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Abstract

We study compressive sensing with a deep generative network prior. Initial theoret-
ical guarantees for efficient recovery from compressed linear measurements have
been developed for signals in the range of a ReLU network with Gaussian weights
and logarithmic expansivity: that is when each layer is larger than the previous one
by a logarithmic factor. It was later shown that constant expansivity is sufficient for
recovery. It has remained open whether the expansivity can be relaxed, allowing
for networks with contractive layers (as often the case of real generators). In this
work we answer this question, proving that a signal in the range of a Gaussian
generative network can be recovered from few linear measurements provided that
the width of the layers is proportional to the input layer size (up to log factors). This
condition allows the generative network to have contractive layers. Our result is
based on showing that Gaussian matrices satisfy a matrix concentration inequality
which we term Range Restricted Weight Distribution Condition (R2WDC) and
which weakens the Weight Distribution Condition (WDC) upon which previous
theoretical guarantees were based. The WDC has also been used to analyze other
signal recovery problems with generative network priors. By replacing the WDC
with the R2WDC, we are able to extend previous results for signal recovery with
expansive generative network priors to non-expansive ones. We discuss these
extensions for phase retrieval, denoising, and spiked matrix recovery.

1 Introduction

The compressed sensing problem consists in estimating a signal y? 2 Rn from (possibly) noisy linear
measurements

b = Ay? + ⌘

where A 2 Rm⇥n is the measurements matrix, m < n and ⌘ 2 Rm is the noise.

To overcome the ill-posedness of the problem, structural priors on the unknown signal y? need to
be enforced. One now classical approach assumes that the target signal y? is sparse with respect
to a given basis. In the last 20 years, efficient reconstruction algorithms have been developed that
provably estimate s-sparse signals in Rn from m = O(s log n) random measurements [5, 12].

Another approach recently put forward, leverages trained generative networks. These networks
are trained, in an unsupervised manner, to generate samples from a target distribution of signals.
Assuming y? belongs to the same distribution used to train a generative network G : Rk ! Rn with
k ⌧ n, an estimate of y? can be found by searching the input x̂ (“latent code”) of G that minimizes
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the reconstruction error

x̃ = arg min
x2Rx

fcs(x) :=
1

2
kb�AG(x)k22, (1)

y? ⇡ G(x̃).

As empirically demonstrated in [3], the minimization problem (1) can be solved efficiently by gradient
descent methods. Moreover, solving (1) can effectively regularize the solution of the compressed
sensing problem, significantly outperforming sparsity-based algorithms in the low measurements
regime[3]. Generative network based inversion algorithms have been subsequently developed for a
variety of signal recovery problems, demonstrating their potential to outperform inversion algorithms
based on non-learned (hand-crafted) priors [16, 31, 30, 20, 33, 28]. For a recent overview see [32].

The optimization problem (1) is in general non-convex and gradient-based methods could get stuck
in local minima. To better understand the empirical success of (1), in [18] the authors established
theoretical guarantees for the noiseless compressed sensing problem (⌘ = 0) where G : Rk ! Rn is
a d-layer ReLU network of the form:

G(x) = ReLU(Wd · · ·ReLU(W2ReLU(W1x))) (2)

with Wi 2 Rni⇥ni�1 , n0 = k, nd = n, and ReLU(z) = max(z, 0) is applied entrywise. The authors
of [18] used a probabilistic model for the generative network G and measurement matrix A. They
assumed that each layer Wi has independent Gaussian entries and is strictly expansive. Specifically it
holds that

ni � ni�1 · log ni�1 · poly(d) for all i = 1, . . . , d. (3)
Moreover, they considered A to be a Gaussian matrix and m � k · log n · poly(d). Under this proba-
bilistic model it was shown in [18] that, despite its non-convexity, fcs has a favorable optimization
geometry and no spurious critical points exist apart from x? and a negative multiple of it �⇢dx?,
where ⇢d is a function of the depth d of the network.

The landscape analysis was later extended to recovery guarantees using a gradient based method in
[21], under the same probabilistic assumptions of [18]. In particular, [21] has shown that there is
an efficient gradient descent method (see Algorithm 1 in Section 3) that given as input A,G and b

outputs a latent vector x̃ such that ky? �G(x̃)k2 = O(k⌘k2). This result demonstrated that efficient
recovery is possible with a number of measurements which is information-theoretic optimal up to
log-factors in n and polynomials in d (m = ⌦̃(k)).

Generative networks used in practice though, have often contractive layers. For example, the output
of the layers near the end of the StyleGAN generators have larger dimension than the generated
images [25, 24]. Thus, one major drawback of the theory developed in [18] is constituted by the
expansivity condition on the weight matrices (3). Relaxing the condition (3) and accommodating for
generative networks with contractive layers was formulated as an open problem in the survey paper2

[32].

An initial positive result on this problem came from [10]. Using a refined analysis of the concentration
of Lipschitz functions, the authors proved that the results of [18, 21] hold true also for weight matrices
satisfying ni � ni�1 · poly(d). While not allowing for contractive layers, this condition removed the
logarithmic expansivity requirement of (3).

More recently, [22, 23] have studied the denoising and compressive sensing problem with random
generative network prior as in [18, 21, 20], and have shown that the expansivity condition can indeed
be relaxed. In [23] they have provided an efficient iterative method that given as input A, b and G,
assuming that up to log-factors each layer width satisfies

ni & 5ik, (4)

and the number of measurement satisfies

m & 2dk, (5)

outputs a latent vector x̃ such that for y? = G(x?) it holds that ky? � G(x̃)k2 = O(2d
q

k
mk⌘k2)

with high probability. Notice that the condition (4) while requiring the width to grow with the depth,
can allow for contractive layers ni < ni�1.

2This open problem was also proposed in the recent talk [11].
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1.1 Our contributions

It is natural to wonder whether the price to pay to remove the expansivity assumption is indeed the
exponential factors in the depth d of the network and the use of less-standard non-gradient based
iterative methods, as happens in [22, 23]. In this paper, we answer these questions. Our main result is
summarized below and provides guarantees for solving compressed sensing with random generative
network priors via a gradient descent method (Algorithm 1 in Section 3).

Theorem 1.1 (Informal version of Theorem 5.4). Assume that A has i.i.d. N (0, 1/m) entries and

each Wi has i.i.d. N (0, 1/ni) entries. Suppose that y? = G(x?). Furthermore assume that, up to

log-factors,

1. ni � k · poly(d);

2. m � k · poly(d).

Suppose that the noise error and the step size ↵ > 0 are small enough. Then with high probability,

Algorithm 1 with input loss function fcs, step size ↵ and number of iterations T =poly(d), outputs an

estimate G(xT ) satisfying kG(xT )� y?k2 = O(
q

k
mk⌘k2).

Compared to [21] and [10], our result do not require strictly expanding generative networks and
allows for contractive layers. Furthermore, we show that the same algorithm proposed in [21] has a
denoising effect, leading to a reconstruction of the target signal y? of the order O(

q
k
mk⌘k2) rather

than only O(k⌘k2). We show that this holds true even in case of deterministic noise, while [19]
discuss only the case of Gaussian noise. Furthermore, the decrease in the reconstruction error with
the number of measurements has also been observed for trained generative networks (see for example
[3]), and here we give a partial theoretical explanation for this phenomenon.

Compared to the results of [23] we show that it is sufficient for the width of the layers as well as the
number of measurements to grow polynomially with the depth rather than exponentially. Similarly,
compared to [23], we remove the exponential factor in the depth from the reconstruction error.

The analysis of [18] was based on a deterministic condition on the weight matrices termed Weight

Distribution Condition (WDC). This condition, together with a deterministic condition on A (see Sec
4 for details), was shown to be sufficient for the absence of spurious local minima in (1) and to be
satisfied by expansive Gaussian random generative networks as (2). The WDC was also used in the
subsequent [21] to prove convergence of Algorithm 1. Our main technical contribution is to show
that the WDC can be replaced by a weaker form of deterministic condition, termed Range Restricted

Weight Distribution Condition (R2WDC), and still, obtain the absence of spurious local minima and
recovery guarantees via Algorithm 1. We will then show that random Gaussian networks satisfying
the Assumption 1. of Theorem 1.1 satisfy the R2WDC.

The framework introduced in [18] was used in a number of recent works to analyze other signal
recovery problems with generative network priors, from one-bit recovery to blind demodulation
[34, 27, 16, 15, 35, 8]. These works considered expansive generative network priors, using the WDC
and the results of [18] in their analysis. Replacing the WDC with our R2WDC we can extend the
previous results in the literature to more realistic (non-expansive) generative networks. This paper
details these extensions for three representative signal recovery problems.

Theorem 1.2. Suppose G is random generative network as in (2), satisfying Assumption 1. of

Theorem 1.1. Then Algorithm 1 with appropriate loss functions, step sizes, and number of steps,

succeed with high probability for Phase Retrieval, Denoising, and Spiked Matrix Recovery.

Our result on the denoising problem, implies a similar result on the inversion of a generative network.
The problem of inverting a generative neural network has important applications [39, 1, 33], and
has been recently analyzed theoretically [26, 22, 2]. Our result shows that a random generative
network can be efficiently inverted by gradient descent, even when containing contractive layers.
This motivates the empirical use of gradient-based methods for inverting generative networks.
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1.2 Organization of the paper

This paper is organized as follows. In Section 2 we introduce some notation used in the rest of the
paper. In Section 3 we formalize the compressed sensing problem with a generative network prior
and describe an algorithm for the recovery. In Section 4 we describe our novel deterministic condition
on the weights of the network (R2WDC) and provide theoretical guarantees for solving compressed
sensing with a generative network prior satisfying this condition via the algorithm described in
Section 3. Then in Section 5 we demonstrate that random non-expansive generative networks satisfy
the R2WDC with high probability. The appendix contains the full proof of the results described in the
main text. Appendix F contains the extension of the theoretical guarantees for compressed sensing
with a generative network prior to other signal recovery problems.

2 Preliminaries

We use In to denote the n⇥ n identity matrix. For j � 0, we define the j-th sub-network Gj : Rk !
Rnj as Gj(x) = ReLU(Wj · · ·ReLU(W2ReLU(W1x))), with the convention that G0(x) = Ikx = x.
For a matrix W 2 Rn⇥k, let diag(Wx > 0) be the diagonal matrix with i-th diagonal element
equal to 1 if (Wx)i > 0 and 0 otherwise, and W+,x = diag(Wx > 0)W . We then define
W1,+,x = (W1)+,x = diag(W1x > 0)W1 and

Wj,+,x = diag(WjWj�1,+,x · · ·W2,+,xW1,+,x)Wj .

Finally, we let ⇤0,x = Ik and for j � 1 ⇤j,x =
Qj

`=1 W`,+,x with ⇤x = ⇤d,x =
Qd

`=1 W`,+,x.
Notice in particular that Gj(x) = ⇤j,xx and G(x) = ⇤xx.

For r, s nonzero vectors in R`, we define the matrix

Qr,s =
⇡ � ✓r,s

2⇡
I` +

sin ✓r,s
2⇡

Mr̂$ŝ (6)

where ✓r,s = \(r, s), r̂ = r/krk2, ŝ = s/ksk2, I` is the ` ⇥ ` identity matrix and Mr̂$ŝ is the
matrix that sends r̂ 7! ŝ, ŝ 7! r̂, and with kernel span({r, s})?. If r or s are zero, then we let
Qr,s = 0. The operator Qr,s is used to define the WDC in the next sections, and allows to
control how a random ReLU layer distorts its inputs. Specifically, for very r, s 2 R` we have
E
⇥
ReLU(Wr)TReLU(Ws)

⇤
= r

T
Qr,ss when W 2 Rn⇥` has i.i.d. N (0, 1/n).

3 Problem statement and recovery algorithm

Consider a generative network G : Rk ! Rn as in (2). The compressive sensing problem with a
generative network prior can be formulated as follows.

COMPRESSED SENSING WITH A DEEP GENERATIVE PRIOR
Let: G : Rk ! Rn generative network, A 2 Rm⇥n measurement matrix.
Let: y? = G(x?) for some unknown x? 2 Rk.

Given: G and A.
Given: Measurements b = Ay? + ⌘ 2 Rm with m⌧ n and ⌘ 2 Rm noise.

Estimate: y?.

To solve the compressed sensing problem with deep generative prior G, in [21], the authors propose
the gradient descent method described in Algorithm 1 with objective function f = fcs. This algorithm
attempts to minimize the objective function fcs in (1). Because of the ReLU activation function, the
loss function fcs is nonsmooth. Algorithm 1 therefore resorts to the notion of Clarke subdifferen-

tial. Indeed, being continuous and piecewise smooth, fcs is differentiable almost everywhere (by
Rademacher’s theorem) and admits a Clarke subdifferential given by3:

@fcs(x) = conv
�

lim
p!1

rfcs(xp) : xp ! x, xp 2 dom(rfcs)
 
, (7)

3For details see for example [7].
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where with conv(·) we denote the convex hull and with dom(rf) the subset of Rk where f is
differentiable. The vectors vx 2 @fcs(x) are called the subgradients of fcs at x, and at a point x
where fcs is differentiable it holds that @fcs(x) = {rfcs(x)}.

Algorithm 1: SUBGRADIENT DESCENT [21]
Input: Objective function f , initial point x0 2 Rk \ {0} and step size ↵

Output: An estimate of the target signal y? = G(x?) and latent vector x?

1 for t = 0, 1, . . . do
2 if f(�xt) < f(xt) then x̃t  �xt

3 else x̃t  xt

4 Compute vx̃t 2 @f(x̃t)
5 xt+1  x̃t � ↵vx̃t

6 end
7 return xt, G(xt)

Notice that, as described in line 5, Algorithm 1 corresponds to a subgradient descent method with
constant step size ↵. Before taking a step in the direction of the subgradient though, the algorithm
checks whether the objective function at the current state xt has a larger value than the value at its
negative�xt, and if so it updates the current state with its negative (line 3-4). This negation step allows
the algorithm to escape the spurious critical point in a neighborhood of�⇢dx? where ⇢d 2 (0, 1), and
it is motivated by the landscape analysis of fcs under the deterministic and probabilistic assumptions
that we describe in the coming sections.

4 Recovery guarantees under deterministic conditions

The strategy taken in [18] and [21] to analyze the landscape of the minimization problem (1) and
the convergence of Algorithm 1, consists in identifying a set of deterministic conditions on the
measurements matrix A and the generative network G, that ensure that the objective function fcs is
well behaved and Algorithm 1 converges efficiently to an estimate of x? and y?. These conditions are
then shown to hold with high probability under probabilistic models for A and G. This is akin to the
results on compressed sensing with sparsity where, for example, recovery guarantees were developed
under the Restricted Isometry Property [4].

The first condition, introduced in [18], is on the measurement matrix A and ensures that AT
A behaves

like an isometry over differences of points in the range of a generative network G.

Definition 4.1 (RRIC [18]). A matrix A 2 Rm⇥n satisfies the Restricted Isometry Condition with
respect to G with constant ✏ if for all x1, x2, x3, x4 2 Rk, it holds that

���h
�
A

T
A� In

��
G(x1)�G(x2)

�
, G(x3)�G(x4)i

���  ✏kG(x1)�G(x2)kkG(x3)�G(x4)k

The second deterministic condition introduced in [18] is on the weight matrices of G, ensures that
they are approximately distributed like a Gaussian, and allows the control of how the layers of the
network distort angles.

Definition 4.2 (WDC [18]). We say that a generative network G as in (2), satisfies the Weight
Distribution Condition (WDC) with constant ✏ > 0 if for all i = 1, . . . , d, for all r, s 2 Rni�1 :

k(Wi)
T
+,r(Wi)+,s �Qr,sk2  ✏, (8)

Strictly speaking, in [18] the authors define the WDC as a property of a single weight matrix W , and
then assume that the WDC is satisfied at each layer Wi of G. This is equivalent to the definition above
and simplifies the introduction of a novel, weaker, condition on the weight matrices, the R2WDC
below.

Definition 4.3 (R2WDC). We say that a generative network G as in (2), satisfies the Range Restricted
Weight Distribution Condition (R2WDC) with constant ✏ > 0 if for all i = 1, . . . , d, and for all
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x, y, x1, x2, x3, x4 2 Rk , it holds that
��h
�
(Wi)

T
+,r(Wi)+,s �Qr,s

�
u, vi

��  ✏kukkvk,
where r = Gi�1(x),

s = Gi�1(y),

u = Gi�1(x1)�Gi�1(x2),

and v = Gi�1(x3)�Gi�1(x4).

(9)

Notice that the R2WDC is weaker than the WDC. Indeed, (8) and (9) are equivalent for i = 1, but for
i � 2 equation (8) requires (Wi)t+,r(Wi)+,s to be close to the matrix Qr,s for any vector r, s 2 Rni�1

and when acting on any vector u, v 2 Rni�1 , while equation (9) requires (Wi)t+,r(Wi)+,s to be close
to the matrix Qr,s only for vectors r, s on the range of Gi�1 and when acting on vectors u, v 2 Rni�1

given by the difference of points on the range of Gi�1. Notice that contrary to (8), defining the
R2WDC (9) for layer i requires considering the input/ouput pairs of the layers up to i� 1.

Our first technical result provides theoretical guarantees for efficiently estimating a target signal y? on
the range of a generative network from few linear measurements under the RRIC and the R2WDC .
Theorem 4.4. Suppose d � 2, and A and G satisfy the RRIC and the R2WDC with constant

✏ < K1/d
90

. Assume that k⌘k2  K2kx?k2

d422d/2
. Let {xt} be the iterates generated by Algorithm 1 with

loss function fcs, initial point x0 2 Rk \ {0} and step size ↵ = K3
2d

d2 . Then there exists a number of

steps T satisfying T  K4f(x0)2
d

d4✏kx?k2
2

such that

kxT � x?k2  K5d
9kx?k2

p
✏+K6d

62d/2!k⌘k2.
In addition, for all t � T , we have

kxt+1 � x?k2  C
t+1�T kxT � x?k2 +K72

d/2k⌘k2,

kG(xt+1)� y?k2 
1.2

2d/2
C

t+1�T kxT � x?k2 + 1.2K7k⌘k2,

where C = 1� 7
8

↵
2d 2 (0, 1). Here, K1, . . . ,K7 are universal positive constants.

Remark 1. The exponential factors 2d appearing in the conditions and theses of the theorem are

artifacts of the scaling of the weights of the generative network. For example, the output G(x) of the

network scales like kxk2/2d/2 and the loss function fcs(x) as kxk22/2d (see for example Proposition

C.1). Hence, for new constants K
0
2,K

0
4 the bounds for ⌘ and T could be equivalently written as

k⌘k2  K
0
2ky?k2/d42 and T  K

0
4f(x0)/(d4✏ky?k22). Choosing the weights of the network to be

{
p
2Wi}i2[d] would remove the 2d factors in the above theorem (and scale the definition of R2WDC).

This theorem shows that, despite the nonconvexity of the minimization problem (1), if the RRIC
and the R2WDC hold with constant ✏, after T = O(✏�1) number of iterations the iterates of the
subgradient descent method described in Algorithm 1 enter in a region of local convergence around
x?. Moreover, after a large enough number of steps, G(xt) gives an estimate of the target signal y?
up to the noise level O(k⌘k).

Theorem 3.1 in [21] shows that Theorem 4.4 holds assuming that the RRIC and the WDC hold. Our
first technical contribution is to show that the WDC in Theorem 3.1 of [21], can be relaxed into the
R2WDC. Relaxing the WDC into the R2WDC, will enable the relaxing of the expansivity assumption
needed to show that the WDC holds for Gaussian generative networks as we demonstrate in Section
5.

We next describe the role of these deterministic conditions in the analysis of the problem (1). The
full proof of Theorem 4.4 is given in Appendix C.

4.1 Global landscape analysis via the R2WDC

The analysis of [18] and [21] follows the approach recent line of works that analyze the global
landscape geometry of non-convex optimization problems arising in statistical and signal recovery
problems (see for example [36, 37, 14, 13] and [6] for an overview). The analysis roughly consists of
two steps:
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i) Showing that fcs(x) ⇡ fE(x) and @fcs(x) ⇡ hx uniformly over x.
ii) Analyzing the global properties of fE(x) and hx, and transfer them to fcs(x) and hx using the

first step.

Here fE(x) and hx are continuous functions of x, corresponding to the expected value of fcs(x) and
@fcs(x) under Gaussian weights and measurement matrix A (see next section for details) and zero
noise. The RRIC and the WDC are used in [18] and [21] to obtain the uniform concentration in the
first step, as well as directly proving convexity-like properties of @fcs(x) in the vicinity of x?.

To illustrate how the WDC and the R2WDC come into play, consider for simplicity the noiseless
case ⌘ = 0. Then at a point x 2 Rk where G is differentiable, the gradient of fcs is given by

rfcs(x) = ⇤T
d,xA

T (A⇤d,xx�A⇤d,x?x?),

⇡ ⇤T
d,x(⇤d,xx� ⇤d,x?x?)

where ⇤d,x and ⇤d,x? ar defined in Section 2 and the approximation uses the fact that A satisfies the
RRIC with respect to G. Then if G satisfies the WDC we have that

rfcs(x) ⇡ ⇤T
d,x(⇤d,xx� ⇤d,x?x?)

= ⇤T
d�1,x(Wd)

T
+,Gd�1(x)

(Wd

�
+,Gd�1(x)

⇤d�1,xx� ⇤T
d�1,x(Wd)

T
+,Gd�1(x)

(Wd

�
+,Gd�1(x?)

⇤d�1,x?x?

= ⇤T
d�1,x

h
QGd�1(x),Gd�1(x) +O(✏)

i
⇤d�1,xx� ⇤T

d�1,x

h
QGd�1(x),Gd�1(x?) +O(✏)

i
⇤d�1,x?x?

where the last line used the WDC to control the concentration of (Wd)T+,Gd�1(x)
(Wd

�
+,Gd�1(x)

and
(Wd)T+,Gd�1(x)

(Wd

�
+,Gd�1(x?)

. The resulting terms are then controlled again applying the WDC to
the the other d� 1 weights of G, so that proceeding by induction over d one obtains

rfcs(x) ⇡ hx :=
1

2d
x� 1

2d
h̃x,x? , (10)

where h̃ is a deterministic vector field defined in Appendix C.

In Appendix C we show that the R2WDC can be used to control directly the concentration of the
terms

⇤T
d�1,x(Wd)

T
+,Gd�1(x)

(Wd

�
+,Gd�1(x)

⇤d�1,xx

and
⇤T
d�1,x(Wd)

T
+,Gd�1(x)

(Wd

�
+,Gd�1(x?)

⇤d�1,x?x?,

around their expectation (with respect to Wd) obtaining in this way

rfcs(x) ⇡ ⇤T
d,x(⇤d,xx� ⇤d,x?x?)

= ⇤T
d�1,x

⇥
QGd�1(x),Gd�1(x)

⇤
⇤d�1,xx� ⇤T

d�1,x

⇥
QGd�1(x),Gd�1(x?)

⇤
⇤d�1,x?x?

+O(✏k⇤d�1,xkk⇤d�1,xxk) +O(✏k⇤d�1,xkk⇤d�1,x?x?k)
Then again applying the R2WDC to the other layers of G, we can show that (10) still holds. We can
then borrow the analysis of hx from [21] and obtain the same convergence guarantees.

The advantage of using the R2WDC over the original WDC, is that it is satisfied by random generative
networks with contractive layers as we demonstrate in the next section.

5 Recovery guarantees under probabilistic assumptions

In this section we give probabilistic models for the measurement matrix A, generative network G,
and noise vector ⌘ that will ensure that the RRIC and the R2WDC are satisfied with high probability
and Algorithm 1 efficiently estimate the target signal y? up to an error of the order Õ(

p
k/mk⌘k).

We make the following assumption on the sensing matrix A 2 Rm⇥n.
Assumptions A.

A.1 A is independent from {Wi}di=1.
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A.2 A has i.i.d. N (0, 1/m) entries.

A.3 There are sufficient number of linear measurements:

m � bC✏ · k · log
dY

j=1

e ni

k
, (11)

where bC✏ depends polynomially on ✏
�1

.

Under Assumptions A, the measurement matrix satisfies the RRIC with respect to G with high
probability.
Lemma 5.1 (Consequence of Proposition 6 in [18]). Let Assumptions A be satisfied. Then A satisfies

the RRIC with constat ✏ > 0 with respect to G, with probability at least

1� �̂e
�ĉ✏m

where �̂ and ĉ are positive universal constants.

Proof. This result is proved in Proposition 6 in [18] for a number of measurements m satisfying
m � C

0
✏ · k · d · log

Qd
j=1 nj where C 0

✏ depends polynomially on ✏. To imporove the lower bound on
m to (11) it is enough to follow the proof of Proposition 6 in [18] and use the sharper upper bound on
the number of affine subspaces in the range of a gnerative network given in Lemma D.1.

We then provide a probabilistic model for a generative network G : Rk ! Rn as in (2).
Assumptions B.

B.1 Each weight matrix Wi 2 Rni⇥ni�1 have i.i.d. N (0, 1/ni) entries.

B.2 The first layer satisfies n1 � eC✏ · k, and for any i = 2, . . . , d:

ni � eC✏ · k · log
i�1Y

j=1

e nj

k
, (12)

where C̃✏ depends polynomially on ✏
�1

.

B.3 The {Wj}dj=1 are independent.

Under Assumptions B, the generative network G satisfies the R2WDC .
Lemma 5.2. Fix 0 < ✏ < 1. Consider a d-layer ReLU network G with weight matrices {Wi}di=1.

Assume that the {Wi}di=1 satisfy Assumptions B. Then G satisfies the R2WDC with constant ✏ with

probability at least

1� �

⇣
en1

k

⌘2k
e
�c✏n1 � �

dX

i=2

⇣
e ni

k + 1

⌘4k
e
�c✏ni/2

where c✏ depends polynomially on ✏
�1

and � is a positive absolute constant.

We finally conclude with some assumptions on the noise vector ⌘ 2 Rm.
Assumption C. The noise vector ⌘ is independent from A and the weights {Wi}di=1

The next lemma is used to bound the perturbation of the objective function fcs and its gradient due to
the presence of the noise term ⌘. These bounds are then used to show that Algorithm 1 leads to a
reconstruction of y? of the order O(

p
k/mk⌘k).

Lemma 5.3. Suppose G : Rk ! Rn
satisfies the R2WDC with ✏ < 1/(16⇡d2)2 and d � 2. Let

A 2 Rm⇥n
be a matrix with i.i.d. entries N (0, 1/m) and ⌘ 2 Rm

satisfies Assumption C. Let

! :=
2

2d/2

r
13

12

vuut k

m
log

⇣
5

dY

j=1

e ni

k

⌘
. (13)
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Then with probability at least

1� e
� k

2 log(5
Qd

i=1
e ni
k )

for every x 2 Rk
we have that

hx,⇤T
xA

T
⌘i  !k⌘kkxk, (14)

if in addition G is differentiable at x we also have that

k⇤T
xA

T
⌘k  !k⌘k. (15)

Given the previous assumptions, we are now ready to state the main result of this section.

Theorem 5.4. Suppose d � 2, ✏ < K1/d
90

and !k⌘k2  K2kx?k2

d422d/2
where ! is defined in (13).

Assume that A, G and ⌘ satisfy Assumptions A, B and C. Then with probability at least

1� �

⇣
e n1

k

⌘2k
e
�c✏n1 � �

dX

i=2

⇣
e ni

k + 1

⌘4k
e
�c✏ni/2 � �̂e

�ĉ✏m � e
� k

2 log(5
Qd

i=1
e ni
k )

, (16)

where �, �̂ and ĉ are positive universal constants, the following holds. Let {xt} be the iterates

generated by Algorithm 1 with loss function fcs, initial point x0 2 Rk \ {0} and step size ↵ = K3
2d

d2 .

There exists a number of steps T satisfying T  K4f(x0)2
d

d4✏kx?k2
such that

kxT � x?k2  K5d
9kx?k2

p
✏+K6d

62d/2!k⌘k2.

In addition, for all t � T , we have

kxt+1 � x?k2  C
t+1�T kxT � x?k2 +K72

d/2
!k⌘k2,

kG(xt+1)� y?k2 
1.2

2d/2
C

t+1�T kxT � x?k2 + 1.2K7!k⌘k2,

where C = 1� 7
8

↵
2d 2 (0, 1). Here, K1, . . . ,K7 are universal positive constants.

Proof. Combining Lemma 5.1, Lemma 5.2 and Theorem 4.4 we obtain Theorem 5.4 with ! = 1 and
probability at least

1� �

⇣
e n1

k

⌘2k
e
�c✏n1 � �

dX

i=2

⇣
e ni

k + 1

⌘4k
e
�c✏ni/2 � �̂e

�ĉ✏m
.

Inspecting the proof of Theorem 3.1 in [21], it is easy to see that if Lemma 5.3 holds, then the
conclusions of Theorem 5.4 hold with ! given by (13) and probability at least (16).

Remark 2. As for Theorem 4.4, the exponential factors 2d are artifacts of the scaling of the weights

of the network. Had the entries of Wi been drawn from N (0, 2/ni) the 2d factors would not be

present.

Remark 3. Notice that 4k log(en/(k + 1)
�
 4klog(n)/log(2) for every n � 2. Thus if for every

i = 1, . . . , d, it holds that

ni

log(ni)
� 16 · k · c�1

✏

log(2)
(17)

the conclusions of the theorem hold with nontrivial probability bounds. In Appendix G we provide an

example of a generative network G with contractive layers satisfying both (12) and (17).

Theorem 5.4 provides guarantees for the efficient recovery of a signal y? in the range of a generative
network G from few noisy linear measurements, using a nonconvex (sub)gradient descent method.
Notice that the intrinsic dimension of the signal y? is k (the dimension of the latent space) and the
number of measurements required m is proportional to k and information-theoretically optimal up
to log factors in the widths of the network and polynomials in the depth. Notice moreover, that up
to these factors, the width ni of each layer of the network is also required to be linear in k. This
is necessary to ensure that each subnetwork Gi : Rk ! Rni is invertible, and it is weaker than

9



the assumptions in the previous works that required ni to be linear in ni�1 in order to ensure the
invertibility of every single layer.

In Appendix H we empirically verify the predictions of Theorem 5.4, demonstrating how (a practical
variant of) Algorithm 1 recover signals y? in the range of non-expansive generative networks from
undersampled noisy measurements. We show that the recovery is linear in k/m and that in practice
the dependence on the depth d of the networks is milder than that predicted by our theory. We leave
for future works the establishing of sharper bounds in the depth d.

Limitations of the current and previous works on theoretical guarantees for signal recovery with
generative networks are the Gaussian assumption on the weights and the absence of biases. Important
directions of future research are the inclusion of biases in the generative network and the departure
from the Gaussian weights assumptions for more realistic probabilistic models.
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