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Abstract:1

The design and control of wearable robotics to assist human movement present2

a significant challenge, largely due to the complexity of human-robot interaction.3

Traditional development cycles that rely on extensive hardware prototyping and4

human subject testing are often costly, time-consuming, and pose potential safety5

risks. We present a novel simulation framework for the rapid, real-time opti-6

mization of wearable robotics hardware and control parameters. Our approach7

leverages a detailed, whole-body musculoskeletal model to simulate dynamic in-8

teractions between the human user and an exoskeleton during both locomotion9

and balance tasks. This collaborative simulation enables the efficient evaluation10

of various wearable robotics configurations and control strategies, providing deep11

insights into their effects on human biomechanics, including muscle activation12

patterns and stability. We demonstrate the framework’s efficacy by optimizing hip13

exoskeletons for assistance, proving that this approach can rapidly provide action-14

able insights into device design and control, thereby accelerating the development15

and reducing the risks associated with creating assistive robotic technologies.16

Keywords: wearable robotics, balance control, human locomotion, muscu-17

loskeletal system18

1 Introduction19

Bipedal locomotion and balance have been extensively studied in robotics and control, with research20

demonstrating the inherent challenges of stabilizing underactuated, high-degree-of-freedom systems21

[1, 2, 3]. In humanoid robotics, stability is often analyzed using criteria such as limit cycles and22

gait periodicity [4, 5, 6]. However, these challenges are not exclusive to bipedal humanoid robots.23

Maintaining stable bipedal posture and gait remains a complex task for humans, for these functions24

rely on precise neuromuscular coordination, multi-sensory integration, and the nonlinear dynamics25

of the human musculoskeletal system.26

Recent advances in musculoskeletal simulation have enabled biomechanically realistic models of27

human movement, providing unique opportunities to study balance, locomotion, and muscle-level28

mechanics in simulation [7, 8, 9, 10, 11]. Recent work introduced a full-body human musculoskele-29

tal system that simulates whole-body dynamics [12]. Such models offer controlled, repeatable con-30

ditions that are difficult or unsafe to achieve in physical experiments, making them well suited for31

investigating interactions between humans and assistive devices under various conditions. This capa-32

bility is particularly relevant for wearable robotics such as exoskeletons, whose influence on human33

balance, gait, and muscle activation is often difficult to quantify comprehensively in live trials due34

to hardware limitations, safety concerns, and measurement constraints.35
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In this work, we extend full-body musculoskeletal simulation to develop a validation platform for36

exoskeleton–human interaction. Our framework enables rapid evaluation of how wearable robotics37

morphology and assistance control policies affect human gait, stability, and muscle activation de-38

mands. By integrating detailed musculoskeletal dynamics with controllable representations of39

human-exoskeleton interaction, we can conduct fast design iterations and primary validation prior40

to hardware prototyping, reducing development cost and risk.41

We demonstrate the use of this simulation–validation pipeline for multiple exoskeleton configura-42

tions, highlighting its ability to (i) capture the muscle-level effects of different assistance strategies,43

(ii) quantify their influence on gait and postural balance, and (iii) provide actionable insights for44

optimizing both mechanical design and control policy.45

Figure 1: Control and analysis of human musculoskeletal standing and falling. HBC enables
training-free balance control and efficient collection of dynamical behavior for balance analysis.
Our method supports concurrent control planning for exoskeleton-assisted scenarios, facilitating in-
tegrated evaluation and optimization of human-exoskeleton interaction.

2 Related Work46

2.1 Wearable robotics for Balance and Locomotion Assistance47

Wearable robotics such as lower-limb exoskeletons have been widely used to improve human per-48

formance in a variety of locomotion tasks, such as walking, running, and stair climbing, for both49

able-bodied individuals and those with mobility impairments [13, 14, 15, 16]. They have demon-50

strated the ability to reduce the metabolic cost of locomotion and restore mobility for individuals51

with neurological disorders like stroke or spinal cord injury, aiding in gait recovery and daily activ-52

ities [17, 18]. However, despite their widespread use for locomotion, their application for balance53

assistance has been less explored, often limited to small-scale studies in controlled lab environments54

[19, 20].55

A major challenge in the development of exoskeletons has been the reliance on traditional control ap-56

proaches that require extensive, labor-intensive human tests and the creation of handcrafted control57

laws for each user and activity [21, 17, 22]. This process is not only time-consuming and expen-58

sive but also creates a significant bottleneck, making it difficult to personalize controllers and scale59

them to diverse activities or a larger user base. This has led to a growing need for more advanced,60

simulation-based methods to streamline the development process [14, 16].61
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2.2 Musculoskeletal Simulation for Exoskeleton Development62

Musculoskeletal simulations are invaluable for studying human movement biomechanics in a non-63

invasive way [8, 9]. They provide insights into difficult-to-measure metrics like muscle forces and64

joint loads, making them essential tools for designing [23], controlling [14], and evaluating assis-65

tive devices. These models have been used to estimate joint torques [24], serve as control testbeds66

[25], and optimize design parameters like stiffness and geometry before physical prototyping [26].67

They’ve even been customized for specific user populations [15], offering crucial insights for creat-68

ing safer and more comfortable devices [27].69

Despite these advances, a critical need remains for rigorous experimental validation of model-based70

designs and for improving the fidelity of biomechanical models to better capture the complex dy-71

namics of human-exoskeleton interactions [28, 27]. Many studies use reinforcement learning (RL)72

algorithms to optimize exoskeletons, which is time-consuming and computationally expensive, often73

resulting in long training times [14, 29, 16].74

Our work aims to address these gaps by presenting a collaborative simulation framework utilizing75

a full-body human musculoskeletal model and advanced control methods [12, 30, 31] for the rapid,76

real-time optimization of wearable robotics configurations and control parameters across diverse77

bipedal balance and locomotion tasks.78

3 Method79

3.1 Musculoskeletal Model Dynamics80

The musculoskeletal model used in this work is the MS-Human-700 model [12]. It comprises of 9081

rigid body segments, 206 joints and 700 muscle-tendon units. By actuating its 700 muscle-tendon82

units, the model can be controlled and perform human-like tasks. The dynamics of the model can83

be formulated as follow:84

M(q)q̈ + c(q, q̇) = JT
mfm(act) + JT

c fc + τext. (1)

On the left side of the equation, q stands for generalized coordinates of joints, M(q) stands for the85

mass distribution matrix, and c(q, q̇) stands for Coriolis and the gravitational force. On the right86

side, Jm and Jc stand for Jacobian matrices that map forces to the generalized coordinates, fc is the87

constraint force, fm(act) stands for actuator forces generated by muscle-tendon units determined by88

muscle activations (act), and τext stands for all external torque when interacting with environments.89

MS-Human-700 model is implemented in the MuJoCo physics engine [32]. The actuators of the90

model in this work are 700 Hill-type [33] muscles. The actuator force generated by each muscle-91

tendon unit, and the temporal relation between muscle activation act and the input control signal of92

the musculoskeletal model u can be decided by the following equations:93

fm(act) = fmax · [Fl(lm) · Fv(vm) · act+ Fp(lm)]. (2)
94

∂act

∂t
=

u− act

τ(u, act)
, (3)

In Eq. (2), Fl and Fv represent force-length and force-velocity functions which are actuator gains,95

Fp is the passive force that works as actuator bias, and lm, vm are normalized length and normalized96

velocity of the muscle. fmax is the maximum isometric muscle force as specified in the model. In97

the first-order nonlinear system described by Eq. (3), muscle activation act is calculated. The time98

parameter τ is computed following Millard et al. [34]. τ is the time constant related to the latency99

in activation and deactivation.100

3.2 Postural Control over Muscles101

We employed the hierarchical balance control method (HBC) [30] in this work. HBC tackles the102

very high dimensionality of musculoskeletal model postural control by setting up high-level plan-103

ning and low-level control. The high-level planning uses Model Predictive Path Integral (MPPI,104
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[35]) to sample low-dimensional target postures, while the low-level control maps the desired target105

postures back to the 700-dimensional muscle control.106

3.3 Exoskeleton Control Policy and Optimization107

As illustrated in Figure 1, the balance and locomotion simulation provides a testbed for strategies108

and designs of assistive devices, such as a hip exoskeleton, thereby enabling efficient simulation and109

design of exoskeletal systems. Assisted balance is simulated by applying torque actuation at the hip110

joints—a widely accepted approach for modeling exoskeleton effects via externally applied forces111

[36, 37].112

We implemented a weighted postural PD control over the joint torque actuation placed at the left and113

right hip flexion joints. The high-level planner is adapted to plan an extra target posture indicating114

the overall leaning direction of the body, represented by the tilt angle of the pelvis. The control115

policy of the exoskeleton torque actuation is separated into two parts mixed by a weight: (1) Hip116

flexion joint angle PD control. (2) Postural PD control. The control is formulated as follow:117

τ ie = (1− w) · (kpe · (q∗i − qi) + kde · (0− q̇i)) + w · (kpt · (q∗t − qt) + kdt · (0− q̇t). (4)

i = 1, 2 represents the left or right side respectively. τ ie is the torque actuation value. kpe
and kde

are118

the joint angle PD control constants, while kpt and kdt are the postural PD control constants over119

the tilt angle of the pelvis. q∗i and q∗t are the target values of the hip joint angles and the pelvis tilt120

angle. w is the weight between the two PD control policies.121

We found that the assistive effect of the exoskeleton was very sensitive to the kpe , kpe , kpt and122

w values. Therefore, we carried out Bayesian optimization (BO [38, 39] ) to determine a set of123

parameters to ensure performance across trials. We define x = (kpe
, kpe

, kpt
, w), and formulate the124

parameter search as a black-box optimization problem:125

max
x∈X

f(x) = Ex

[
−

T−1∑
t=0

C(st, ut)

]
(5)

where the objective f(x) is the negative cumulative cost function under parameter x, averaged over126

5 independent trials. Given sampled data, We use Gaussian process [40] to model the posterior of the127

objective function, and utilize the Expected Improvement [41] acquisition function as the criterion128

to sample the next parameter.129

4 Experiments130

In the experiments, we validated the assistance provided by hip exoskeletons on the MS-Human-700131

model during locomotion and balance tasks, and carried out analysis on the assistive influence of the132

hip exoskeleton on muscle effort.133

We used MuJoCo MPC [42] in our experiments to deploy HBC in simulation time. With the very134

high dimensionality of the MS-Human-700 model, the simulation speed was set to 10%. A 5-second135

experiment will cost 50 seconds, which is much shorter than the training time of reinforcement136

learning methods.137

4.1 Simulation of Assisted Balance138

We simulated an assisted balance scenario with a hip exoskeleton, as shown in Figure 2a. We opti-139

mize the parameters of the exoskeleton control policy over 600 iterations. We employed optimized140

exoskeleton control parameters and validated the effectiveness of this exoskeleton control policy141

in a perturbation test: Models with and without the exoskeleton assistance are pushed in random142

directions for 3 times with intervals of 1 second. As shown in Figure 2b, balance with exoskele-143

ton assistance achieves a higher success rate in maintaining balance under perturbation through the144

5-second simulation.145
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In Figure 2c, we carried out an ablation study over the assisted balance by recording the muscle ac-146

tivations of the gluteus maximus, gluteus medius, and gluteus minimus, which play critical roles in147

lower-limb movement and postural stability. We observe a reduction in muscle activation levels with148

exoskeleton assistance, highlighting the potential of assistive devices to alleviate muscular effort and149

reduce metabolic cost. Such muscle-level data are difficult to obtain in traditional experimental set-150

tings due to the limitations of surface EMG and the inaccessibility of deep muscles. Our simulation151

pipeline enables validation of exoskeleton effects on balance maintenance. These findings suggest152

the utility of musculoskeletal simulations in evaluating and optimizing assistive device performance153

prior to costly physical prototyping and human subject testing.154

(a) (b) (c)

Figure 2: Balancing behavior under exoskeleton assistance. (a) Visualization of the hip exoskeleton
device, using joint torques as actuators. (b) Success rate of maintaining standing posture, where the
exoskeleton assistance helps better static balance. (c) Activation levels of gluteal muscle activations
(GlutMax: gluteus maximus, GlutMed: gluteus medius, GlutMin: gluteus minimus) during the
standing simulation, where muscle activation levels are reduced with exoskeleton assistance.

4.2 Simulation of Assisted Locomotion155

We further designed an assisted locomotion scenario to investigate the effect of hip exoskeletons.156

The task cost function includes forward velocity, which encourages the model to walk forward. In157

the assisted locomotion task, we simulated the interaction between human body and a hip exoskele-158

ton by a virtual representation of high-rigidity spring connections located at thighs and waist. The159

shape and weight distribution of the hip exoskeleton are considered in simulation, and the actuation160

of hip exoskeletons are modeled with actuated joints located at the motor compartment.161

The control policy of the exoskeleton is crafted by hand based on proportional control and gait162

recognition, providing a propulsive torque to the swing leg and a counteracting torque to the stance163

leg during the pre-swing phase of a gait cycle. The deployment of various exoskeleton control164

policies, as well as testing the effects of different exoskeleton design prototypes are efficient.165

5 Conclusion166

In this work, we introduced a simulation-based method for the co-optimization of wearable robotics167

design and control with a dynamic, whole-body human musculoskeletal model. We have success-168

fully demonstrated its capability as a validation pipeline for evaluating assistive strategies in both169

locomotion and balance-critical scenarios. Our experiments confirm that the method can effectively170

quantify the influence of different exoskeleton control policies on human muscle effort and postural171

stability, enabling rapid, real-time parameter tuning.172

By providing a high-fidelity testbed for whole-body human-exoskeleton interaction, our work173

bridges a critical gap between theoretical modeling and costly physical experiments. While our174
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Figure 3: Human musculoskeletal model locomotion task with exoskeleton assistance. HBC en-
ables training-free locomotion assistance demonstration and efficient parameter optimization.

current implementation utilizes a simplified representation of the exoskeleton’s mechanical inter-175

face, future work will focus on incorporating more complex, realistic device models and leveraging176

data-driven optimization techniques to explore the co-adaptation of human and robotic controllers to177

accelerate the design cycle for wearable robotics. Ultimately, this simulation-driven approach holds178

significant promise for the development of safer, more effective, and highly personalized wearable179

robotics tailored to the specific needs of individual users.180
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[11] K. Akbaş, C. Mummolo, and X. Zhou. Characterization of human balance through a reinforce-211

ment learning-based muscle controller. arXiv preprint arXiv:2308.04462, 2023.212

[12] C. Zuo, K. He, J. Shao, and Y. Sui. Self model for embodied intelligence: Modeling full-body213

human musculoskeletal system and locomotion control with hierarchical low-dimensional rep-214

resentation. In 2024 IEEE International Conference on Robotics and Automation (ICRA),215

pages 13062–13069, 2024. doi:10.1109/ICRA57147.2024.10610081.216

[13] D. Pinto-Fernandez, D. Torricelli, M. del Carmen Sanchez-Villamanan, F. Aller, K. Mombaur,217

R. Conti, N. Vitiello, J. C. Moreno, and J. L. Pons. Performance evaluation of lower limb218

exoskeletons: a systematic review. IEEE Transactions on Neural Systems and Rehabilitation219

Engineering, 28(7):1573–1583, 2020.220

[14] S. Luo, M. Jiang, S. Zhang, J. Zhu, S. Yu, I. Dominguez Silva, T. Wang, E. Rouse, B. Zhou,221

H. Yuk, et al. Experiment-free exoskeleton assistance via learning in simulation. Nature, 630222

(8016):353–359, 2024.223

7

https://github.com/myohub/myosuite
https://github.com/myohub/myosuite
https://github.com/myohub/myosuite
https://arxiv.org/abs/2205.13600
http://dx.doi.org/10.1109/ICRA57147.2024.10610081


[15] Y. Lu, Y. Huang, R. Yang, Y. Wang, Y. Ikegami, Y. Nakamura, and Q. Wang. A human-224

prosthesis coupled musculoskeletal model for transtibial amputees. IEEE Transactions on225

Biomedical Engineering, 2025.226

[16] M. Sharifi, S. Tripathi, Y. Chen, Q. Zhang, and M. Tavakoli. Reinforcement learning methods227

for assistive and rehabilitation robotic systems: A survey. IEEE Transactions on Systems, Man,228

and Cybernetics: Systems, 2025.229

[17] P. Slade, M. J. Kochenderfer, S. L. Delp, and S. H. Collins. Personalizing exoskeleton assis-230

tance while walking in the real world. Nature, 610(7931):277–282, 2022.231

[18] N. Hankov, M. Caban, R. Demesmaeker, M. Roulet, S. Komi, M. Xiloyannis, A. Gehrig,232

C. Varescon, M. R. Spiess, S. Maggioni, et al. Augmenting rehabilitation robotics with spinal233

cord neuromodulation: A proof of concept. Science robotics, 10(100):eadn5564, 2025.234

[19] V. Monaco, P. Tropea, F. Aprigliano, D. Martelli, A. Parri, M. Cortese, R. Molino-Lova, N. Vi-235

tiello, and S. Micera. An ecologically-controlled exoskeleton can improve balance recovery236

after slippage. Scientific reports, 7(1):46721, 2017.237

[20] A. Emmens, E. Van Asseldonk, M. Masciullo, M. Arquilla, I. Pisotta, N. L. Tagliamonte,238

F. Tamburella, M. Molinari, and H. Van Der Kooij. Improving the standing balance of para-239

plegics through the use of a wearable exoskeleton. In 2018 7th IEEE International Conference240

on Biomedical Robotics and Biomechatronics (Biorob), pages 707–712. IEEE, 2018.241

[21] T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello. Review of assistive strategies in powered242

lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 64:120–136, 2015.243

[22] C. Siviy, L. M. Baker, B. T. Quinlivan, F. Porciuncula, K. Swaminathan, L. N. Awad, and244

C. J. Walsh. Opportunities and challenges in the development of exoskeletons for locomotor245

assistance. Nature biomedical engineering, 7(4):456–472, 2023.246

[23] D. D. Molinaro, K. L. Scherpereel, E. B. Schonhaut, G. Evangelopoulos, M. K. Shepherd,247

and A. J. Young. Task-agnostic exoskeleton control via biological joint moment estimation.248

Nature, 635(8038):337–344, 2024.249

[24] S. K. Lam and I. Vujaklija. Joint torque prediction via hybrid neuromusculoskeletal modelling250

during gait using statistical ground reaction estimates: an exploratory study. Sensors, 21(19):251

6597, 2021.252

[25] F. Mo, Q. Zhang, H. Zhang, J. Long, Y. Wang, G. Chen, and J. Ye. A simulation-based frame-253

work with a proprioceptive musculoskeletal model for evaluating the rehabilitation exoskeleton254

system. Computer Methods and Programs in Biomedicine, 208:106270, 2021.255

[26] S. Yu, L. Liu, S. Zhang, A. Di Lallo, J. Zhu, Q. Wu, G. Zuo, X. Zhou, and H. Su. Controlling256

negative and positive power for efficiency enhancement and muscle strain mitigation during257

squatting with a portable knee exoskeleton. Annals of Biomedical Engineering, 53(6):1344–258

1358, 2025.259

[27] V. Firouzi, A. Seyfarth, S. Song, O. von Stryk, and M. Ahmad Sharbafi. Biomechanical models260

in the lower-limb exoskeletons development: A review. Journal of NeuroEngineering and261

Rehabilitation, 22(1):12, 2025.262

[28] D. Scherb, S. Wartzack, and J. Miehling. Modelling the interaction between wearable assis-263

tive devices and digital human models—a systematic review. Frontiers in bioengineering and264

biotechnology, 10:1044275, 2023.265

[29] M. W. Sang, J. Narayan, B. Omarali, and A. A. Faisal. Towards safer rehabilitation: Improving266

gait trajectory tracking for lower limb exoskeletons using offline reinforcement learning. In267

2025 International Conference On Rehabilitation Robotics (ICORR), pages 577–582. IEEE,268

2025.269

8



[30] C. Ma, Y. Wei, C. Zuo, C. Zhang, and Y. Sui. Bipedal balance control with whole-body270

musculoskeletal standing and falling simulations. arXiv preprint arXiv:2506.09383, 2025.271

[31] Y. Wei, S. Zhuang, V. Zhuang, and Y. Sui. Motion control of high-dimensional musculoskeletal272

systems with hierarchical model-based planning. arXiv preprint arXiv:2505.08238, 2025.273

[32] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In274

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–275

5033, 2012. doi:10.1109/IROS.2012.6386109.276

[33] F. E. Zajac. Muscle and tendon: properties, models, scaling, and application to biomechanics277

and motor control. Critical reviews in biomedical engineering, 17(4):359–411, 1989.278

[34] M. Millard, T. Uchida, A. Seth, and S. L. Delp. Flexing computational muscle: modeling279

and simulation of musculotendon dynamics. Journal of biomechanical engineering, 135(2):280

021005, 2013.281

[35] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with282

model predictive path integral control. In 2016 IEEE International Conference on Robotics and283

Automation (ICRA), pages 1433–1440, 2016. doi:10.1109/ICRA.2016.7487277.284

[36] T. K. Uchida, A. Seth, S. Pouya, C. L. Dembia, J. L. Hicks, and S. L. Delp. Simulating ideal285

assistive devices to reduce the metabolic cost of running. PloS one, 11(9):e0163417, 2016.286

[37] C. L. Dembia, A. Silder, T. K. Uchida, J. L. Hicks, and S. L. Delp. Simulating ideal assistive287

devices to reduce the metabolic cost of walking with heavy loads. PloS one, 12(7):e0180320,288

2017.289

[38] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out of290

the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.291

[39] P. I. Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.292

[40] C. E. Rasmussen. Gaussian processes in machine learning. In Summer school on machine293

learning, pages 63–71. Springer, 2003.294

[41] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-295

box functions. Journal of Global optimization, 13:455–492, 1998.296

[42] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and Y. Tassa. Predictive sam-297

pling: Real-time behaviour synthesis with mujoco, 2022. URL https://arxiv.org/298

abs/2212.00541.299

9

http://dx.doi.org/10.1109/IROS.2012.6386109
http://dx.doi.org/10.1109/ICRA.2016.7487277
https://arxiv.org/abs/2212.00541
https://arxiv.org/abs/2212.00541
https://arxiv.org/abs/2212.00541

	Introduction
	Related Work
	Wearable robotics for Balance and Locomotion Assistance
	Musculoskeletal Simulation for Exoskeleton Development

	Method
	Musculoskeletal Model Dynamics
	Postural Control over Muscles
	Exoskeleton Control Policy and Optimization

	Experiments
	Simulation of Assisted Balance
	Simulation of Assisted Locomotion

	Conclusion

