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Abstract

The paper proposes a novel machine learning-based approach to the pathfinding
problem on extremely large graphs. This method leverages diffusion distance
estimation via a neural network and uses beam search for pathfinding. We demon-
strate its efficiency by finding solutions for 4x4x4 and 5x5x5 Rubik’s cubes with
unprecedentedly short solution lengths, outperforming all available solvers and
introducing the first machine learning solver beyond the 3x3x3 case. In particular,
it surpasses every single case of the combined best results in the Kaggle Santa
2023 challenge, which involved over 1,000 teams. For the 3x3x3 Rubik’s cube, our
approach achieves an optimality rate exceeding 98%, matching the performance
of task-specific solvers and significantly outperforming prior solutions such as
DeepCubeA (60.3%) and EfficientCube (69.6%). Our solution in its current im-
plementation is approximately 25.6 times faster in solving 3x3x3 Rubik’s cubes
while requiring up to 8.5 times less model training time than the most efficient
state-of-the-art competitor. Finally, it is demonstrated that even a single agent
trained using a relatively small number of examples can robustly solve a broad
range of puzzles represented by Cayley graphs of size up to 10145, confirming the
generality of the proposed method.

∗Alexander Chervov and Kirill Khoruzhii contributed equally to this work.
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1 Introduction

Rubik’s cube is one of the most famous puzzles, which is believed to be played by more than a billion
people in the world [1]. According to [2], it was included in the 100 most influential inventions of
the 20th century. Even decades after its first introduction, it is still used as a benchmark and model
task in various fields: artificial intelligence [3], robotics [4], graphs algorithms [5], [6], cryptography
[7], image encryption [8], statistical physics [9],[10], group theory [11],[12], for human cognitive
abilities [13].

From a broader perspective, solving the Rubik’s Cube is a specific instance of a planning problem.
One must plan actions to transition between the initial and solved states. The mathematical framework
for such problems is pathfinding on graphs (state transition graphs): all possible states are represented
as nodes, and edges correspond to transitions between states based on actions (moves). The planning
task thus reduces to finding a path from a given initial node to one or more desired nodes. A specific
class of graphs represents the Rubik’s Cube and similar puzzles—Cayley-type graphs of the puzzle’s
symmetry group. These are highly symmetric state transition graphs where the symmetry group
can transform any node into another. Cayley graphs are of fundamental importance in modern
mathematics [14], [15] and have numerous applications: in bioinformatics for estimating evolutionary
distances [16, 17, 18, 19]; in processor interconnection networks [20, 21, 22]; in coding theory for the
construction of expander graphs and related codes [23]; in cryptography for constructing specific hash
functions [24, 7]; in machine learning (ML) [18]; and in quantum computing [25, 26, 27, 28, 29].

Finding the shortest paths on generic finite Cayley graphs is an NP-hard problem [30], as it is for many
particular groups: the Rubik’s Cube group [31] and some others [32, 18]. Brute force breadth-first
search, Dijkstra’s, and related methods can find the shortest paths on graphs with billions of nodes,
the bidirectional trick squares feasible sizes, but these methods require extremely large computational
resources and are not practical for much larger sizes, which are of our interest. Moreover, no effective
tools are currently available to find any (not just the shortest) paths on Cayley graphs of large finite
groups. For example, modern computer algebra systems like GAP [33] fail on any sufficiently large
group, such as the 4x4x4 Rubik’s Cube.

This research aims to overcome the abovementioned limits in solving large Rubik’s cubes and similar
large-scale pathfinding problems with a high level of optimality using machine learning. The main
contributions to the state of the art are the following:

1. We propose a novel multi-agent, machine learning-based approach to find paths on Cayley
graphs of finite groups. It is the first machine learning approach capable of handling groups
as large as 1074. It achieves over 98% optimality on the DeepCubeA dataset of 3x3x3
cubes, reaching the level of task-oriented solvers based on pattern databases. It produces
better results (shorter solution paths) than any known competitor for 4x4x4 and 5x5x5
Rubik’s Cubes, including the aggregated best results from the 2023 Kaggle Santa Challenge,
representing the current state of the art.

2. We demonstrate that increasing the size of the set used to train multilayer perceptrons with
residual blocks has a limited impact on the pathfinder’s performance. At the same time,
increasing the beam width and number of agents robustly improves the average solution
length and optimality. This surprising finding helped choose the size of the train data for
each agent and achieve best-in-class performance without wasting computational resources
on additional training.

3. The training time and computational resources required for our approach are significantly
smaller than those for state-of-the-art approaches. Our solution, tested on the same hardware
and beam width providing solution length similar to the EfficientCube (the previous leading
ML solution) solving the task approximately 25.6 faster and requiring up to 8.5 times less
model training time than the competitor.

4. We demonstrate that even a single agent trained using a relatively small number of examples
can robustly solve a broad range of puzzles represented by Cayley graphs with sizes up to
10145, confirming the generality of the proposed method.

In recent years, machine learning has been emerging as "a tool in theoretical science" [34], leading
to several noteworthy applications to mathematical problems [35, 36, 37, 38, 39, 40, 41, 42]. This
research is part of the larger project, which aims to create an open-source machine learning Python
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framework for analyzing Cayley graphs and contribute to the fascinating, emerging area of machine
learning applications in theoretical sciences.

2 Proposed Machine Learning Approach

This paper presents a unified approach for finding paths on a large class of graphs, focusing on
demonstrating its efficiency for Rubik’s cube graphs. It does not rely on any prior knowledge or
human expertise about the graphs. The approach has two main components: a neural network model
and a graph search algorithm — similar to previous works such as AlphaGo/AlphaZero [43],[44],
DeepCube [45],[3], and EfficientCube [46], among others. The model is trained to guide what moves
should be done to get closer to the destination node ("solved state" for puzzles). The graph search
algorithm starts from a given node and moves to nodes closer to the destination, based on the neural
network’s predictions, until the destination node is found.

The basic assumption on a graph is that there is a vector associated with each node (feature vector).
These vectors serve as an input for the neural network. The precise quantification of requirements for
feature vectors that would ensure the successful operation of the proposed method is challenging. We
aim to demonstrate its efficiency in the context of Rubik’s group cases. On one extreme, even random
vectors suffice if the training data covers all nodes — an idea employed in well-known approaches
such as DeepWalk [47] and Node2vec [48]. However, our focus is different: only a small subset of
nodes will be covered by the training data (random walks). The key point is the ability of the neural
network to generalize from that small subset to the entire graph — something that is impossible with
random features. Worse, the feature vectors are related to the distance between nodes on a graph
— more training data is required, and more advanced parameters and resources should be used at
all steps of the proposed method. The role of the neural network is to transform the initial feature
vectors into a latent representation, where nodes that are closer on the graph are also closer in the
latent space. For puzzles or permutation groups the feature vector is just the vector describing the
permutation p of l-symbols, i.e. vector of numbers (p(0), p(1), ..., p(l − 2), p(l − 1)). Additionally,
we assume that a specific node on the graph, such as the ’solved state’ for puzzles, is selected. The
task is to find a path from any given node to this selected node. Since the graph sizes may exceed
1040, standard pathfinding methods are not applicable.

The key steps of the proposed method are illustrated in the figure 1a and described below:

Creating the training set via random walks. (Diffusion distance.) Generate N random walk
trajectories starting from a selected node. (The generation of a random walk is a simple process:
select a random neighbor of the current node and repeat this process iteratively for multiple steps.)
Each random walk trajectory consists of up to Kmax steps, where N and Kmax are integer parameters
of the method. For some nodes encountered during the random walks, we store a set of pairs (v, k),
where v represents the vector corresponding to the node and k is the number of steps required to reach
it via the random walk. This set will serve as the training data. For the Rubik’s Cube, random walks
correspond to random scrambling: starting from the "solved state," we perform a series of random
scrambles and record the resulting positions and the number of scrambles performed. Conceptually,
in the limit as N → ∞, the average value of k measures the "diffusion distance" — roughly speaking,
the length of the random path or an estimate of how quickly diffusion reaches a given node. In
contrast to the DAVI approach used in [3], random walk generation is very computationally cheap,
making it possible to generate them directly during the training procedure.

Training the neural network. The generated set of pairs (v, k) serves as the training set for the
neural network. Specifically, v serves as the ’feature vector’ (the input for the neural network),
and k represents the ’target’ (the output the network needs to predict). Thus, the neural network’s
predictions for a given node v estimate the diffusion distance from v to the selected destination node
(solved state of the puzzle). We utilize a multilayer perceptron (MLP) architecture with several
residual blocks and batch normalization, as shown in Figure 1b, which will be further called ResMLP.
It is a general form of the MLPs used in [3, 46]. All the models are trained in advance before the
solving phase.

Graph search guided by a neural network. Beam search. This step finds a path from a given
node to the destination node. The neural network provides heuristics on where to make the next
steps, while the graph pathfinding technique compensates for any possible incorrectness in the neural
network predictions. The beam search pathfinding method is quite simple but has proven to be the
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Figure 1: Proposed ML solution for Rubik’s cube solving: (a) proposed multi-agent solver’s process
flow; (b) ResMLP neural network architecture; (c) an example of beam search pathfinding on 3x3x3
cube’s graph using W = 40.

most effective for us and works as follows. Fix a positive integer W — a parameter known as the
"beam width" (or "beam size"). Starting from a given node, we take all its neighboring nodes and
compute the neural network predictions for all of them. We then select the W nodes closest to the
destination according to the neural network (i.e., the predictions have smaller values). We take these
selected W nodes’ neighbors, drop duplicates, and again compute the neural network predictions,
choosing the top W nodes with the best (i.e., minimal) predictions. The search iterations are repeated
until the destination node is found (or the limit of steps is exceeded). The whole process is illustrated
in Figure 1.

Multi-agency. The method described in the steps above relies on random walks for train set creation,
and thus, due to that randomness, each new launch will create a new train set, and thus, each new
neural network approximates the distance differently. This diversity is large enough to yield a
new solution path for each launch typically. And hence, typically, several repetitions allow for the
discovery of a shorter path than a single run. We call each trained neural network an agent. To solve
any given state - we solve it with all the agents and then choose the best result (the shortest solution
path among all the agents) – illustrated in Figure 1a.).

3 Optimality vs the Proposed Approach Parameters

The proposed solver has the following main parameters A – the number of agents, W – beam width
used by each agent during pathfinding and ResMLP model general parameters: N1 – the size of the
first layer, N2 – the size of the second layer and residual blocks’ layers, Nr – the number of residual
blocks and T – the trainset size. For easier comparison, N1, N2, and Nr are also summarized by
model size P – the total number of ResMLP parameters (weights and biases). In this section, we
analyze the influence of these parameters on the solver’s average solution length and optimality.

Train set size. First, in the example of 3x3x3 and 4x4x4 Rubik’s cubes, we analyzed how the model
and trainset sizes, as well as model depth, influence the average solution length using a single agent
with fixed beam width (W = 218). The experiment details are provided in Appendix B.6, while the
results are presented in Figure 2a. It is seen from Figure 2a that from a certain point, the raise of
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Rubik's Cube 3×3×3 Rubik's Cube 3×3×3Rubik's Cube 4×4×4 Rubik's Cube 4×4×4(b)(a) 

Figure 2: Influence of model parameters on solution length for 3x3x3 and 4x4x4 cubes (jitter
plot): (a) influence of the model size, trainset sizes, and model depth on average solution length;
(b) influence of the beam width on average solution length.

T does not lead to any significant reduction of average solution length, especially considering the
fact that the trainset size is demonstrated in logarithmic scale. Even more surprising, the T value
corresponding to this point is very similar for 3x3x3 and 4x4x4 cubes and neural networks of different
sizes and depths. Thus, the experiments above reveal a rather unexpected effect - performance
stagnation with respect to the train size.

Additional tests were performed to check if the proposed neural network faces grokking when being
trained on huge amounts of data. For this purpose, we spent more than 7 days fully utilizing two
NVIDIA H100 GPUs to train two neural networks on 524B examples of 4x4x4 Rubik’s cube states.
In both cases, the loss was continuously decreasing from ≈ 26.4 on 8B examples down to ≈ 23.8
at the end of training. There was no sign of delayed generalization. At the same time, the loss was
notably decreasing, which led us to further analysis of the stagnation effect.

Then, we used both of these networks to solve the complete set of Santa Challenge scrambles for the
4x4x4 cube. For fair comparison, we also used snapshots of both networks made after training on 8B
examples to solve the same scrambles.

First, we faced the fact that, using half-precision during inference, the solvers based on networks
trained on 524B examples were unable to solve any of the scrambles. On the contrary, the versions
trained on 8B examples were fully compatible with half-precision inference. Thus, we faced the first
drawback of using huge trainsets — the longer inference time.

The comparison of the solutions found using single-precision during inference shows that networks
trained on 524B examples achieved average solution rates of 48.56 and 49.46, finding solutions for
43/43 and 41/43 scrambles, respectively. As seen from Figure 3, these results are comparable with the
ones achieved by the solvers with neural networks trained on 8B of examples. The solvers equipped
with snapshots of the tested networks, stored after training on 8B examples, achieved average solution
rates of 49.3 and 49.74, finding solutions for 43/43 and 42/43 scrambles, respectively. From one
point of view, the results provided by networks trained on 524B examples are generally better (even
though one of the networks "forgot" how to solve one of the scrambles). From another point of view,
during the computation time spent on such long training, up to 63 networks can be trained on 8B
examples. At the same time, as it will be shown further (Figure 3), even ten solvers equipped with
networks trained on 8B examples provide an average solution length far below 47. The detailed
solution analysis for the experiment is provided in Appendix B.7.

The example described above illustrates our interpretation of the observed stagnation effect. It does
not mean that further training will not provide a better average solution rate. However, at some
point, the computational effort for further training exceeds that required to achieve the same or better
results using multiple agents, which are based on networks trained on fewer examples. Moreover,
multiple agents can be easily accelerated using distributed computing, whereas boosting the training
and inference of a single-agent approach generally requires more advanced GPU hardware.

MLP layers and sizes. As expected, larger and deeper networks trained on train sets of the same
size generally provide shorter solutions than smaller models. What is less expected is that the higher
number of layers (higher N1, N2, and Nr) is more significant than a larger number of parameters
P . More surprising is that even small models with 1M of parameters can reach the average solution
length comparable to DeepCubeA and EfficientCube using neural networks with ≈ 14.7M parameters.
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Based on these observations for further consideration, we used a deep neural network having the
same number of layers (ten) as [3] and [46], but with the smaller model size of 4M parameters.

Beam width. It is the most important parameter. We performed multiple tests on a single agent
equipped with this model, changing W from 212 to 224. The results of these tests are presented in
Figure 2b (the exact model parameters and details of the tests are provided in Appendix B.6). From
Figure 2b, it is clear that increasing W effectively reduces the average solution length. Moreover, the
solution length decreases approximately linearly with the logarithm of the beam width W . On the
3x3x3 cube, increasing W up to 224 allows us to get close to the optimal solution, while for 4x4x4,
the same beam width results in a better average solution length than the best ones submitted to the
2023 Santa Challenge.

Agents number. In the third part of the experimental studies, we investigated the influence of the
number of agents A on the solver’s efficiency. These experiments were performed on 3x3x3, 4x4x4,
and 5x5x5 Rubik’s Cube. We used 10-layer ResMLP models with 4M parameters trained on 8B states
in all the cases. The beam width was chosen W = 224 so each agent could fit into the memory of a
single GPU regardless of the solved cube size. The details of the performed experiments are available
in Appendix B.6, while their results are provided in Figure 3. For ease of analysis, Figures 3a,3b,3c
demonstrate lengths only for those agents whose solutions at least once were used as the solver’s
output. The shaded area in Figure 3, representing the standard error of the mean (the standard
deviation divided by the square root of the number of samples), calculated as the standard deviation
divided by the square root of the number of scrambles used to compute each average, which allows
comparison of solver performance.
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Figure 3: Average solution length of the proposed multi-agent approach depending on the number
of agents composing its output for (a) 3x3x3, (b) 4x4x4, and (c) 5x5x5 Rubik’s cubes. Solid line
– random set of the agents, dashed line – best set. Shaded area indicates ±1 standard error around
the mean solution length. Distribution of solution lengths for (d) 3x3x3, (e) 4x4x4, and (f) 5x5x5
Rubik’s cubes for the best ensemble.

Figure 3 clearly shows that the average solution rate of a multi-agent is always higher than the one
achieved by the best single agent (up to 8 moves for the 5x5x5 cube). Solid lines on Figures 3a,3b,3c
show how the size of the ensemble influences the average solution length for the random set of the
agents. As seen in all three cases of 3x3x3, 4x4x4, and 5x5x5 Rubik’s cubes, the larger number
of agents robustly provided more optimal pathfinding. The dashed line demonstrates the same
dependency but for the set of agents jointly providing the best overall solution. Figures 3c,3d,3e
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demonstrate in color code how each agent from this set participates in the final solution for every
scramble from the dataset. The scrambles which were not solved in less than 200 moves are marked
with crosses.

As seen from Figures 3c,3d,3e, the worst agents in the ensemble not only provide much longer results
than the final solution but also include multiple scrambles that were unsolved. In the case of using
the single-model approach, these agents would be considered unsatisfactorily trained. Nevertheless,
they are included in the best ensemble because they provided the shortest solution on one or two
scrambles. Moreover, our approach achieved an efficiency that was previously unreachable for other
ML solutions, largely due to the specialized agents.

Even though the results presented in Figure 3 on 3x3x3, 4x4x4, and 5x5x5 cubes can be achieved
using 5, 10, and 10 agents, respectively, the probability of training all these agents in a row is very
low. For example, to beat all the 5x5x5 scrambles from the 2023 Santa Challenge dataset, we trained
69 different agents, while further analysis showed that only 10 of them composed all the output
results. At the same time, the first agent trained to solve 4x4x4 cubes beat all the respective scrambles
from the mentioned dataset but did not even get in the final ensemble because multiple other agents
jointly surpassed it. Thus, achieving a high level of optimality requires many agents, as seen from the
logarithmic nature of the plots demonstrated in Figure 3. Nevertheless, due to the high scalability of
the proposed approach and the ability to run on distributed hardware using dozens of independent
agents, it is not an issue using modern computational hardware.

4 Results Summary and Comparison with Prior Art

4.1 Comparison with the other solutions for Rubik’s cube solving

Table 13 summarizes the main results achieved by the proposed solver, highlighting its superiority
over the prior state of the art. Notably, it surpasses the 2023 Kaggle Santa Challenge results, where
over a thousand teams competed in virtual puzzle solutions, representing the best available methods
and results. It should be mentioned that we were limited in computation resources during our research.
Thus, our results can be improved even more by using more advanced hardware, which will allow for
an increase in beam width and the number of agents.

Table 1 contains the following abbreviations: HTM – half-turn metric, QTM – quarter-turn metric.
The 2023 Kaggle Santa Challenge dataset uses modified QTM with unfixed corners and centers of
the cube, which is marked UQTM. Optimal PDB+ solver is a solver used to determine the God’s
number for the 3x3x3 Rubik’s Cube4. The results presented in [49] were evaluated using a single
cube scrambled with 100 random moves. For these results, column "Avg. solution len" contains the
minimal length achieved by the most suitable genetic algorithm configuration. The optimality was not
evaluated for these results and the results from the 2023 Kaggle Santa Challenge dataset. The values
provided in parentheses in Table 1 indicate the standard error of the mean. From the perspective of
sampling random states of a given group, this allows statistically significant comparisons between the
performance of different solvers.

A single agent with single-layer MLP can solve all the DeepCubeA dataset with 90.4% of optimality,
significantly enhancing results of the most advanced state-of-the-art ML solutions: DeepCubeA
and EfficientCube. 26 agents equipped with 10-layer ResMLP models managed to solve all 1000
scrambles from DeepCubeA dataset with 97.6% optimality, which is the best result ever achieved by
any ML solution (significantly surpassing 60.3%, 69.8% results from DeepCubeA and EfficientCube).
A single-agent solution implemented using our approach and 10-layer ResMLP managed to beat each
best result corresponding to 3x3x3 and 4x4x4 Rubik’s cubes submitted on the 2023 Kaggle Santa
Challenge (averages: 48.98 vs 53.49). At the same time, 29 agents managed to solve all the 4x4x4
cube’s scrambles from the 2023 Kaggle Santa Challenge dataset with an average solution length of
46.51 - which is below 48 (a conjectured 4x4x4 Rubik’s cube diameter [51]). Finally, an ensemble of
69 agents beat each best solutions for the 5x5x5 Rubik’s cube submitted to the 2023 Kaggle Santa
Challenge, shortening the average solution rate among all the datasets on more than 4.4 units in QTM
metrics (ours: 92.16, Santa: 96.58). It is worth emphasizing that the solutions that were obtained
outperformed the Santa results on average and in every single case.

3All the solvers presented in the Table 1 managed to solve all the scrambles from the listed datasets.
4https://github.com/rokicki/cube20src
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Table 1: The most notable results achieved by the proposed solution and comparison with competitors.

No. Solver Metric, Size,
Dataset

Solver parameters Average
solution
length

Optimality

A W P T

2x2x2 Rubik’s cube
1 Genetic [49] HTM, 1, [49] n/a n/a n/a n/a 30 n/a
2 Breadth First

Search
QTM, 100, Ours n/a n/a n/a n/a 10.7(1) 100%

3 Ours, 1-layer MLP QTM, 100, Ours 1 218 0.15M 8B 10.7(1) 100%
4 Ours, 10-layer

ResMLP
QTM, 100, Ours 1 218 0.92M 8B 10.7(1) 100%

3x3x3 Rubik’s cube
5 Genetic [49] HTM, 1, [49] n/a n/a n/a n/a 238 n/a
6 Optimal PDB+

solver [3]
QTM, 1000, [3] n/a n/a n/a n/a 20.64(3) 100%

7 DeepCubeA [3] QTM, 1000, [3] 1 n/a 14.7M 10B 21.50(3) 60.3%
8 EfficientCube [46] QTM, 1000, [3] 1 218 14.7M 52B 21.26(3) 69.6%
9 EfficientCube [46]

(reproduced)
QTM, 1000, [3] 1 218 14.7M 52B 21.26(3) 69.8%

10 Ours, 10-layer
ResMLP

QTM, 1000, [3] 1 218 4M 8B 21.14(3) 75.4%

11 Ours, 1-layer MLP QTM, 1000, [3] 1 224 0.34M 8B 20.83(3) 90.4%
12 Ours, 10-layer

ResMLP
QTM, 1000, [3] 1 224 4M 8B 20.69(3) 97.3%

13 Ours, multi-agent
10-layer ResMLP

QTM, 1000, [3] 26 224 4M 8B 20.67(3) 98.4%

14 Santa
Challenge [50]

UQTM, 82, [50] n/a n/a n/a n/a 21.8(1) n/a

15 Ours, 10-layer
ResMLP

UQTM, 82, [50] 1 224 4M 8B 19.5(1) n/a

4x4x4 Rubik’s cube
16 Genetic [49] HTM, 1, [49] n/a n/a n/a n/a 737 n/a
17 Santa

Challenge [50]
UQTM, 43, [50] n/a n/a n/a n/a 53.5(2) n/a

18 Ours, 10-layer
ResMLP

UQTM, 43, [50] 1 224 4M 8B 49.0(4) n/a

19 Ours, multi-agent
10-layer ResMLP

UQTM, 43, [50] 29 224 4M 8B 46.5(3) n/a

5x5x5 Rubik’s cube
20 Genetic [49] HTM, 1, [49] n/a n/a n/a n/a 1761 n/a
21 Santa

Challenge [50]
UQTM, 19, [50] n/a n/a n/a n/a 96.6(8) n/a

22 Ours, multi-agent
10-layer ResMLP

UQTM, 19, [50] 69 224 4M 8B 92.2(7) n/a
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Analyzing comparison results in Table 1 it should be noticed, that A agent equipped with model of
P size are equivalent to single agent with model having A · P parameters (e.g., 26 agent with 4M
models are computationally comparable to an agent with 104M model). At the same time, from
hardware point proposed multi-agent solution is much easier to scale using distributed computing
than approaches based on large single model.

4.2 Comparison with the previous art in terms of computation time

The efficiency of our approach is driven not only by the large number of agents but also by the
efficiency and simplicity of each single node. It is difficult to fairly compare computation time between
different solutions, because experimental studies published in research papers were performed using
different hardware. Moreover, ins such direct comparison disadvantages of algorithm can be hidden
by performance boost driven by more modern GPU family. Thus, we performed an additional test
and compared it with EfficentCube, which is claimed to be more efficient than DeepCubeA [46] in
terms of average computation time while running on the same hardware. The training procedure for
EfficentCube took 25 hours 50 minutes 45 seconds, while the model for our solution was trained
in 3 hours 2 minutes 36 seconds. In both cases training was performed using 32-bit floats. Then,
both solutions were used to solve all the scrambles from the DeepCubeA dataset (see results No.9
and 10 in Table 1). For both solutions we used the same beam width of 218, which provided very
close average solution length. The similarity in solution length makes this comparison fair even
both algorithms rely on different models and beam search implementations. Finally, EfficientCube
required 237.9 s on average to solve a single scramble, while our solution required 9.16 s, which is
≈ 25.6 times faster.

It is worth mentioning that comparison is fair not because we used the same beam width, but because in
both cases solvers were running on the same hardware and provided very close average solution length.
Multiple factors cause the demonstrated performance boost. First, we used a model containing 3.675
times fewer parameters and only one output (instead of the 12 outputs used in EfficientCube). This
model generally requires less computational resources for both training and inference. Moreover, the
training duration was shortened by 6.5 times less trainset size. Second, we used 16-bit half-precision
floating point variables instead of 32-bit wide during inference. EfficientCube was configured with
the same option, but due to inefficient software implementation it gives only 10% performance gain,
while in our case the computation speed was approximately doubled. Third, our implementation is
much more optimized for running on GPU, which provides the rest of the performance boost. Finally,
our approach is much more scalable because agents are independent and can be executed on different
processors and GPUs.

4.3 Analysis of efficiency for solving other puzzles

To demonstrate the generality of our approach beyond Rubik’s cube groups, we conducted experiments
across a diverse range of permutation groups with sizes up to 10145 elements. The details of this
experiment and its results are presented in the Section B.8 and Table 4. In short, we fixed the neural
network architecture parameters (N1 = 1024, N2 = 256, Nr = 1) and trained models for 128
epochs on various groups, using beam width W = 220 for all experiments. This experiment design
reveals both the strengths and limitations of our approach—while some extremely large groups
remain unsolvable with these fixed parameters, the method successfully solves most tested groups
with remarkable efficiency—achieving short training times (typically under 2 minutes using), fast
inference (under 1 minute for most groups), and producing solution paths of practical length 5.

For groups not included in the Santa Challenge, we tested performance on 10 states obtained through
10,000 random moves from the solved state. Our approach successfully solved 100% of test cases
for 28 out of 39 tested groups, including challenging domains like Pancake sorting [52] (known as
NP-hard), LRX [53], and the 15-puzzle with periodic boundary conditions [54].

Our method consistently solved the 10 non-Rubik groups, and the average solution lengths were
better than the top solutions in the Santa Challenge. This evaluation provides strong evidence that our
approach generalizes effectively across various permutation groups, demonstrating robustness and
computational efficiency regardless of group structure or size.

5Mentioned above times were achieved using NVIDIA H100 GPU.
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4.4 Limitations

This paper reports on purely empirical research. Our results demonstrate that the proposed method is
effective for multiple groups and outperforms all previously published machine learning solutions for
solving Rubik’s cubes up to 5x5x5. However, direct application of our results to other tasks requires
additional theoretical analysis, which is beyond the scope of this paper.

To the best of our knowledge, there is no optimal solver for 4x4x4 and 5x5x5 Rubik’s cubes.
Furthermore, the diameter of the corresponding graphs has not yet been precisely defined. Thus, we
were limited to the available reference datasets in order to provide results that are comparable to
those of the state of the art. It should be noted that the Kaggle Santa 2023 Challenge Dataset includes
only a small number of examples for large groups (e.g., it includes only 19 scrambles of the 5x5x5
Rubik’s Cube). Considering this, broader generalization of the results requires additional research.

5 Conclusion

The paper proposes a machine learning-based approach to the pathfinding problem on large graphs.
Experimental studies demonstrate that it is more efficient than state-of-the-art solutions in terms of
average solution length, optimality, and computational performance.

The key parts of the approach are multi-agency, neural networks predicting diffusion distance and
beam search. Deeper neural networks better approximate the graph of the large Rubik’s cubes, though,
for the 3x3x3 case, even a single-layer network provides excellent results. At the same time, the effect
of enlarging the training set is limited: the trainset above 8196M examples for the tested models has
no practical reason, which allowed us to avoid additional time spent during the training. Conversely,
raising the beam width effectively lowers the solution length and increases optimality.

The complete set of the proposed solutions allowed the creation of the multi-agent pathfinder, which
managed to beat all the ML-based competitors: an agent equipped with single-layer MLP solved all
the DeepCubeA dataset with 90.4% of optimality significantly enhancing results of the most advanced
state of the art solutions: DeepCubeA and EfficientCube. 26 agents equipped with 10-layer ResMLP
models managed to solve all scrambles from DeepCubeA dataset with 97.6% optimality, which is
the best result ever achieved by any ML solution. Single-agent solutions implemented using our
approach and 10-layer ResMLP beat all the best results corresponding to 3x3x3 and 4x4x4 Rubik’s
cubes submitted on the 2023 Santa Challenge. At the same time, six agents managed to solve all the
4x4x4 cube’s scrambles from the 2023 Santa Challenge dataset with an average solution length below
48 (a 4x4x4 Rubik’s cube diameter predicted in [51]). Finally, a composition of 69 agents beat all
the best solutions for the 5x5x5 Rubik’s cube submitted to the 2023 Santa Challenge, shortening the
average solution rate among all the datasets on more than 4.4 units in QTM metrics.

Finally, our experimental studies demonstrated that even a single agent trained using a relatively
small number of examples can robustly solve a broad range of puzzles represented by Cayley graphs
of size up to 10145, confirming the generality of the proposed method.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract reflects the scope and all the main contributions of the paper,
which are then directly listed in the introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the proposed approach are discussed in Section 4.4.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper reports research based on empirical experimental studies. It does
not include any theoretical result.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all the details required to reproduce the reported results,
including the developed software’s source code and the used verification datasets.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The developed software’s source code and the used verification datasets are
provided.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are provided in the form of source code, verification
datasets, neural networks weights and thechnical appendix.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Most of the experiments were performed using the same standardized reference
datasets as previous researchers, making our results directly comparable to the current state
of the art. Figure 3 directly demonstrates the error bars, while Figure 2 omits them to
enhance readability of the small details.
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10. Broader impacts
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societal impacts of the work performed?
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The authors of the original models and datasets used in the research are
correctly cited.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The provided code and datasets are accompanied by sufficient documentation.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16. Declaration of LLM usage
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
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B Appendix: Methods

B.1 Source code

The original source code is attached to the paper as Supplementary Material. The last version can be
found on GitHub: https://github.com/khoruzhii/cayleypy-cube.

B.2 Cayley graphs and Rubik’s cubes

Moves of Rubik’s cube can be described by permutations (e.g., Chapter 5 [55], or Kaggle notebook
"Visualize allowed moves"6). Taking all the positions as nodes and connecting them by edges, which
differ by single moves, one obtains a Cayley-type graph for Rubik’s cube. Solving the puzzle is
equivalent to finding a path on the graph between nodes representing the Rubik’s cube’s scramble
initial and solved state.

B.3 Random walks and train set generation

The training set is generated by scrambling (i.e., applying random moves) the selected solved state
and creating a set of pairs (v, k), where k is a number of scrambles, and v is a vector describing
the node obtained after k steps. In other words, we consider random walks on the graph. The main
parameters are Kmax and K, where Kmax is a maximal number of scrambles (length of random
walk trajectory), while K ·Kmax is a number of nodes to generate.

In the current research, we used so-called non-backtracking random walks [56], that forbid scrambling
to the state of the previous step. A PyTorch-optimized implementation of train set generation can be
found in trainer.py in the code attached to this paper.

Current research does not investigate the influence of Kmax on the solver’s performance. We used
Kmax = 26 for solvers targeted on 3x3x3 cubes, Kmax = 45 – for 4x4x4 cubes, and Kmax = 65
for 5x5x5 cubes.

B.4 Neural Network and Training procedure

In this study, we used ResMLP, a generalized form of multilayer perceptrons as described in [3, 46].
Details of the architecture can be found in Figure 1b. The PyTorch implementation of ResMLP is
available in model.py in the code attached to this paper.

The training procedure was performed using the Adam optimizer with a fixed learning rate of 0.001
and mean squared error as the loss function. A new dataset of 1M examples was generated before
each training epoch. All models were pre-trained and remained unchanged during puzzle-solving.
Training was conducted using 32-bit floating point precision, while inference used 16-bit floating
point numbers to enhance computational efficiency. The PyTorch implementation of the training
procedure is available in trainer.py in the code attached to this paper.

B.5 Beam-search

Beam search is a simple but effective search procedure used for various optimization
tasks [57], [58], [59] as well as to improve outputs of the modern transformer-based language
models [60],[61],[62]. It has been used in EfficientCube [46] and by many participants of the Kaggle
Challenge [50]. We implemented a modified version of traditional beam search, which uses hash
functions to remove duplicates, reducing the computation complexity of the pathfinder. Finally, in
all the experiments, the scramble was considered unsolved if the path to the solved state was not
found in 200 beam search steps. Additionally, the algorithm stops if the beam vector contains only
already visited graph nodes. A PyTorch-optimized implementation of the beam search can be found
in searcher.py in the code attached to this paper.

6https://www.kaggle.com/code/marksix/visualize-allowed-moves
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B.6 Experiments design

All the experiments were conducted using software attached to this paper. The experiments targeting
analysis of trainset size’s influence on the solver’s performance included solving 20 scrambles of
both 3x3x3 and 4x4x4 Rubik’s cubes using different models as beam search heuristics. For this
experiment, we prepared 20 models, whose parameters are demonstrated in the first 20 rows of
Table 2. Each model was trained during 16384 epochs. The snapshots of the model parameters
were saved after 16, 64, 256, 1024, 4096, and 16384 epochs. Then, each model snapshot was
integrated as a heuristic into beam search with W = 218, which was used to solve the first 20
scrambles from the dataset. DeepCubeA dataset [3] was used for 3x3x3 Rubik’s cube, and the 2023
Kaggle Santa Challenge [50] dataset was used for 4x4x4 puzzle. The results achieved by each solver
configuration on the corresponding dataset were averaged and analyzed as experimental results.
Scrambles unresolved due to low beam width were excluded from the demonstration in Figure 2 to
simplify the overall plot analysis.

Table 2: The parameters of neural networks used in current research

No. Cube Metric Layers N1 N2 Nr P Result No.

1 3x3x3 QTM 1 3050 0 0 1M –
2 3x3x3 QTM 2 850 850 0 1M –
3 3x3x3 QTM 6 800 340 2 1M –
4 3x3x3 QTM 10 430 300 4 1M –

5 3x3x3 QTM 1 12196 0 0 4M –
6 3x3x3 QTM 2 1841 1841 0 4M –
7 3x3x3 QTM 6 2000 697 2 4M –
8 3x3x3 QTM 10 700 643 4 4M 10, 12, 13

9 4x4x4 UQTM 2 750 750 0 1M –
10 4x4x4 UQTM 4 530 470 1 1M –
11 4x4x4 UQTM 6 720 300 2 1M –
12 4x4x4 UQTM 10 500 266 4 1M –

13 4x4x4 UQTM 2 1730 1730 0 4M –
14 4x4x4 UQTM 6 1180 1024 1 4M –
15 4x4x4 UQTM 6 2000 628 2 4M –
16 4x4x4 UQTM 10 1010 592 4 4M 18, 19

17 4x4x4 UQTM 6 2000 1126 2 8M –
18 4x4x4 UQTM 10 1540 850 4 8M –

19 4x4x4 UQTM 6 5000 1369 2 16M –
20 4x4x4 UQTM 10 5000 1062 4 16M –

21 2x2x2 QTM 1 1024 0 0 0.15M 3
22 2x2x2 QTM 10 430 300 4 0.92M 4
23 3x3x3 QTM 1 1024 0 0 0.34M 11
24 3x3x3 UQTM 10 700 643 4 4M 15
25 5x5x5 UQTM 10 1008 560 4 4M 22

The first experiment’s results are demonstrated in Figure 2a. Single layer MLPs for 4x4x4 Rubik’s
cube are not presented in Table 2 as during preliminary research solvers equipped with this type of
model did not manage to solve any scramble before reaching the 200 steps limit.

During the second experiment, we used only 10 layer models with size 4M (models No.8 and 16 from
Table 2). The first experiment’s results did not show a significant effect of increasing T (train size)
from 4B to 16B. Thus, the second experiment used finer granularity with 4B, 8B, and 16B train sizes
to select the appropriate size more precisely. Each snapshot of the models trained with the mentioned
above train sets was integrated into solvers with W of 212, 214, 216, 218, 220, 222, and 224. Then,
these solvers were used to unscramble the first 20 puzzles from the same dataset used in the first
experiment. The results achieved by each solver configuration on the corresponding dataset were
averaged. Unsolved scrambles were excluded from consideration in this experiment.
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Table 3: Average solution length depending from trainset size T and beam width W for tested with
puzzle win probability above 0.5.

T 4B 8B 16B

W Win prob. Avg. sol. Win prob. Avg. sol. Win prob. Avg. sol.
3x3x3 Rubik’s solver results with win probability above 0.5

212 1.00 22.15 1.00 22.05 1.00 22.3
214 1.00 21.55 1.00 21.55 1.00 21.6
216 1.00 21.25 1.00 21.15 1.00 21.2
218 1.00 21.15 1.00 20.95 1.00 21
220 1.00 20.75 1.00 20.85 1.00 20.9
222 1.00 20.65 1.00 20.65 1.00 20.7
224 1.00 20.65 1.00 20.65 1.00 20.65

Average solution 21.16 21.12 21.19
4x4x4 Rubik’s solver results with win probability above 0.5

216 0.80 61.88 0.55 60.18 0.85 64.12
218 1.00 58.1 0.85 56.7 0.95 58.47
220 1.00 54.7 1.00 55.3 1.00 54.7
222 1.00 51.9 1.00 52.8 1.00 52.3
224 1.00 50.4 1.00 50.6 1.00 49.6

Average solution 55.4 55.11 55.84

The results of the second experiment are demonstrated in Figure 2b. A deeper analysis of the
experimental results shows that if we consider only W values that give a puzzle winning probability
above 50%, the agent with the model trained on 8B states has a slightly better average solution length
than the competitors (Table 3). Thus, for the rest of the experiments, we used the 8B train set as a
compromise between solver performance and training time.

The third experiment analyzed the influence of the number of agents A on the solver’s efficiency. We
used models No.8, 16, and 25 for this experiment from Table 2. We trained each of these models
multiple times during 8192 epochs. Then, each model was integrated into a dedicated agent. Due
to computation limitations, we run only two agents in parallel at the same time, assuming that with
more available GPU instances, it will be possible to compute all of them simultaneously. Finally, the
total number of pretrained agents for 3x3x3 was 26, 4x4x4 – 29, and 5x5x5 – 69. As in previous
experiments, the agents aimed to solve 3x3x3 cubes were tested on the scrambles DeepCubeA dataset,
while the rest were verified using the 2023 Kaggle Santa Challenge dataset. Due to the large size
of the DeepCubeA dataset, in the third experiment, we used a subset of 69 3x3x3 scrambles, which
were considered most difficult during preliminary research. The results of the experiment are shown
in Figure 3.

Due to historical reasons, scramble order and corresponding IDs demonstrated on Figures 3 and 4
are different from the original ones in the 2023 Kaggle Santa Challenge dataset. This difference
does not affect research results in any way, but may be confusing, e.g., in case one compares our
best results with their own. Thus, for reproducibility reasons, we added paper/solver-scrambles
and paper/figure-scrambles folders to the Supplementary Materials, which contain generators and
scrambles used in each specific experiment and the corresponding README file.

The authors of [3], along with the well-known DeepCubeA dataset, were using DeepCubeAh set
containing the scrambles that are furthest away from the goal state, assuming these scrambles are
more challenging to solve. At the same time, original DeepCubeA solutions were robustly and
optimally solving them. During the current research, we found another subset of the DeepCubeA
dataset containing 16 scrambles, which were not solved optimally during the experimental studies.
We believe that a significantly rising number of agents will lead to finding solutions to all of them.
However, the first element of this subset (scramble No.17 from original DeepCubeA) was never
optimally solved in any of our attempts, even during preliminary research and experiments not
covered by this paper. We believe that analyzing the scrambles in this subset will help us understand
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why they are so hard to solve compared to the rest of the DeepCubeA data. Finally, this understanding
will lead to the development of new, more efficient ML methods.7 Thus, we decided to publish these
16 scrambles as a self-contained dataset accompanied by this paper.

The experimental results listed in Table 1 were achieved by solving all the scrambles from the
corresponding dataset defined in the third column of Table 1 using the proposed solver. The key
solver parameters are listed in the fourth column. The last column of Table 2 demonstrates for which
results from Table 1 each model was used.

The next experiment conducted in the current research was aimed to compare computational efficiency
with the EfficientCube [46] (a state-of-the-art solution claimed by its author to have better efficiency
than DeepCubeA). For the fairness of comparison, we used a dedicated server equipped with two
Intel Xeon Gold 6442Y 24-core processors running at 2600 Mhz, 256 GB DDR5 RAM, 512 GB
SSD, and two GPUs NVIDIA H100 80GB. The server was running Ubuntu Linux 24.04.2 LTS,
CUDA 12.4. The latest version (March 10th, 2024) of the EfficientCube was downloaded from the
official GitHub repository8 and configured according to the author’s instructions to reproduce the
results from [46]. Our solution was installed on the same server and configured with the beam width
providing similar solution length (see results No.9 and 10 in Table 1). First, we sequentially trained
a model for each solution and measured the time required for these procedures. Then, we tested
both solvers on all the scrambles from the DeepCubeA dataset. Both solutions were configured
to use 32-bit single-precision floats for training and 16-bit half-precision floats for inference. We
recorded the solving time for each scramble and then averaged it among the whole dataset. Finally,
we compared training time and average solving time between EfficientCube and our solution. During
this experiment, only one solution was running on the server at the same time.

B.7 Analysis of the solutions provided by neural networks trained on 524B examples

The experiment aimed to analyze the benefits and drawbacks of using extremely large trainsets
generated by random walks in solving Rubik’s Cube. Two 10-layer neural networks were trained
for this purpose. The parameters of these neural networks are provided in line 16 of Table 2. The
training procedure was equal to the one described in Section B.4. The training was performed during
524288 epochs, resulting in 524B examples. The training was performed on a server equipped with
two NVIDIA H100 GPUs. Each GPU was used to train only one network. The overall training
procedure took approximately 7 days and 17.5 hours. Then each network was used to solve 43 4x4x4
scrambles from the 2023 Santa Challenge Dataset using a single agent with a beam width of 224.
Additionally, two solvers were equipped with snapshots of the trained networks stored after 8192
training epochs. The detailed comparison of the experimental results is provided in Figure 4. Figure 4
uses the following color code. Blue color – solution lengths of the best results, which were provided
for the corresponding scramble by one of the neural networks during the experiment. The green color
indicates that at least one of the neural networks trained with 524B examples produced shorter results
than both versions trained with 8B examples. The red color indicates a scramble for which at least
one of the neural networks trained with 8B examples produced shorter results than both versions
trained with 524B examples. Yellow color – scrambles for which the shortest solutions provided by
neural networks trained with 8B and 524B were the same.

Scramble ID

Neural network 1 (upper line 8B/lower line 524B)

Neural network 2 (upper line 8B/lower line 524B)

Best results over other exeperiments (neural networks trained with 8B examples)

Figure 4: The solution lengths found by the solvers equipped with neural networks trained using 8B
examples and their versions extensively trained with 524B examples compared to the best solutions
found using networks trained with 8B examples (in all other experiments performed during research).

7A possible explanation is that the number of optimal solution paths for such cubes is lower than average or
equal to one, making these paths more difficult to find.

8https://github.com/kyo-takano/efficientcube
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The first of two networks managed to solve all the scrambles, both trained using 8B and 524B samples.
Sixteen scrambles were solved with the same length. In nine cases, a network snapshot captured
after 8B samples provided shorter solutions, and in 18 cases, the network trained on 524B samples
provided shorter solutions. As a result, the average solution length decreased from 49.3 to 48.56 as a
result of very long training.

The results demonstrated by the solvers based on the second neural network are more controversial.
The version trained using 8B samples managed to solve scrambles No. 10, and No. 29, but failed to
solve the scramble No. 37. Conversely, the version trained using 524B samples solved the scramble
No. 37, but failed to solve scrambles No. 10 and No. 29, providing a worse win probability rate. The
solver, equipped with the network trained on 524B samples, provided a better average solution length,
but only if unsolved scrambles are entirely omitted. Moreover, the difference between versions
trained using 8B and 524B samples is much less than the one observed with the first network. Direct
comparisons of different scrambles show that in 9 cases, network snapshots captured after 8B samples
provided shorter solutions. In 16 cases, networks trained on 524B samples provided shorter solutions,
and in the remaining 18 cases, the solution length was the same.

The comparison with the shortest solutions found during the rest of the research showed that networks
trained with 524B samples did not outperform the best results demonstrated by the networks trained
using 8B samples (Figure 4) for any of the scrambles. In 22 out of 43 cases, one of the solvers
equipped with networks trained during the discussed experiment provided solutions with the same
length as the shortest ones previously found for the corresponding scrambles. In 8 of these cases,
the shortest solution was provided by both versions trained with 8B and 524B samples, and in 4
more cases, the 8B version provided the shortest solution, while the further trained neural network
failed (Figure 4).

Thus, even long training with 524B samples slightly improved average solution length, but the
advances achieved are incomparable to the additional computational resources required. Another
experiment provided in this paper demonstrates that 5-10 agents trained using 8B samples (40-80B in
total) achieve a smaller average solution length than any of the two networks we trained on 524B
samples. Moreover, comparing these networks with their snapshots captured after 8192 training
epochs demonstrated that they not only provide new, shorter solutions but also degrade for other
scrambles and even fully "forget" how to solve some of them.

It was also revealed that extensive training on a large number of examples leads to more computation-
ally extensive inference. The solvers equipped with networks trained with 524B samples were not
able to solve any scrambles if half-precision inference was used. Thus, we were forced to compute the
inference for these networks with single precision, which required more time on the same hardware.
Contrarily, the versions trained with 8B samples were fully compatible with the "half precision" trick,
which is used to boost the solver’s performance.

B.8 Method generalization

To demonstrate the generality of the proposed method beyond Rubik’s cubes, we tested it on a
diverse set of permutation groups from the 2023 Kaggle Santa Challenge (excluding cubes larger than
6x6x6), as well as additional groups such as Pancake sorting [52], LRX [53], and the 15-puzzle with
periodic boundaries [54]. Each model was trained with fixed neural network parameters (N1 = 1024,
N2 = 256, Nr = 1) for 16 and 128 epochs. The solver used beam width of W = 220. The results of
this experiment are summarized in Table 4. The values provided in parentheses in Table 4 indicate
the standard error of the mean. From the perspective of sampling random states of a given group, this
allows statistically significant comparisons between the performance of different solvers.

The only varying parameter was Kmax, selected based on known [63] or estimated [51] graph
diameters. In general practice, Kmax can be chosen automatically by scanning several candidate
values. We performed four independent training and inference runs for each group, confirming
robustness for groups consistently solved in all runs (marked as 100% in Table 4).

Initial states for additional groups were generated by performing 10,000 random moves from the
solved state, followed by an optional random move with 50% probability to ensure parity variability.
The total test set included 296 puzzles from the Santa challenge groups and 200 puzzles from
additional groups (10 per group).

20



The comparison of the results achieved using a model trained for 16 and 128 epochs (marked in
Table 4 with their trainset size T 16M and 128M, respectively) shows that in most of the cases, larger
128M trainset provides shorter solution length and as a consequence – faster scramble solving time.
At the same time, it is surprising that models trained using only 16M examples robustly solve all the
test cases for 28 of 39 investigated groups. Moreover, the Globe 6x8 puzzle model trained for 16
epochs was more successful than the one trained for 128.

We evaluated the method by comparing the average solution length to the best Kaggle Santa solutions.
The proposed approach provided shorter average solutions for 12 out of 14 non-cube 2023 Kaggle
Santa Challenge groups, indicating strong generalization. Failures occurred when the beam search
stagnated, detected by repeating vertex sets across consecutive search steps. Such stagnation occurred
for some extremely large groups, indicating that while the method is scalable, each group’s practical
solvability limit varies, as evident from Table 4. It is also seen that large Rubik’s cubes are harder
than many other puzzles represented with groups of comparable or larger size. A model trained with
16M examples did not solve any of the scrambles used during the experimental studies, while the
model trained for 128 epochs solved only 22% of them. The previous experiments demonstrated that
a larger model trained with 8192M examples can robustly solve 100% of scramble. At the same time,
the found solution won’t be the shortest one. Using up to 69 agents was required to beat all the best
2023 Kaggle Santa Challenge. Thus, the fact that in the last experiment, our method did not solve any
scrambles of 6x6x6 Rubik’s cube does not mean that it is not suitable for this task. It just may require
a larger size of the model and beam width. For example, in one of our preliminary experiments, a
single agent equipped with a neural network trained on 8 million parameters, 1 billion examples,
and a beam width of 16 million managed to solve 2 out of 6 6x6x6 Rubik’s Cube scrambles from
the Santa Challenge dataset. The solution lengths were more than 200, but they were found using
a smaller trainset, the same beam width, and only twice the size of the models used to achieve the
result demonstrated in Table 1 for the 5x5x5 Rubik’s cube.

The scripts for reproducing the results presented in Table 4, along with the exact values of the
parameter Kmax used for each group, are provided in the supplementary materials (traintest-tab4-
rnd.sh and traintest-tab4-santa.sh).

Additionally, by suggestion of one of the reviewers on the rebuttal stage, we extended our experiments
to include classical 15-puzzle instances (in addition to the periodic boundary version reported in
Table 4 in the originally submitted version of the paper). We tested our method on standard 4x4 (15-
puzzle) and 5x5 (24-puzzle) sliding puzzles, comparing against both classical PDB-based solvers and
learning-based approaches.

For the 4x4 puzzle, our method achieves 100% optimality with an average solution length of
52.02 moves, matching the performance of PDB-based optimal solvers and slightly outperforming
DeepCubeA (99% optimality). Our solving time of 3.5 seconds is faster than DeepCubeA’s 10.3
seconds, though naturally slower than PDB’s near-instantaneous 0.002 seconds. Crucially, our
training time is only 40 seconds compared to DeepCubeA’s 36 hours—a dramatic reduction in
computational requirements.

For the more challenging 5×5 puzzle, our approach solves instances in 11 seconds with 88% optimality,
compared to DeepCubeA’s 19.3 seconds with 97% optimality. Interestingly, while PDB guarantees
optimal solutions, it requires 4239 seconds (over an hour) to solve 5x5 puzzles—demonstrating that
our learned heuristic provides a practical speed-optimality tradeoff for larger instances. EfficientCube
was unable to solve the 5x5 puzzle in our tests. The original paper also does not report that this
solution can solve the 24-puzzle.

These results demonstrate that our method offers a compelling balance: training times measured
in seconds rather than days, competitive solution quality, and practical solving speeds that scale
better than exact algorithms for larger puzzles. While domain-specific solvers like PDB excel in
minor instances where precomputation is feasible, our approach offers a more general and scalable
alternative that requires minimal domain knowledge.
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Table 4: Generalization performance across different puzzles.
Group Size Training, min Solving, min Avg. solition len. Solved, %

16M 128M 16M 128M 16M 128M 16M 128M

Cube 2x2x2 4× 106 0.1 0.5 0.01 0.02 10.5(3) 10.5(3) 100 100
Cube 3x3x3 4× 1019 0.1 0.8 0.18 0.17 21.5(1) 20.5(1) 100 100
Cube 4x4x4 7× 1045 0.2 1.5 1.44 1.24 77(2) 65(1) 90 94
Cube 5x5x5 3× 1074 0.2 1.5 – 7.14 – 126(2) 0 22
Cube 6x6x6 2× 10116 0.4 2.8 – – – – 0 0
Wreath 6x6 3× 106 0.1 0.4 0.00 0.00 8.5(4) 8.5(4) 100 100
Wreath 7x7 2× 108 0.1 0.4 0.00 0.00 9.2(3) 9.2(3) 100 100
Wreath 12x12 1× 1021 0.1 0.5 0.01 0.01 18.3(7) 18.3(7) 100 100
Wreath 21x21 4× 1047 0.1 0.5 0.05 0.05 35(2) 35(2) 100 100
Wreath 33x33 6× 1088 0.1 0.6 0.10 0.11 61(1) 61.5(5) 100 100
Globe 1x8 2× 1035 0.1 0.8 0.46 0.43 43(2) 44(2) 100 100
Globe 1x16 1× 1089 0.1 1.1 2.09 1.98 83.3(7) 81(3) 100 100
Globe 2x6 7× 1024 0.1 0.6 0.13 0.12 21(1) 21(1) 100 100
Globe 3x4 4× 1026 0.1 0.7 0.20 0.18 29(2) 27(1) 100 100
Globe 6x4 7× 1040 0.1 0.7 0.48 0.43 44.0(7) 42(1) 100 100
Globe 6x8 2× 10107 0.2 1.8 6.58 7.02 183(16) 173(15) 100 75
Globe 6x10 1× 10145 0.2 1.8 – 6.94 – 143 0 100
Globe 3x33 1× 10448 0.8 6.6 – – – – 0 0
Globe 8x25 3× 10633 1.5 12 – – – – 0 0

Puzzle 8 2× 105 0.1 0.5 0.00 0.00 12.8(5) 12.8(5) 100 100
Puzzle 15 1× 1013 0.1 0.6 0.05 0.05 31.0(6) 31.0(6) 100 100
Puzzle 24 8× 1024 0.1 0.9 0.17 0.17 64.6(8) 64.2(8) 100 100
Puzzle 35 2× 1041 0.2 1.2 0.56 0.45 115(2) 113(2) 70 100
Puzzle 48 3× 1062 0.2 1.8 1.79 2.07 181 181 10 10
Puzzle 63 9× 1088 0.3 2.5 – – – – 0 0
LRX 10 4× 106 0.1 0.5 0.01 0.01 28(1) 28(1) 100 100
LRX 15 1× 1012 0.1 0.6 0.07 0.07 66(3) 66(3) 100 100
LRX 20 2× 1018 0.1 0.8 0.18 0.19 135(3) 135(3) 100 100
LRX 25 2× 1025 0.1 1.0 0.42 0.42 216(7) 217(7) 100 100
LRX 30 3× 1032 0.1 1.1 0.52 0.52 386(16) 329(15) 50 50
Pancake 10 4× 106 0.1 0.5 0.01 0.01 8.6(3) 8.6(3) 100 100
Pancake 15 1× 1012 0.1 0.5 0.06 0.06 13.9(3) 13.9(3) 100 100
Pancake 20 2× 1018 0.1 0.6 0.14 0.14 18.8(3) 18.8(3) 100 100
Pancake 25 2× 1025 0.1 0.7 0.38 0.38 24.0(3) 24.0(3) 100 100
Pancake 30 3× 1032 0.1 0.8 0.58 0.58 28.4(8) 28.2(7) 100 100
Pancake 35 1× 1040 0.1 1.0 1.26 1.24 34.5(3) 34.2(2) 100 100
Pancake 40 8× 1047 0.1 1.1 1.22 1.20 39.4(4) 38.9(3) 100 100
Pancake 45 3× 1056 0.2 1.2 3.25 2.99 48(1) 44.1(4) 100 100
Pancake 55 3× 1073 0.2 1.4 6.70 3.49 57.2(8) 50.0(3) 50 100
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B.9 Computational resources

All of the experiments reported in the paper were performed on a dedicated server manufactured by
Graviton. This server is equipped with two Intel Xeon Gold 6442Y 24-core processors running at
2600 Mhz, 256 GB DDR5 RAM, 512 GB SSD, and two GPUs NVIDIA H100 80GB. The server was
running Ubuntu Linux 24.04.2 LTS, CUDA 12.4. None of the other applications except the ones used
for this research were executed during experimental studies. The server was simultaneously running
two agents, each using a dedicated GPU. In cases when more agents were needed, they were executed
sequentially by pairs. The total computation time used to perform the research, including all the
published experiments, took approximately two months of continuous computing with 100% GPU
usage. During our preliminary research, we also used several virtual machines provided by Kaggle9.

9https://www.kaggle.com/
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