

# SLM-MUX: ORCHESTRATING SMALL LANGUAGE MODELS FOR REASONING

## Anonymous authors

Paper under double-blind review

## ABSTRACT

With the rapid development of language models, the number of small language models (SLMs) has grown significantly. Although they do not achieve state-of-the-art accuracy, they are more efficient and often excel at specific tasks. This raises a natural question: can multiple SLMs be orchestrated into a system where each contributes effectively, achieving higher accuracy than any individual model? Existing orchestration methods have primarily targeted frontier models (e.g., GPT-4) and perform suboptimally when applied to SLMs. To address this gap, we propose a three-stage approach for orchestrating SLMs. First, we introduce SLM-MUX, a multi-model architecture that effectively coordinates multiple SLMs. Building on this, we develop two optimization strategies: (i) a model selection search that identifies the most complementary SLMs from a given pool, and (ii) test-time scaling tailored to SLM-MUX. Our approach delivers strong results: Compared to existing orchestration methods, our approach achieves up to 13.4% improvement on MATH, 8.8% on GPQA, and 7.0% on GSM8K. With just two SLMs, SLM-MUX outperforms Qwen 2.5 72B on GPQA and GSM8K, and matches its performance on MATH. We further provide theoretical analyses to substantiate the advantages of our method. **Additional experiments show that the core principle of SLM-MUX extends to open-ended generation tasks (e.g., HumanEval) and benefits other model classes, including frontier LLMs and domain-specific fine-tuned SLMs.** In summary, we demonstrate that SLMs can be effectively orchestrated into more accurate and efficient systems through the proposed approach.

## 1 INTRODUCTION

Recent years have witnessed a surge of small-sized language models (SLMs) containing billions to tens of billions of parameters (Wang et al., 2024a; Javaheripi & Bubeck, 2023; Guo et al., 2025; Allal et al., 2025). While these models may underperform state-of-the-art frontier language models, which usually contain hundreds of billions to trillions of parameters, on any given query, they offer substantially lower inference costs, are more affordable to train and finetune, and allow edge deployment due to their small size (Belcak et al., 2025). Meanwhile, frontier models have reached trillion-parameter scales where further increases in size and training data yield diminishing returns. This mirrors a well-known challenge in computer architecture two decades ago: when enlarging single CPU cores no longer delivered proportional performance gains, computer architects turned to designing multi-core processors, where multiple smaller cores working together enabled sustained improvements. This parallel suggests that combining multiple SLMs could offer a promising alternative to scaling ever-larger frontier models.

Recent works have explored orchestrating multiple LLMs (e.g., GPT-3.5 and GPT-4o), combining them into one system to process an input collaboratively. Representative approaches include Mixture-of-Agents (Wang et al., 2024b), LLM-Debate (Du et al., 2023), and Multi-Agent Verification (Lifshitz et al., 2025). These approaches share a key assumption: that models possess strong reasoning and deliberation abilities, so that interaction through natural language can reliably correct mistakes. However, when applied to SLMs, this assumption no longer holds. Our study finds that *such discussion-based orchestration often fails to improve performance for SLMs*, and in some cases even reduces accuracy by over 5%. Instead of correcting mistakes, SLMs tend to fall into groupthink during interaction, amplifying errors rather than mitigating them. The assumptions that language models can correct each other’s answers behind existing orchestration methods do not hold for SLMs (Taubenfeld et al., 2024; Huang et al., 2024; Liu et al., 2023; Fu et al., 2025).

To address this issue, we propose **SLM-MUX**, a multi-model architecture for effectively orchestrating SLMs while avoiding explicit text exchanges between models. Our key insight is that SLM-MUX leverages complementary abilities from different models by selecting outputs based on confidence scores without any model training.

After introducing SLM-MUX, another question arises: which models should be orchestrated together? Not all combinations are effective – if one model is weaker across all dimensions, it provides no benefit when paired with a stronger one. In contrast, combining models with complementary strengths (e.g., one stronger in algebra, another in geometry) allows the system to succeed where a single model would fail.

To address this, we develop a **model selection search strategy** for SLM-MUX, which systematically evaluates and identifies model subsets with complementary strengths. By maximizing union accuracy while penalizing overconfident contradictions, the search procedure finds the most suitable models for a given model budget.

In addition, we explore **compute scaling strategies** for the selected model ensembles to further enhance performance. By adjusting the number of models and samples at inference time, we further boost performance and identify practical sweet spots in the accuracy-compute tradeoff.

Our experiments demonstrate significant improvements across multiple benchmarks. By combining only two SLMs, we achieve accuracy improvements of up to 6.7% on MATH, 5.7% on GPQA, and 4.8% on GSM8K, compared to the best-performing single SLMs in the system. Our method consistently outperforms existing discussion-based approaches for SLMs, with gains of up to 13.4% on MATH, 8.8% on GPQA, and 7.0% on GSM8K. Most importantly, with just two SLMs, SLM-MUX outperforms Qwen2.5-72B on GPQA and GSM8K, and matches its performance on MATH.

Finally, we complement these empirical findings with theoretical and experimental analyses. Our approach shows superiority in multiple scenarios compared with previous methods (Figure 1).

Our main contributions are as follows: **(i) We identify a fundamental limitation of existing orchestration methods:** Through systematic evaluation, we demonstrate that existing discussion-based methods, which show consistent improvements for frontier LLMs, actually harm performance when applied to SLMs. This counterintuitive finding challenges the assumption that orchestration methods transfer across model scales and reveals the need for SLM-specific method. **(ii) We propose SLM-MUX**, a novel multi-model architecture designed specifically for SLMs that avoids the error amplification problems of discussion-based methods. SLM-MUX achieves consistent gains across multiple benchmarks (MATH, GPQA, GSM8K) and significantly outperforms existing discussion-based methods by large margins (up to 11.6% on MATH). **(iii) We develop principled optimization strategies** for the SLM-MUX, including model selection search that identifies complementary model selections and compute scaling strategies, further boosting performance while maintaining efficiency.

## 2 RELATED WORK

**Discussion-based Orchestration Methods.** We use discussion-based orchestration to refer to orchestration schemes where multiple LM instances exchange or evaluate natural-language messages (Fu et al., 2025)—such as proposing answers, critiquing or debating, verifying from different aspects, and finally aggregating into one output. Representative approaches include Mixture-of-Agents (Wang et al., 2024b), which uses a dedicated LLM to aggregate outputs from several models; LLM-Debate (Du et al., 2023), where models critique and refine each other’s reasoning; and Multi-Agent Verification (Lifshitz et al., 2025), which assigns models to independently evaluate candidate solutions before selecting the final answer. These methods assume that participating models have sufficient reasoning ability to self-correct through interaction. Prior evaluations have been conducted on frontier LLMs, while their effectiveness for SLMs remains unstudied.

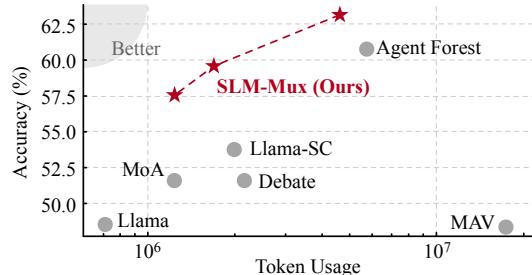


Figure 1: **Head-to-Head Comparison of SLM-MUX with Other Methods.** SLM-MUX outperforms existing methods such as Self-Consistency (SC) (Wang et al., 2023), Mixture-of-Agents (MoA) (Wang et al., 2024b), LLM-Debate (Du et al., 2023), Multi-Agent Verification (MAV) (Lifshitz et al., 2025), and Agent Forest (Li et al., 2024). Results reported on MATH dataset with SLMs.

By adjusting the number of models and samples at inference time, we further boost performance and identify practical sweet spots in the accuracy-compute tradeoff.

Finally, we complement these empirical findings with theoretical and experimental analyses. Our approach shows superiority in multiple scenarios compared with previous methods (Figure 1).

Our main contributions are as follows: **(i) We identify a fundamental limitation of existing orchestration methods:** Through systematic evaluation, we demonstrate that existing discussion-based methods, which show consistent improvements for frontier LLMs, actually harm performance when applied to SLMs. This counterintuitive finding challenges the assumption that orchestration methods transfer across model scales and reveals the need for SLM-specific method. **(ii) We propose SLM-MUX**, a novel multi-model architecture designed specifically for SLMs that avoids the error amplification problems of discussion-based methods. SLM-MUX achieves consistent gains across multiple benchmarks (MATH, GPQA, GSM8K) and significantly outperforms existing discussion-based methods by large margins (up to 11.6% on MATH). **(iii) We develop principled optimization strategies** for the SLM-MUX, including model selection search that identifies complementary model selections and compute scaling strategies, further boosting performance while maintaining efficiency.

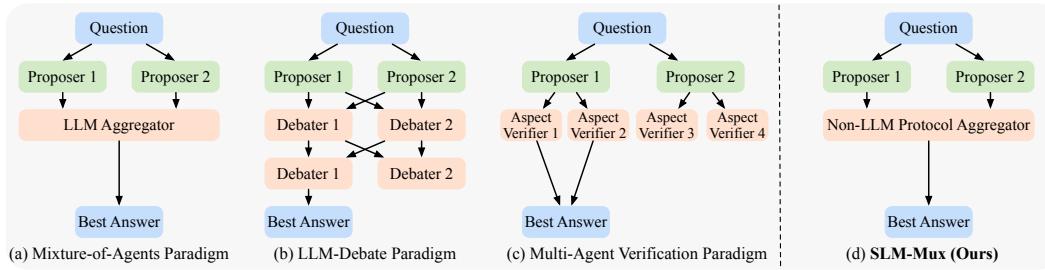


Figure 2: **Comparing SLM-MUX (Ours) with Existing LLM Orchestration Methods.** (a) Mixture-of-Agents, (b) LLM-Debate, (c) Multi-Agent Verification, (d) SLM-MUX (Ours).

**Optimization for Multi-LM Orchestration.** Given these orchestration methods, some works study how to further improve their performance—e.g., how to select models to include, how to optimize prompts, or how to adapt the architecture for specific tasks (Chen et al., 2023a; Ong et al., 2025; Chen et al., 2024). Prompt and workflow optimization methods (Khattab et al., 2023; Opsahl-Ong et al., 2024; Saad-Falcon et al., 2025; Zhang et al., 2025a) generally assume strong instruction-following ability, which makes them less effective for smaller models with limited such capabilities..

Another line of work is model selection for orchestration (Chen et al., 2025; Poon et al., 2025). These methods often select models based on accuracy, assuming that combining models with higher standalone accuracy will yield stronger orchestrations. However, most selection criteria are not end-to-end: they evaluate models independently without directly assessing the performance of the overall orchestration. This overlooks how models interact with each other—overconfident but incorrect predictions from one model can dominate and suppress correct predictions from others, meaning that the best standalone models may not yield the best orchestration.

**Test-time Scaling Strategies.** Test-time scaling methods improve performance by using additional computation during inference without retraining (Snell et al., 2024; Muennighoff et al., 2025; Zhang et al., 2025b). A common single-model approach is self-consistency (Trad & Chehab, 2025; Thirukovalluru et al., 2024; Chow et al., 2024), which draws multiple samples from one model and selects the majority answer; accuracy typically improves as the number of samples increases. Agent Forest (Li et al., 2024) extends this idea to multiple models by collecting one output from each model and applying majority voting across all answers.

### 3 METHODS

In this work, we set out to ask two critical questions: given a pool of available SLMs, how can we (i) orchestrate their outputs to achieve the best overall performance, and (ii) select an effective subset of models that maximizes accuracy?

To answer question (i), we present the SLM-MUX (Section 3.1), a simple yet effective orchestration method. To answer question (ii), we propose model selection search (Section 3.2) that identifies complementary subsets from dozens of available SLMs. Finally, we explore compute scaling strategies (Section 3.3) to further enhance the reasoning accuracy during inference.

#### 3.1 SLM-MUX FOR ORCHESTRATING MULTIPLE SMALL LANGUAGE MODELS

At a high level, our intuition is that we do not need to let SLMs discuss with each other. Instead, we can develop a simple rule-based method that estimates the confidence of each model’s answer and then selects the final output from the model with the highest confidence. We term our method **SLM-MUX**, which operates in two phases.

**Independent Generation Phase.** For a given question, we first let each SLM independently generate multiple candidate responses to the same query prompt with temperature  $> 0$ , producing a pool of sampled answers per model.

**Confidence Estimation Phase.** We evaluate the confidence of each SLM’s outputs by measuring their consistency across their own outputs. Intuitively, a model that places higher probability mass on the correct answer will reproduce equivalent answer across samples, whereas an uncertain model will produce varied outputs. For instance, if SLM A produces three equivalent answers while model B produces three different ones, the answers from model A are more consistent and should be selected. This correlation between consistency and correctness is observed by previous papers. (Wang et al.,

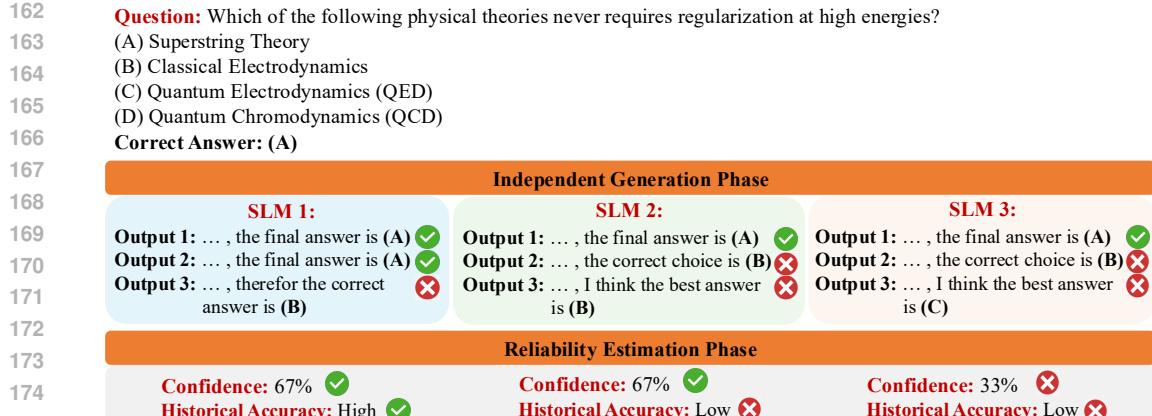


Figure 3: **Illustration of SLM-MUX Workflow.** (1) Each SLM first independently generates multiple outputs for the same question. (2) The most frequent answer from each SLM is selected, and its frequency in the answer pool is used as the confidence score. (3) The answers with the highest confidence score are selected. (4) If multiple answers share the same confidence score, the tie is broken by selecting the answer from the SLM with the highest accuracy on the validation set.

#### Algorithm 1 SLM-MUX Working Flow

**Input:** Models  $M_1, \dots, M_n$ , query  $x$ , samples per model  $k$ , validation accuracies  $a_1, \dots, a_n$   
**Output:** Final answer  $\hat{y}$

*Independent Generation: each model produces multiple candidate answers independently*

- 1: **for**  $i = 1, \dots, n$  **do**
- 2:     Sample  $k$  answers  $Y_i = \{y_i^{(1)}, \dots, y_i^{(k)}\}$  from  $M_i$
- 3:     Compute  $f_i(y) = \frac{1}{k} \sum_{j=1}^k \mathbf{1}(y_i^{(j)} = y)$
- 4:     Let  $y_i^* = \arg \max_y f_i(y)$  and set  $s_i = f_i(y_i^*)$

*Confidence Estimation: measure confidence and break ties by validation accuracy*

- 5:  $S_{\max} = \max_i s_i, \quad I^* = \{i \mid s_i = S_{\max}\}$
- 6: **if**  $|I^*| = 1$  **then**
- 7:      $i^* \leftarrow$  the unique index in  $I^*$
- 8: **else**
- 9:      $i^* \leftarrow \arg \max_{i \in I^*} a_i$
- 10: **return**  $\hat{y} = y_{i^*}^*$

2023; Xie et al., 2024; Taubenfeld et al., 2025; Chen et al., 2023b), and we empirically revalidate this observation in Appendix D.1.

In cases where two SLMs are equally consistent but disagree, we use their validation accuracy as a tie-breaker. Prior work has shown that consistency is strongly correlated with correctness, which provides a rationale for this design.

For more details, Algorithm 1 summarizes the workflow step by step. Figure 3 provides a visual example of the workflow. The evaluation of SLM-MUX is presented in Section 4.2.

#### 3.2 MODEL SELECTION SEARCH FOR SLM-MUX OPTIMIZATION

At a high level, the idea of model selection search is to combine models with complementary skills. The goal is not simply to add more models, but to bring new capabilities as we add models. Figure 4 illustrates this intuition: Qwen2.5-7B consistently outperforms Llama3.2-3B across all subjects, so combining them offers no capability beyond what Qwen2.5-7B already provides. In contrast, Mistral Small 24B and Qwen2.5-7B excel in different subjects, making their combination more effective than either model individually.

We frame model selection as a search problem on the validation set with two competing objectives. Our first objective is **Union Accuracy**, which reflects the overall accuracy of the system. The higher the union accuracy is, the more questions a system can potentially answer. Formally, let  $\mathcal{M} = \{m_1, \dots, m_K\}$  denote the set of candidate models and  $\mathcal{D}$  the validation set. For each model

216  $m_i \in \mathcal{M}$ , we record the subset of validation instances it solves correctly. Given a candidate subset  
 217  $S \subseteq \mathcal{M}$ , the union accuracy is defined as

$$218 \quad \text{UnionAcc}(S) = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \mathbf{1}\{\exists m \in S : m(x) \text{ is correct}\}$$

219 The second objective is the **Contradiction Penalty**. It captures problematic cases where overconfident  
 220 wrong answers suppress correct predictions from other models. Consider two SLMs answering the  
 221 same multiple-choice question three times: the first model consistently outputs “A” (correct), while  
 222 the second consistently outputs “B” (incorrect but confident). Since SLM-MUX selects based  
 223 on consistency, both models would appear equally confident, making it impossible to distinguish  
 224 the correct answer from the confident but wrong one. We define this penalty as the percentage of  
 225 questions where at least one model consistently gives the wrong answer while another provides the  
 226 correct answer:

$$227 \quad \text{Contradiction}(S) = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \mathbf{1}\left\{ \begin{array}{l} \exists m_1 \in S : m_1(x) \text{ consistently wrong,} \\ \exists m_2 \in S : m_2(x) \text{ correct} \end{array} \right\}$$

228 Here, a model is “consistently wrong” if it produces the same incorrect answer across all sampled  
 229 generations for that question. The final objective balances these competing factors:

$$230 \quad \mathcal{O}(S) = \text{UnionAcc}(S) - \lambda \cdot \text{Contradiction}(S),$$

231 Where  $\lambda$  is a hyperparameter. Since the number of candidate models is not very large, we perform  
 232 an exhaustive search. We present visualization of the two search objectives and evaluation of the  
 233 searched model selection in Section 4.3.

234 The rationale behind this search objective is as follows: UnionAcc represents an optimistic upper  
 235 bound for SLM-MUX performance. It assumes an ideal selection mechanism capable of identifying  
 236 the correct answer whenever at least one model provides it, which is unrealistic in practice. Conversely,  
 237 when  $\lambda = 1$ , the search objective represents a pessimistic lower bound of SLM-MUX accuracy. This  
 238 setting assumes that in cases involving confidently wrong answers, the system will invariably select  
 239 the incorrect one. In practice, due to factors such as tie-breaking rules and the presence of confidently  
 240 correct answers, such a worst-case scenario will not always happen. Consequently, by employing  
 241 the objective  $\mathcal{O}(S) = \text{UnionAcc}(S) - \lambda \cdot \text{Contradiction}(S)$ , we estimate an approximate accuracy  
 242 between the theoretical upper and lower bounds of the SLM-MUX accuracy.

### 243 3.3 COMPUTE SCALING STRATEGIES

244 Next, we empirically investigate two dimensions of test-time scaling to further enhance the performance of our  
 245 SLM-MUX with selected models.

#### 246 Adding More Participating Model

247 **Types:** As we increase the number of participating model types in the system by adding more SLMs with  
 248 complementary strengths, we expect the overall accuracy to improve. For each budgeted number of models,  
 249 we use the search method proposed in Section 3.2 to identify the best selection from the pool.

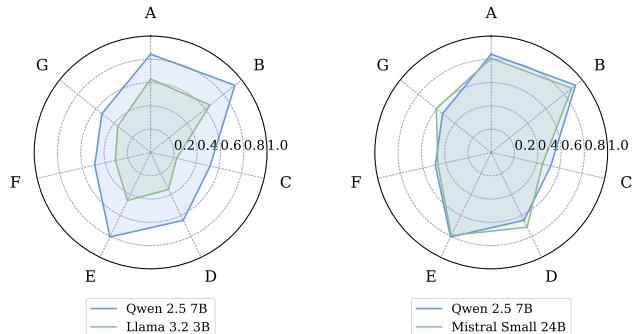
#### 250 Drawing More Samples per Model:

251 For a fixed model selection, we can increase the compute budget by scaling the number of samples drawn by each model. Since confidence  
 252 is evaluated by counting the frequency of majority answers, adding more samples per model is  
 253 expected to provide a more accurate confidence estimate.

254 These two compute scaling dimensions are evaluated in Section 4.4.

## 255 4 EXPERIMENTS

256 In our experiments, we first demonstrate the fundamental limitations of existing discussion-based  
 257 orchestration methods when applied to SLMs (Section 4.1). We then evaluate the proposed SLM-



258 **Figure 4: Comparison of Model Choices.** Accuracy on 7 subjects  
 259 for two model selection settings on MATH dataset. Subjects are  
 260 denoted as: A = Prealgebra, B = Algebra, C = Intermediate Algebra,  
 261 D = Number Theory, E = Counting & Probability, F = Geometry, G =  
 262 Precalculus.

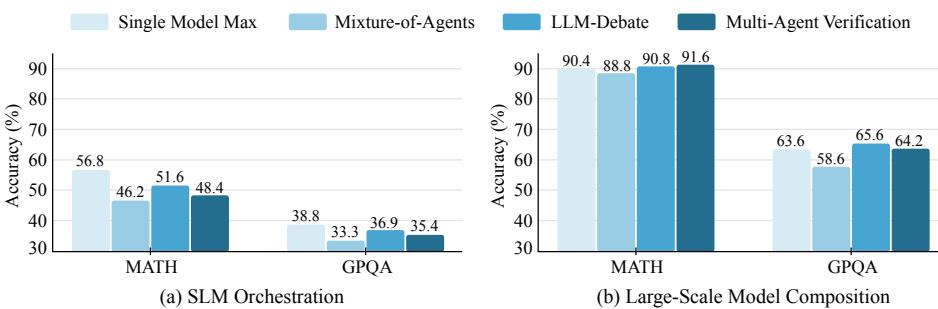
270 MUX in Section 4.2. In Section 4.3, we access our proposed search strategy. Finally, in Section 4.4,  
 271 we examine the compute scaling strategies.  
 272

#### 273 4.1 EXISTING DISCUSSION-BASED ORCHESTRATION METHODS HARM SLM PERFORMANCE

275 To understand whether orchestration methods developed for frontier LLMs are suitable for SLMs, we  
 276 conduct a systematic comparison across model scales. We evaluate three prominent discussion-based  
 277 methods—LLM-Debate (Du et al., 2023), Mixture-of-Agents (Wang et al., 2024b), and Multi-Agent  
 278 Verification (Lifshitz et al., 2025)—using identical experimental settings on both SLMs (Llama 3.1  
 279 8B (Grattafiori et al., 2024), Mixtral 8×7B (Jiang et al., 2024), Gemma 2 27B) and frontier LLMs  
 280 (DeepSeek V3 (DeepSeek-AI et al., 2025), Gemini 2.0 Flash (Google Cloud, 2025), GPT-4o (OpenAI  
 281 et al., 2024)). Evaluation is conducted on MATH and GPQA datasets using original code and prompts.

282 **Results.** As shown in Figure 5, discussion-based methods generally outperform the single best-  
 283 performing models in the frontier LLM group, achieving up to a 2% increase in accuracy. However,  
 284 when applied to SLMs, these discussion-based methods fail to outperform the best single model in  
 285 the orchestration, and even incur accuracy drops of up to 5.5%. This performance gap is observed  
 286 across all three methods and both benchmarks.

287 To understand this counterintuitive result, we analyze SLM behavior in discussion settings. We find  
 288 that discussion-based methods amplify rather than correct errors in SLMs due to a key limitation:  
 289 SLMs tend to exhibit groupthink, reinforcing incorrect reasoning during discussions rather than  
 290 correcting mistakes. In Appendix C, we provide detailed analysis showing that 59.5% of failures  
 291 are attributed to groupthink, and that the performance gap persists even after extensive prompt  
 292 optimization.

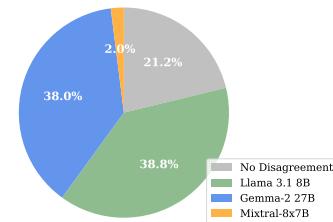


302 **Figure 5: Comparison of discussion-based orchestration when invoking SLMs and LLMs.** We compare  
 303 three orchestration methods (Mixture-of-Agents, LLM-Debate, and Verification) using (a) SLMs (Llama 3.1 8B,  
 304 Mixtral 8×7B, Gemma 2 27B) and (b) frontier LLMs (DeepSeek V3, Gemini 2.0 Flash, GPT-4o) on the MATH  
 305 and GPQA datasets. The baseline (*Single-Model Max*) reflects the best performance of individual models. An  
 306 orchestration is considered successful if it surpasses Single-Model Max. All discussion-based methods are  
 307 evaluated with temperature=0. The standard deviations of the accuracies are presented in Appendix B.3.

#### 308 4.2 SLM-MUX ACHIEVES SLM ORCHESTRATION WHERE EXISTING METHODS FAIL

309 To evaluate whether our proposed SLM-MUX can  
 310 successfully orchestrate SLMs, we test it against the same  
 311 baselines from Section 4.1. We use Mixtral 8×7B,  
 312 LLaMA 3.1 8B, and Gemma 2 27B (Team et al., 2024)  
 313 as base models. We implement the SLM-MUX as fol-  
 314 lows. First, we generate three rounds of answers with a  
 315 temperature of 0.3. Next, we compute a confidence score  
 316 by counting how often the most common answer appears  
 317 across these rounds. The final answer for each model is  
 318 chosen as the most frequent one; in the case of a tie, we se-  
 319 lect the answer from the model with the highest validation  
 320 accuracy.

321 We evaluate three types of baselines. First, we measure  
 322 the accuracies of individual models and report the best-performing ones. Second, we apply  
 323 self-consistency to each of the three base models independently, reporting the best-performing result  
 as the *Single-Best-SC* baseline. Next, for comparison with existing discussion-based methods, we



324 **Figure 6: Final Output Attribution.** We  
 325 report the percentage of outputs contributed  
 326 by each model on the MATH dataset for our  
 327 SLM-MUX. These results are from the same  
 328 run as in Table 1.

324 include LLM-Debate (Du et al., 2023), Mixture-of-Agents (Wang et al., 2024b), and Multi-Agent  
 325 Verification (Lifshitz et al., 2025). We follow the original code and prompts described in their  
 326 papers. Experiments are conducted on three benchmark datasets: MATH (Hendrycks et al., 2021),  
 327 GPQA (Rein et al., 2023), and GSM8K (Cobbe et al., 2021).

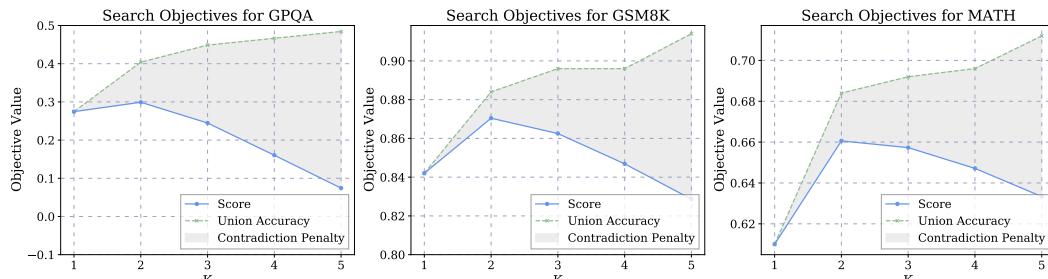
328 **Results.** Table 1 summarizes the results. In our experiments, we find that for SLMs, existing  
 329 orchestration methods do not consistently outperform the strongest individual base models or  
 330 self-consistency approaches. In contrast, our SLM-MUX yields consistent gains on MATH and  
 331 GSM8K, and is comparable to Single-Best-SC on GPQA. Compared with other approaches, our  
 332 method yields up to a 13.4% improvement on MATH, up to 8.8% on GPQA, and up to 7.0% on  
 333 GSM8K. These results demonstrate that the SLM-MUX itself provides a clear advantage over  
 334 alternative orchestration approaches at the architectural level.

335 To better illustrate our proposed SLM-MUX, we plot the output attribution for the MATH experiment  
 336 (Table 1) in Figure 6. By selecting diverse outputs from the generation, SLM-MUX leverages the  
 337 complementary strengths of different SLMs.

| Method                   | MATH Acc (%)                     | GPQA Acc (%)                     | GSM8K Acc (%)                    |
|--------------------------|----------------------------------|----------------------------------|----------------------------------|
| Mixture-of-Agents        | $51.4 \pm 2.2$                   | $33.3 \pm 3.4$                   | $81.6 \pm 1.7$                   |
| LLM-Debate               | $51.6 \pm 2.2$                   | $36.8 \pm 3.4$                   | $80.8 \pm 1.8$                   |
| Multi-Agent Verification | $48.4 \pm 2.2$                   | $35.3 \pm 3.4$                   | $86.4 \pm 1.5$                   |
| <b>SLM-MUX (Ours)</b>    | <b><math>61.8 \pm 1.2</math></b> | $42.1 \pm 0.3$                   | <b><math>87.8 \pm 0.6</math></b> |
| Single-Best              | $56.8 \pm 2.2$                   | $38.9 \pm 3.5$                   | $84.2 \pm 1.6$                   |
| Single-Best-SC           | $58.0 \pm 2.2$                   | <b><math>42.4 \pm 3.5</math></b> | $86.8 \pm 1.5$                   |

346 **Table 1: Quantitative Results.** Accuracy and standard deviation across MATH, GPQA, and GSM8K. “SC”  
 347 denotes self-consistency decoding (majority vote over samples from a single model), and “Single-Best-SC”  
 348 reports the highest accuracy among the three base models when each applies self-consistency individually.

### 4.3 MODEL SELECTION SEARCH BOOSTS SLM-MUX PERFORMANCE



350 **Figure 7: Union Accuracy and Contradiction Penalty both Increases as more models are added.** We plot  
 351 the search objectives as the number of models ( $K$ ) increases from 2 to 5 across three benchmarks. The green line  
 352 denotes the union accuracy across models, the grey area indicates the contradiction penalty, and the blue line  
 353 represents the overall search objective score. For each value of  $K$ , the plotted quantities are computed for the  
 354 single model combination that maximizes our model selection objective defined in Section 3.2.

355 To examine whether model selection search benefits SLM-MUX, we construct a validation set  
 356 of 500 questions sampled from the training splits of MATH, GPQA, and GSM8K. The candidate  
 357 pool consists of five SLMs: Gemma 2.7B, Llama 3.1.8B, Mistral Small 24B (Mistral AI, 2025),  
 358 Mistral 8×7B, and Qwen2.5-7B (Qwen et al., 2025). For each question, we collect three independent  
 359 generations per model with temperature 0.5, repeating this process three times to obtain stable  
 360 accuracy estimates. The search procedure considers orchestrations with  $K = 2$  to 5 models and is  
 361 guided by an objective function mentioned in Section 3, with hyperparameter  $\lambda = 1$ . The behavior of  
 362 this objective is illustrated in Figure 7, showing the trade-off as  $K$  increases. For simplicity, we select  
 363 two representative two-model combinations from the search results for evaluation on the test set.

364 **Results.** Table 2 summarizes the outcome of the search. The table lists the top-performing two-model  
 365 combinations identified on the validation set, along with their evaluation on the held-out test set.  
 366 Across benchmarks, these optimized orchestrations yield consistent improvements over the strongest  
 367 individual models: accuracy increases by 4.5% on MATH, 4.4% on GPQA, and 4.3% on GSM8K.  
 368 This contrasts with Section 4.2, where naive three-model combinations provide little to no benefit  
 369 on GPQA. Figure 7 further illustrates the underlying trade-off: while union accuracy rises with  
 370 additional models, the contradiction penalty also grows, emphasizing that effective orchestration

| Benchmark    | Group | Model Selection                       | Best Single Acc (%) | Composed Acc (%) | $\Delta$ (Gain) |
|--------------|-------|---------------------------------------|---------------------|------------------|-----------------|
| <b>MATH</b>  | 1     | Mistral Small 24B<br>Qwen2.5-7B       | $75.5 \pm 1.5$      | $80.0 \pm 0.7$   | +4.5            |
|              | 2     | Qwen2.5-7B<br>Llama 3.1 8B            | $75.5 \pm 1.5$      | $77.7 \pm 0.7$   | +2.2            |
| <b>GPQA</b>  | 1     | Gemma 2 27B<br>Mistral Small 24B      | $45.1 \pm 2.8$      | $49.5 \pm 1.8$   | +4.4            |
|              | 2     | Llama 3.1 8B<br>Mistral Small 24B     | $45.1 \pm 2.8$      | $48.8 \pm 0.8$   | +3.6            |
| <b>GSM8K</b> | 1     | Mistral Small 24B<br>Qwen2.5-7B       | $88.5 \pm 0.7$      | $92.8 \pm 0.6$   | +4.3            |
|              | 2     | Llama 3.1 8B<br>Mixtral 8 $\times$ 7B | $80.8 \pm 2.1$      | $85.2 \pm 0.7$   | +4.4            |

Table 2: **Model Selection Search and Evaluation Results.** We show the top two model groups identified by our search for each benchmark. For each group, we report the accuracy of the best-performing single model within the orchestration, the accuracy achieved by our SLM-MUX, and the resulting performance gain.

requires balancing these competing factors rather than simply enlarging the orchestration size. In Appendix D.3, we show that the SLM-MUX architecture itself yields consistent gains even with randomly selected model combinations; the search procedure provides an effective and data-efficient way to further boost accuracy.

#### 4.4 COMPUTE SCALING STRATEGIES REVEAL OPTIMAL RESOURCE ALLOCATION

To evaluate the “Adding More Participating Model Types” dimension of compute scaling, we assess how performance changes as the number of models in the orchestration increases. For each number of models from 2 to 5, we first apply the search method from Section 3.2 to identify the optimal model selection from our pool. We then evaluate SLM-MUX with selected models on the validation set. Figure 9 plots the resulting mean accuracy (blue line, left y-axis) for each value of K. To illustrate the theoretical performance ceiling of each ensemble, we also plot the union accuracy (grey line, right y-axis), defined as the percentage of questions solved by at least one model in the group. For each value of K in Figure 9, we show the single model combination that achieves the highest value of our model selection objective from Section 3.2; the search procedure is used to find the best combination under a fixed K, rather than to choose K itself.

| Benchmark    | Samples | SLM-MUX        | Agent Forest   | $\Delta$ (Gain) |
|--------------|---------|----------------|----------------|-----------------|
| <b>MATH</b>  | 2       | $76.8 \pm 0.7$ | $72.3 \pm 1.5$ | +4.5            |
|              | Best    | $79.5 \pm 0.4$ | $79.2 \pm 0.4$ | +0.3            |
| <b>GPQA</b>  | 2       | $46.3 \pm 2.3$ | $40.4 \pm 2.3$ | +5.9            |
|              | Best    | $48.8 \pm 1.2$ | $47.6 \pm 1.4$ | +1.2            |
| <b>GSM8K</b> | 2       | $82.1 \pm 0.7$ | $77.7 \pm 0.2$ | +4.4            |
|              | Best    | $86.5 \pm 0.8$ | $84.3 \pm 0.8$ | +2.2            |

Table 3: **Comparison of SLM-MUX and Agent Forest.** We compare SLM-MUX and Agent Forest in two settings: (1) with 2 samples per model (Samples=2), and (2) using the best accuracy found during scaling for each method (Samples=best). In the second setting, the number of samples per model may vary.

For the “Drawing More Samples per Model” dimension, we reuse the two groups of models listed in Table 2. We vary the number of samples per model from 2 to 9 and report the mean accuracy of SLM-MUX over three runs for each sample budget. The results are presented in Figure 8, along with a baseline, Agent Forest (Li et al., 2024), for comparison. To ensure fairness, Agent Forest is reproduced using the same models from Group 2. We report the best accuracy achieved by the SLM-MUX when scaling with Samples per Model and compare it to the accuracy of the single best model in the orchestration, as shown in Table 2.

**Results.** The effect of “Adding More Participating Model Types” varies substantially across benchmarks. On GPQA, accuracy peaks when combining two models and declines thereafter. On GSM8K, accuracy quickly saturates at two models without further gains. In contrast, on MATH, accuracy continues to improve as additional models are included. Despite these differences, the union accuracy of model orchestration consistently increases with more models, emphasizing the role of output

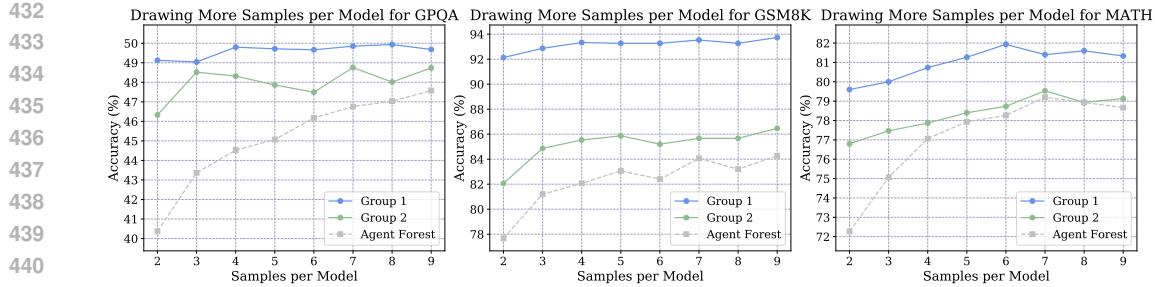


Figure 8: **Drawing More Samples per Model Improves Accuracy.** We report mean accuracy of SLM-MUX as the number of samples per model increases from 2 to 9 across three benchmarks. Group 1 and Group 2 are from Table 2. We also plot the mean accuracy of Agent Forest (Li et al., 2024) in grey line.

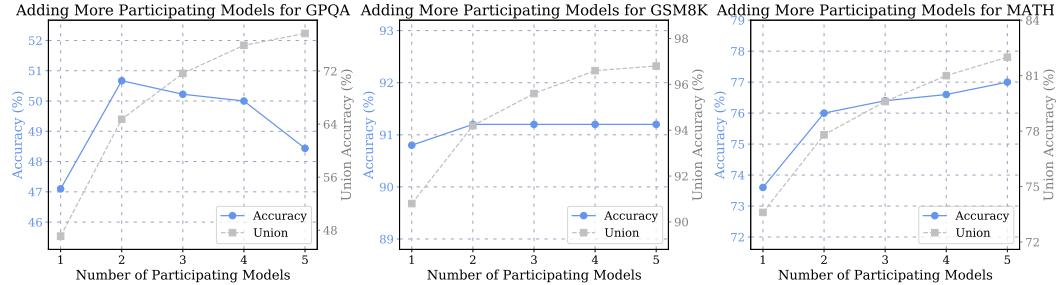


Figure 9: **Adding More Participating Models Affects Accuracy Differently.** We report the mean accuracy (blue line) of the optimal SLM-MUX obtained when using 2 to 5 models across three benchmarks. We also report the union accuracy (grey line), defined in Section 3.2. The blue line (Mean Accuracy) is plotted against the left-hand Y-axis. The grey line (Union Accuracy) is plotted against the right-hand Y-axis. For each  $K$ , both curves correspond to the single model combination that maximizes our model selection objective (Section 3.2) under that fixed  $K$ .

contradictions among models, as elaborated in Section 3.2. We also validate this scaling behavior on the test set; see Appendix D.4 for details.

“Drawing More Samples per Model” yields more consistent improvements across benchmarks. Moreover, under this setting, our SLM-MUX systematically outperforms Agent Forest, with the largest margin observed on GPQA, where single-model accuracy is lowest.

| Benchmark | Group 1        |                 | Group 2        |                 | Qwen2.5-72B Acc (%) |
|-----------|----------------|-----------------|----------------|-----------------|---------------------|
|           | Acc (%)        | $\Delta$ (Gain) | Acc (%)        | $\Delta$ (Gain) |                     |
| MATH      | $81.9 \pm 0.2$ | +6.4            | $79.5 \pm 0.4$ | +4.0            | $82.3 \pm 0.5$      |
| GPQA      | $49.9 \pm 1.8$ | +4.8            | $48.7 \pm 1.2$ | +3.6            | $44.9 \pm 0.5$      |
| GSM8K     | $93.7 \pm 0.2$ | +5.2            | $86.5 \pm 0.8$ | +5.7            | $90.4 \pm 0.3$      |

Table 4: **Best Accuracy after Sample Scaling beats Larger Model.** Acc indicates the highest accuracy achieved through scaling. Groups 1 & 2 are defined in Table 2. Gain represents the improvement over the best single-model accuracy reported in Table 2. For reference, we also include the performance of the large model Qwen2.5-72B, showing that our composed small models can outperform it on GPQA and GSM8K.

## 5 DISCUSSION

**Mathematical Intuition behind SLM-MUX.** Different SLMs have complementary strengths: for any given question, some models are more likely to answer correctly than others. SLM-MUX exploits this by selecting the most self-consistent model’s output through a simple rule-based mechanism that requires no inter-model communication.

The key insight is that the confidence score can identify the strongest model. We assume that for each question, there is a unique correct answer, while incorrect answers are scattered rather than clustered. Under this assumption, a model with higher accuracy  $p_i$  produces the correct answer more frequently across  $N$  samples, leading to a higher confidence score. Therefore, selecting the model with the highest confidence score effectively identifies the model most likely to be correct.

More formally, consider  $K$  models where model  $i$  has probability  $p_i$  of being correct. Let  $i^* = \arg \max_i p_i$  denote the strongest model with margin  $\gamma = p_{i^*} - \max_{j \neq i^*} p_j > 0$ . Under our assumption, the confidence score  $s_i$  (the frequency of the most common answer over  $N$  samples)

486 concentrates around  $p_i$ . Applying Hoeffding's inequality and a union bound, the probability of  
 487 correctly selecting the strongest model satisfies:

$$\Pr(\hat{i} = i^*) \geq 1 - 2(K-1) \exp\left(-\frac{N\gamma^2}{2}\right).$$

490 This bound shows that the probability of misidentifying the strongest model decays exponentially  
 491 with sample size  $N$ .

492 This selection mechanism explains why SLM-MUX outperforms alternatives. Unlike a single fixed  
 493 model, SLM-MUX performs per-question routing, effectively achieving accuracy  $p_{\max}$  by always  
 494 selecting the strongest available expert. Unlike pooling methods such as Agent Forest that aggregate  
 495 outputs from all models, SLM-MUX avoids interference from weaker models. For instance, if the  
 496 strongest model has  $p_1 = 0.8$  and a weaker one has  $p_2 = 0.3$ , pooling their outputs merely dilutes  
 497 the correct answer's frequency. By isolating the strongest model and selecting its most frequent  
 498 answer, SLM-MUX preserves the full predictive power of the most reliable source. We provide a  
 499 more detailed comparative analysis with self-consistency and Agent Forest in Appendix D.2.

500 **Extending SLM-MUX to Open-Ended Generation.** Although the current implementation of  
 501 SLM-MUX relies on majority voting and is therefore restricted to tasks with discrete answer spaces,  
 502 the underlying idea of selecting the most self-consistent model is more general. For open-ended  
 503 generation, one can replace majority voting with alternative consistency estimators, such as LLM-  
 504 as-a-judge scoring or embedding-based similarity measures. In Appendix E.1, we show a simple  
 505 extension of SLM-MUX to HumanEval (Chen et al., 2021) using this idea and observe strong  
 506 empirical gains.

507 **Extending SLM-MUX Beyond Generalist SLMs.** The experiments above focus on general-  
 508 purpose SLMs. We further evaluate whether the consistency-based selection principle extends to  
 509 other settings: (1) frontier LLMs such as GPT-4o and Gemini-2.5-Flash, and (2) domain-specific  
 510 fine-tuned models such as code and math specialists. In both cases, SLM-MUX achieves consistent  
 511 improvements over the best single model. Full experimental details are provided in Appendix E.

512 **Limitation and Future Work.** The SLM-MUX framework has two main limitations. First, its  
 513 design is static and does not adapt to specific questions. For every query, it uses a fixed group of  
 514 models that are pre-selected through exhaustive search – a method that is slow and costly when there  
 515 are many models to choose from. When models are tied, the framework uses their past accuracy on  
 516 a validation set to decide, which is also a fixed, non-adaptive rule. Second, the way the framework  
 517 measures model confidence is simple. It relies only on self-consistency – how often a model produces  
 518 the same answer. This can be a problem because a model can be very consistent while still being  
 519 incorrect.

520 **Conclusion.** This work demonstrates that orchestration methods designed for frontier models  
 521 paradoxically degrade the performance of SLMs by amplifying errors. To address this, we propose  
 522 SLM-MUX, a framework that avoids inter-model discussion, instead selecting the most reliable  
 523 output based on each model's self-consistency. We further introduce a model selection search  
 524 algorithm to find complementary model combinations. Experiments show our method not only  
 525 substantially outperforms existing strategies but also enables an ensemble of just two SLMs to surpass  
 526 the much larger Qwen2.5-72B model on key reasoning benchmarks. In summary, our work validates  
 527 that intelligently orchestrating multiple efficient models—a "multi-core" approach—is a promising  
 528 alternative to scaling monolithic models on the path toward more capable AI systems.

## 529 REFERENCES

530 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,  
 531 Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,  
 532 et al. Smollm2: When smol goes big—data-centric training of a small language model. *arXiv  
 533 preprint arXiv:2502.02737*, 2025. 1

534 Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-  
 535 line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai. *arXiv preprint  
 536 arXiv:2506.02153*, 2025. 1

538 Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while  
 539 reducing cost and improving performance, 2023a. URL <https://arxiv.org/abs/2305.05176>. 3

540 Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Matei Zaharia, James Zou, and Ion  
 541 Stoica. Optimizing model selection for compound ai systems, 2025. URL <https://arxiv.org/abs/2502.14815>. 3  
 542

543 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-  
 544 plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen  
 545 Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,  
 546 Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens  
 547 Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,  
 548 Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas  
 549 Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher  
 550 Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,  
 551 Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario  
 552 Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language  
 553 models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>. 10  
 554

555 Shuhao Chen, Weisen Jiang, Baijiong Lin, James T. Kwok, and Yu Zhang. Routerdc: Query-  
 556 based router by dual contrastive learning for assembling large language models, 2024. URL  
 557 <https://arxiv.org/abs/2409.19886>. 3  
 558

559 Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,  
 560 Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language  
 561 model generation, 2023b. URL <https://arxiv.org/abs/2311.17311>. 4  
 562

563 Yinlam Chow, Guy Tennenholz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig  
 564 Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning for  
 565 best-of-n sampling in large language models, 2024. URL <https://arxiv.org/abs/2412.15287>. 3  
 566

567 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
 568 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John  
 569 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>. 7  
 570

571 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang  
 572 Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli  
 573 Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,  
 574 Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,  
 575 Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi  
 576 Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,  
 577 Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,  
 578 Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan  
 579 Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,  
 580 Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi  
 581 Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,  
 582 Shanghai Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,  
 583 Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,  
 584 Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,  
 585 Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyu Jin, Xianzu Wang,  
 586 Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha  
 587 Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,  
 588 Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,  
 589 Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong  
 590 Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,  
 591 Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan  
 592 Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue  
 593 Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,  
 Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,  
 Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,  
 Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhusu

594 Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.  
 595 Deepseek-v3 technical report, 2025. URL <https://arxiv.org/abs/2412.19437>. 6  
 596

597 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving  
 598 factuality and reasoning in language models through multiagent debate, 2023. URL <https://arxiv.org/abs/2305.14325>. 1, 2, 6, 7  
 599

600 Tianyu Fu, Zihan Min, Hanling Zhang, Jichao Yan, Guohao Dai, Wanli Ouyang, and Yu Wang.  
 601 Cache-to-cache: Direct semantic communication between large language models. *arXiv preprint*  
 602 *arXiv:2510.03215*, 2025. 1, 2  
 603

604 Google Cloud. Gemini 2.0 flash | generative ai on vertex ai. <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash>, 2025. Accessed:  
 605 2025-09-24. 6  
 606

607 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
 608 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,  
 609 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,  
 610 Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,  
 611 Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,  
 612 Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,  
 613 Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle  
 614 Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego  
 615 Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,  
 616 Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel  
 617 Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,  
 618 Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan  
 619 Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,  
 620 Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,  
 621 Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie  
 622 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua  
 623 Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,  
 624 Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley  
 625 Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence  
 626 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas  
 627 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,  
 628 Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie  
 629 Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes  
 630 Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,  
 631 Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal  
 632 Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,  
 633 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,  
 634 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie  
 635 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana  
 636 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,  
 637 Sharan Narang, Sharath Raparthi, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon  
 638 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,  
 639 Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas  
 640 Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,  
 641 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,  
 642 Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier  
 643 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao  
 644 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,  
 645 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe  
 646 Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya  
 647 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei  
 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,  
 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit  
 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,  
 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,

648 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,  
 649 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,  
 650 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu  
 651 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,  
 652 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,  
 653 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc  
 654 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily  
 655 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,  
 656 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank  
 657 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,  
 658 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,  
 659 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,  
 660 Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,  
 661 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James  
 662 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny  
 663 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,  
 664 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai  
 665 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik  
 666 Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle  
 667 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng  
 668 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish  
 669 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim  
 670 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle  
 671 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,  
 672 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,  
 673 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,  
 674 Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia  
 675 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro  
 676 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,  
 677 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,  
 678 Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin  
 679 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,  
 680 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh  
 681 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,  
 682 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,  
 683 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie  
 684 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,  
 685 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,  
 686 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun  
 687 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria  
 688 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,  
 689 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz,  
 690 Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv  
 691 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,  
 692 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,  
 693 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The  
 694 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>. 6

695 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 696 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 697 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025. 1

698 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,  
 699 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL  
<https://arxiv.org/abs/2103.03874>. 7

700 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,  
 701 and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL <https://arxiv.org/abs/2310.01798>. 1

702 Kevin Jamieson and Robert Nowak. Best-arm identification algorithms for multi-armed bandits in  
 703 the fixed confidence setting. In *2014 48th annual conference on information sciences and systems*  
 704 (*CISS*), pp. 1–6. IEEE, 2014.

705

706 Mojan Javaheripi and Sébastien Bubeck. Phi-2: The surprising power of small language models. Mi-  
 707 crosoft Research Blog, 2023. URL <https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/>. 1

708

709 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris  
 710 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,  
 711 Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-  
 712 Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le  
 713 Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.  
 714 Mixtral of experts, 2024. URL <https://arxiv.org/abs/2401.04088>. 6

715

716 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-  
 717 hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,  
 718 Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into  
 719 self-improving pipelines, 2023. URL <https://arxiv.org/abs/2310.03714>. 3

720

721 Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need, 2024.  
 722 URL <https://arxiv.org/abs/2402.05120>. 2, 3, 8, 9

723

724 Shalev Lifshitz, Sheila A. McIlraith, and Yilun Du. Multi-agent verification: Scaling test-time  
 725 compute with multiple verifiers, 2025. URL <https://arxiv.org/abs/2502.20379>. 1,  
 726 2, 6, 7

727

728 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,  
 729 and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL  
 730 <https://arxiv.org/abs/2307.03172>. 1

731

732 Mistral AI. Mistral small 24b instruct. <https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501>, 2025. Accessed: 2025-09-23. 7

733

734 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke  
 735 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time  
 736 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>. 3

737

738 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,  
 739 M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data, 2025.  
 740 URL <https://arxiv.org/abs/2406.18665>. 3

741

742 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan  
 743 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-  
 744 Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex  
 745 Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,  
 746 Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,  
 747 Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,  
 748 Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrew  
 749 Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,  
 750 Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben  
 751 Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake  
 752 Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon  
 753 Walkin, Brendan Quinn, Brian Guaraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo  
 754 Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,  
 755 Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,  
 Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,  
 Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley  
 Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,  
 Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,  
 Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,  
 Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric

756 Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,  
 757 Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,  
 758 Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang  
 759 Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik  
 760 Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,  
 761 Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,  
 762 Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,  
 763 Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie  
 764 Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,  
 765 Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi  
 766 Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,  
 767 Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan  
 768 Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh  
 769 Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn  
 770 Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra  
 771 Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,  
 772 Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,  
 773 Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,  
 774 Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,  
 775 Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine  
 776 Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin  
 777 Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank  
 778 Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna  
 779 Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle  
 780 Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles  
 781 Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho  
 782 Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,  
 783 Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,  
 784 Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,  
 785 Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick  
 786 Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,  
 787 Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,  
 788 Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo  
 789 Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob  
 790 Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory  
 791 Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi  
 792 Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara  
 793 Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu  
 794 Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer  
 795 Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal  
 796 Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas  
 797 Cunningham, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao  
 798 Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,  
 799 Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie  
 800 Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,  
 Manhin Poon, XiangXiang Dai, Xutong Liu, Fang Kong, John Lui, and Jinhang Zuo. Online  
 801 multi-llm selection via contextual bandits under unstructured context evolution. *arXiv preprint*  
 802 programs, 2024. URL <https://arxiv.org/abs/2406.11695>. 3  
 803  
 804 Manhin Poon, XiangXiang Dai, Xutong Liu, Fang Kong, John Lui, and Jinhang Zuo. Online  
 805 multi-llm selection via contextual bandits under unstructured context evolution. *arXiv preprint*  
 806 *arXiv:2506.17670*, 2025. 3  
 807  
 808 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan  
 809 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,  
 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin

810 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi  
 811 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,  
 812 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL  
 813 <https://arxiv.org/abs/2412.15115>. 7

814 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,  
 815 Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark,  
 816 2023. URL <https://arxiv.org/abs/2311.12022>. 7

817 Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash  
 818 Guha, E. Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, and Azalia Mirhoseini.  
 819 Archon: An architecture search framework for inference-time techniques, 2025. URL <https://arxiv.org/abs/2409.15254>. 3

820 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally  
 821 can be more effective than scaling model parameters, 2024. URL <https://arxiv.org/abs/2408.03314>. 3

822 Amir Taubenfeld, Yaniv Dover, Roi Reichart, and Ariel Goldstein. Systematic biases in llm simula-  
 823 tions of debates. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language*  
 824 *Processing*, pp. 251–267. Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.  
 825 emnlp-main.16. URL <http://dx.doi.org/10.18653/v1/2024.emnlp-main.16>. 1

826 Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal  
 827 Yona. Confidence improves self-consistency in llms. In *Findings of the Association for Compu-  
 828 tational Linguistics: ACL 2025*, pp. 20090–20111. Association for Computational Linguistics,  
 829 2025. doi: 10.18653/v1/2025.findings-acl.1030. URL <http://dx.doi.org/10.18653/v1/2025.findings-acl.1030>. 4

830 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya  
 831 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan  
 832 Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,  
 833 Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,  
 834 Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,  
 835 Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,  
 836 Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia  
 837 Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris  
 838 Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,  
 839 Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric  
 840 Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary  
 841 Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,  
 842 Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha  
 843 Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost  
 844 van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,  
 845 Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,  
 846 Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,  
 847 Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel  
 848 Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,  
 849 Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,  
 850 Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad  
 851 Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,  
 852 Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep  
 853 Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh  
 854 Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien  
 855 M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan  
 856 Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kociský, Tulsee Doshi,  
 857 Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei,  
 858 Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,  
 859 Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins,  
 860 Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav  
 861 Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena

864 Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi,  
 865 and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL  
 866 <https://arxiv.org/abs/2408.00118>. 6

867 Raghveer Thirukovalluru, Yukun Huang, and Bhuwan Dhingra. Atomic self-consistency for better  
 868 long form generations, 2024. URL <https://arxiv.org/abs/2405.13131>. 3

870 Fouad Trad and Ali Chehab. *To Ensemble or Not: Assessing Majority Voting Strategies for Phishing*  
 871 *Detection with Large Language Models*, pp. 158–173. Springer Nature Switzerland, 2025. ISBN  
 872 9783031821509. doi: 10.1007/978-3-031-82150-9\_13. URL [http://dx.doi.org/10.1007/978-3-031-82150-9\\_13](http://dx.doi.org/10.1007/978-3-031-82150-9_13). 3

874 Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu, Tzuahao Mo, Qiuahao Lu, Wanjing Wang, Rui  
 875 Li, Junjie Xu, Xianfeng Tang, Qi He, Yao Ma, Ming Huang, and Suhang Wang. A comprehensive  
 876 survey of small language models in the era of large language models: Techniques, enhancements,  
 877 applications, collaboration with llms, and trustworthiness, 2024a. URL <https://arxiv.org/abs/2411.03350>. 1

879 Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances  
 880 large language model capabilities, 2024b. URL <https://arxiv.org/abs/2406.04692>.  
 881 1, 2, 6, 7

883 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-  
 884 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,  
 885 2023. URL <https://arxiv.org/abs/2203.11171>. 2, 3

886 Zhihui Xie, Jizhou Guo, Tong Yu, and Shuai Li. Calibrating reasoning in language models with  
 887 internal consistency, 2024. URL <https://arxiv.org/abs/2405.18711>. 4

889 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen  
 890 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin  
 891 Wu. Aflow: Automating agentic workflow generation, 2025a. URL <https://arxiv.org/abs/2410.10762>. 3

893 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan  
 894 Guo, Yufei Wang, Niklas Muennighoff, Irwin King, Xue Liu, and Chen Ma. A survey on  
 895 test-time scaling in large language models: What, how, where, and how well?, 2025b. URL  
 896 <https://arxiv.org/abs/2503.24235>. 3

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 APPENDIX OVERVIEW  
919

920 The appendix is organized into five main sections. **Section A** states the usage of LLMs in preparing  
921 this paper. **Section B** provides experimental details, including visual illustrations, single-model  
922 accuracies, and standard deviation calculations. **Section C** analyzes why discussion-based methods  
923 fail on SLMs, presenting groupthink analysis and prompt sensitivity studies. **Section D** validates the  
924 SLM-MUX design through consistency-accuracy correlation analysis, comparative analysis with  
925 voting-based methods, model selection search analysis, and test-set scaling validation. **Section E**  
926 demonstrates the generalization of SLM-MUX to open-ended generation, frontier LLMs, and  
927 domain-specific models. Finally, Section F provides dataset licenses.

928 A LLM USAGE STATEMENT  
929

930 We used Cursor for coding. Large language models (LLMs) were employed to help polish drafts  
931 written by humans, and to assist in searching for related papers. The final choice of related work  
932 included in this paper was made entirely by the human authors after careful screening. LLMs were  
933 also used for proofreading and for providing suggestions.

934 B EXPERIMENTAL DETAILS  
935936 B.1 VISUAL ILLUSTRATIONS OF SLM-MUX  
937

938 To more effectively illustrate the workflow of our proposed composition method, we select several  
939 representative examples from the logs. We demonstrate them in Figure 10, Figure 11 and Figure 12.

940 **SLM-MUX surpasses majority voting in scenarios with initial disagreement among models.**  
941 As illustrated by Figure 10, during the independent generation phase, Gemma-2-27B is the sole  
942 model to provide the correct answer. Hence, majority voting applied directly would fail to select the  
943 correct author.

944 **Question:** Express 555 in base 5.  
945 **Correct Answer:** 4210

| Independent Generation Phase                         |                                                       |                                                        |
|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| Llama:                                               | Gemma:                                                | Mixtral:                                               |
| Output 1: To convert the decimal number, ..., 4220 ✗ | Output 1: Here's how to convert 555, ..., 4210 ✓      | Output 1: First, we need to perform repeated, ..., 1 ✗ |
| Output 2: To express 555 in base, ..., 4210 ✓        | Output 2: Here's how to convert 555, ..., 4210 ✓      | Output 2: To express the decimal number, ..., 4121 ✗   |
| Output 3: To express 555 in base 5, ..., 100 ✗       | Output 3: Here's how to convert 555 from, ..., 4210 ✓ | Output 3: First, we need to perform repeated, ..., 1 ✗ |

| Reliability Estimation Phase |                            |                            |
|------------------------------|----------------------------|----------------------------|
| Confidence: 33% ✗            | Confidence: 100% ✓         | Confidence: 67% ✗          |
| Historical Accuracy: 49% ✗   | Historical Accuracy: 57% ✓ | Historical Accuracy: 32% ✗ |

956 **Figure 10: An illustration of the SLM-MUX method applied to the MATH dataset.** In the independent  
957 generation phase, three models are used: LLaMA-3.1-8B (denoted as Llama), Gemma-2-27B (denoted as  
958 Gemma), and Mixtral-8×7B (denoted as Mixtral). Because the three models provide different answers at first,  
959 so each model is invoked two more times. Gemma obtains the highest confidence score and is therefore selected  
960 as the final output.

961 B.2 ACCURACY OF SINGLE LLMs  
962

963 We evaluated the accuracy of single model accuracy under the condition of temperature equal to zero.  
964 The results are shown in Table 5 and Table 6.

| Model        | MATH Acc (%) | GPQA Acc (%) | GSM8K Acc (%) |
|--------------|--------------|--------------|---------------|
| Llama-3.1-8B | 48.6         | 23.7         | 84.2          |
| Mixtral-8×7B | 31.6         | 31.9         | 63.4          |
| Gemma-2-27B  | 56.8         | 38.8         | 81.6          |

965 **Table 5: Small Model Base Performance.** Base model accuracy on MATH, GPQA, and GSM8K.  
966

972  
973  
974

**Question:** Elvis has a monthly saving target of \$1125. In April, he wants to save twice as much daily in the second half as he saves in the first half in order to hit his target. How much does he have to save for each day in the second half of the month?  
**Correct Answer:** 50

975  
976  
977  
978  
979  
980  
981  
982  
983  
984

| Independent Generation Phase                                                                   |                                                                                                |                                                                                           |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Llama:                                                                                         | Gemma:                                                                                         | Mixtral:                                                                                  |
| <b>Output 1:</b> To solve this problem, ..., 750 <span style="color: red;">✗</span>            | <b>Output 1:</b> Here's how to solve the problem, ..., 50 <span style="color: green;">✓</span> | <b>Output 1:</b> First, let's determine how, ..., 150 <span style="color: red;">✗</span>  |
| <b>Output 2:</b> To solve this problem, ..., 50 <span style="color: green;">✓</span>           | <b>Output 2:</b> Here's how to solve the problem, ..., 50 <span style="color: green;">✓</span> | <b>Output 2:</b> First, let's determine how, ..., 25 <span style="color: red;">✗</span>   |
| <b>Output 3:</b> Let's break down the problem step, ..., 25 <span style="color: red;">✗</span> | <b>Output 3:</b> Here's how to solve the problem, ..., 50 <span style="color: green;">✓</span> | <b>Output 3:</b> First, let's determine how, ..., 50 <span style="color: green;">✓</span> |

| Reliability Estimation Phase           |                                          |                                                             |
|----------------------------------------|------------------------------------------|-------------------------------------------------------------|
| Confidence:                            | Historical Accuracy:                     | Confidence:                                                 |
| 33% <span style="color: red;">✗</span> | 84% <span style="color: green;">✓</span> | 100% <span style="color: green;">✓</span>                   |
|                                        |                                          | 33% <span style="color: red;">✗</span>                      |
|                                        |                                          | Historical Accuracy: 82% <span style="color: red;">✗</span> |
|                                        |                                          | Historical Accuracy: 64% <span style="color: red;">✗</span> |

Figure 11: **An illustration of the SLM-MUX method applied to the GSM8K dataset.** In the independent generation phase, different models produce different answers. However, when we invoke each model multiple times, we observe that Llama and Mixtral only yield correct answers approximately one-third of the time. In contrast, Gemma demonstrates stable performance.

985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997

**Question:** Question: A student regrets that he fell asleep during a lecture in electrochemistry, facing the following incomplete statement in a test: "Thermodynamically, oxygen is a ..... oxidant in basic solutions. Kinetically, oxygen reacts ..... in acidic solutions." Which combination of weaker/stronger and faster/slower is correct?  
(A) weaker – slower  
(B) stronger – slower  
(C) weaker – faster  
(D) stronger – faster  
**Correct Answer:** (A)

998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007

| Independent Generation Phase                                                             |                                                                    |                                                                                       |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Llama:                                                                                   | Gemma:                                                             | Mixtral:                                                                              |
| <b>Output 1:</b> Answer: C, Explanation: ... <span style="color: red;">✗</span>          | <b>Output 1:</b> Answer: D, ... <span style="color: red;">✗</span> | <b>Output 1:</b> To answer this question, ..., A <span style="color: green;">✓</span> |
| <b>Output 2:</b> Answer: A, In basic solutions, ... <span style="color: green;">✓</span> | <b>Output 2:</b> Answer: D, ... <span style="color: red;">✗</span> | <b>Output 2:</b> To answer this question, ..., A <span style="color: green;">✓</span> |
| <b>Output 3:</b> Answer: D, In basic solutions, ... <span style="color: red;">✗</span>   | <b>Output 3:</b> Answer: D, ... <span style="color: red;">✗</span> | <b>Output 3:</b> To answer this question, ..., A <span style="color: green;">✓</span> |

| Reliability Estimation Phase           |                                        |                                                               |
|----------------------------------------|----------------------------------------|---------------------------------------------------------------|
| Confidence:                            | Historical Accuracy:                   | Confidence:                                                   |
| 33% <span style="color: red;">✗</span> | 24% <span style="color: red;">✗</span> | 100% <span style="color: green;">✓</span>                     |
|                                        |                                        | 100% <span style="color: green;">✓</span>                     |
|                                        |                                        | Historical Accuracy: 32% <span style="color: red;">✗</span>   |
|                                        |                                        | Historical Accuracy: 39% <span style="color: green;">✓</span> |

Figure 12: **An illustration of the SLM-MUX method applied to the GPQA dataset.** During the independent generation phase, Gemma and Mixtral obtain the same confidence score. However, considering historical accuracy, Mixtral ranks higher. Therefore, Mixtral's answer is selected as the final output.

1011

### B.3 STANDARD DEVIATION OF THE DATA POINTS IN FIGURE 5

1012  
1013  
1014  
1015  
1016

Although all experiments are run in a deterministic setting with temperature set to zero, we can still compute the standard deviation of each datapoint by treating the outcome as a Bernoulli variable. Specifically, if there are  $n_{\text{correct}}$  correct answers and  $n_{\text{wrong}}$  incorrect answers, the standard deviation

1017  
1018  
1019  
1020  
1021  
1022  
1023

| Model            | MATH    |             | GPQA    |             |
|------------------|---------|-------------|---------|-------------|
|                  | Acc (%) | Token Usage | Acc (%) | Token Usage |
| DeepSeek V3      | 87.0    | 419,513     | 55.1    | 173,885     |
| Gemini 2.0 Flash | 90.4    | 361,737     | 63.6    | 195,576     |
| GPT-4o           | 79.8    | 408,410     | 51.0    | 212,037     |

1024  
1025

Table 6: **Large Model Base Performance.** Base model performance and token usage on MATH and GPQA datasets. Accuracy is the percentage of correct answers, and token usage reflects total tokens consumed (prompt + response) over the entire dataset for each model.

1026

is

1027

1028

1029

1030

1031

$$\frac{\sqrt{\text{Var}(X)}}{\sqrt{n_{\text{total}}}} = \frac{\sqrt{p(1-p)}}{\sqrt{n_{\text{total}}}} = \frac{\sqrt{\frac{n_{\text{correct}}}{n_{\text{total}}} \left(1 - \frac{n_{\text{correct}}}{n_{\text{total}}}\right)}}{\sqrt{n_{\text{total}}}},$$

where  $n_{\text{total}} = n_{\text{correct}} + n_{\text{wrong}}$ .

1032

The results are summarized in Table 7.

1033

1034

1035

Table 7: Accuracy and estimated standard deviation on MATH ( $n = 500$ ) and GPQA ( $n = 196$ ) using datapoints from Figure 5.

1036

| Method                   | MATH ( $n = 500$ ) |                 | GPQA ( $n = 196$ ) |                 |
|--------------------------|--------------------|-----------------|--------------------|-----------------|
|                          | SLM orchestration  | LLM composition | SLM orchestration  | LLM composition |
| Single Model Max         | 56.8 $\pm$ 2.22    | 90.4 $\pm$ 1.32 | 38.8 $\pm$ 3.48    | 63.6 $\pm$ 3.44 |
| Mixture-of-Agents        | 46.2 $\pm$ 2.23    | 88.8 $\pm$ 1.41 | 33.3 $\pm$ 3.37    | 58.6 $\pm$ 3.52 |
| LLM-Debate               | 51.6 $\pm$ 2.23    | 90.8 $\pm$ 1.29 | 36.9 $\pm$ 3.45    | 65.6 $\pm$ 3.39 |
| Multi-Agent Verification | 48.4 $\pm$ 2.23    | 91.6 $\pm$ 1.24 | 35.4 $\pm$ 3.42    | 64.2 $\pm$ 3.42 |

1043

1044

## C WHY DISCUSSION-BASED METHODS FAIL ON SLMs

1045

### C.1 GROUPTHINK ANALYSIS

1046

1047

We analyze the experiment logs of LLM-Debate using small language models (SLMs) in Section 4.1. Among 500 debate problems, 242 resulted in failure (48.4%). For each of the 242 failed debates, we first used an analyzer LLM to produce a process-focused failure analysis. We then used a separate labeling LLM to classify whether each failed debate was due to groupthink.

1052

The labeling results are shown in Table 8:

1053

1054

These results reinforce our claim that groupthink is a major failure mode in SLM-based LLM-debate. We provide the exact prompts used by (i) the analyzer LLM to generate the 242 failure analyses (Figure 13) and (ii) the groupthink labeler LLM to classify groupthink (Figure 14). Placeholders such as {problem} indicate runtime substitutions by our code.

1055

### C.2 PROMPT SENSITIVITY ANALYSIS

1056

1057

A natural concern is whether the performance gap between discussion-based methods and SLM-MUX is due to suboptimal prompt selection rather than inherent limitations. To address this, we conduct a prompt sensitivity analysis on the Mixture-of-Agents (MoA) baseline using the MATH benchmark.

1058

1059

1060

1061

1062

We use Gemini-2.5-Flash to generate 10 diverse aggregator prompts for MoA. Table 9 summarizes the results. Our baseline prompt (46.2%) outperforms the average of the tuned prompts (41.8%) and surpasses 7 out of 10 generated prompts. Even the best tuned prompt (48.4%) remains substantially below the best single model (56.8%) and SLM-MUX (61.8%).

1063

1064

1065

1066

1067

To further stress-test this result, we conducted iterative prompt optimization directly on the test set for 6 rounds, selecting the best-performing prompt at each iteration. Even under this extremely favorable setting for MoA, the accuracy peaked at 55.6%, still below the best single model (56.8%) and far below SLM-MUX (61.8%). This confirms that the performance gap reflects inherent limitations of discussion-based aggregation when applied to SLMs, rather than an artifact of prompt selection.

1072

1073

## D VALIDATION OF SLM-MUX DESIGN

1074

1075

### D.1 CONSISTENCY VS ACCURACY CORRELATION

1076

1077

1078

1079

We empirically study how per-question self-consistency correlates with accuracy on four datasets: GSM8K, MATH, GPQA, and HUMAN EVAL. For each model–dataset pair, we compute a self-consistency score for every question (as defined in the main text) and group questions into three bins according to this score: *Low* [0.0, 0.5], *Medium* [0.5, 0.8], and *High* [0.8, 1.0]. We then measure the empirical accuracy (fraction of correct answers) within each bin.

```

1080
1081
1082
1083 As an expert in analyzing multi-agent AI systems, your task is to
1084 analyze why an 'LLM Debate' process failed to find the correct
1085 answer. Your focus should be on the *debate dynamics and
1086 process*, not just the mathematical details. The goal is to
1087 understand the failure of the debate methodology itself.
1088
1089 **Ground Truth:**
1090 - **Problem Statement:** {problem}
1091 - **Correct Answer:** {ref_answer}
1092
1093 **Debate Information:**
1094 - **Final Incorrect Answer from System:** {system_answer}
1095
1096 **Analysis of Round 1:**
1097 - **Model '{model_name}' proposed:**
1098   - Answer: '{extracted_answer}'
1099   - Reasoning:
1100   ...
1101   {full_text}
1102   ...
1103
1104 **Your Analysis Task:**
1105 Based on the debate history, provide a "Debate Failure Analysis".
1106 Do not focus on simple calculation mistakes. Instead, analyze
1107 the interaction between the models and the structure of the
1108 debate. Pinpoint the core reasons the *debate process* failed.
1109 Consider these questions:
1110
1111 1. **Error Propagation vs. Correction:** How did initial errors
1112 influence later rounds? Were there moments where a correct
1113 idea was introduced but ignored or overruled? Why did the
1114 debate fail to self-correct?
1115 2. **Groupthink and Influence Dynamics:** Did the models converge
1116 on a flawed consensus? Did one or more influential but
1117 incorrect models lead the group astray? Was there evidence of
1118 independent reasoning that was shut down?
1119 3. **Argumentation Quality:** Did the models provide convincing
1120 but ultimately flawed arguments? Did they effectively
1121 challenge each other's reasoning, or was the debate
1122 superficial?
1123 4. **Critical Failure Point in the Debate:** Identify the single
1124 most critical turn or moment in the debate that sealed its
1125 failure. What happened, and why was it so impactful?
1126 5. **Improving the Debate:** What is the single most important
1127 change to the debate protocol or dynamics that could have
1128 prevented this failure? (e.g., different communication rules,
1129 promoting dissident opinions, etc.)
1130
1131 Provide a concise, expert analysis focusing on the *process*
1132 failure.
1133

```

Figure 13: Prompt Template for Failure Analysis.

| Metric                              | Count | Rate              |
|-------------------------------------|-------|-------------------|
| Total Debates Analyzed              | 500   | 100% of total     |
| Failed Debates (System Error)       | 242   | 48.4% of total    |
| <i>Breakdown of Failed Debates:</i> |       |                   |
| Attributed to Groupthink            | 144   | 59.5% of failures |
| Attributed to Other Causes          | 79    | 32.6% of failures |
| Classification Unsuccessful         | 19    | 7.9% of failures  |

Table 8: **Failure Cause Attribution** This table shows the cause attribution for LLM-Debate when involving SLMs.

You are an expert analyst of multi-agent LLM debates. Your goal is to determine whether the failure primarily involved groupthink/conformity dynamics. Groupthink indicators include: early flawed consensus, explicit capitulation to a majority, social proofing, adopting peers' answers without critique, abandoning independent reasoning to match others, or reinforcing an incorrect majority despite available dissent. Not-groupthink includes failures due to independent arithmetic /logic errors, argument complexity/veer effects without convergence, or chaotic divergence with no consensus influence. Return STRICT JSON only, with keys: groupthink (bool), confidence (float 0-1), reasons (string), cues (array of strings) .

Figure 14: Prompt for Groupthink Classification.

Figure 15 reports the resulting accuracies for two representative SLMs on each dataset. Across GSM8K, MATH, and HUMAN-EVAL we observe a strong positive relationship between self-consistency and accuracy: questions in the high-consistency bin are substantially more likely to be answered correctly than those in the low-consistency bin. GPQA exhibits a weaker but still positive correlation. Overall, these results provide empirical support for the link between self-consistency and correctness assumed in our method.

## D.2 COMPARATIVE ANALYSIS WITH VOTING-BASED METHODS

Since SLM-MUX also involves voting on model outputs, we examine its differences from standard self-consistency and Agent Forest to better explain the source of our improvements.

To explain our stronger performance, we note a limitation of self-consistency methods. Suppose a model has probability  $p$  of answering a question correctly. When self-consistency samples  $N$  responses, the probability of obtaining the correct answer after majority voting follows a binomial distribution:

$$A(N, p) = \Pr(X \geq \lceil \frac{N}{2} \rceil) = \sum_{k=\lceil N/2 \rceil}^N \binom{N}{k} p^k (1-p)^{N-k}, \quad X \sim \text{Binomial}(N, p) \quad (1)$$

Table 9: Prompt sensitivity analysis for MoA on MATH. The baseline prompt used in our experiments is already near-optimal.

| Setting                         | Accuracy     |
|---------------------------------|--------------|
| SLM-MUX (Ours)                  | <b>61.8%</b> |
| Best Single Model               | 56.8%        |
| Tuned Prompt (Best)             | 48.4%        |
| Baseline Prompt (Used in Paper) | 46.2%        |
| Tuned Prompt (Average)          | 41.8%        |
| Tuned Prompt (Worst)            | 25.8%        |

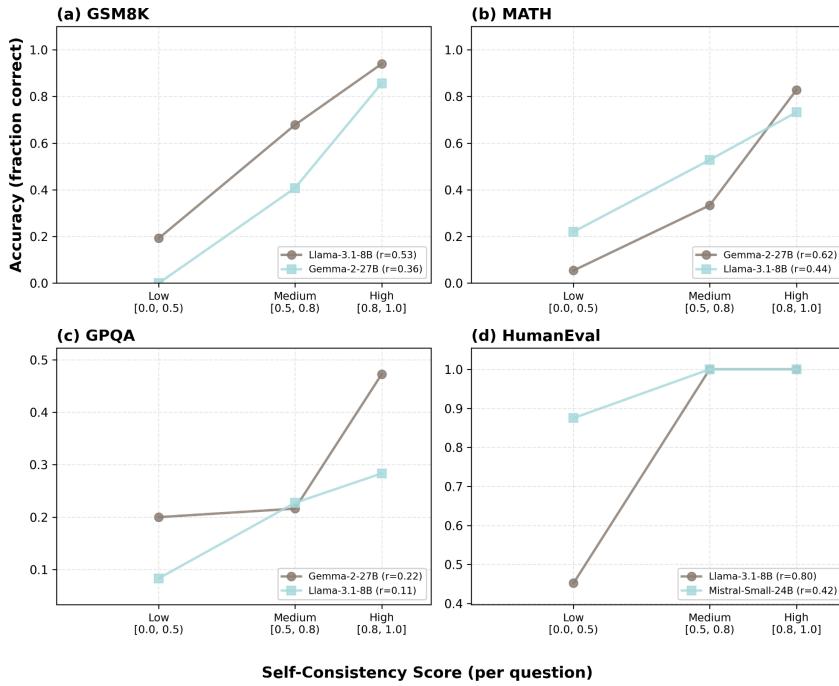


Figure 15: Accuracy as a function of per-question self-consistency score on GSM8K, MATH, GPQA, and HUMAN-EVAL. Questions are grouped into three bins by self-consistency: *Low* [0.0, 0.5], *Medium* [0.5, 0.8], and *High* [0.8, 1.0]. Each line corresponds to a different SLM; legends report the Pearson correlation  $r$  between self-consistency and correctness.

We observe that  $A(N, p)$  exceeds  $p$  only when  $p > 0.5$ , meaning self-consistency is effective only in this regime. When  $p < 0.5$ , self-consistency can actually lower overall accuracy.

For any dataset, we can conceptually divide examples into three types of questions. **Type 1:**  $p = 100\%$ , the model always answers correctly. **Type 2:**  $p > 50\%$ , the model is more likely than not to be correct. **Type 3:**  $p < 50\%$ , the model is more likely to be wrong. The overall effect of self-consistency is then the improvement from Type 2, offset by the degradation from Type 3. Improvement occurs only when the dataset contains a sufficiently large proportion of Type 2 questions.

For SLM-MUX, we select the output from the most confident model, so the accuracy can be approximated as  $A(N, p_{\max})$ , where  $p_{\max}$  is the highest probability among the participating models. By routing to the model with the highest  $p_{\max}$  on each question, we effectively enlarge the proportion of Type 2 questions, leading to higher overall accuracy.

For the Agent Forest approach, answers are drawn evenly from all models, so its accuracy can be approximated as  $A(N, \bar{p})$ , where  $\bar{p}$  is the average probability across models. This generally results in lower accuracy than SLM-MUX, as weaker models dilute the signal from stronger ones.

### D.3 MODEL SELECTION SEARCH ANALYSIS

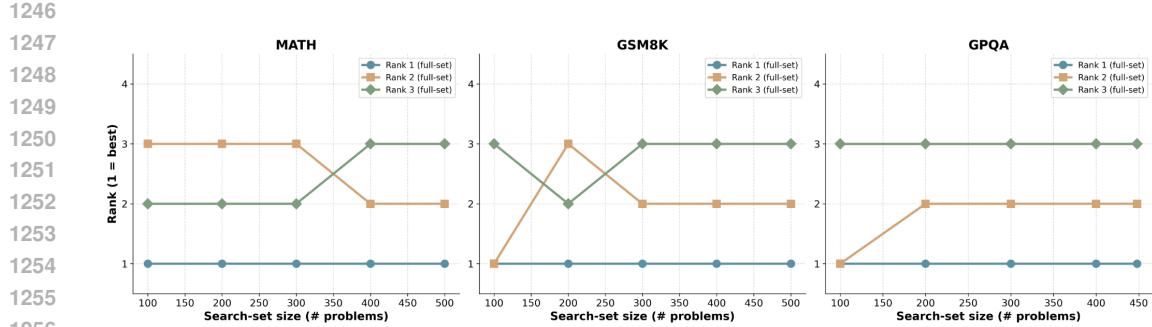
#### D.3.1 SEARCH-SET SIZE STABILITY

We analyze how the size of the search set (number of problems used in the search phase) affects the resulting model ranking. For each of the three benchmarks MATH, GSM8K, and GPQA, we treat the full benchmark (approximately 500 problems) as the search pool and first run our search procedure on the full set to obtain a ranking of all candidate models. We then record the models occupying Rank 1, Rank 2, and Rank 3 under this full-set ranking.

Next, we subsample the search set to smaller sizes and re-run the search. Specifically, for each dataset we evaluate search-set sizes of 100, 200, 300, 400, and the full set. At each size, we recompute the ranking over all models and track the ranks of the three models that were Rank 1–3 under the full-set setting.

Figure 16 shows the results. Each curve corresponds to one of the Rank 1/2/3 models under the full-set ranking, and the  $y$ -axis reports its rank when the search-set size is changed. Across all three

1242 datasets, these models consistently remain within the top three positions even when the search set  
 1243 is reduced to as few as 100 problems, with only minor swaps in their relative order on MATH and  
 1244 GSM8K. This suggests that a search set of a few hundred problems is sufficient to stably identify the  
 1245 top-performing models.



1257 **Figure 16:** Stability of model rankings with respect to search-set size on MATH, GSM8K, and GPQA. For  
 1258 each dataset, we first determine the top three models using the full search set and then track their ranks as the  
 1259 search-set size is reduced.

### D.3.2 RANDOM MODEL SELECTION BASELINE

1263 A natural question is whether the performance gains of SLM-MUX stem from the model selection  
 1264 search or from the orchestration architecture itself. To isolate the contribution of the architecture,  
 1265 we conduct an experiment where model combinations are selected randomly rather than through our  
 1266 search procedure.

1267 For each dataset, we randomly sample model combinations of size  $K = 2, 3, 4$  from our pool of  
 1268 five SLMs and apply SLM-MUX. We compare the resulting accuracy against the best single model  
 1269 within each random pool. Table 10 reports the average performance across all random combinations.

1271 **Table 10:** Performance of SLM-MUX with randomly selected model combinations. Even without optimized  
 1272 model selection, SLM-MUX consistently outperforms the best single model in the pool.

| Dataset | $K$ | SLM-MUX (Random) | Best Single Model | $\Delta$ (Gain) |
|---------|-----|------------------|-------------------|-----------------|
| MATH    | 2   | 67.2%            | 66.1%             | +1.1            |
|         | 3   | 71.5%            | 69.8%             | +1.7            |
|         | 4   | 73.7%            | 71.8%             | +1.9            |
| GSM8K   | 2   | 84.1%            | 81.7%             | +2.4            |
|         | 3   | 87.3%            | 83.6%             | +3.7            |
|         | 4   | 88.8%            | 84.0%             | +4.8            |
| GPQA    | 2   | 43.0%            | 41.3%             | +1.7            |
|         | 3   | 44.5%            | 44.4%             | +0.1            |
|         | 4   | 46.3%            | 46.0%             | +0.3            |

1285 As shown in Table 10, SLM-MUX consistently outperforms the best single model even when the  
 1286 model combination is selected randomly. On MATH and GSM8K, the gains are substantial (up to  
 1287 +4.8 on GSM8K with  $K = 4$ ). On GPQA, where consistency is a weaker signal for correctness, the  
 1288 gains are smaller but still positive.

1290 To further quantify how often SLM-MUX improves over single models, we compute the **Effective**  
 1291 **Combination Rate**: the percentage of all possible  $K$ -model subsets where SLM-MUX outperforms  
 1292 the best single model in that subset. Table 11 reports the results.

1293 On GSM8K, 100% of combinations are effective across all values of  $K$ . On MATH and GPQA,  
 1294 the effective rate increases with  $K$ , reaching 100% at  $K = 4$ . Even at  $K = 2$ , the majority of  
 1295 combinations (60–100%) are effective. These results demonstrate that the space of “workable” model  
 1296 combinations is dense, and one does not need to search extensively to find an effective subset. The

1296 Table 11: Effective Combination Rate: percentage of model combinations where SLM-MUX outperforms the  
 1297 best single model in the subset.

| Dataset | $K = 2$ | $K = 3$ | $K = 4$ |
|---------|---------|---------|---------|
| MATH    | 70%     | 100%    | 100%    |
| GSM8K   | 100%    | 100%    | 100%    |
| GPQA    | 60%     | 80%     | 100%    |

1304 model selection search provides additional gains by identifying the optimal combination, but the  
 1305 architecture is robust even without it.

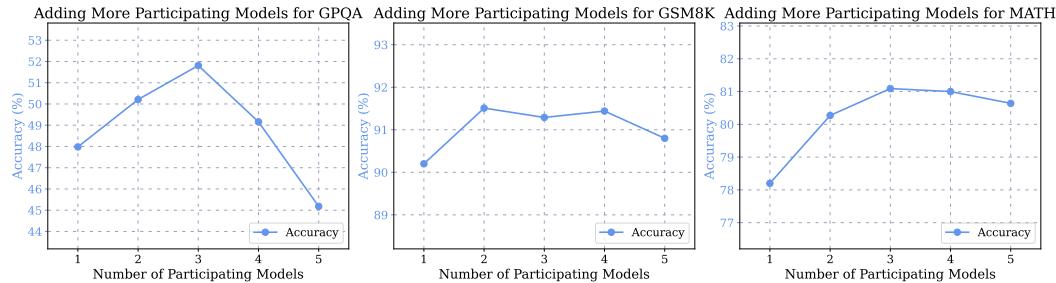
#### 1306 D.4 TEST-SET VALIDATION OF SCALING BEHAVIOR

1308 In Section 3.3, we evaluated the “Adding More Participating Model Types” scaling dimension on the  
 1309 validation set. Here we report the corresponding results on the test set to verify that the observed  
 1310 trends generalize.

1311 Table 12 summarizes the test-set accuracy as the number of participating models  $K$  increases from 1  
 1312 to 5. For each value of  $K$ , we use the model combination selected by the search procedure described  
 1313 in Section 3.2. Figure 17 visualizes these results.

1314 Table 12: Test-set accuracy (%) as the number of participating models  $K$  increases. For  $K = 1$ , the best single  
 1315 model is reported.

| $K$             | GPQA  | GSM8K | MATH  |
|-----------------|-------|-------|-------|
| 1 (best single) | 47.98 | 90.20 | 78.20 |
| 2               | 50.21 | 91.51 | 80.27 |
| 3               | 51.81 | 91.29 | 81.09 |
| 4               | 49.16 | 91.44 | 81.00 |
| 5               | 45.18 | 90.80 | 80.64 |



1325 Figure 17: Test-set accuracy as a function of the number of participating models on GPQA, GSM8K, and MATH.  
 1326 The trends mirror those observed on the validation set: GPQA peaks at  $K = 3$ , GSM8K saturates quickly, and  
 1327 MATH shows continued improvement up to  $K = 3$ .

## 1338 E GENERALIZATION OF SLM-MUX

### 1339 E.1 OPEN-ENDED GENERATION (HUMAN EVAL)

1342 In the main text, SLM-MUX is instantiated on tasks with discrete answer spaces, where self-  
 1343 consistency can be measured via majority voting over sampled outputs. To check whether the  
 1344 same principle extends to open-ended generation, we apply SLM-MUX to the HUMAN EVAL code-  
 1345 generation benchmark.

1346 **Consistency estimator for open-ended generation.** On HUMAN EVAL, exact-string majority voting  
 1347 is not appropriate, so we replace it with a semantic consistency estimator. For each model and  
 1348 each problem, we sample  $N = 5$  code generations with temperature 0.3. We then encode the 5  
 1349 generations using the pretrained embedding model Salesforce/codet5p-110m-embedding  
 and compute pairwise cosine similarities, yielding a  $5 \times 5$  similarity matrix. From this matrix,

1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
Table 13: Pass@1 on HUMANEVAL for individual SLMs.

| Model                 | Pass@1 |
|-----------------------|--------|
| Llama-3.1-8B-Instruct | 0.178  |
| Qwen2.5-7B-Instruct   | 0.485  |
| Mistral-Small-24B     | 0.870  |
| Qwen2.5-Coder-7B      | 0.893  |

Table 14: SLM-MUX on HUMANEVAL (Pass@1). Each row corresponds to a pair of SLMs; SLM-MUX selects the output from the model with higher embedding-based consistency.

| Setup | Models combined                             | SLM-MUX (Pass@1) |
|-------|---------------------------------------------|------------------|
| Exp 1 | Llama-3.1-8B-Instruct + Qwen2.5-7B-Instruct | <b>0.506</b>     |
| Exp 2 | Mistral-Small-24B + Qwen2.5-Coder-7B        | <b>0.939</b>     |

we identify the most coherent cluster of generations (of size  $x$ ) and use  $x/5$  as the model’s self-consistency score for that problem, analogous to the confidence score derived from majority voting in the discrete-answer setting.

We also experimented with an LLM-as-a-judge-based consistency estimator (using Qwen2.5-7B-Instruct as the judge) and found that the embedding-based estimator exhibits a stronger correlation with ground-truth correctness (Pass@1). All results below therefore use the embedding-based consistency score.

**Results.** Table 13 reports the Pass@1 of each individual SLM on HUMANEVAL. Table 14 reports the Pass@1 of SLM-MUX when combining two models at a time; for each problem, SLM-MUX selects the solution from the model with the larger embedding-based consistency score.

## E.2 FRONTIER LLMs

We evaluate whether SLM-MUX can exploit complementary strengths between state-of-the-art frontier models. We pair GPT-4o with Gemini-2.5-Flash and apply SLM-MUX on MATH, GPQA, and GSM8K. For each problem, we sample  $N = 5$  responses per model at temperature 0.3 and apply self-consistency routing: for each problem, we perform majority voting within each model’s samples, then route to the model showing higher agreement.

Table 15 summarizes the results. As a reference, “Perfect Routing” indicates the theoretical upper bound achievable if the system always selects the correct model when at least one succeeds.

Table 15: SLM-MUX performance when applied to frontier LLMs (GPT-4o and Gemini-2.5-Flash).

| Benchmark | GPT-4o | Gemini-2.5-Flash | SLM-MUX      | Perfect Routing |
|-----------|--------|------------------|--------------|-----------------|
| MATH      | 73.0%  | 92.1%            | 92.8%        | 94.2%           |
| GPQA      | 50.7%  | 51.1%            | <b>60.1%</b> | 73.7%           |
| GSM8K     | 89.1%  | 85.7%            | 89.4%        | 91.4%           |

The results reveal two distinct regimes. On GPQA, the two models exhibit complementary error patterns, and SLM-MUX achieves 60.1% accuracy, surpassing the best single model by nearly 10 percentage points. This demonstrates that SLM-MUX effectively exploits complementary strengths even at the frontier scale. On MATH and GSM8K, the Perfect Routing bounds (94.2% and 91.4%) are only marginally higher than the single-model baselines, indicating high overlap in the models’ correct predictions. The limited gains on these benchmarks reflect this ceiling rather than a limitation of the routing mechanism.

## E.3 DOMAIN-SPECIFIC FINE-TUNED MODELS

Domain-specific fine-tuned models are widely deployed in practice. We evaluate whether SLM-MUX can effectively orchestrate such specialized models by testing on two domains: code generation and mathematical reasoning.

1404  
1405  
1406 Table 16: SLM-MUX performance when orchestrating domain-specific fine-tuned models.  
1407  
1408  
1409

| Domain          | Benchmark | Best Single Model | SLM-MUX      | $\Delta$ (Gain) |
|-----------------|-----------|-------------------|--------------|-----------------|
| Code Generation | HumanEval | 89.3%             | <b>93.9%</b> | +4.6            |
| Math Reasoning  | MATH      | 58.8%             | <b>62.2%</b> | +3.4            |

1410 For code generation, we pair Qwen2.5-Coder-7B (a code-specialized model) with Mistral-Small-  
 1411 24B (a general-purpose model) on HumanEval. We use the same embedding-based consistency  
 1412 estimator described in Section E.1. For mathematical reasoning, we pair DeepSeek-Math-7B-RL (a  
 1413 math-specialized model) with Llama-3.1-8B-Instruct on MATH, using standard majority voting for  
 1414 consistency estimation. Both experiments sample  $N = 5$  responses per model at temperature 0.3.

1415 As shown in Table 16, SLM-MUX achieves consistent improvements in both domains. On Hu-  
 1416 manEval, the orchestrated system reaches 93.9% Pass@1, outperforming the code specialist (89.3%)  
 1417 by 4.6 percentage points. On MATH, combining the math specialist with a general-purpose model  
 1418 yields 62.2% accuracy, a 3.4pp improvement. These results demonstrate that SLM-MUX generalizes  
 1419 effectively to domain-specific fine-tuned models, successfully capturing complementary strengths  
 1420 between specialists and generalists.

## 1421 F LICENSES FOR DATASETS

1422 The MATH dataset is licensed under the MIT License.

1423 The GPQA dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY  
 1424 4.0) License.

1425 The GSM8K dataset is licensed under the MIT License.

1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457