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Abstract

Stochastic linear bandits have recently received
significant attention in sequential decision-making.
However, real-world challenges such as heavy-
tailed noise, reward corruption, and nonlinear re-
ward functions remain difficult to address. To
tackle these difficulties, we propose GAdaOFUL,
a novel algorithm that leverages adaptive Hu-
ber regression to achieve robustness in general-
ized linear models (GLMs), where rewards can
be nonlinear functions of features. GAdaOFUL
achieves a state-of-the-art variance-aware regret
bound, scaling with the square root of the cu-
mulative reward variance over time, plus an ad-
ditional term proportional to the level of corrup-
tion. The algorithm adapts to problem complex-
ity, yielding improved regret when the cumula-
tive variance is small. Simulation results demon-
strate the robustness and effectiveness of GAdaO-
FUL in practice. The code is available at https:
//github.com/NeXAIS/GAdaOFUL.

1 INTRODUCTION

In online decision-making, stochastic linear bandits have
been a powerful framework for balancing exploration and ex-
ploitation in sequential processes [Lattimore and Szepesvári,
2020]. However, many real-world applications involve non-
linear relationships between actions and rewards, limiting
the effectiveness of standard linear bandit algorithms. To
address this limitation, generalized linear models (GLMs)
have emerged as a natural extension, allowing expected re-
wards to be modeled as nonlinear functions of input features
via a link function [Filippi et al., 2010]. This flexibility
makes GLMs well-suited for applications such as online ad-
vertisements and recommendation systems [Li et al., 2010,
2012].

Despite their advantages, designing algorithms that perform
well in real-world settings remains challenging. We present
some key challenges below.

• Heavy-tailed rewards: Many existing methods as-
sume that rewards follow a sub-Gaussian distribution
[Filippi et al., 2010, Li et al., 2012, 2017, Zhou et al.,
2019, Lu et al., 2021], simplifying analysis but fail-
ing to capture the variability commonly observed in
practice. In financial markets, for instance, extreme
returns occur far more frequently than expected under
a normal distribution, a characteristic known as heavy-
tailed behavior [Cont and Bouchaud, 2000, Foss et al.,
2011]. Real-world reward distributions often exhibit
such properties, leading to poor performance for algo-
rithms based on sub-Gaussian assumptions [Bubeck
et al., 2013].

• Adversarial corruptions: Bandit systems are also sus-
ceptible to adversarial manipulations or corrupt reward
signals, which can significantly degrade their perfor-
mance. In recommendation systems, for example, ad-
versaries may inject false feedback or manipulate click-
through rates, misleading the algorithm and deteriorat-
ing recommendations for genuine users. While recent
research has developed corruption-robust algorithms
[Lykouris et al., 2018, Kapoor et al., 2019, Bogunovic
et al., 2020], many of these approaches do not account
for heavy-tailed rewards, where extreme outcomes oc-
cur more frequently. Thus, a fundamental challenge
remains: designing algorithms that can simultaneously
handle corruption and heavy-tailed noise, ensuring ro-
bustness in practical settings. Notably, Jun et al. [2018]
demonstrate how adversarial manipulations of rewards
can dramatically increase regret, underscoring the ur-
gency of robust defenses against adversarial corrup-
tions.

• Worst-case analysis: Traditional bandit algorithms of-
ten rely on worst-case regret bounds, which tend to
be overly conservative. In contrast, variance-aware re-
gret bounds allow regret to scale with the observed
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reward variance, rather than an upper bound on reward
magnitudes. This provides a more refined measure of
problem complexity, adapting to the actual variability
in rewards. When cumulative reward variance is small,
the regret naturally decreases, indicating that the prob-
lem is easier to solve. Consequently, variance-aware
regret bounds lead to tighter performance guarantees
[Zhang et al., 2021, Dai et al., 2022, Di et al., 2023, Li
and Sun, 2024].

This paper investigates whether it is possible to design gen-
eralized linear bandit algorithms that simultaneously handle
heavy-tailed rewards, protect against adversarial corruption,
and incorporate variance-aware regret. Specifically, we con-
sider a setting where the reward follows a generalized linear
model (GLM) with heavy-tailed noise. At each round, the
algorithm selects an arm φt from a decision set Dt and
observe a reward yt, which satisfies

yt = f(〈φt, θ∗〉) + εt + ct,

where θ∗ is an unknown d-dimensional true parameter, ct
represents adversarial corruption, and εt denotes the heavy-
tailed noise with bounded variance ν2t . Our goal is to min-
imize the cumulative regret over T rounds, defined as the
total loss from not selecting the optimal action sequence:

Reg(T ) :=

T∑
t=1

[
sup
φ∈Dt

f(〈φ, θ∗〉)− f(〈φt, θ∗〉)

]
. (1)

Our Contributions. While many existing works address
some of these challenges individually (see Table 1 for the
most relevant studies), we propose the first algorithm that
successfully tackles all three key aspects: handling heavy-
tailed rewards, resisting adversarial corruption, and adapting
to variance-aware regret.

Specifically, we introduce GAdaOFUL (Generalized Adap-
tive Huber Regression-based OFUL, see Algorithm 1), a
novel algorithm designed to address all three challenges
simultaneously. At its core, GAdaOFUL leverages adap-
tive Huber regression [Sun et al., 2020, Sun, 2021, Li and
Sun, 2024] to mitigate the impact of heavy-tailed noise. To
handle potential adversarial corruption, the algorithm care-
fully scales each residual error by selecting an appropriate
variance parameter σ2

t . More precisely, σ2
t depends on the

reward variance ν2t , a sample importance weight wt, and the
total corruption level C =

∑T
t=1 |ct|. Here, wt quantifies

the significance of the t-th sample in improving prediction
accuracy.

*Ye et al. [2023] consider a general and abstract class G
where G has a bounded Eluder dimension. Their general regret is
Õ(d0

√
T + d0 · C) where d0 is the Eluder dimension of G. If G

is the GLM family, d0 = O(d).
†Xue et al. [2024] consider a general heavy-tailed setting where

the rewards have only (1 + ε)-th order moments. For a fair com-
parison, we translate the results to the finite-variance setting.

Beyond integrating these elements, our work introduces two
key technical novelties:

• Nonlinear Extension Framework: Unlike most previ-
ous works that focus on linear settings, we introduce
a novel integral-based loss function (Eq. (2)) that ex-
tends naturally to nonlinear GLM cases. Notably, this
loss function remains convex, enabling the use of effi-
cient convex optimization techniques, such as (stochas-
tic) gradient descent. This formulation significantly
broadens GAdaOFUL’s applicability to more complex
nonlinear scenarios while maintaining computational
efficiency.

• Corruption-Robust Analysis: Our proof employs a
reduction approach, introducing an auxiliary problem
that reformulates the corrupted-reward setting into an
equivalent corruption-free counterpart. By carefully se-
lecting hyperparameters, we establish a direct connec-
tion between optimality in uncorrupted and corrupted
cases. Leveraging constrained convex optimization, we
derive state-of-the-art regret bounds that remain valid
even under adversarial conditions. See Section 4.3 for
a detailed proof overview.

We rigorously prove that GAdaOFUL achieves a state-of-
the-art regret bound of

Õ

d√∑
t∈[T ]

ν2t + dC + d

 ,

even in the presence of heavy-tailed noise and adversarial
corruption. Here, d represents the feature dimension, T is
the total number of rounds, and Õ(·) hides constant factors
and logarithmic terms in T . To the best of our knowledge,
this work is the first to unify GLMs, heavy-tailed noise,
corruption, and variance-awareness into a comprehensive
framework. Table 1 provides a comparison with recent state-
of-the-art algorithms.

2 PRELIMINARIES

Notation. We denote the `2-norm in Rd by ‖ · ‖, and
Balld(B) represents the `2-norm ball in Rd with radiusB >
0. For a positive definite matrix H ∈ Rd×d, we define
‖x‖H =

√
xTHx for a vector x ∈ Rd. Additionally, for

two positive semidefinite matrices H1 and H2, we write
H1 � H2 if H2 −H1 is positive semidefinite.

Generalized Linear Models (GLMs). Generalized Lin-
ear Models (GLMs), first introduced by Nelder and Wedder-
burn [1972], extend traditional linear regression by allowing
more flexible relationships between the response variable y
and predictor variables (or feature vector) φ. In GLMs, the
relationship is modeled through a linear predictor, a linear



Table 1: Theoretical performance comparison of different methods in most related works. For an introduction to earlier
studies (which often exhibit poorer performance), see the references in these papers. In this table, ν2t denotes the conditional
reward variance for the t-th reward and C =

∑T
t=1 |ct| represents the total corruption level with C ∨ 1 = max{C, 1}. The

worst-case lower bound is Ω(d
√
T + dC) [Lattimore and Szepesvári, 2020, Bogunovic et al., 2021].

Method Reward Noise Corruption Variance-aware Regret

[He et al., 2022b] linear Sub-gaussian 3 7 Õ(d
√
T + d · C)

[Ye et al., 2023] GLM* Sub-gaussian 3 7 Õ(d
√
T + d · C)

[Li and Sun, 2024] linear Finite variance 7 3 Õ(d
√∑T

t=1 ν
2
t + d)

[Xue et al., 2024] GLM Finite variance† 7 7 Õ(d
√
T )

Ours, Theorem 4 GLM Finite variance 3 3 Õ(d
√∑T

t=1 ν
2
t + d · C ∨ 1)

combination of the predictors and unknown coefficients θ.
Unlike linear regression, where the conditional mean equals
the linear predictor 〈φ, θ〉, GLMs link the linear predictor
to the conditional mean through a link function f :

E[y|φ] = f(〈φ, θ〉).

The link function f(·) is typically an increasing, differen-
tiable function. By choosing different link functions, GLMs
can model various types of data. For example, Poisson re-
gression is suitable for count data, where the link function
is f(x) = exp(x) [Coxe et al., 2009]. For binary outcomes,
logistic regression is a natural choice, using the logistic
function f(x) = exp(x)

1+exp(x) [Hilbe, 2011].

Heavy-Tailed Noise. Unlike standard bandit models that
assume sub-Gaussian or bounded noise, we consider a more
general and realistic setting where the stochastic noise in re-
wards may exhibit heavy tails. Formally, we assume that the
noise sequence {εt} forms a martingale difference sequence
adapted to the filtration {Ft−1}, satisfying E[εt | Ft−1] = 0
and E[ε2t | Ft−1] = ν2t . This setting accommodates heavy-
tailed but variance-bounded noise, which can still exhibit
occasional large deviations while being more realistic for
applications such as finance, crowdsourcing, and networked
systems. This type of noise model has been explored in
the context of bandits by Bubeck et al. [2013], and further
studied in generalized linear settings by Xue et al. [2024],
who developed robust estimation methods for heavy-tailed
generalized linear bandits.

Adversarial Corruption. In addition to stochastic noise,
we consider adversarial corruption to the reward, modeled
by an additive term ct. We make no assumptions about the
distribution or structure of {ct} beyond the total `1 bud-
get being bounded, i.e.,

∑T
t=1 |ct| ≤ C for some known

constant C > 0. Importantly, the corruption is allowed to
be adaptive: the adversary may observe the realized (pos-
sibly noisy) reward before choosing ct. This corruption
model captures various real-world scenarios such as data

poisoning, faulty sensor readings, or malicious manipula-
tions. Similar corruption-resilient formulations have been
explored in stochastic multi-armed bandits [Lykouris et al.,
2018], linear bandits [Bogunovic et al., 2021, He et al.,
2022a], though these works typically assume bounded or
sub-Gaussian noise.

Problem Setting and Model Assumptions. We study a
stochastic generalized linear bandit model with heavy-tailed
noise and adversarial corruption. Let {Dt}t≥1 represent
a predetermined sequence of decision sets and {Ft}t≥1 a
filtration corresponding to the information available up to
time t. At each round t, the agent selects an action φt ∈ Dt

and observes the reward

yt = f(〈φt, θ∗〉) + εt + ct,

where θ∗ ∈ Rd is an unknown parameter vector, εt is
a martingale difference noise with E[εt|Ft−1] = 0 and
E[ε2t |Ft−1] = ν2t , and ct is an adversarial corruption. The
cumulative corruption level is C :=

∑T
t=1 |ct|, which is

assumed to be known. Additionally, ‖θ∗‖ ≤ B for some
bound B, and both φt and νt are Ft−1-measurable with
‖φt‖ ≤ L. The function f , referred to as the activation func-
tion Zhao et al. [2023], is assumed to be an increasing, differ-
entiable function on [−BL,BL], with constants k,K ∈ R
such that 0 < k ≤ f ′(z) ≤ K for all z ∈ [−BL,BL].

3 THE GADAOFUL METHOD

In this section, we introduce our algorithm, GAdaOFUL,
designed to tackle heavy-tailed noise and adversarial attacks.
Heavy-tailed noise refers to rewards with finite variances,
while adversarial attacks involve deliberate corruption in-
tended to degrade the reward signals. Our algorithm is ap-
plicable to GLMs and achieves state-of-the-art regret.

Adaptive Huber regression modified for GLMs. Our al-
gorithm, GAdaOFUL, is based on adaptive Huber regression
[Sun et al., 2020], utilizing the pseudo-Huber loss function



[Sun, 2021] to tackle heavy-tailed issues. Specifically, the
Pseudo-Huber loss is defined as `τ (x) = τ(

√
τ2 + x2 − τ).

This loss serves as a smooth approximation to the Huber
loss [Huber, 1992], transitioning between quadratic penal-
ties for small residuals and linear penalties for larger ones,
making it differentiable everywhere.

However, the original adaptive Huber regression is designed
for linear models [Sun et al., 2020, Sun, 2021], which limits
its theoretical grounding for nonlinear models like GLMs.
To address this nonlinearity, we modify the Pseudo-Huber
loss to better mitigate its effects. The derivative of `τ (x)
with respect to x is given by `′τ (x) = τx√

τ2+x2
, and we

reformulate the loss in terms of its derivative `′τ (x). At
each round, GAdaOFUL first estimates the ground-truth
parameter θ∗ by minimizing the following optimization
problem:

θt := argminθ∈Balld(B) Lt(θ), (2)

Lt(θ) :=
λk

2
‖θ‖2 −

t∑
s=1

1

σs

∫ 〈φs,θ〉

0

τszs(u)√
τ2s + z2s(u)

du.

Here, k > 0 is a lower bound for min|x|≤BL f
′(x), zs(u) =

(ys − f(u))/σs is the scaled residual error, and σ2
t repre-

sents surrogate conditional variances.

Remark 1. The rationale behind using this loss function
(2) lies in its ability to handle the nonlinearity of GLMs
while retaining desirable properties from the linear case. In
general, a GLM can be interpreted as a form of weighted lin-
ear regression. At a high level, our proposed integral-based
loss ensures that the weights used are of the same order,
determined by f ′ , and bounded within the interval [k,K]
as per our setup. This point can be verified by computing the
derivative and Hessian of the new loss function. Notably, the
derivative and Hessian of the proposed loss resemble those
of the linear case, as highlighted in [Li and Sun, 2024]. This
resemblance enables a natural extension of proof techniques
and results from the linear setting to the nonlinear one.

It is straightforward to verify that

• Lt(θ) is convex in θ, so the optimization problem in
(2) can be efficiently solved by convex solvers.

• Lt(θ) depends on the adaptive (or varying) values of
τt, which are essential for achieving optimal regret, as
shown by Li and Sun [2024] for non-corrupted cases.

• If f(·) is the identity function, Lt(θ) reduces to the
one used by Li and Sun [2024].

Algorithm description. Next, we outline the steps of the
GAdaOFUL algorithm. At round t, construct a confidence
ellipsoid:

Ct−1 := {θ ∈ Balld(B) : ‖θ − θt−1‖Ht−1
6 βt−1},

Algorithm 1 Generalized Adaptive Huber regression based
OFUL (GAdaOFUL).

1: Constants: λ = d/B2, σmin = 1√
T
,m0 =(

6
√

3 log 2T 2

δ

)−1
, and m1 =

(
42 log 2T 2

δ

)−1
.

2: Initialization: H0 = λI, θ0 = 0, β0 =
√
λB.

3: for t = 1 to T do
4: Construct the confidence set Ct−1.
5: Solve (φt, ·) = argmaxφ∈Dt,θ∈Ct−1

〈φ, θ〉.
6: Play φt and observe (yt, νt).
7: Set σt, wt and τt according to (19) and record
{σs, ws, τs : 1 ≤ s ≤ t}.

8: Compute θt according to (2).
9: Define βt and set Ht = Ht−1 +

φtφ
>
t

σ2
t

.
10: end for

where Ht is the shape matrix, and βt is the exploration
radius. It can be proven that θ∗ lies within Ct with high
probability for all t ≥ 0. Based on this confidence set, select
φt by maximizing the inner product 〈φ, θ〉:

(φt, ·) = argmaxφ∈Dt,θ∈Ct−1
〈φ, θ〉 (3)

Play the chosen arm, then observe the reward yt and its con-
ditional variance v2t . Next, compute (σt, wt, τt) according
to (19), and solve the optimization problem in (2) to update
θ. Finally, update the shape matrix Ht and the exploration
radius βt, then proceed to the next round.

Parameter selection. In the following, we specify the
parameters used in Algorithm 1. The parameter σt repre-
sents the surrogate conditional variance, wt quantifies the
importance of the t-th sample (yt, φt, σt), and τt is a robus-
tification parameter used in Pseudo-Huber regression. Their
expressions are given as follows:

σt = max

{
νt, σmin, ‖φt‖H−1

t−1
/m0, α‖φt‖1/2H−1

t−1

}
,

wt =

∥∥∥∥φtσt
∥∥∥∥
H−1

t−1

, and τt = τ0

√
1 + w2

t

wt
,

(19)

where

α = max

{ √
LBK

m
1/4
1 d1/4

, C
1
2κ−

1
4

}
,

C =
∑T
t=1 |ct| is the corruption level, and κ = d ·

log
(
1 + TL2/(dλσ2

min)
)

is a constant.

We briefly explain the selection of σt, the most important
parameter. First, we set σt ≥ νt to ensure it is larger than
the true conditional variance, which keeps the conditional



variance of yt/σt always less than 1. Note that we do not
require νt itself to be known; any valid upper bound suffices
to ensure the theoretical properties of the adaptive Huber
loss. We also impose σt ≥ σmin to avoid numerical instabil-
ity. Additionally, we require σt ≥ ‖φt‖H−1

t−1
/m0 to ensure

that the importance measure wt remains bounded by a con-
stant m0. Finally, we set σt ≥ α‖φt‖1/2H−1

t−1

with a carefully

chosen α to mitigate potential corruptions. This α depends
on C

1
2κ−

1
4 , which accounts for the effects of corruption—a

factor not considered by Li and Sun [2024].

4 REGRET ANALYSIS

In this section, we present the theoretical analysis for Algo-
rithm 1.

4.1 NON-CORRUPTED CASE

To begin, we consider the non-corrupted case where C = 0
and show the results in Theorem 2.

Theorem 2 (Uncorrupted Case). Assume C = 0. Let λ =

d/B2 and κ = d · log
(

1 + TL2

dλσ2
min

)
. If τ0

√
log
(
2T 2

δ

)
≥

max{
√

2κ, 2
√
d}, then with probability 1−3δ, it holds that

for all 0 ≤ t ≤ T ,

‖θt − θ∗‖Ht
≤ βt,

where

βt =
32

k

[
κ

τ0
+

√
κ log

(
2t2

δ

)
+ τ0 log

(
2t2

δ

)]
+ 5
√
λB.

(4)

Then, with probability at least 1− 3δ, we have

Reg(T ) ≤ 4KβT

√κ ·√∑
t∈[T ]

ν2t + 1 +
Lκ

m2
0

√
λ
+
LBKκ√
m1d

 .
(5)

Similar to previous work [Li and Sun, 2024], in Theorem 2,
we demonstrate that (i) the true parameter θ∗ falls within the
constructed confidence intervals Ct with high probability,

and (ii) the regret scales as Reg(T ) = Õ(d
√∑T

t=1 ν
2
t +d),

which matches the results for linear bandits with heavy-
tailed rewards [Li and Sun, 2024]. The key takeaway is that
even when considering a nonlinear GLM model for rewards,
using our modified loss in (2) allows us to maintain the
same level of regret performance. The proof of Theorem 2
largely follows the approach in [Li and Sun, 2024], utilizing
a quadratic approximation of the nonlinear loss Lt(θ); see
the appendix for the details.

4.2 CORRUPTED CASE

Next, we consider the case with corruption, where C > 0
is assumed to be known.1 Theorem 3 guarantees the high
probability coverage, while Theorem 4 upper bounds the
regret.

Theorem 3. Let κ = d · log
(
1 + TL2/(dλσ2

min)
)
. If

τ0
√

log(2T 2/δ) ≥ max{
√

2κ, 2
√
d},then with probabil-

ity 1− 3δ, it holds that, for all 0 ≤ t ≤ T ,

‖θt − θ∗‖Ht ≤ βt,

where

βt =
4
√
κ

k
+

32

k

[
κ

τ0
+

√
κ log

2t2

δ
+ τ0 log

2t2

δ

]
+ 5
√
λB.

(6)

Theorem 3 demonstrates that θ∗ falls within the set Ct :=
{θ ∈ Balld(B) : ‖θ − θt‖Ht

6 βt} for any t ≥ 1 with
high probability. In contrast to the non-corrupted case, the
presence of corruption introduces an additional constant
term of 4

√
κ
k to βt. However, this term is negligible when

τ0 = Õ(
√
d), which also leads to βt = Õ(

√
d).

With the above confidence region, the regret bound of Algo-
rithm 1 for corrupted cases is explicitly given as follows.

Theorem 4. Then with probability at least 1− 3δ,

Reg(T ) ≤ 4KβT

√κ ·√∑
t∈[T ]

ν2t + 1

+
Lκ

m2
0

√
λ

+
LBKκ√
m1d

+ 2C
√
κ

]
.

where βT is defined in (6).

By setting λ and τ0 carefully, Reg(T ) is simplified to
Õ(d

√∑n
t=1 ν

2
t + d · C ∨ 1) where C ∨ 1 = max{C, 1}.

Corollary 5. Let λ = d/B2 and τ0 =

max
{√

2κ, 2
√
d
}
/
√

log(2T 2/δ). The regret bound
in Theorem 4 becomes

Reg(T ) = Õ

Kd

k

√∑
t∈[T ]

ν2t +
Kd

k
·max{LBK,C}

 ,

where Õ(·) hides constant factors and logarithmic depen-
dence on T .

1In fact, it is sufficient to have a valid upper bound for∑T
t=1 |ct|. If C is unknown, one can employ the doubling trick

[Besson and Kaufmann, 2018] to estimate a valid upper bound.
After a logarithmic number of guesses, we can reliably determine
a true upper bound.



Comparison with previous works. We emphasize that
the regret bound in Theorem 4 and Corollary 5 is the
first variance-aware regret to simultaneously address heavy-
tailed rewards, adversarial corruption, and nonlinear settings.
While numerous studies have explored bandits under the
GLM framework and light-tailed noise scenarios, to our
knowledge, none have accomplished all three aspects. For a
comparison among the most related and competitive results,
see Table 1. We discuss their differences below.

In the absence of corruptions (i.e., C = 0), the regret bound
simplifies to Õ

(
d
√∑

t∈[T ] ν
2
t + d

)
, aligning with the re-

sults obtained by AdaOFUL [Li and Sun, 2024]. However,
AdaOFUL is restricted to linear bandit problems, while
GAdaOFUL is applicable to the more general GLM set-
ting. Recently, Xue et al. [2024] introduced an algorithm
that addresses heavy-tailed noise within the GLM context;
however, their results do not account for adversarial corrup-
tion, and their regret fails to be variance-aware, thus lacking
adaptability to the problem’s difficulty.

In cases where corruptions are present (i.e, C > 0), He et al.
[2022b] proposed the CW-OFUL algorithm, which achieves
a minimax optimal regret bound of Õ

(
d
√
T + d · C

)
.

This bound is also obtained by Ye et al. [2023] for
GLM rewards setting. However, both of them pertain
to the worst-case scenario. We argue that our bound,
Õ
(
d
√∑

t∈[T ] ν
2
t + d · (C ∨ 1)

)
, is significantly more

adaptive than theirs. Specifically, if we assume that the
variance νt remains constant and significant (i.e., νt = Θ(1)
for all t ≥ 1), our regret reduces to theirs, implying that our
approach is also minimax optimal in the worst case.

4.3 PROOF SKETCH

At the end of this section, we provide a proof sketch of
Theorem 3 and 4.

Proof of Theorem 3. The proof of Theorem 3 consists
of two key steps. In the first step, we focus on bounding
‖∇LT (θ∗)‖H−1

t
. Thanks to the loss function (2), the gradi-

ent estimator can be written as

∇LT (θ) = λkθ −
T∑
t=1

τtzt(θ)√
τ2t + z2t (θ)

φt
σt

where zt(θ) =
yt − f(〈φt, θ〉)

σt
is the standardized residual

error. With this expression, we show that, with high proba-
bility,

‖∇LT (θ∗)‖H−1
t

= Õ

(
κ

τ0
+ τ0 +

√
κ+B

√
λ

)
(7)

holds for any T ≥ 1. In other words, ‖∇LT (θ∗)‖H−1
t

is
uniformly bounded in terms of τ0. To achieve a smaller

bound, we should tune τ0 = Õ(
√
κ), which is precisely

what we set in Theorem 3.

In the second step, we aim to control∇2LT (θ). More specif-
ically, we demonstrate that, with high probability, for all
T ≥ 0 and any ‖θ‖ ≤ B,

∇2LT (θ) � k

4
HT . (8)

A similar lower bound to (8) appears in previous work [Li
and Sun, 2024]; however, our loss formulation in (2) enables
its extension to GLMs. Combining these two steps in (7)
and (8), we apply the mean value theorem and obtain that

∇LT (θT )−∇LT (θ∗) = ∇2LT (θ∗T )(θT − θ∗)

for some vector θ∗T satisfying ‖θ∗T ‖ ≤ B. The first-order
stationary condition of the constrained convex optimization
in (2) implies that 〈∇LT (θT ), θT − θ∗〉 ≤ 0.

Combining all the above results, we have:

k

4
‖θT − θ∗‖2HT

≤〈∇2LT (θ∗T )(θT − θ∗), θT − θ∗〉

=〈∇LT (θT )−∇LT (θ∗), θT − θ∗〉
≤〈−∇LT (θ∗), θT − θ∗〉
≤‖∇LT (θ∗)‖H−1

t
· ‖θT − θ∗‖HT

This leads to the implication:

‖θT − θ∗‖HT
≤ 4

k
‖∇LT (θ∗)‖H−1

t

= Õ

(
κ

τ0
+ τ0 +

√
κ+B

√
λ

)
. (9)

Proof of Theorem 4. By the Lipschitz continuity of the
(nonlinear) link function f (i.e., sup|x|≤BL f

′(x) ≤ K), we
bound the regret in (1) by

Reg(T ) ≤ K
T∑
t=1

[
sup
φ∈Dt

〈φ, θ∗〉 − 〈φt, θ∗〉

]
.

To bound the right-hand side, we apply a standard argument:

T∑
t=1

[
sup
φ∈Dt

〈φ, θ∗〉 − 〈φt, θ∗〉

]

6
T∑
t=1

[
sup

φ∈Dt,θ∈Ct−1

〈φ, θ〉 − 〈φt, θ∗〉

]
(a)
=

T∑
t=1

[
sup

θ∈Ct−1

〈φt, θ〉 − 〈φt, θ∗〉

]

6
T∑
t=1

‖φt‖H−1
t−1
· sup
θ∈Ct−1

‖θ − θ∗‖Ht−1

(b)

≤2βT ·
T∑
t=1

‖φt‖H−1
t−1

(c)
= 2βT ·

T∑
t=1

σtwt,



where (a) uses the selection rule for φt in (3) and (b) follows
from the implications of Ct−1. Specifically, for any θ ∈
Ct−1,

‖θ − θ∗‖Ht−1
≤ ‖θ − θt−1‖Ht−1

+ ‖θt−1 − θ∗‖Ht−1

≤ 2βt−1 ≤ 2βT .

The inequality (c) uses definition of wt from (19) where
wt = ‖φt‖H−1

t−1
/σt.

Since σt is defined as the maximum of several expres-
sions in (19), specifically, σt = max{νt, σ1,t, σ2,t, σ3,t}
for certain σi,t (i = 1, 2, 3), we can use the bound σt ≤
νt + σ1,t + σ2,t + σ3,t. We then bound the remaining sums,
either

∑T
t=1 νtwt or

∑T
t=1 σi,twt. A key reason our algo-

rithm achieves a finer variance-aware bound is the careful
selection of the parameter σg. In particular, the dominant
term is bounded as

T∑
t=1

νtwt ≤

√√√√ T∑
t=1

ν2t ·

√√√√ T∑
t=1

w2
t = Õ

d ·
√√√√ T∑

t=1

ν2t

 .

We then make efforts to show that the remaining term,∑T
t=1 σi,twt, is at most Õ(d) · C. The specific techniques

used to establish these bounds are detailed in Appendix C.

5 NUMERICAL STUDIES

5.1 EXPERIMENTAL SETUP

We conduct numerical experiments to compare different on-
line bandit algorithms. We consider a 10-dimensional space
(d = 10), where the vector dimensions are specified with
B = 1 and L = 1, and conduct the following experimental
setup. The target vector θ∗ is randomly chosen from the unit
sphere. The experiment is repeated ten times to reduce the
effect of random results.

• Decision set: The decision set Dt comprises 20 ran-
dom unit vectors in Rd (|Dt| = 20). Each vector is
independently generated in the same manner as θ∗. No-
tably, Dt is not a fixed set; instead, it is dynamically
and randomly generated for each trial.

• Noise distribution: We use noise from a t-distribution
with 3 degrees of freedom (denoted as t3). The proba-
bility density function of t3 is given by:

f(t) =
Γ
(
v+1
2

)
√
vπΓ

(
v
2

) (1 +
t2

v

)− v+1
2

,

where v = 3, Γ is the gamma function, and t is the
random variable. The second moment (variance) of t3
is 3, while higher moments do not exist (i.e., E[Xk] is
undefined for k ≥ 3). Compared to Gaussian noise, the
t3-distribution better simulates real-world stochastic

disturbances with occasional extreme values, challeng-
ing algorithms to be robust under non-sub-Gaussian
conditions. This choice allows us to test the heavy-tail
robustness of the algorithms.

• Nonlinear function: We select the exponential func-
tion y = exp(x) for the mapping f . This function
is commonly used in various exponential models and
is monotonically increasing. Within the interval x ∈
[−1, 1], the derivative values range from exp(−1) to
exp(1), which we denote as k and K, respectively.
Additional experimental results using other three non-
linear link functions—yielding similar findings—are
provided in Appendix E.

• Corruption: To simulate corruption, we employ the
flipping technique [Bogunovic et al., 2021] during the
first n steps. Specifically, for each reward y computed
as y = f(〈θ, φ〉) + ε, where ε is noise from the t3
distribution, we flip the reward to y′ = −f(〈θ, φ〉) + ε.
This manipulation misleads the bandit into making
completely opposite decisions regarding the position
of θ. This simulates a corruption level of C = 2Kn,
where K is the maximum value of f ′. The inequality
|y − y′| = 2f(〈θ, φ〉) ≤ 2K ensures the bound on the
corruption. For linear function, K = 1, while for the
exponential function, K = e. In this experiment, we
choose n = 50.

5.2 EXPERIMENTAL RESULTS

Alternative algorithms. We conducted experiments to
compare the performance of the GAdaOFUL algorithm with
several competing algorithms, including Greedy [Kannan
et al., 2018], OFUL [Abbasi-Yadkori et al., 2011], CW-
OFUL [He et al., 2022a], and AdaOFUL [Li and Sun,
2024], across diverse conditions. The Greedy algorithm
and OFUL are classic bandit learning methods that provide
baselines for our comparisons. CW-OFUL extends OFUL
to enhance robustness against corrupted rewards, making
it a suitable benchmark for comparison with GAdaOFUL
in corrupted environments. While AdaOFUL performs well
under heavy-tailed noise, it does not explicitly address cor-
ruption, enabling a clear comparison of its performance
against GAdaOFUL in such settings.

Experimental results. The results are presented in Figure
1. The x-axis represents the number of steps, while the y-
axis indicates the averaged regret over 10 repeated trials.
The regret-iteration plot illustrates how regret accumulates
as the number of steps increases.

When there is no corruption (i.e., C = 0), the results in sub-
figures (a) and (c) demonstrate that GAdaOFUL achieves
the smallest regret among all considered baselines. Notably,
in scenarios with linear rewards and no corruption, GAdaO-
FUL coincides with the previous AdaOFUL, resulting in
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(a) Linear reward with C = 0.
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(b) Linear reward with C = 100.
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(c) Nonlinear reward with C = 0.
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(d) Nonlinear reward with C = 100e.

Figure 1: Comparison results of various online bandit algorithms are presented under four scenarios: with linear or nonlinear
rewards and in the presence or absence of corruption. The total number of iterations is set to T = 2000.

overlapping curves in subfigure (a). Furthermore, because
AdaOFUL is specifically designed for linear rewards, its
performance significantly degrades when the underlying
reward deviates from a linear model, as shown in subfigure
(c).

Next, we consider the case where corruption exists (i.e.,
C = 1). Again, the results in subfigures (b) and (d) re-
veal that GAdaOFUL achieves the smallest regret among
all baselines. The original AdaOFUL does not account for
nonlinear rewards. To further substantiate the superiority of
our method, we also analyze a stronger competitor, AdaO-
FUL(nonlinear), which employs the same loss function (2)
as GAdaOFUL for computing θ and is designed for nonlin-
ear rewards. The only difference is that GAdaOFUL con-
siders potential corruption in the rewards and modifies the
selection of σ in (19). Interestingly, even with corrupted and

nonlinear rewards, GAdaOFUL maintains its superiority,
demonstrating its effectiveness in managing both nonlinear-
ities and robustness against corruption.

Additionally, to assess the robustness of our method under a
broader range of nonlinear reward structures, we conducted
further experiments with alternative nonlinear functions.
The results, consistent with our main findings, are presented
in Appendix E.

In summary, the experimental results consistently show
that GAdaOFUL outperforms other algorithms across vari-
ous conditions. GAdaOFUL exhibits remarkable robustness,
particularly in the presence of corruption and heavy-tailed
noise, while also remaining effective under nonlinear condi-
tions. These results validate the theoretical foundations of
GAdaOFUL and suggest its practical utility in real-world ap-



plications where the reliability of feedback may be uncertain
or compromised.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced GAdaOFUL, a novel online
bandit algorithm that achieves a state-of-the-art regret bound
of Õ

(
d
√∑

t∈[T ] ν
2
t + d · (C ∨ 1)

)
. This bound highlights

the algorithm’s efficiency in low-variance environments and
its resilience against corrupted, nonlinear, and heavy-tailed
rewards. Specifically, our results demonstrate that sublin-
ear regret is attainable even in the presence of highly non-
standard reward characteristics commonly observed in real-
world scenarios, such as adversarial corruption, nonlinearity,
and heavy-tailed noise. Empirical evaluations show that
GAdaOFUL outperforms existing methods.

There are several promising directions for future research
building on our work.

• First, our algorithm is primarily based on adaptive Hu-
ber regression [Sun et al., 2020], originally designed
for data with only 1+δ (δ ≤ 1) moments. This paper fo-
cuses on rewards with bounded variance, aligning with
the assumptions of most variance-aware algorithms. A
natural direction would be to generalize our results to
settings where rewards possess only 1 + δ moments, in
the spirit of Huang et al. [2024], which builds upon Li
and Sun [2024].

• Second, a key limitation of this work is the depen-
dence on the assumption that the reward model admits
a generalized linear form. However, real-world reward
structures often deviate from the GLM framework, in-
troducing significant model mismatch. One possible
approach is to consider a broader class of reward mod-
els, such as nonparametric and neural-network-based
reward models.

• Third, a promising direction is to leverage our algo-
rithm as a modular component for tackling more com-
plex tasks, such as linear Markov decision processes
(MDPs) [He et al., 2023].

• Fourth, it is practically valuable to develop parameter-
free algorithms, along the lines of Sun [2021], that
do not require prior knowledge of problem- or data-
dependent constants.

• Finally, it is of interest to design more comprehensive
evaluations that stress-test the algorithm under diverse
and potentially misspecified environments. Investigat-
ing the performance of GAdaOFUL under model mis-
specification could inspire more robust algorithms and
provide deeper insights into the limitations of reward-
model-based approaches.
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In the appendix, we provide the proofs of the main results and the supporting lemmas.

A PROOF OF THEOREM 1

Initially, we introduce two lemmas to help our discussion. The first lemma establishes a bound of ‖∇LT (θ∗)‖H−1
t

. The
second lemma asserts that∇2LT (θ) is positive with high probability.

Lemma 6. Assume E
[
z2t (θ∗) | Ft−1

]
6 b2 for all t > 1, where zt(θ) =

yt − f(〈φt, θ〉)
σt

. With probability at least 1− δ,

for all T > 1, it follows that

‖∇LT (θ∗)‖H−1
T

6 8

[
κb2

τ0
+ b

√
κ log

2T 2

δ
+ τ0 log

2T 2

δ

]
+ kB

√
λ, (10)

where κ = d · log
(
1 + TL2/(dλσ2

min)
)

is a constant.

Lemma 7. Assume E
[
z2t (θ∗) | Ft−1

]
6 b2 for all t > 1, where zt(θ) =

yt − f(〈φt, θ〉)
σt

. If we set

τ0

√
log

2T 2

δ
> max{

√
2κb, 2

√
d},

with probability at least 1− 2δ, we have that for all T > 0,

∇2LT (θ) � k

4
HT for any ‖θ‖ 6 B. (11)

Since σt ≥ vt, where vt is the variance of εt = yt − f(〈φt, θ〉), here we set b = 1.

Let θ(η) = (1− η)θ∗ + ηθT . Using the mean value theorem for vector-valued functions, we have

∇LT (θT )−∇LT (θ∗) =

∫ 1

0

∇2LT (θ(η)) dη · (θT − θ∗). (12)

Combining (11) and ‖θ(η)‖ ≤ B for all η ∈ [0, 1], it follows that

k

4
‖θT − θ∗‖2HT

6 〈θT − θ∗,∇LT (θT )−∇LT (θ∗)〉 . (13)
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The first-order stationary condition of the constrained convex optimization that θT := argminθ∈Balld(B) LT (θ) implies

〈∇LT (θT ), θT − θ∗〉 ≤ 0.

Consequently,

〈θT − θ∗,∇LT (θT )−∇LT (θ∗)〉 .
6 〈θT − θ∗,−∇LT (θ∗)〉
6 ‖θT − θ∗‖HT

‖∇LT (θ∗)‖H−1
T
. (14)

By (13) and (14), we have

‖θT − θ∗‖HT
≤ 4

k
‖∇LT (θ∗)‖H−1

t

≤ 32

k

[
κ

τ0
+

√
κ log

2T 2

δ
+ τ0 log

2T 2

δ

]
+ 5B

√
λ. (15)

Then the regret can be bounded as

Reg(T ) ≤ 2KβT

√2κ ·
√∑
t∈[T ]

ν2t + 1 +
2Lκ

m2
0

√
λ

+
2LBKκ√
m1d

 ,
The proof of this can refer to the proof of Theorem 3, with the only difference being that C is set to 0.

A.1 PROOF OF LEMMA 1

Let zt(θ) =
yt − f(〈φt, θ〉)

σt
. The gradient is given by

∇LT (θ) = λkθ −
T∑
t=1

τtzt(θ)√
τ2t + z2t (θ)

φt
σt
.

By triangle inequality, we have

‖∇LT (θ∗)‖H−1
T
≤ ‖λkθ∗‖H−1

T
+

∥∥∥∥∥
T∑
t=1

τtzt(θ
∗)√

τ2t + z2t (θ∗)

φt
σt

∥∥∥∥∥
H−1

T︸ ︷︷ ︸
dT

.

For the first term ‖λkθ∗‖H−1
T

, we have H−1T � λ−1I , due to HT � λI . Thus, ‖λkθ∗‖H−1
T
≤ kB

√
λ.

For the second term ‖dT ‖H−1
T

, we have ‖dT ‖H−1
T
≤ αT , where

αT = 8

[
κb2

τ0
+ b

√
κ log

2T 2

δ
+ τ0 log

2T 2

δ

]
.

The proof of this inequality follows exactly the same steps as the proof of Lemma B.2 in [Li and Sun, 2024], and is therefore
omitted here for brevity. The reader is referred to [Li and Sun, 2024] for a detailed proof.



A.2 PROOF OF LEMMA 2

The second-order gradient is given by

∇2LT (θ) = λkI +

T∑
t=1

(
τt√

τ2t + z2t

)3

f ′ (〈φt, θ∗〉)
φtφ
>
t

σ2
t

� k

λI +

T∑
t=1

(
τt√

τ2t + z2t

)3
φtφ
>
t

σ2
t

 .

where the last inequality holds due to f ′(x) ≥ k, when x ∈ [−BL,BL]. In this case, we can treat it in the same way as the
linear case by decomposing the equation into three parts for processing.

λI +

T∑
t=1

(
τt√

τ2t + z2t

)3
φtφ
>
t

σ2
t

=HT −
T∑
t=1

1−

(
τt√

τ2t + z2t (θ∗)

)3
 φtφ>t

σ2
t︸ ︷︷ ︸

H1,T

−
T∑
t=1

( τt√
τ2t + z2t (θ∗)

)3

−

(
τt√

τ2t + z2t (θ)

)3
 φtφ>t

σ2
t︸ ︷︷ ︸

H2,T

.

Then we can prove that H1,T � 1
4HT , and that H2,T � 1

2HT . For detailed proves, we refer the reader to Lemma B.1 in [Li
and Sun, 2024]. Thus,

∇2LT (θ) � k

λI +

T∑
t=1

(
τt√

τ2t + z2t

)3
φtφ
>
t

σ2
t

 � k

4
HT .

B PROOF OF THEOREM 2

To prove the main theorems, we introduce an auxiliary problem:

zt(s) =
yt − f(s)

σt
, z̃t(s) :=

yt − f(s)− ct
σt

.

L̃T (θ) :=
λk

2
‖θ‖2 +

T∑
t=1

1

σt

∫ 〈φt,θ〉

0

τtz̃t(s)√
τ2t + z̃2t (s)

ds.

θT = arg min
‖θ‖≤B

LT (θ), θ̃T := arg min
‖θ‖≤B

L̃T (θ).

The symbol z̃t(s) is defined as the standardized difference between the observed value yt and the prediction f(s) adjusted
for the corruption ct, all scaled by the noise level σt. A crucial property of z̃t(s) is that E[z̃t(s)|Ft−1] = 0. It means L̃T is
essentially the non-corrupted objective, which we studied in Theorem 1 and we can use (15) to bound

∥∥∥θ̃T − θ∗T∥∥∥
HT

.

Therefore, the only thing we need to do is to find the relationship between θT and θ̃T .



k

4
‖θT − θ̃T ‖2HT

(a)

≤〈∇L̃T (θ̃T )−∇L̃T (θT ), θ̃T − θT 〉

=〈∇L̃T (θ̃T )−∇LT (θT ), θ̃T − θT 〉+ 〈∇LT (θT )−∇L̃T (θT ), θ̃T − θT 〉
(b)

≤〈∇LT (θT )−∇L̃T (θT ), θ̃T − θT 〉

=

T∑
t=1

 τtzt(〈φt, θ〉)√
τ2t + z2t (〈φt, θ〉)

− τtz̃t(〈φt, θ〉)√
τ2t + z̃t

2(〈φt, θ〉)

〈φt
σt
, θ̃T − θT

〉
(c)

≤
T∑
t=1

|zt(〈φt, θ〉)− z̃t(〈φt, θ〉)|
∣∣∣∣〈φtσt , θ̃T − θT

〉∣∣∣∣
=

T∑
t=1

|ct|
σt

∣∣∣∣〈φtσt , θ̃T − θT
〉∣∣∣∣

(d)

≤
T∑
t=1

|ct|wt
σt
‖θT − θ̃T ‖HT

(e)

≤
√
κ‖θT − θ̃T ‖HT

.

Inequality (a) uses mean value theorem and ∇2LT (θ) � k

4
HT , the same as (13). The first-order stationary condi-

tion of the constrained convex optimization implies that 〈∇L̃T (θ̃T ), θ̃T − θT 〉 ≤ 0 and 〈∇LT (θT ), θT − θ̃T 〉 ≤

0, thus proving inequality (b). Inequality (c) comes from the fact that 0 ≤ d

dx

τx√
τ2 + x2

≤ 1. Inequality (d)

uses
∣∣∣∣〈φtσt , θ̃T − θT

〉∣∣∣∣ ≤ ∥∥∥∥φtσt
∥∥∥∥
H−1

T

∥∥∥θ̃T − θT∥∥∥
HT

and
∥∥∥∥φtσt

∥∥∥∥
H−1

T

≤
∥∥∥∥φtσt

∥∥∥∥
H−1

t−1

= wt. Inequality (e) comes from σt =

σ2
t /σt ≥ C‖φt‖H−1

t−1
/
√
κσt = Cwt/

√
κ. Thus, we have

∥∥∥θ̃T − θT∥∥∥
HT

≤ 4
√
κ

k
.

Combining the upper bound of
∥∥∥θ̃T − θ∗T∥∥∥

HT

in (15),

‖θT − θ∗T ‖HT
≤
∥∥∥θ̃T − θT∥∥∥

HT

+
∥∥∥θ̃T − θ∗T∥∥∥

HT

≤ 4
√
κ

k
+

32

k

[
κ

τ0
+

√
κ log

2T 2

δ
+ τ0 log

2T 2

δ

]
+ 5
√
λB.

C PROOF OF THEOREM 3

In this proof, we will bound the regret in the event that high probability coverage holds.

By the Lipschitz continuity of the (nonlinear) link function f (i.e., sup|x|≤BL f
′(x) ≤ K), we bound the regret from its

definition by

Reg(T ) :=

T∑
t=1

[
sup
φ∈Dt

f(〈φ, θ∗〉)− f(〈φt, θ∗〉)

]
≤ K

T∑
t=1

[
sup
φ∈Dt

〈φ, θ∗〉 − 〈φt, θ∗〉

]
. (16)

To bound the right-hand side, we apply a standard argument:



T∑
t=1

[
sup
φ∈Dt

〈φ, θ∗〉 − 〈φt, θ∗〉

]

6
T∑
t=1

[
sup

φ∈Dt,θ∈Ct−1

〈φ, θ〉 − 〈φt, θ∗〉

]
(a)
=

T∑
t=1

[
sup

θ∈Ct−1

〈φt, θ〉 − 〈φt, θ∗〉

]

6
T∑
t=1

‖φt‖H−1
t−1
· sup
θ∈Ct−1

‖θ − θ∗‖Ht−1

(b)

≤2βT ·
T∑
t=1

‖φt‖H−1
t−1

(c)
= 2βT ·

T∑
t=1

σtwt, (17)

where (a) uses the selection rule for φt that (φt, ·) = argmaxφ∈Dt,θ∈Ct−1
〈φ, θ〉, and (b) follows from the implications of

Ct−1. Specifically, for any θ ∈ Ct−1,

‖θ − θ∗‖Ht−1
≤ ‖θ − θt−1‖Ht−1

+ ‖θt−1 − θ∗‖Ht−1
≤ 2βt−1 ≤ 2βT .

The inequality (c) uses definition of wt that wt = ‖φt‖H−1
t−1

/σt.

Here, the problem is converted to how to bound
∑T
t=1 σtwt.

Since σt ≥ ‖φt‖H−1
t−1
/m0 and m0 ≤ 1, we have wt 6 1. Notice that ‖φt‖

σt
6 ‖φt‖

σmin
6 L

σmin
. Then by Lemma 8,

T∑
t=1

w2
t =

T∑
t=1

min
{

1, w2
t

}
=

T∑
t=1

min

{
1,

∥∥∥∥φtσt
∥∥∥∥2
H−1

t−1

}
6 2d log

(
1 +

TL2

dλσ2
min

)
= 2κ, (18)

where κ = d · log
(
1 + TL2/(dλσ2

min)
)

is a constant.

Recall the definition of σt:

σt = max

{
νt, σmin, ‖φt‖H−1

t−1
/m0, α‖φt‖1/2H−1

t−1

}
, (19)

where α = max

{ √
LBK

m
1/4
1 d1/4

, C
1
2κ−

1
4

}
, C =

∑T
t=1 |ct| is the corruption level.

According to what value σt takes, we decompose [T ] into three sets [T ] ⊆ ∪3i=1Ji where

J1 = {t ∈ [T ] : σt ∈ {νt, σmin}} ,

J2 =

{
t ∈ [T ] : σt =

‖φt‖H−1
t−1

m0

}
,

J3 =

{
t ∈ [T ] : σt = α‖φt‖1/2H−1

t−1

}
.

First, for any t ∈ J1,



∑
t∈J1

σtwt 6
∑
t∈J1

max {νt, σmin}wt

6
∑
t∈[T ]

max {νt, σmin}wt

(a)

6
√∑
t∈[T ]

(ν2t + σ2
min)

√∑
t∈[T ]

w2
t

(b)

6
√

2κ ·
√∑
t∈[T ]

ν2t + 1. (20)

Here (a) holds due to Cauchy-Schwarz inequality and (b) uses (18) and σmin = 1√
T

.

Second, for any t ∈ J2, we have

∑
t∈J2

σtwt =
1

m0

∑
t∈J2

σtw
2
t 6

supt∈J2
σt

m0

∑
t∈J2

w2
t

6
supt∈[T ] ‖φt‖H−1

t−1

m2
0

·
∑
t∈J2

w2
t

6
supt∈[T ] ‖φt‖H−1

t−1

m2
0

·
∑
t∈[T ]

w2
t 6

2Lκ

m2
0

√
λ

(21)

where the last inequality holds due to ‖φt‖H−1
t−1

6 1√
λ
‖φt‖ 6 L√

λ
for all t > 1 and (18).

Finally, for any t ∈ J3, we have σ2
t = α2 ‖φt‖H−1

t−1
, which implies σt = α2wt due to wt =

∥∥∥φt

σt

∥∥∥
H−1

t−1

.

Therefore,

∑
t∈J3

σtwt =
∑
t∈J3

α2w2
t ≤ α2

∑
t∈[T ]

w2
t

≤
(
LBK√
m1d

+
C√
κ

) ∑
t∈[T ]

w2
t

≤
(
LBK√
m1d

+
C√
κ

)
· 2κ

=
2LBKκ√
m1d

+ 2C
√
κ. (22)

Plugging (20), (21) and (22) into (16) and (17), we have

Reg(T ) 6 2KβT

√2κ ·
√∑
t∈[T ]

ν2t + 1 +
2Lκ

m2
0

√
λ

+
2LBKκ√
m1d

+ 2C
√
κ

 .
D AUXILIARY LEMMAS

Lemma 8. (Lemma 11 in [Abbasi-Yadkori et al., 2011]). Let {xt}t>1 ⊂ Rd and assume ‖xt‖ 6 L for all t > 1. Set
Zt =

∑t
s=1 xsx

>
s + λI . Then it follows that



T∑
t=1

min
{

1, ‖xt‖2Z−1
t−1

}
6 2d log

(
dλ+ TL2

dλ

)
.

Lemma 9. (Lemma B.1 in [Li and Sun, 2024]). Assume zt(θ) =
yt − 〈φt, θ〉

σt
, E[zt|Ft−1] = 0 and E

[
z2t (θ∗) | Ft−1

]
6 b2

for all t > 1. If we set

τ0

√
log

2T 2

δ
> max{

√
2κb, 2

√
d},

with probability at least 1− 2δ, we have that for all T > 0,

1

4
HT ≤ λI +

T∑
t=1

(
τT√

τ2T + zT (θ2)

)3
φTφ

>
T

σ2
T

≤ HT for any ‖θ‖ 6 B.

Lemma 10. (Lemma B.2 in [Li and Sun, 2024]). Assume zt(θ) =
yt − 〈φt, θ〉

σt
, E[zt|Ft−1] = 0 and E

[
z2t (θ∗) | Ft−1

]
6 b2

for all t > 1. With probability at least 1− δ, for all T > 1, it follows that∥∥∥∥∥λθ∗ −
T∑
t=1

τT zT (θ∗)√
τ2T + z2T (θ∗)

φT
σT

∥∥∥∥∥
H−1

T

6 8

[
κb2

τ0
+ b

√
κ log

2T 2

δ
+ τ0 log

2T 2

δ

]
+
√
λB

where κ = d · log
(
1 + TL2/(dλσ2

min)
)
.

E ADDITIONAL EXPERIMENTS ON NONLINEAR REWARD FUNCTIONS

In this section, we present additional experimental results to further show the effectiveness of GAdaOFUL across other
types of nonlinear reward functions. Specifically, we consider the following mappings f : (1) logistic function: f(x) =

5

1 + exp(−x)
, (2) quadratic function: f(x) = (x+ 1.5)2, and (3) logarithmic function: f(x) = 3 log(x+ 2).

Each function is monotonically increasing and has been appropriately translated and scaled to meet our modeling assumptions.
The corresponding results are presented in the following subsections. As shown, our method consistently achieves the lowest
regret, regardless of whether reward corruption is present.

E.1 LOGISTIC LINK FUNCTION
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Figure 2: Performance under clean and corrupted settings with the logistic link function.



E.2 QUADRATIC LINK FUNCTION
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Figure 3: Performance under clean and corrupted settings with the quadratic link function.

E.3 LOGARITHMIC LINK FUNCTION
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Figure 4: Performance under clean and corrupted settings with the logarithmic link function.
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