey line.
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Figure 9: Adding More Participating Models Affects Accuracy Differently. We report the mean accuracy
(blue line) of the optimal SLM-MUX obtained when using 2 to 5 models across three benchmarks. We also
report the union accuracy (grey line), defined in Section 3.2. The blue line (Mean Accuracy) is plotted against
the left-hand Y-axis. The grey line (Union Accuracy) is plotted against the right-hand Y-axis. For each K, both
curves correspond to the single model combination that maximizes our model selection objective (Section 3.2)
under that fixed K.

contradictions among models, as elaborated in Section 3.2. We also validate this scaling behavior on
the test set; see Appendix D.4 for details.

“Drawing More Samples per Model” yields more consistent improvements across benchmarks.
Moreover, under this setting, our SLM-MUX systematically outperforms Agent Forest, with the
largest margin observed on GPQA, where single-model accuracy is lowest.

Benchmark Group 1 Group 2 Qwen2.5-72B Acc (%)
Acc (%) ∆ (Gain) Acc (%) ∆ (Gain)

MATH 81.9± 0.2 +6.4 79.5± 0.4 +4.0 82.3± 0.5
GPQA 49.9± 1.8 +4.8 48.7± 1.2 +3.6 44.9± 0.5
GSM8K 93.7± 0.2 +5.2 86.5± 0.8 +5.7 90.4± 0.3

Table 4: Best Accuracy after Sample Scaling beats Larger Model. Acc indicates the highest accuracy
achieved through scaling. Groups 1 & 2 are defined in Table 2. Gain represents the improvement over the best
single-model accuracy reported in Table 2. For reference, we also include the performance of the large model
Qwen2.5-72B, showing that our composed small models can outperform it on GPQA and GSM8K.

5 DISCUSSION

Mathematical Intuition behind SLM-MUX. Different SLMs have complementary strengths: for any
given question, some models are more likely to answer correctly than others. SLM-MUX exploits
this by selecting the most self-consistent model’s output through a simple rule-based mechanism that
requires no inter-model communication.

The key insight is that the confidence score can identify the strongest model. We assume that for
each question, there is a unique correct answer, while incorrect answers are scattered rather than
clustered. Under this assumption, a model with higher accuracy pi produces the correct answer more
frequently across N samples, leading to a higher confidence score. Therefore, selecting the model
with the highest confidence score effectively identifies the model most likely to be correct.

More formally, consider K models where model i has probability pi of being correct. Let i∗ =
argmaxi pi denote the strongest model with margin γ = pi∗ − maxj ̸=i∗ pj > 0. Under our
assumption, the confidence score si (the frequency of the most common answer over N samples)
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concentrates around pi. Applying Hoeffding’s inequality and a union bound, the probability of
correctly selecting the strongest model satisfies:

Pr(̂i = i∗) ≥ 1− 2(K − 1) exp

(
−Nγ2

2

)
.

This bound shows that the probability of misidentifying the strongest model decays exponentially
with sample size N .

This selection mechanism explains why SLM-MUX outperforms alternatives. Unlike a single fixed
model, SLM-MUX performs per-question routing, effectively achieving accuracy pmax by always
selecting the strongest available expert. Unlike pooling methods such as Agent Forest that aggregate
outputs from all models, SLM-MUX avoids interference from weaker models. For instance, if the
strongest model has p1 = 0.8 and a weaker one has p2 = 0.3, pooling their outputs merely dilutes
the correct answer’s frequency. By isolating the strongest model and selecting its most frequent
answer, SLM-MUX preserves the full predictive power of the most reliable source. We provide a
more detailed comparative analysis with self-consistency and Agent Forest in Appendix D.2.

Extending SLM-MUX to Open-Ended Generation.. Although the current implementation of
SLM-MUX relies on majority voting and is therefore restricted to tasks with discrete answer spaces,
the underlying idea of selecting the most self-consistent model is more general. For open-ended
generation, one can replace majority voting with alternative consistency estimators, such as LLM-
as-a-judge scoring or embedding-based similarity measures. In Appendix E.1, we show a simple
extension of SLM-MUX to HumanEval (Chen et al., 2021) using this idea and observe strong
empirical gains.

Extending SLM-MUX Beyond Generalist SLMs.. The experiments above focus on general-
purpose SLMs. We further evaluate whether the consistency-based selection principle extends to
other settings: (1) frontier LLMs such as GPT-4o and Gemini-2.5-Flash, and (2) domain-specific
fine-tuned models such as code and math specialists. In both cases, SLM-MUX achieves consistent
improvements over the best single model. Full experimental details are provided in Appendix E.

Limitation and Future Work. The SLM-MUX framework has two main limitations. First, its
design is static and does not adapt to specific questions. For every query, it uses a fixed group of
models that are pre-selected through exhaustive search – a method that is slow and costly when there
are many models to choose from. When models are tied, the framework uses their past accuracy on
a validation set to decide, which is also a fixed, non-adaptive rule. Second, the way the framework
measures model confidence is simple. It relies only on self-consistency – how often a model produces
the same answer. This can be a problem because a model can be very consistent while still being
incorrect.

Conclusion. This work demonstrates that orchestration methods designed for frontier models
paradoxically degrade the performance of SLMs by amplifying errors. To address this, we propose
SLM-MUX, a framework that avoids inter-model discussion, instead selecting the most reliable
output based on each model’s self-consistency. We further introduce a model selection search
algorithm to find complementary model combinations. Experiments show our method not only
substantially outperforms existing strategies but also enables an ensemble of just two SLMs to surpass
the much larger Qwen2.5-72B model on key reasoning benchmarks. In summary, our work validates
that intelligently orchestrating multiple efficient models—a "multi-core" approach—is a promising
alternative to scaling monolithic models on the path toward more capable AI systems.
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APPENDIX OVERVIEW

The appendix is organized into five main sections. Section A states the usage of LLMs in preparing
this paper. Section B provides experimental details, including visual illustrations, single-model
accuracies, and standard deviation calculations. Section C analyzes why discussion-based methods
fail on SLMs, presenting groupthink analysis and prompt sensitivity studies. Section D validates the
SLM-MUX design through consistency-accuracy correlation analysis, comparative analysis with
voting-based methods, model selection search analysis, and test-set scaling validation. Section E
demonstrates the generalization of SLM-MUX to open-ended generation, frontier LLMs, and
domain-specific models. Finally, Section F provides dataset licenses.

A LLM USAGE STATEMENT

We used Cursor for coding. Large language models (LLMs) were employed to help polish drafts
written by humans, and to assist in searching for related papers. The final choice of related work
included in this paper was made entirely by the human authors after careful screening. LLMs were
also used for proofreading and for providing suggestions.

B EXPERIMENTAL DETAILS

B.1 VISUAL ILLUSTRATIONS OF SLM-MUX

To more effectively illustrate the workflow of our proposed composition method, we select several
representative examples from the logs. We demonstrate them in Figure 10, Figure 11 and Figure 12.

SLM-MUX surpasses majority voting in scenarios with initial disagreement among models..
As illustrated by Figure 10, during the independent generation phase, Gemma-2-27B is the sole
model to provide the correct answer. Hence, majority voting applied directly would fail to select the
correct author.

Llama: Gemma: Mixtral:

Output 1: To convert the 

decimal number, …, 4220

Output 2: To express 555 in 

base, …, 4210

Output 3: To express 555 in 

base 5, …, 100

Output 1: Here's how to 

convert 555, …, 4210

Output 2: Here's how to 

convert 555, …, 4210

Output 3: Here's how to 

convert 555 from, .., 4210

Output 1: First, we need to 

perform repeated, …, 1

Output 2: To express the 

decimal number, …, 4121

Output 3: First, we need to 

perform repeated, …, 1

Confidence: 33% Confidence: 100% Confidence: 67%

Historical Accuracy: 49% Historical Accuracy: 57% Historical Accuracy: 32%

Question: Express 555 in base 5.

Correct Answer: 4210

Independent Generation Phase

Reliability Estimation Phase

Figure 10: An illustration of the SLM-MUX method applied to the MATH dataset. In the independent
generation phase, three models are used: LLaMA-3.1-8B (denoted as Llama), Gemma-2-27B (denoted as
Gemma), and Mixtral-8×7B (denoted as Mixtral). Because the three models provide different answers at first,
so each model is invoked two more times. Gemma obtains the highest confidence score and is therefore selected
as the final output.

B.2 ACCURACY OF SINGLE LLMS

We evaluated the accuracy of single model accuracy under the condition of temperature equal to zero.
The results are shown in Table 5 and Table 6.

Model MATH Acc (%) GPQA Acc (%) GSM8K Acc (%)
Llama-3.1-8B 48.6 23.7 84.2
Mixtral-8×7B 31.6 31.9 63.4
Gemma-2-27B 56.8 38.8 81.6

Table 5: Small Model Base Performance. Base model accuracy on MATH, GPQA, and GSM8K.
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Llama: Gemma: Mixtral:

Output 1: To solve this 

problem, … ,750

Output 2: To solve this 

problem, … , 50

Output 3: Let's break down 

the problem step, …, 25

Output 1: Here's how to 

solve the problem, … ,50

Output 2: Here's how to 

solve the problem, … ,50

Output 3: Here's how to 

solve the problem, … ,50

Output 1: First, let's 

determine how, …, 150

Output 2: First, let's 

determine how, …, 25

Output 3: First, let's 

determine how, …, 50

Confidence: 33% Confidence: 100% Confidence: 33%

Historical Accuracy: 84% Historical Accuracy: 82% Historical Accuracy: 64%

Question: Elvis has a monthly saving target of $1125. In April, he wants to save twice as much daily 

in the second half as he saves in the first half in order to hit his target. How much does he have to save 

for each day in the second half of the month?

Correct Answer: 50

Independent Generation Phase

Reliability Estimation Phase

Figure 11: An illustration of the SLM-MUX method applied to the GSM8K dataset. In the independent
generation phase, different models produce different answers. However, when we invoke each model multiple
times, we observe that Llama and Mixtral only yield correct answers approximately one-third of the time. In
contrast, Gemma demonstrates stable performance.

Llama: Gemma: Mixtral:

Output 1: Answer: C, 

Explanation:  …

Output 2: Answer: A, In basic 

solutions, …

Output 3: Answer: D , In 

basic solutions, …

Output 1: Answer: D, … 

Output 2: Answer: D, … 

Output 3: Answer: D, … 

Output 1: To answer this 

question, …, A

Output 2: To answer this 

question, …, A

Output 3: To answer this 

question, …, A

Confidence: 33% Confidence: 100% Confidence: 100%

Historical Accuracy: 24% Historical Accuracy: 32% Historical Accuracy: 39%

Question: Question: A student regrets that he fell asleep during a lecture in electrochemistry, facing 

the following incomplete statement in a test:  "Thermodynamically, oxygen is a …… oxidant in basic 

solutions. Kinetically, oxygen reacts …… in acidic solutions." Which combination of weaker/stronger 

and faster/slower is correct?

(A) weaker – slower  

(B) stronger – slower  

(C) weaker – faster  

(D) stronger – faster

Correct Answer: (A)

Independent Generation Phase

Reliability Estimation Phase

Figure 12: An illustration of the SLM-MUX method applied to the GPQA dataset. During the independent
generation phase, Gemma and Mixtral obtain the same confidence score. However, considering historical
accuracy, Mixtral ranks higher. Therefore, Mixtral’s answer is selected as the final output.

B.3 STANDARD DEVIATION OF THE DATA POINTS IN FIGURE 5

Although all experiments are run in a deterministic setting with temperature set to zero, we can still
compute the standard deviation of each datapoint by treating the outcome as a Bernoulli variable.
Specifically, if there are ncorrect correct answers and nwrong incorrect answers, the standard deviation

Model MATH GPQA
Acc (%) Token Usage Acc (%) Token Usage

DeepSeek V3 87.0 419,513 55.1 173,885
Gemini 2.0 Flash 90.4 361,737 63.6 195,576
GPT-4o 79.8 408,410 51.0 212,037

Table 6: Large Model Base Performance. Base model performance and token usage on MATH and GPQA
datasets. Accuracy is the percentage of correct answers, and token usage reflects total tokens consumed (prompt
+ response) over the entire dataset for each model.
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is

√
Var(X)
√
ntotal

=

√
p(1− p)
√
ntotal

=

√
ncorrect

ntotal

(
1− ncorrect

ntotal

)
√
ntotal

,

where ntotal = ncorrect + nwrong.

The results are summarized in Table 7.

Table 7: Accuracy and estimated standard deviation on MATH (n = 500) and GPQA (n = 196) using datapoints
from Figure 5.

MATH (n = 500) GPQA (n = 196)

Method SLM orchestration LLM composition SLM orchestration LLM composition

Single Model Max 56.8± 2.22 90.4± 1.32 38.8± 3.48 63.6± 3.44
Mixture-of-Agents 46.2± 2.23 88.8± 1.41 33.3± 3.37 58.6± 3.52
LLM-Debate 51.6± 2.23 90.8± 1.29 36.9± 3.45 65.6± 3.39
Multi-Agent Verification 48.4± 2.23 91.6± 1.24 35.4± 3.42 64.2± 3.42

C WHY DISCUSSION-BASED METHODS FAIL ON SLMS

C.1 GROUPTHINK ANALYSIS

We analyze the experiment logs of LLM-Debate using small language models (SLMs) in Section 4.1.
Among 500 debate problems, 242 resulted in failure (48.4%). For each of the 242 failed debates, we
first used an analyzer LLM to produce a process-focused failure analysis. We then used a separate
labeling LLM to classify whether each failed debate was due to groupthink.

The labeling results are shown in Table 8:

These results reinforce our claim that groupthink is a major failure mode in SLM-based LLM-debate.

We provide the exact prompts used by (i) the analyzer LLM to generate the 242 failure analyses
(Figure 13) and (ii) the groupthink labeler LLM to classify groupthink (Figure 14). Placeholders such
as {problem} indicate runtime substitutions by our code.

C.2 PROMPT SENSITIVITY ANALYSIS

A natural concern is whether the performance gap between discussion-based methods and SLM-
MUX is due to suboptimal prompt selection rather than inherent limitations. To address this, we
conduct a prompt sensitivity analysis on the Mixture-of-Agents (MoA) baseline using the MATH
benchmark.

We use Gemini-2.5-Flash to generate 10 diverse aggregator prompts for MoA. Table 9 summarizes
the results. Our baseline prompt (46.2%) outperforms the average of the tuned prompts (41.8%) and
surpasses 7 out of 10 generated prompts. Even the best tuned prompt (48.4%) remains substantially
below the best single model (56.8%) and SLM-MUX (61.8%).

To further stress-test this result, we conducted iterative prompt optimization directly on the test set for
6 rounds, selecting the best-performing prompt at each iteration. Even under this extremely favorable
setting for MoA, the accuracy peaked at 55.6%, still below the best single model (56.8%) and far
below SLM-MUX (61.8%). This confirms that the performance gap reflects inherent limitations of
discussion-based aggregation when applied to SLMs, rather than an artifact of prompt selection.

D VALIDATION OF SLM-MUX DESIGN

D.1 CONSISTENCY VS ACCURACY CORRELATION

We empirically study how per-question self-consistency correlates with accuracy on four datasets:
GSM8K, MATH, GPQA, and HUMANEVAL. For each model–dataset pair, we compute a self-
consistency score for every question (as defined in the main text) and group questions into three bins
according to this score: Low [0.0, 0.5), Medium [0.5, 0.8), and High [0.8, 1.0]. We then measure the
empirical accuracy (fraction of correct answers) within each bin.
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As an expert in analyzing multi-agent AI systems, your task is to
analyze why an ’LLM Debate’ process failed to find the correct
answer. Your focus should be on the *debate dynamics and

process*, not just the mathematical details. The goal is to
understand the failure of the debate methodology itself.

**Ground Truth:**
- **Problem Statement:** {problem}
- **Correct Answer:** {ref_answer}

**Debate Information:**
- **Final Incorrect Answer from System:** {system_answer}

**Analysis of Round 1:**
- **Model ‘{model_name}‘ proposed:**

- Answer: ‘{extracted_answer}‘
- Reasoning:

‘‘‘
{full_text}
‘‘‘

... (repeats per round and per model)

**Your Analysis Task:**
Based on the debate history, provide a "Debate Failure Analysis".

Do not focus on simple calculation mistakes. Instead, analyze
the interaction between the models and the structure of the
debate. Pinpoint the core reasons the *debate process* failed.
Consider these questions:

1. **Error Propagation vs. Correction:** How did initial errors
influence later rounds? Were there moments where a correct
idea was introduced but ignored or overruled? Why did the
debate fail to self-correct?

2. **Groupthink and Influence Dynamics:** Did the models converge
on a flawed consensus? Did one or more influential but

incorrect models lead the group astray? Was there evidence of
independent reasoning that was shut down?

3. **Argumentation Quality:** Did the models provide convincing
but ultimately flawed arguments? Did they effectively
challenge each other’s reasoning, or was the debate
superficial?

4. **Critical Failure Point in the Debate:** Identify the single
most critical turn or moment in the debate that sealed its
failure. What happened, and why was it so impactful?

5. **Improving the Debate:** What is the single most important
change to the debate protocol or dynamics that could have
prevented this failure? (e.g., different communication rules,
promoting dissident opinions, etc.)

Provide a concise, expert analysis focusing on the *process*
failure.

Figure 13: Prompt Template for Failure Analysis.
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Metric Count Rate

Total Debates Analyzed 500 100% of total
Failed Debates (System Error) 242 48.4% of total

Breakdown of Failed Debates:
Attributed to Groupthink 144 59.5% of failures
Attributed to Other Causes 79 32.6% of failures
Classification Unsuccessful 19 7.9% of failures

Table 8: Failure Cause Attribution This table shows the cause attribution for LLM-Debate when involving
SLMs.

You are an expert analyst of multi-agent LLM debates. Your goal is
to determine whether the failure primarily involved

groupthink/conformity dynamics. Groupthink indicators include:
early flawed consensus, explicit capitulation to a majority,

social proofing, adopting peers’ answers without critique,
abandoning independent reasoning to match others, or
reinforcing an incorrect majority despite available dissent.
Not-groupthink includes failures due to independent arithmetic
/logic errors, argument complexity/veneer effects without
convergence, or chaotic divergence with no consensus influence
. Return STRICT JSON only, with keys: groupthink (bool),
confidence (float 0-1), reasons (string), cues (array of
strings).

Figure 14: Prompt for Groupthink Classification.

Figure 15 reports the resulting accuracies for two representative SLMs on each dataset. Across
GSM8K, MATH, and HUMANEVAL we observe a strong positive relationship between self-
consistency and accuracy: questions in the high-consistency bin are substantially more likely to be
answered correctly than those in the low-consistency bin. GPQA exhibits a weaker but still positive
correlation. Overall, these results provide empirical support for the link between self-consistency and
correctness assumed in our method.

D.2 COMPARATIVE ANALYSIS WITH VOTING-BASED METHODS

Since SLM-MUX also involves voting on model outputs, we examine its differences from standard
self-consistency and Agent Forest to better explain the source of our improvements.

To explain our stronger performance, we note a limitation of self-consistency methods. Suppose
a model has probability p of answering a question correctly. When self-consistency samples N
responses, the probability of obtaining the correct answer after majority voting follows a binomial
distribution:

A(N, p) = Pr
(
X ≥

⌈
N
2

⌉)
=

N∑
k=⌈N/2⌉

(
N

k

)
pk(1− p)N−k, X ∼ Binomial(N, p) (1)

Table 9: Prompt sensitivity analysis for MoA on MATH. The baseline prompt used in our experiments is already
near-optimal.

Setting Accuracy

SLM-MUX (Ours) 61.8%
Best Single Model 56.8%

Tuned Prompt (Best) 48.4%
Baseline Prompt (Used in Paper) 46.2%
Tuned Prompt (Average) 41.8%
Tuned Prompt (Worst) 25.8%
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Figure 15: Accuracy as a function of per-question self-consistency score on GSM8K, MATH, GPQA, and
HUMANEVAL. Questions are grouped into three bins by self-consistency: Low [0.0, 0.5), Medium [0.5, 0.8),
and High [0.8, 1.0]. Each line corresponds to a different SLM; legends report the Pearson correlation r between
self-consistency and correctness.

We observe that A(N, p) exceeds p only when p > 0.5, meaning self-consistency is effective only in
this regime. When p < 0.5, self-consistency can actually lower overall accuracy.

For any dataset, we can conceptually divide examples into three types of questions. Type 1: p =
100%, the model always answers correctly. Type 2: p > 50%, the model is more likely than not to be
correct. Type 3: p < 50%, the model is more likely to be wrong. The overall effect of self-consistency
is then the improvement from Type 2, offset by the degradation from Type 3. Improvement occurs
only when the dataset contains a sufficiently large proportion of Type 2 questions.

For SLM-MUX, we select the output from the most confident model, so the accuracy can be
approximated as A(N, pmax), where pmax is the highest probability among the participating models.
By routing to the model with the highest pmax on each question, we effectively enlarge the proportion
of Type 2 questions, leading to higher overall accuracy.

For the Agent Forest approach, answers are drawn evenly from all models, so its accuracy can be
approximated as A(N, p̄), where p̄ is the average probability across models. This generally results in
lower accuracy than SLM-MUX, as weaker models dilute the signal from stronger ones.

D.3 MODEL SELECTION SEARCH ANALYSIS

D.3.1 SEARCH-SET SIZE STABILITY

We analyze how the size of the search set (number of problems used in the search phase) affects the
resulting model ranking. For each of the three benchmarks MATH, GSM8K, and GPQA, we treat the
full benchmark (approximately 500 problems) as the search pool and first run our search procedure
on the full set to obtain a ranking of all candidate models. We then record the models occupying
Rank 1, Rank 2, and Rank 3 under this full-set ranking.

Next, we subsample the search set to smaller sizes and re-run the search. Specifically, for each dataset
we evaluate search-set sizes of 100, 200, 300, 400, and the full set. At each size, we recompute the
ranking over all models and track the ranks of the three models that were Rank 1–3 under the full-set
setting.

Figure 16 shows the results. Each curve corresponds to one of the Rank 1/2/3 models under the
full-set ranking, and the y-axis reports its rank when the search-set size is changed. Across all three
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datasets, these models consistently remain within the top three positions even when the search set
is reduced to as few as 100 problems, with only minor swaps in their relative order on MATH and
GSM8K. This suggests that a search set of a few hundred problems is sufficient to stably identify the
top-performing models.

Figure 16: Stability of model rankings with respect to search-set size on MATH, GSM8K, and GPQA. For
each dataset, we first determine the top three models using the full search set and then track their ranks as the
search-set size is reduced.

D.3.2 RANDOM MODEL SELECTION BASELINE

A natural question is whether the performance gains of SLM-MUX stem from the model selection
search or from the orchestration architecture itself. To isolate the contribution of the architecture,
we conduct an experiment where model combinations are selected randomly rather than through our
search procedure.

For each dataset, we randomly sample model combinations of size K = 2, 3, 4 from our pool of
five SLMs and apply SLM-MUX. We compare the resulting accuracy against the best single model
within each random pool. Table 10 reports the average performance across all random combinations.

Table 10: Performance of SLM-MUX with randomly selected model combinations. Even without optimized
model selection, SLM-MUX consistently outperforms the best single model in the pool.

Dataset K SLM-MUX (Random) Best Single Model ∆ (Gain)

MATH 2 67.2% 66.1% +1.1
3 71.5% 69.8% +1.7
4 73.7% 71.8% +1.9

GSM8K 2 84.1% 81.7% +2.4
3 87.3% 83.6% +3.7
4 88.8% 84.0% +4.8

GPQA 2 43.0% 41.3% +1.7
3 44.5% 44.4% +0.1
4 46.3% 46.0% +0.3

As shown in Table 10, SLM-MUX consistently outperforms the best single model even when the
model combination is selected randomly. On MATH and GSM8K, the gains are substantial (up to
+4.8 on GSM8K with K = 4). On GPQA, where consistency is a weaker signal for correctness, the
gains are smaller but still positive.

To further quantify how often SLM-MUX improves over single models, we compute the Effective
Combination Rate: the percentage of all possible K-model subsets where SLM-MUX outperforms
the best single model in that subset. Table 11 reports the results.

On GSM8K, 100% of combinations are effective across all values of K. On MATH and GPQA,
the effective rate increases with K, reaching 100% at K = 4. Even at K = 2, the majority of
combinations (60–100%) are effective. These results demonstrate that the space of “workable” model
combinations is dense, and one does not need to search extensively to find an effective subset. The
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Table 11: Effective Combination Rate: percentage of model combinations where SLM-MUX outperforms the
best single model in the subset.

Dataset K = 2 K = 3 K = 4

MATH 70% 100% 100%
GSM8K 100% 100% 100%
GPQA 60% 80% 100%

model selection search provides additional gains by identifying the optimal combination, but the
architecture is robust even without it.

D.4 TEST-SET VALIDATION OF SCALING BEHAVIOR

In Section 3.3, we evaluated the “Adding More Participating Model Types” scaling dimension on the
validation set. Here we report the corresponding results on the test set to verify that the observed
trends generalize.

Table 12 summarizes the test-set accuracy as the number of participating models K increases from 1
to 5. For each value of K, we use the model combination selected by the search procedure described
in Section 3.2. Figure 17 visualizes these results.

Table 12: Test-set accuracy (%) as the number of participating models K increases. For K = 1, the best single
model is reported.

K GPQA GSM8K MATH

1 (best single) 47.98 90.20 78.20
2 50.21 91.51 80.27
3 51.81 91.29 81.09
4 49.16 91.44 81.00
5 45.18 90.80 80.64

1 2 3 4 5
Number of Participating Models

44

45

46

47

48

49

50

51

52

53

Ac
cu

ra
cy

 (%
)

Adding More Participating Models for GPQA

Accuracy

1 2 3 4 5
Number of Participating Models

89

90

91

92

93

Ac
cu

ra
cy

 (%
)

Adding More Participating Models for GSM8K

Accuracy

1 2 3 4 5
Number of Participating Models

77

78

79

80

81

82

83

Ac
cu

ra
cy

 (%
)

Adding More Participating Models for MATH

Accuracy

Figure 17: Test-set accuracy as a function of the number of participating models on GPQA, GSM8K, and MATH.
The trends mirror those observed on the validation set: GPQA peaks at K = 3, GSM8K saturates quickly, and
MATH shows continued improvement up to K = 3.

E GENERALIZATION OF SLM-MUX

E.1 OPEN-ENDED GENERATION (HUMANEVAL)

In the main text, SLM-MUX is instantiated on tasks with discrete answer spaces, where self-
consistency can be measured via majority voting over sampled outputs. To check whether the
same principle extends to open-ended generation, we apply SLM-MUX to the HUMANEVAL code-
generation benchmark.

Consistency estimator for open-ended generation.. On HUMANEVAL, exact-string majority voting
is not appropriate, so we replace it with a semantic consistency estimator. For each model and
each problem, we sample N = 5 code generations with temperature 0.3. We then encode the 5
generations using the pretrained embedding model Salesforce/codet5p-110m-embedding
and compute pairwise cosine similarities, yielding a 5 × 5 similarity matrix. From this matrix,
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Table 13: Pass@1 on HUMANEVAL for individual SLMs.

Model Pass@1

Llama-3.1-8B-Instruct 0.178
Qwen2.5-7B-Instruct 0.485
Mistral-Small-24B 0.870
Qwen2.5-Coder-7B 0.893

Table 14: SLM-MUX on HUMANEVAL (Pass@1). Each row corresponds to a pair of SLMs; SLM-MUX
selects the output from the model with higher embedding-based consistency.

Setup Models combined SLM-MUX (Pass@1)

Exp 1 Llama-3.1-8B-Instruct + Qwen2.5-7B-Instruct 0.506
Exp 2 Mistral-Small-24B + Qwen2.5-Coder-7B 0.939

we identify the most coherent cluster of generations (of size x) and use x/5 as the model’s self-
consistency score for that problem, analogous to the confidence score derived from majority voting in
the discrete-answer setting.

We also experimented with an LLM-as-a-judge–based consistency estimator (using Qwen2.5-7B-
Instruct as the judge) and found that the embedding-based estimator exhibits a stronger correlation
with ground-truth correctness (Pass@1). All results below therefore use the embedding-based
consistency score.

Results.. Table 13 reports the Pass@1 of each individual SLM on HUMANEVAL. Table 14 reports
the Pass@1 of SLM-MUX when combining two models at a time; for each problem, SLM-MUX
selects the solution from the model with the larger embedding-based consistency score.

E.2 FRONTIER LLMS

We evaluate whether SLM-MUX can exploit complementary strengths between state-of-the-art
frontier models. We pair GPT-4o with Gemini-2.5-Flash and apply SLM-MUX on MATH, GPQA,
and GSM8K. For each problem, we sample N = 5 responses per model at temperature 0.3 and apply
self-consistency routing: for each problem, we perform majority voting within each model’s samples,
then route to the model showing higher agreement.

Table 15 summarizes the results. As a reference, “Perfect Routing” indicates the theoretical upper
bound achievable if the system always selects the correct model when at least one succeeds.

Table 15: SLM-MUX performance when applied to frontier LLMs (GPT-4o and Gemini-2.5-Flash).

Benchmark GPT-4o Gemini-2.5-Flash SLM-MUX Perfect Routing

MATH 73.0% 92.1% 92.8% 94.2%
GPQA 50.7% 51.1% 60.1% 73.7%
GSM8K 89.1% 85.7% 89.4% 91.4%

The results reveal two distinct regimes. On GPQA, the two models exhibit complementary error
patterns, and SLM-MUX achieves 60.1% accuracy, surpassing the best single model by nearly 10
percentage points. This demonstrates that SLM-MUX effectively exploits complementary strengths
even at the frontier scale. On MATH and GSM8K, the Perfect Routing bounds (94.2% and 91.4%)
are only marginally higher than the single-model baselines, indicating high overlap in the models’
correct predictions. The limited gains on these benchmarks reflect this ceiling rather than a limitation
of the routing mechanism.

E.3 DOMAIN-SPECIFIC FINE-TUNED MODELS

Domain-specific fine-tuned models are widely deployed in practice. We evaluate whether SLM-
MUX can effectively orchestrate such specialized models by testing on two domains: code generation
and mathematical reasoning.
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Table 16: SLM-MUX performance when orchestrating domain-specific fine-tuned models.

Domain Benchmark Best Single Model SLM-MUX ∆ (Gain)

Code Generation HumanEval 89.3% 93.9% +4.6
Math Reasoning MATH 58.8% 62.2% +3.4

For code generation, we pair Qwen2.5-Coder-7B (a code-specialized model) with Mistral-Small-
24B (a general-purpose model) on HumanEval. We use the same embedding-based consistency
estimator described in Section E.1. For mathematical reasoning, we pair DeepSeek-Math-7B-RL (a
math-specialized model) with Llama-3.1-8B-Instruct on MATH, using standard majority voting for
consistency estimation. Both experiments sample N = 5 responses per model at temperature 0.3.

As shown in Table 16, SLM-MUX achieves consistent improvements in both domains. On Hu-
manEval, the orchestrated system reaches 93.9% Pass@1, outperforming the code specialist (89.3%)
by 4.6 percentage points. On MATH, combining the math specialist with a general-purpose model
yields 62.2% accuracy, a 3.4pp improvement. These results demonstrate that SLM-MUX generalizes
effectively to domain-specific fine-tuned models, successfully capturing complementary strengths
between specialists and generalists.

F LICENSES FOR DATASETS

The MATH dataset is licensed under the MIT License.
The GPQA dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY
4.0) License.
The GSM8K dataset is licensed under the MIT License.
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