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Abstract:

The design and control of wearable robotics to assist human movement present
a significant challenge, largely due to the complexity of human-robot interaction.
Traditional development cycles that rely on extensive hardware prototyping and
human subject testing are often costly, time-consuming, and pose potential safety
risks. We present a novel simulation framework for the rapid, real-time opti-
mization of wearable robotics hardware and control parameters. Our approach
leverages a detailed, whole-body musculoskeletal model to simulate dynamic in-
teractions between the human user and an exoskeleton during both locomotion
and balance tasks. This collaborative simulation enables the efficient evaluation
of various wearable robotics configurations and control strategies, providing deep
insights into their effects on human biomechanics, including muscle activation
patterns and stability. We demonstrate the framework’s efficacy by optimizing hip
exoskeletons for assistance, proving that this approach can rapidly provide action-
able insights into device design and control, thereby accelerating the development
and reducing the risks associated with creating assistive robotic technologies.

Keywords: wearable robotics, balance control, human locomotion, muscu-
loskeletal system

1 Introduction

Bipedal locomotion and balance have been extensively studied in robotics and control, with research
demonstrating the inherent challenges of stabilizing underactuated, high-degree-of-freedom systems
[1, 2, 3]. In humanoid robotics, stability is often analyzed using criteria such as limit cycles and
gait periodicity [4, 5, 6]. However, these challenges are not exclusive to bipedal humanoid robots.
Maintaining stable bipedal posture and gait remains a complex task for humans, for these functions
rely on precise neuromuscular coordination, multi-sensory integration, and the nonlinear dynamics
of the human musculoskeletal system.

Recent advances in musculoskeletal simulation have enabled biomechanically realistic models of
human movement, providing unique opportunities to study balance, locomotion, and muscle-level
mechanics in simulation [7, 8, 9, 10, 11]. Recent work introduced a full-body human musculoskele-
tal system that simulates whole-body dynamics [12]. Such models offer controlled, repeatable con-
ditions that are difficult or unsafe to achieve in physical experiments, making them well suited for
investigating interactions between humans and assistive devices under various conditions. This capa-
bility is particularly relevant for wearable robotics such as exoskeletons, whose influence on human
balance, gait, and muscle activation is often difficult to quantify comprehensively in live trials due
to hardware limitations, safety concerns, and measurement constraints.

In this work, we extend full-body musculoskeletal simulation to develop a validation platform for
exoskeleton—human interaction. Our framework enables rapid evaluation of how wearable robotics
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morphology and assistance control policies affect human gait, stability, and muscle activation de-
mands. By integrating detailed musculoskeletal dynamics with controllable representations of
human-exoskeleton interaction, we can conduct fast design iterations and primary validation prior
to hardware prototyping, reducing development cost and risk.

We demonstrate the use of this simulation—validation pipeline for multiple exoskeleton configura-
tions, highlighting its ability to (i) capture the muscle-level effects of different assistance strategies,
(i1) quantify their influence on gait and postural balance, and (iii) provide actionable insights for
optimizing both mechanical design and control policy.
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Figure 1: Control and analysis of human musculoskeletal standing and falling. HBC enables
training-free balance control and efficient collection of dynamical behavior for balance analysis.
Our method supports concurrent control planning for exoskeleton-assisted scenarios, facilitating in-
tegrated evaluation and optimization of human-exoskeleton interaction.

2 Related Work

2.1 Wearable robotics for Balance and Locomotion Assistance

Wearable robotics such as lower-limb exoskeletons have been widely used to improve human per-
formance in a variety of locomotion tasks, such as walking, running, and stair climbing, for both
able-bodied individuals and those with mobility impairments [13, 14, 15, 16]. They have demon-
strated the ability to reduce the metabolic cost of locomotion and restore mobility for individuals
with neurological disorders like stroke or spinal cord injury, aiding in gait recovery and daily activ-
ities [17, 18]. However, despite their widespread use for locomotion, their application for balance
assistance has been less explored, often limited to small-scale studies in controlled lab environments
[19, 20].

A major challenge in the development of exoskeletons has been the reliance on traditional control ap-
proaches that require extensive, labor-intensive human tests and the creation of handcrafted control
laws for each user and activity [21, 17, 22]. This process is not only time-consuming and expen-
sive but also creates a significant bottleneck, making it difficult to personalize controllers and scale
them to diverse activities or a larger user base. This has led to a growing need for more advanced,
simulation-based methods to streamline the development process [14, 16].

2.2 Musculoskeletal Simulation for Exoskeleton Development

Musculoskeletal simulations are invaluable for studying human movement biomechanics in a non-
invasive way [8, 9]. They provide insights into difficult-to-measure metrics like muscle forces and
joint loads, making them essential tools for designing [23], controlling [14], and evaluating assis-



tive devices. These models have been used to estimate joint torques [24], serve as control testbeds
[25], and optimize design parameters like stiffness and geometry before physical prototyping [26].
They’ve even been customized for specific user populations [15], offering crucial insights for creat-
ing safer and more comfortable devices [27].

Despite these advances, a critical need remains for rigorous experimental validation of model-based
designs and for improving the fidelity of biomechanical models to better capture the complex dy-
namics of human-exoskeleton interactions [28, 27]. Many studies use reinforcement learning (RL)
algorithms to optimize exoskeletons, which is time-consuming and computationally expensive, often
resulting in long training times [14, 29, 16].

Our work aims to address these gaps by presenting a collaborative simulation framework utilizing
a full-body human musculoskeletal model and advanced control methods [12, 30, 31] for the rapid,
real-time optimization of wearable robotics configurations and control parameters across diverse
bipedal balance and locomotion tasks.

3 Method

3.1 Musculoskeletal Model Dynamics

The musculoskeletal model used in this work is the MS-Human-700 model [12]. It comprises of 90
rigid body segments, 206 joints and 700 muscle-tendon units. By actuating its 700 muscle-tendon
units, the model can be controlled and perform human-like tasks. The dynamics of the model can
be formulated as follow:

M(q)i + c(q,q) = I} fm(act) + I fo + Tear. (1)

On the left side of the equation, ¢ stands for generalized coordinates of joints, M (g) stands for the
mass distribution matrix, and ¢(g, ¢) stands for Coriolis and the gravitational force. On the right
side, J,,, and J. stand for Jacobian matrices that map forces to the generalized coordinates, f. is the
constraint force, f,, (act) stands for actuator forces generated by muscle-tendon units determined by
muscle activations (act), and T, stands for all external torque when interacting with environments.

MS-Human-700 model is implemented in the MuJoCo physics engine [32]. The actuators of the
model in this work are 700 Hill-type [33] muscles. The actuator force generated by each muscle-
tendon unit, and the temporal relation between muscle activation act and the input control signal of
the musculoskeletal model u can be decided by the following equations:

f’m(aCt) = fmam : [E(Zm) : Fv(vm) -act + Fp(lm)] (2)
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In Eq. (2), F; and F;, represent force-length and force-velocity functions which are actuator gains,
F, is the passive force that works as actuator bias, and I, , v, are normalized length and normalized
velocity of the muscle. f,,4, is the maximum isometric muscle force as specified in the model. In
the first-order nonlinear system described by Eq. (3), muscle activation act is calculated. The time
parameter 7 is computed following Millard et al. [34]. 7 is the time constant related to the latency
in activation and deactivation.

3.2 Postural Control over Muscles

We employed the hierarchical balance control method (HBC) [30] in this work. HBC tackles the
very high dimensionality of musculoskeletal model postural control by setting up high-level plan-
ning and low-level control. The high-level planning uses Model Predictive Path Integral (MPPI,
[35]) to sample low-dimensional target postures, while the low-level control maps the desired target
postures back to the 700-dimensional muscle control.



3.3 Exoskeleton Control Policy and Optimization

As illustrated in Figure 1, the balance and locomotion simulation provides a testbed for strategies
and designs of assistive devices, such as a hip exoskeleton, thereby enabling efficient simulation and
design of exoskeletal systems. Assisted balance is simulated by applying torque actuation at the hip
joints—a widely accepted approach for modeling exoskeleton effects via externally applied forces
[36, 37].

We implemented a weighted postural PD control over the joint torque actuation placed at the left and
right hip flexion joints. The high-level planner is adapted to plan an extra target posture indicating
the overall leaning direction of the body, represented by the tilt angle of the pelvis. The control
policy of the exoskeleton torque actuation is separated into two parts mixed by a weight: (1) Hip
flexion joint angle PD control. (2) Postural PD control. The control is formulated as follow:

o= —w)- (kp, - (@ = @) +ka, - (0—di)) +w- (kp, - (@ — ) +ka, (0= G). 4

i = 1, 2 represents the left or right side respectively. 77 is the torque actuation value. k,,_ and k,, are
the joint angle PD control constants, while k,, and kg, are the postural PD control constants over
the tilt angle of the pelvis. ¢ and ¢; are the target values of the hip joint angles and the pelvis tilt
angle. w is the weight between the two PD control policies.

We found that the assistive effect of the exoskeleton was very sensitive to the k,,_, k,_, kp, and w
values. Therefore, we carried out Bayesian optimization (BO [38] ) to determine a set of parameters
to ensure performance across trials. We define = (k,_, k., kp,, w), and formulate the parameter
search as a black-box optimization problem:

max f(x) = Eg
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where the objective f () is the negative cumulative cost function under parameter x, averaged over
5 independent trials. Given sampled data, We use Gaussian process to model the posterior of the
objective function, and utilize the Expected Improvement [39] acquisition function as the criterion
to sample the next parameter.

4 Experiments

In the experiments, we validated the assistance provided by hip exoskeletons on the MS-Human-700
model during locomotion and balance tasks, and carried out analysis on the assistive influence of the
hip exoskeleton on muscle effort.

We used MuJoCo MPC [40] in our experiments to deploy HBC in simulation time. With the very
high dimensionality of the MS-Human-700 model, the simulation speed was set to 10%. A 5-second
experiment will cost 50 seconds, which is much shorter than the training time of reinforcement
learning methods.

4.1 Simulation of Assisted Balance

We simulated an assisted balance scenario with a hip exoskeleton, as shown in Figure 2a. We opti-
mize the parameters of the exoskeleton control policy over 600 iterations. We employed optimized
exoskeleton control parameters and validated the effectiveness of this exoskeleton control policy
in a perturbation test: Models with and without the exoskeleton assistance are pushed in random
directions for 3 times with intervals of 1 second. As shown in Figure 2b, balance with exoskele-
ton assistance achieves a higher success rate in maintaining balance under perturbation through the
5-second simulation.

In Figure 2c, we carried out an ablation study over the assisted balance by recording the muscle ac-
tivations of the gluteus maximus, gluteus medius, and gluteus minimus, which play critical roles in



lower-limb movement and postural stability. We observe a reduction in muscle activation levels with
exoskeleton assistance, highlighting the potential of assistive devices to alleviate muscular effort and
reduce metabolic cost. Such muscle-level data are difficult to obtain in traditional experimental set-
tings due to the limitations of surface EMG and the inaccessibility of deep muscles. Our simulation
pipeline enables validation of exoskeleton effects on balance maintenance. These findings suggest
the utility of musculoskeletal simulations in evaluating and optimizing assistive device performance
prior to costly physical prototyping and human subject testing.
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Figure 2: Balancing behavior under exoskeleton assistance. (a) Visualization of the hip exoskeleton
device, using joint torques as actuators. (b) Success rate of maintaining standing posture, where the
exoskeleton assistance helps better static balance. (c) Activation levels of gluteal muscle activations
(GlutMax: gluteus maximus, GlutMed: gluteus medius, GlutMin: gluteus minimus) during the
standing simulation, where muscle activation levels are reduced with exoskeleton assistance.

4.2 Simulation of Assisted Locomotion

We further designed an assisted locomotion scenario to investigate the effect of hip exoskeletons.
The task cost function includes forward velocity, which encourages the model to walk forward. In
the assisted locomotion task, we simulated the interaction between human body and a hip exoskele-
ton by a virtual representation of high-rigidity spring connections located at thighs and waist. The
shape and weight distribution of the hip exoskeleton are considered in simulation, and the actuation
of hip exoskeletons are modeled with actuated joints located at the motor compartment.

The control policy of the exoskeleton is crafted by hand based on proportional control and gait
recognition, providing a propulsive torque to the swing leg and a counteracting torque to the stance
leg during the pre-swing phase of a gait cycle. The deployment of various exoskeleton control
policies, as well as testing the effects of different exoskeleton design prototypes are efficient.

Figure 3: Human musculoskeletal model locomotion task with exoskeleton assistance. HBC en-
ables training-free locomotion assistance demonstration and efficient parameter optimization.



5 Conclusion

In this work, we introduced a simulation-based method for the co-optimization of wearable robotics
design and control with a dynamic, whole-body human musculoskeletal model. We have success-
fully demonstrated its capability as a validation pipeline for evaluating assistive strategies in both
locomotion and balance-critical scenarios. Our experiments confirm that the method can effectively
quantify the influence of different exoskeleton control policies on human muscle effort and postural
stability, enabling rapid, real-time parameter tuning.

By providing a high-fidelity testbed for whole-body human-exoskeleton interaction, our work
bridges a critical gap between theoretical modeling and costly physical experiments. While our
current implementation utilizes a simplified representation of the exoskeleton’s mechanical inter-
face, future work will focus on incorporating more complex, realistic device models and leveraging
data-driven optimization techniques to explore the co-adaptation of human and robotic controllers to
accelerate the design cycle for wearable robotics. Ultimately, this simulation-driven approach holds
significant promise for the development of safer, more effective, and highly personalized wearable
robotics tailored to the specific needs of individual users.
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