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ABSTRACT

Precisely evaluating video understanding models remains challenging: commonly
used metrics such as BLEU, ROUGE, and BERTScore fail to capture the fineness
of human judgment, while obtaining such judgments through manual evaluation
is costly. Recent work has explored using large language models (LLMs) or mul-
timodal LLMs (MLLMs) as evaluators, but their extension to video understanding
remains relatively unexplored. In this work, we introduce VideoJudge, a 3B and
7B-sized MLLM judge specialized to evaluate outputs from video understand-
ing models (i.e., text responses conditioned on videos). To train VideoJudge, our
recipe builds on the interplay between a generator and an evaluator: the generator
is prompted to produce responses conditioned on a target rating, and responses
not matching the evaluator’s rating are discarded. Across three out of four meta-
evaluation benchmarks, VideoJudge-7B outperforms larger MLLM judge base-
lines such as Qwen2.5-VL-32B and Qwen2.5-VL-72B. Notably, we find that LLM
judges (Qwen3) models perform worse than MLLM judges (Qwen2.5-VL) and
that long chain-of-thought reasoning does not improve performance, indicating
that providing video inputs is crucial for evaluation of video understanding tasks.

1 INTRODUCTION

Recent advances in multimodal large language models (MLLMs) have significantly improved video
captioning, question answering, and long-form video understanding across various domains. How-
ever, their progress poses a critical challenge: how to evaluate their outputs with reliability, inter-
pretability, and at scale? Traditional reference-based metrics such as BLEU, ROUGE (Lin, 2004),
and BERTScore (Zhang et al., 2020) struggle to capture semantic fidelity, contextual grounding, or
task-specific reasoning. Moreover, in open-ended tasks where multiple valid answers exist, sim-
ple reference overlap can be misleading. Human evaluation is often considered the gold standard,
but is expensive, slow to scale, and suffers from inter-annotator variability (Liang et al., 2025). A
promising alternative is LLM-as-a-Judge. By prompting or fine-tuning language models to assess
responses, this paradigm has improved evaluation in text generation (Zheng et al., 2023; Kim et al.,
2024a; Gu et al., 2025; Li et al., 2024b) and more recently in vision–language tasks via MLLM-as-
a-Judge (Chen et al., 2024a; Xiong et al., 2025; Lee et al., 2024b).

Applying MLLM-as-a-judge to video understanding remains underexplored, largely due to the tem-
poral and multimodal complexity of video. Beyond this inherent difficulty, two broader limitations
persist. First, the field lacks large-scale evaluation resources: there are no comprehensive datasets
with human preference signals or standardized benchmarks for verifying alignment with human
judgments. As a result, existing work either relies on proprietary models such as GPT-4 or GPT-
4o (Pu et al., 2025a), which lack transparency and reproducibility, or on small open-source MLLMs
in zero-shot settings, which fall short of human-level reliability. Second, principled evaluation cri-
teria are missing. Current (M)LLM-as-a-judge methods depend either on generic rubrics, which are
often vague and brittle, or on manually authored rubrics, which cannot scale across tasks.

To address this gap, we introduce a framework to bootstrap data to train scalable video understanding
evaluators. The framework has two key pillars. First, it automatically generates training data by
producing candidate responses across a 1–5 rating scale, validating them with an evaluator model,
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and refining cases where predicted ratings diverge from expectations. These bootstrapped examples
are then used to train both pointwise and pairwise judge models. Second, the same process enables
the construction of new pointwise and pairwise meta-evaluation benchmarks, providing large-scale,
high-quality resources for systematic comparison. In this way, our approach eliminates the need for
costly human annotation while yielding both robust training data and standardized evaluation suites.

Second, we train MLLM judge models not only to predict ratings with explanations, but also to
generate instance-specific rubrics at test time. This enables fine-grained evaluation that is both
interpretable and anchored in explicit standards. Experiments in both pointwise and pairwise settings
show that VideoJudge matches or surpasses much larger models while correlating more strongly
with human ratings and demonstrating higher sample efficiency.

In summary, our contributions are four-fold:

• We introduce VideoJudge, the first bootstrapped framework for training scalable MLLM-
based evaluators across diverse video understanding tasks.

• Train judge models that can not only assign ratings but also generate high-quality, instance-
specific rubrics at inference time.

• We demonstrate that fine-tuned small models on the bootstrapped data can match or out-
perform much larger models in accuracy and alignment with human-specified ratings.

• We provide a suite of trained pointwise and pairwise judge models, meta-evaluation bench-
marks, bootstrapped datasets, and other artifacts to support reproducible research in video
understanding evaluation.

2 RELATED WORKS

Video Understanding Models and Evaluation Recent advances in large language models have
driven rapid extension into multimodal settings, where models jointly process and generate across
text, image, audio, and video modalities (Bai et al., 2025b; Chen et al., 2024c; Wu et al., 2024b;
Xu et al., 2025; Zhao et al., 2025; Chen et al., 2025; Wu et al., 2025). A growing line of work
explores video understanding specifically, either by pretraining multimodal models with video–text
corpora (Zhang et al., 2024b; 2023; Cheng et al., 2024; Boqiang Zhang, 2025; Wang et al., 2025) or
by instruction-tuning to align video representations with downstream tasks (Zhang et al., 2024c;a).
These models are often evaluated using conventional, automatic metrics such as BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and BERTScore (Zhang et al., 2020), which all assume the
existence of reference answers. Human evaluation is also widely used but is costly and inconsistent.
These limitations call for more principled automatic and semi-automatic approaches.

LLM-as-Judge An alternative paradigm for evaluation leverages LLMs themselves as evaluators.
Several works have investigated the viability of prompting powerful models such as GPT-4 to act
as judges on text generation tasks (Zheng et al., 2023; Liu et al., 2023; Ye et al., 2023). Beyond
prompting, other efforts fine-tune open-weight models such as Llama-2 (Touvron et al., 2023) and
Mistral (Jiang et al., 2023) to serve as reliable evaluators by distilling from GPT-4’s assessment
trajectories (Kim et al., 2023; 2024b; 2025a). More recently, researchers have extended this line of
work to multimodal settings. For example, Chen et al. (2024b) examine whether multimodal LLMs
can function as judges, while Lee et al. (2024a) explore fine-tuning open-weight models such as
LLaVA-1.5 (Liu et al., 2024) to mimic the evaluation capability of proprietary MLLMs. Similarly,
He et al. (2024) and Ku et al. (2024) investigate the use of MLLMs as judges for text-to-image and
text-to-video tasks. Together, these works highlight the promise of LLM-as-a-Judge for scalable
evaluation, while underscoring the need to further test its robustness in video understanding.

3 METHODOLOGY

Our bootstrapping framework consists of a generator–evaluator pipeline that jointly synthesizes
data and enforces quality control. The design draws inspiration from self-refinement approaches,
where self-consistency (Mitchell et al., 2022; Wang et al., 2023; Chen et al., 2023) and self-
verification (Weng et al., 2023) enhance LLM performance, and models adapt through verbal feed-
back (Madaan et al., 2023). Our overall framework has two stages: (1) iterative bootstrapping to
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construct large-scale, fine-grained training data, and (2) fine-tuning judge models to generate ratings
and instance-specific rubrics, which are evaluated under both pointwise and pairwise settings. Our
framework is shown in Figure 1.

Rating Response

N Gold Response N

Generation Prompt
(Prompt for generating initial
alternate responses to video
understanding tasks) Generator

Generator
Rating

Response

N-1 Response N-1

... ...

1 Response 1

Evaluation Prompt
(Prompt for evaluating
generated responses)

Evaluator

Evaluator
Rating

Response

N-1 Response N-1

... ...

1 Response 1

Bootstrapped Data

?

Video Understanding
Eval Task Suite

finetune
          Input: 
    [instruction], [video], [response]

          Output: 
    <reasoning></reasoning>
    <score>{numerical_score}</score>

Small Evaluator Model

evaluate

Figure 1: Overview of our bootstrapping framework for training scalable video evaluators. A
generator first produces candidate responses for a 1 to N − 1 rating scale (N = 5) for each
video–instruction pair. These responses are then scored by an evaluator, and only candidates whose
ratings align with expectations are retained. Through an iterative refinement loop, mismatched re-
sponses are revised until they satisfy the acceptance criterion. The resulting bootstrapped dataset
provides high-quality supervision signals, which we use to fine-tune compact VideoJudge models.

3.1 BOOTSTRAPPING PROCESS

We begin with seed data sourced from three large-scale video instruction–response datasets:
VideoInstruct-100K (Muhammad Maaz & Khan, 2023), VCG-Plus-112K (Maaz et al., 2024), and
VideoChat2-IT (KunChang Li & Qiao, 2023). For VideoChat2-IT, which contains multi-turn dia-
logues, we retain only the first human–assistant exchange. The three corpora are merged and dedu-
plicated at the instruction level for each video using a MINHASHLSH index (128 permutations,
Jaccard threshold 0.9). From this deduplicated pool, we randomly sample 25K examples, resulting
in a corpus of triplets (v, x, y∗) where v is a video, x an instruction, and y∗ a gold-standard response.

To transform this seed corpus into a training dataset for the evaluator, we iteratively generate and
refine candidate responses for each (v, x, y∗) triplet. The process follows three stages: Initial Gen-
eration, Feedback, and Refinement, described formally below.

Initial Generation: For each instruction–video pair (x, v) with gold response y∗, a generator model
G produces N − 1 candidate responses, each intended to correspond to a rating r ∈ {1, . . . , N − 1}
as shown in 1. The gold response y∗ is included as the highest-rated response with rating N .

y
(r)
0 = G(pgen∥v∥x∥y∗, r). (1)

Feedback: Each candidate response y
(r)
t is evaluated by an evaluator model E, which assigns a

rating r̂ and provides reasoning f
(r)
t . We then compute the deviation between the intended rating

r and the evaluator’s rating r̂ to determine whether the candidate should be accepted or refined.
Candidates for which ∆

(r)
t ≤ α are accepted directly into the dataset. The evaluation process can

be formalized as:

r̂, f
(r)
t = E(peval∥v∥x∥y∗∥y(r)t ) (2) ∆

(r)
t = |r − r̂| (3)

Refinement: For candidates with a rating deviation ∆
(r)
t > α, the generator is prompted again

using the evaluator’s feedback to improve the response. This iterative refinement continues until the
candidate meets the acceptance criterion or a maximum of T iterations is reached.The refinement
step is formalized as:

3
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y
(r)
t+1 = G(pref∥v∥x∥y∗∥y(r)t ∥f

(r)
t , r) (4)

Acceptance Criterion: A candidate response y(r)t is added to the bootstrapped dataset if |r−r̂| ≤ α.
The final dataset, therefore, consists of {(v, x, y, r)} triplets with aligned ratings.

The complete process is outlined in Algorithm 1. Using this pipeline, we bootstrap pointwise data
with N = 5, where each instruction is paired with five responses rated from 5 to 1. Representative
examples are shown in Table 6 in Appendix A.4.

3.2 MODEL TRAINING

We use the bootstrapped dataset to train pointwise and pairwise evaluator models. The dataset is
structured as D = {(vi, xi, yi, ti)}Mi=1, where vi denotes the video, xi the instruction, yi a candidate
response (or a response pair in the pairwise setting), and ti the associated target annotation, such
as a rating or a preference label. The evaluator model Eθ is trained end-to-end to autoregressively
generate the target sequence ti conditioned on (vi, xi, yi), with the standard negative log-likelihood
over tokens serving as the objective:

L(θ) = − 1

M

M∑
i=1

|ti|∑
j=1

logPθ

(
ti,j | ti,<j , vi, xi, yi

)
,

where ti,j denotes the j-th token of ti. This loss is applied to both pointwise and pair-
wise models. In the pointwise setting, the model produces intermediate reasoning within
<thinking></thinking> followed by a scalar rating in <score></score>, and it can op-
tionally generate task-specific rubrics in <rubric></rubric> before reasoning and evaluation.
In the pairwise setting, the model outputs its decision within <answer></answer> based on a
pair of candidate responses.

4 EXPERIMENTS

We bootstrap pointwise data starting from 25K seed video instructions-response pairs. After the
bootstrapping process, we retain only instructions with at least five responses (one for each rating),
yielding 103,825 examples across 20,765 unique video–instruction pairs.

We construct pairwise supervision by forming response pairs where the higher-rated output is chosen
as preferred. Due to computational limitations and while keeping the setting identical, we randomly
sample 50% of all possible pairs, resulting in 103,825 pairwise training examples. Both pointwise
and pairwise judge models are trained on these bootstrapped datasets. In the pointwise setting,
the model takes a video, instruction, and candidate response as input, and is trained to produce a
reasoning trace followed by a quality score. We further train a judge model to first generate an
instruction-specific evaluation rubric, which is then applied when scoring, ensuring that evaluations
are grounded in context-specific criteria. In the pairwise setting, each instruction is paired with two
candidate responses1, and the model is trained to identify the preferred response.

4.1 BASELINES

We compare VideoJudge against both unimodal language models and multimodal video–language
models. Unimodal baselines are given detailed video descriptions generated by Qwen2.5-VL-72B
as proxies for visual input, while video models process video frames directly.

Unimodal Models Each unimodal model is provided with the description, instruction, and candi-
date response, and is prompted to generate a reasoning trace followed by a score. We consider
Qwen3 (Yang et al., 2025a) family of models from 0.6B to 14B, and also enable the “thinking
mode” of smaller models (up to 4B) to test whether extended reasoning sequences enhance judging
ability (Chan et al., 2025; Kim et al., 2025b; Zhou et al., 2025).

1To avoid positional bias, the order of responses is randomized during both training and evaluation.
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Video Models We evaluate Qwen2.5-VL(3B–72B) (Bai et al., 2025a) along with other recent
video–language models, including LLaVA-Next (7B) (Zhang et al., 2024b), VideoR1 (7B) (Feng
et al., 2025), and LLaVA-OneVision (Li et al., 2024a). In our preliminary experiments we find
that several models—such as VideoLLaMA3-7B (Zhang et al., 2025), VideoChat-Flash (Li et al.,
2024d), Keye-VL (Yang et al., 2025b), and SmolVLM2 (Marafioti et al., 2025)—frequently failed
to follow instructions or produce valid scores under the same evaluation setup. Consequently, we
exclude them from our main results.

4.2 EVALUATION

Pointwise Each video–instruction–response triplet is evaluated independently, with the model pro-
ducing a reasoning trace followed by a rating on a 1–5 scale. We construct two meta-evaluation
benchmarks, VideoJudgeLLaVA-MetaEval and VideoJudgeVCG-MetaEval, by sourcing seed in-
struction data from LLaVA-Video (Zhang et al., 2024c) and VideoChatGPT 2, then generating ad-
ditional responses via our bootstrapping pipeline (Algorithm 1) with threshold 0. We report corre-
lation and error metrics, as well as divergence error. We further evaluate on Vatex-Eval (Shi et al.,
2022), which contains multiple human judgments aggregated into continuous ground-truth scores,
emphasizing ranking- and separation-based measures to capture preference consistency. We also
use LongVideoBench (Wu et al., 2024a) for long-form multiple-choice evaluation by rating correct
versus distractor answers, reporting both the average score gap (Delta) and pairwise superiority.

Pairwise The judge models compare two candidate responses for the same video–instruction and
select the preferred one. We use VideoAutoArena (Luo et al., 2025), where human preferences serve
as ground truth. From our pointwise evaluation data, we also construct VideoJudge-Pairwise by
pairing responses with different ratings and treating the higher-rated response as correct, measuring
accuracy against this derived ground truth. To probe more subtle distinctions, we create VideoJudge-
Pairwise-H focusing on challenging 2-vs.-3 cases: we sample 250 such pairs, collect annotations
from two human evaluators, and retain only those with full agreement, yielding over 200 pairs with
human preference ground truth. We report the accuracy score for all pairwise evaluations.

Experimental Setup All models are trained and evaluated under identical hyperparameter settings
to ensure fairness. We use full finetuning in BF16 precision with a maximum sequence length of
128K tokens with fps rate of 1 with max number of frames 60 for training and 180 during evaluation.
We train all models for 2 epochs with a batch size of 16. The learning rate is set to 2×10−7 with
cosine decay, a warmup ratio of 0.03, weight decay of 0, and gradient clipping at 1. We provide key
hyperparameters and other implementation details in Appendix A.6

5 DATA EVALUATION

We evaluate the bootstrapped data to ensure the quality and that it provides meaningful and reliable
supervision. Our data evaluation has two parts: automatic checks to assess the relative quality of the
responses, and human evaluation to validate correctness and preference alignment. Together, these
evaluations confirm that the generated data is of sufficient quality for training and benchmarking.

5.1 AUTOMATIC EVALUATION

During our bootstrapping process, we prompt the generator model to produce candidate responses
for different ratings by progressively degrading the quality according to the specified score. A
natural proxy to verify that the generated dataset adheres to this design is to assess whether re-
sponse quality indeed declines as we move from higher to lower ratings. To this end, we compute
BERTScore and BLEU using the gold response as reference and the generated candidates (ratings
4–1) as hypotheses. The results, presented in Figure 2, exhibit a clear monotonic degradation:
BERTScore decreases from 91.1 (5–4) to 86.9 (5–1), while BLEU drops from 11.0 to 3.0. This
consistent downward trend confirms that the generator reliably produces responses of progressively
lower quality, validating the effectiveness of our controlled response generation process.

2https://huggingface.co/datasets/lmms-lab/VideoChatGPT
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5.2 HUMAN EVALUATION
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Figure 2: The monotonic decrease in
BERTScore and BLEU score demonstrates
that our proposed framework is capable of
producing responses with controlled quality.

We construct our pairwise data by sampling response
pairs with different ratings for the same instruction,
choosing the higher-rated one as preferred. In prac-
tice, we found that generator–evaluator disagree-
ments were most frequent around ratings 2 and 3,
even after incorporating the feedback loop. To fo-
cus on these harder cases, we restricted human eval-
uation to pairs with ratings 2 vs. 3. We sample
250 such examples, each containing the video, a de-
tailed description, the instruction, and two candidate
responses, and asked two annotators to select the
preferred response. Results are shown in Table 8.
Agreement between annotators is high (94.8% with
Cohen’s κ of 89.5), and both annotators achieved
over 92% correctness relative to the gold preference.
The preference distribution shows a mild bias toward
response b, but error analysis indicates only 4.4%
cases where both annotators agreed on the wrong re-
sponse and 5.2% where they disagreed on a correct
one. Overall, the study confirms that the generated pairwise data is consistent and reliable, even in
the most ambiguous rating regions. We provide detailed metrics of our human evaluation study in
Table 8 and examples in Table 9, Appendix A.7.

6 RESULTS AND DISCUSSION

We train Qwen2.5-VL (3B, 7B) models for both pointwise and pairwise evaluation under identi-
cal settings. We evaluate various baselines and our trained judge models across a suite of meta-
evaluation benchmarks. We report pointwise evaluation results in Table 1 and pairwise results in
Table 3. Our findings show that bootstrapped supervision enables smaller models to reach, and in
some cases surpass, the judgment reliability and accuracy of much larger (∼10×) general-purpose
models. We discuss our findings in subsequent sections.

6.1 POINTWISE EVALUATION

We evaluate all models in the pointwise setup, where each system is required to produce a scalar
score. We use the identical prompt decoding parameter across the different models. Unimodal mod-
els provide a useful reference point. Across Qwen3 variants, we find that performance on Video-
JudgeLLaVA and VideoJudgeVCG is reasonably strong, but VATEX remains challenging with con-
sistently high error and poor calibration. LongVideoBench is more demanding: while unimodal
models achieve non-trivial PSup values, the margin between correct and distractor responses is nar-
row, reflecting the difficulty of capturing temporal dependencies from text-only signals. Thinking
mode further improves the 0.6B model, showing that explicit reasoning steps help even in the point-
wise regime. However, enabling unimodal models to perform judgment requires high-quality, de-
tailed descriptions, often generated by powerful models such as Qwen2.5-VL-72B or GPT-4o-mini.
Thus, the cost of description generation should be included in the overall cost.

Video-language model baselines such as LLaVA-NeXT, OneVision, and Video-R1 perform compet-
itively on VideoJudgeLLaVA and VideoJudgeVCG, achieving correlations in the 0.66–0.77 range
with relatively low error values, on par with or better than several unimodal Qwen3 baselines. How-
ever, their performance degrades substantially on LongVideoBench, where both PSup and ∆(C–D)
drop sharply (e.g., LLaVA-NeXT: 0.59 / 0.45, Video-R1: 0.60 / 0.54), underscoring the difficulty of
long-context temporal reasoning. In contrast, the Qwen2.5-VL series scales more robustly: larger
variants (32B, 72B) show consistent improvements across all four benchmarks, achieving higher
correlations and stronger ∆(C–D) values on LongVideoBench.

Our trained VideoJudge models deliver consistently strong performance across all evaluation set-
tings, establishing a new standard for video-language judgment. On VideoJudgeLLaVA and Video-
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JudgeVCG, both VideoJudge-3B and VideoJudge-7B achieve correlations that not only match but
in several cases surpass those of substantially larger baselines such as Qwen2.5-VL-32B/72B, while
also outperforming post-trained baseline video-language systems including LLaVA-NeXT, OneVi-
sion, and Video-R1. Beyond short-context benchmarks, VATEX results further underscore the ad-
vantages of feedback-guided training, with our models exhibiting lower error and improved cali-
bration, yielding predictions that are both accurate and well-grounded. The most pronounced gains
are observed on LongVideoBench, a challenging benchmark for temporal reasoning, where existing
models degrade sharply but VideoJudge models maintain high PSup and ∆(C–D) scores. These
improvements demonstrate that feedback-based supervision imparts a capacity for consistent and
temporally coherent evaluation, enabling VideoJudge models to deliver stable judgments even in ex-
tended and complex video contexts. Overall, these results show that rubric-supervised judges match
or surpass larger video-language models, providing a scalable and principled approach to reliable
multimodal evaluation.

Table 1: Benchmark results across VideoJudgeLLaVa, VideoJudgeVCG, VATEX, and LongVidB.
Metrics: RMSE/MAE (error), S/P (Spearman/Pearson correlation), ECE (calibration), PSup/∆(C-
D) (preference).

Model VideoJudgeLLaVa VideoJudgeVCG VATEX LongVidB
RMSE↓ MAE↓ S↑ P↑ RMSE↓ MAE↓ S↑ P↑ RMSE↓ ECE↓ PSup↑ ∆(C-D)↑

U
ni

m
od

al

Qwen3-0.6B 1.20 0.92 0.64 0.63 1.20 0.92 0.66 0.65 1.44 0.84 0.58 0.17
Qwen3-1.7B 0.97 0.60 0.78 0.78 1.33 0.85 0.61 0.60 2.18 0.86 0.64 0.71
Qwen3-4B 0.96 0.61 0.72 0.74 1.22 0.79 0.58 0.59 2.42 0.97 0.67 0.69
Qwen3-8B 0.97 0.61 0.73 0.74 1.19 0.76 0.61 0.61 2.06 0.94 0.64 0.53
Qwen3-14B 1.09 0.65 0.69 0.69 1.29 0.83 0.58 0.58 2.38 0.96 0.63 0.57

U
ni

m
od

al
(t

hi
nk

in
g)

Qwen3-0.6B 1.12 0.81 0.64 0.64 1.31 0.98 0.59 0.59 1.98 0.89 0.62 0.63
Qwen3-1.7B 1.00 0.70 0.73 0.75 1.34 0.94 0.56 0.58 1.99 0.82 0.65 0.86
Qwen3-4B 1.02 0.69 0.68 0.70 1.33 0.90 0.51 0.52 2.12 0.92 0.65 0.69

Vi
de

o
M

od
el

s

LLaVA-NeXT-7B 1.06 0.72 0.67 0.66 1.06 0.67 0.70 0.69 1.65 0.84 0.59 0.45
LLaVA-OneVision 1.01 0.71 0.77 0.75 1.00 0.69 0.77 0.76 1.52 0.78 0.64 0.83
Video-R1-7B 1.07 0.67 0.73 0.73 1.74 1.21 0.46 0.47 1.87 0.72 0.6 0.54
Qwen2.5-VL-3B 1.31 0.94 0.63 0.63 1.58 1.12 0.51 0.52 2.27 0.85 0.56 0.20
Qwen2.5-VL-7B 0.92 0.61 0.77 0.76 1.22 0.76 0.65 0.65 2.36 0.88 0.57 0.35
Qwen2.5-VL-32B 0.87 0.59 0.80 0.79 1.05 0.75 0.69 0.70 1.43 0.81 0.73 1.08
Qwen2.5-VL-72B 0.87 0.61 0.80 0.81 0.98 0.69 0.76 0.77 1.40 0.79 0.71 1.06

O
ur

s VideoJudge-3B 1.07 0.61 0.82 0.82 1.59 1.06 0.59 0.63 1.33 0.63 0.61 0.70
VideoJudge-7B 0.96 0.52 0.78 0.80 1.20 0.72 0.74 0.76 1.46 0.64 0.66 1.16

Table 2: Divergence errors and correlation metrics (P =
Pearson, S = Spearman) for zero-shot base models and the
VideoJudgeR-3B model trained to generate instance-specific
rubrics at test time. All models are prompted to produce rubrics
together with reasoning and a score.

Model MAE↓ RMSE↓ P↑ S↑

Qwen2.5-VL-3B 1.15 1.56 37.85 37.96
Qwen2.5-VL-7B 0.86 1.22 57.09 57.26
Qwen2.5-VL-32B 0.59 0.86 78.59 80.21
Qwen2.5-VL-72B 0.54 0.87 78.10 78.61

VideoJudgeR-3B 0.59 1.05 73.96 74.16

Training Judge Models to Generate Instance-
Specific Rubrics at Test Time In our setup, we
first synthesize training rubrics and then train the
model to (i) generate a rubric for each instance,
(ii) reason with the rubric, and (iii) output an inte-
ger score. This approach enables scalable, rubric-
driven evaluation tailored to individual examples.
For computational feasibility, we train Qwen2.5-VL-
3B on 10% of total pointwise data and evaluate on
1,000 examples sampled from VideoJudgeLLaVA
and VideoJudgeVCG. We report the results in Ta-
ble 2. The rubric generation prompt is shown in Fig-
ure 9, and the training/evaluation prompt is provided
in Figure 11 in Appendix A.3.

Our results show that VideoJudgeR-3B, trained to generate instance-specific rubrics, substantially
improves over the 3B and 7B baselines. It reduces error (MAE 0.59 vs. 1.15, RMSE 1.05 vs. 1.56)
and achieves correlations above 73, comparable to the much larger 32B and 72B base models. This
demonstrates that rubric-driven supervision can close most of the performance gap without scaling
model size, yielding evaluations that are both more reliable and more interpretable.
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Evaluating the Quality of Generated Rubrics While rubric-driven supervision improves model
performance, it is also important to verify whether the rubrics themselves are meaningful and useful
for evaluation. High-quality rubrics should specify explicit, context-specific criteria, whereas poor
ones risk being vague or generic. To assess rubric quality, we use two methods: LLM-as-Judge,
where GPT-4o-mini (temperature = 0) selects the better rubric between two candidates, and hu-
man evaluation, where 300 rubric pairs per model are judged by three annotators, with outcomes
aggregated by unanimous (as shown in Figure 3) or majority vote (Figure 15). This dual setup
measures alignment with both automated LLM judgments and human preferences.

0 20 40 60 80 100
VideoJudge-3B Win Rate

vs Qwen-7B

vs Qwen-3B

vs Qwen-32B

vs Qwen-72B

vs GPT-4o-mini

98.3% 1.7%

96.8% 3.2%

74.2% 25.8%

63.9% 36.1%

53.4% 46.6%

Win Loss

Figure 3: Win rates from human evaluations com-
paring VideoJudge-3B against other models.

Our results show that VideoJudgeR-3B pro-
duces substantially higher-quality rubrics
than the 3B, 7B, and 32B baselines across all
settings, with large margins under both unan-
imous and majority human judgments and
even stronger gains in LLM-as-Judge eval-
uation. Against stronger models, it contin-
ues to hold an edge: in the LLM-as-Judge
setup, VideoJudgeR-3B achieves a 92.7%
win rate against GPT-4o-mini and 71.3%
against Qwen-72B, consistently maintaining
above 50% win rate across all evaluation
settings. These findings demonstrate that
instance-specific rubric generation enables a
compact 3B model to outperform much larger
models while producing rubrics preferred by
both humans and strong LLM judges. We provide example rubrics generated by different models in
Table 5 in Appendix A.3.2.

6.2 PAIRWISE EVALUATION

Table 3: Accuracy scores (↑) of zero-shot base models and
VideoJudge on pairwise meta-evaluation benchmarks. Abbre-
viations: VAA = VideoAutoArena, VJ = VideoJudge, VJ-H =
VideoJudge-Human, w/ FB = with feedback, w/o FB = with-
out feedback.

Model
VAA VJ VJ-H

w/ FB w/o FB w/ FB w/o FB w/ FB w/o FB

Qwen2.5-VL-3B 54.90 52.16 82.60 75.00 85.23 81.01
Qwen2.5-VL-7B 75.29 71.37 89.00 84.60 89.03 82.28
Qwen2.5-VL-32B 80.78 90.59 91.20 91.20 92.83 90.72
Qwen2.5-VL-72B 89.80 89.80 94.00 93.20 94.51 93.25

VideoJudge-3B 71.76 64.71 94.00 95.80 89.45 90.72
VideoJudge-7B 85.49 87.45 95.60 98.60 93.67 93.25

We next train and evaluate mod-
els in the pairwise setting, where
the task is to prefer the better of
two responses to the same video–
instruction pair. This setup directly
captures relative quality and aligns
closely with human preference
judgments. As before, we assess
both base models and our trained
VideoJudge models, with and with-
out feedback, across VideoAu-
toArena (VAA), VideoJudge (VJ),
and VideoJudge-Human (VJ-H).
Results are summarized in Ta-
ble 3. VideoJudge models con-
sistently outperform their backbone
baselines across all benchmarks.
Notably, VideoJudge-3B achieves
94.0 on VJ and 89.45 on VJ-H (w/ feedback), far surpassing Qwen2.5-VL-3B (82.6 / 85.23)
and even outperforming much larger models such as Qwen2.5-VL-32B and 72B in several cases.
VideoJudge-7B further improves performance, attaining 98.6 on VJ and 93.67 on VJ-H. These
results highlight that our bootstrapped enables smaller models to match or exceed the reliability
of much larger video-language systems. Feedback provides consistent gains for 3B and 7B base-
lines, while its benefits diminish for larger models, and in VideoJudge models, it yields mixed but
benchmark-specific effects.

How Many Frames Are Enough for an Effective Video Judge We study the effect of
maxframes on video judgment performance, as it controls the temporal context available for
evaluation. Too few frames risk omitting critical evidence, while excessively large values increase

8
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computation without proportional benefit. To analyze this tradeoff, we vary maxframes during
training (30–500, evaluation fixed at 180) and separately during evaluation (30–180, training fixed
at 60). This design isolates the role of temporal coverage in both training and inference.

When varied during training, VideoJudge shows consistent gains from larger maxframes. Corre-
lations with ground truth rating increase steadily up to ∼240 frames (exceeding 0.7), while RMSE
and MAE decline. Beyond this point, improvements plateau, suggesting diminishing returns despite
higher cost. In evaluation, increasing maxframes at inference improves correlation and reduces
error up to ∼120 frames, after which performance saturates.

Overall, these results indicate that moderate to large temporal context is crucial for effective judg-
ment. Training benefits from covering up to 240 frames, while at evaluation, modest values (around
120) suffice to capture most relevant evidence. Thus, carefully chosen maxframes can balance
accuracy and efficiency, strengthening temporal grounding without unnecessary cost.

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0.4

0.5

0.6

0.7

0.8

Sp
ea

rm
an

 (
)

Base VideoJudge

Figure 4: Spearman correlation across tem-
peratures for base and our video models.

Decoding Temperature We study the effect of de-
coding temperature on sampling reliability, as it di-
rectly controls the trade-off between determinism
and diversity. Its impact matters for evaluation mod-
els, where unstable sampling can cause inconsistent
judgments.

Figure 4 (other metrics in Figure 17 in Ap-
pendix A.8) reports the pointwise performance of the
base Qwen2.5-VL-3B and its VideoJudge-trained
counterpart across a range of temperatures. The base
model degrades steadily as temperature increases,
with Spearman correlation falling from 0.56 at T =
0.0 to 0.42 at T = 1.0, accompanied by higher er-
ror rates and more invalid outputs. In contrast, the
VideoJudge model remains robust and even bene-
fits from higher temperatures, peaking at a correla-
tion of 0.73 and achieving the lowest MAE of 0.69.
These findings indicate that while naı̈ve sampling
destabilizes alignment, rubric-guided training both
stabilizes performance and allows models to exploit
higher-temperature decoding to better capture distributional richness. Such robustness is especially
valuable in practice, where non-deterministic decoding is often preferred to promote diversity.

7 CONCLUSION

We introduce VideoJudge, a bootstrapping framework for training MLLM-based evaluators spe-
cialized for video understanding. Our approach addresses the lack of evaluation resources with
human preference signals and principled evaluation criteria for video understanding. The core con-
tribution lies in an iterative generator-evaluator pipeline that synthesizes training data and enforces
quality control, creating over 100,000 training examples without costly human annotation. We fine-
tune judge models to generate both ratings and instance-specific rubrics at test time, enabling in-
terpretable evaluations anchored in explicit criteria grounded in the specific instruction and video
content. Our experiments demonstrate that fine-tuned 3B and 7B VideoJudge models match or
outperform much larger baselines in accuracy and alignment with human ratings. VideoJudge-3B
achieves comparable performance to models up to 10× larger, while VideoJudge-7B consistently
outperforms larger video-language models across multiple benchmarks. VideoJudgeR-3B produces
rubrics preferred by both human annotators and LLM judges while maintaining performance compa-
rable to much larger base models. By releasing curated meta-evaluation benchmarks, bootstrapped
datasets, and trained models, we provide essential resources for reproducible multimodal evaluation
research. The bootstrapping methodology is general and could extend to other modalities beyond
video understanding.
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8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we have anonymously
released the model checkpoints and datasets used for training and evaluation on HuggingFace. We an
index of released artifacts in Table 10 in Appendix A.9. All remaining code, data, checkpoints, and
other related artifacts will be made available either during the review process or upon acceptance.
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A APPENDIX

A.1 RELATED WORK

Evaluation Benchmarks Video understanding models are evaluated on a wide range of bench-
marks spanning different tasks (Sanders & Van Durme, 2024). For captioning, datasets such as
MSR-VTT (Xu et al., 2016), VATEX (Wang et al., 2020), and HowTo100M (Miech et al., 2019)
provide large-scale paired video–text data, with evaluation often relying on reference-based metrics
or correlation with human judgments (Shi et al., 2022). For action recognition, datasets like Activi-
tyNet offer a large-scale benchmark covering hundreds of activity categories with temporal annota-
tions (Caba Heilbron et al., 2015). For video question answering, datasets such as TVQA (Lei et al.,
2018) and NEXT-QA (Xiao et al., 2021) require models to integrate visual content with natural
language reasoning over semantically complex or temporally extended video segments. In parallel,
meta-evaluation benchmarks have been proposed to measure the reliability of evaluators themselves,
both in unimodal and multimodal settings. Examples include RewardBench (Lambert et al., 2024)
and MM-EVAL (Son et al., 2024) in the unimodal domain, and multimodal resources such as VA-
TEX EVAL (Shi et al., 2022), VLRewardBench (Li et al., 2024c), Judge Anything (Pu et al., 2025b),
and LLaVA-Critic (Xiong et al., 2025).

A.2 DATASET

Here we provide more details about the videos used in our study. More specifically, we provide
duration statistics of the videos along with the nature instruction data in Table 4.

Table 4: Video duration statistics (in seconds) across evaluation datasets, sorted by number of unique
videos. Count indicates unique videos considered after deduplication.

Duration/Dataset Count Min Max Mean Median Remark

VideoJudge-RS-20K 9469 2.1 745.4 117.6 114.4 20K-scale VideoJudge preference dataset
VideoJudgeLLaVA-MetaEval 3038 5.0 341.8 18.3 9.9 VideoJudge benchmark with LLaVA prompts
VatexEval-MetaEval 2340 1.9 7180.0 167.5 81.4 VATEX evaluation split (multilingual captions)
VideoJudgeVCG-MetaEval 499 3.0 238.0 108.0 98.7 VideoJudge benchmark with VCG prompts
LongVideoBench-MetaEval 280 8.0 297.1 56.0 16.8 Long-context video reasoning benchmark
VideoAutoArena-Preference 241 8.0 3291.4 433.6 60.7 Preference pairs from VideoAutoArena

A.3 PROMPTS

In this section, we provide a comprehensive list of prompts that we use in our study.
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A.3.1 BOOTSTRAPPING

Response Generation Prompt The prompt used to generate candidate responses is provided in
Figure 5.

Candidate Response Generation Prompt

You are provided with a detailed video description, a gold standard response rated 5 (perfectly accurate, highest quality), and a
corresponding instruction for a video understanding task. This task may include video captioning, video question answering,
video instruction following, temporal action localization, or any other open-ended video understanding scenario.

Your task is to generate four additional responses that simulate progressively lower-quality outputs for the same instruction. Each
generated response should correspond to a quality rating from 4 to 1, where Rating 5 is the provided gold standard and Ratings 4
through 1 represent decreasing quality.

As the rating decreases, the responses should reflect increasing levels of degradation, including hallucinations, omissions,
irrelevant information, logical inconsistencies, or grammatical issues. All generated responses must remain similar in length
to the gold standard and maintain the expected task format (e.g., caption, answer, instruction). Do not simply truncate the gold
response — simulate realistic and meaningful degradation in quality across levels. Use the video description to ground the
correctness of the response content.

Task:
Generate four degraded responses corresponding to quality ratings 4 through 1, based on the gold standard response (Rating 5).
Follow the rating guidelines strictly.

Rating Guidelines:
- Rating 4: Mostly accurate with minor issues. Preserves the key meaning with small lapses in detail or precision.
- Rating 3: Partially correct. Conveys the general idea but includes noticeable errors, omissions, or misinterpretations.
- Rating 2: Poor alignment. Contains serious flaws and only loosely relates to the instruction or video.
- Rating 1: Unrelated or incorrect. Fails to reflect the video or follow the instruction meaningfully.

Example:
Instruction: “Can you give a brief summary of the video content?”
Video Description: “A large group of people are participating in an aerobics class inside a spacious indoor venue...”
Gold Standard Response (Rating 5): “The video is about a group of people doing a step exercise class, with some confusion
among the participants. The focus is on the main woman, who stops at the end and walks towards the camera.”
Rating 4: “The video shows a group of people in a step exercise class, with some participants appearing confused during the
workout. The main woman stops exercising at the end and moves toward the camera.”
Rating 3: “The video features people doing an aerobics class with stepping movements and some coordination issues. There’s a
woman who seems to be leading the group, and she approaches the camera at some point during the session.”
Rating 2: “The video shows several people in what appears to be a dance or fitness routine taking place indoors. A woman in the
group walks around and comes closer to where the video is being filmed, while others continue moving in the background.”
Rating 1: “The video depicts a cooking demonstration where a chef wearing workout clothes explains different healthy recipes to
a small audience in what looks like a kitchen or dining area, with people standing around tables.”

Output Format:
Your final output must be a valid JSON object with exactly the following keys: "rating 4", "rating 3", "rating 2", and
"rating 1". Each value should be the generated response corresponding to that quality rating. Do not include any additional
commentary, formatting, or explanation outside the JSON object.

Input:
Instruction:

{instruction}

Video Description:

{video_description}

Gold Standard Response (Rating 5):

{gold_standard_response}

Output (according to the JSON schema):

{
"rating_4": "[Generated response]",
"rating_3": "[Generated response]",
"rating_2": "[Generated response]",
"rating_1": "[Generated response]"

}

Figure 5: LLM-as-judge prompt for generating degraded responses at different quality levels based
on a gold standard.
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Response Evaluation Prompt The prompt for evaluating candidate responses during the boot-
strapping stage is shown in Figure 5.

Candidate Response Evaluation Prompt

You are provided with a detailed video description, an instruction, a gold standard response rated 5 (perfectly accurate, highest
quality), and a set of candidate responses for a video understanding task. This task may include video captioning, question
answering, instruction following, temporal action localization, or any other open-ended video understanding scenario.

Task:
Your task is to evaluate each candidate response and assign an evaluation rating from 1 to 4. While the gold standard response
can serve as a reference for what an ideal response looks like, your evaluation should primarily focus on how well each candidate
response fulfills the task defined by the instruction, given the provided video description. Focus your reasoning on identifying
what is incorrect, missing, or misleading in the response itself.

Evaluation Steps:

1. Read the instruction carefully to understand the intended task.

2. Refer to the gold standard response (rated 5) as a reference for correctness and completeness.

3. Use the provided video description as the factual basis for evaluating all responses.

4. For each candidate response: identify inaccuracies, omissions, hallucinations, or irrelevant content, and evaluate
alignment with the instruction and video description.

5. Assign an integer score from 1–4 to each candidate response.

6. Provide reasoning for each rating, focusing on specific aspects that affect alignment with the instruction and video
description.

Rating Guidelines for Evaluation:
- Rating 4: Mostly accurate with minor issues. Preserves key meaning with small lapses.
- Rating 3: Partially correct. General idea conveyed but with noticeable errors/omissions.
- Rating 2: Poor alignment. Serious flaws, loosely related to task or video.
- Rating 1: Unrelated or incorrect. Fails to reflect the video or follow the instruction.

Example:
Instruction: “Can you give a brief summary of the video content?”
Video Description: “A large group of people are participating in an aerobics class inside a spacious indoor venue...”
Gold Standard Response (Rating 5): “The video is about a group of people doing a step exercise class, with some confusion
among the participants. The focus is on the main woman, who stops at the end and walks towards the camera.”
Rating 4: “The video shows a group of people in a step exercise class, with some participants appearing confused during the
workout. The main woman stops exercising at the end and moves toward the camera.”
Rating 3: “The video features people doing an aerobics class with stepping movements and some coordination issues. There’s a
woman who seems to be leading the group, and she approaches the camera at some point during the session.”
Rating 2: “The video shows several people in what appears to be a dance or fitness routine taking place indoors. A woman in the
group walks around and comes closer to where the video is being filmed, while others continue moving in the background.”
Rating 1: “The video depicts a cooking demonstration where a chef wearing workout clothes explains different healthy recipes to
a small audience in what looks like a kitchen or dining area, with people standing around tables.”

Output Format:
Your final output must follow the exact JSON schema provided. Do not include any additional formatting, comments, or text
outside of the JSON object.

Input:
Instruction:

{instruction}

Video Description:

{video_description}

Gold Standard Response (Rating 5):

{gold_standard_response}

Generated Responses:

{generated_responses}

Output (according to the JSON schema):

{output_format}

Figure 6: LLM-as-judge prompt for evaluating candidate responses against a gold standard using a
1–4 quality scale.
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Response Regeneration from Feedback After the initial round of response generation and eval-
uation, we measure the difference between the generator’s self-assigned rating and the evaluator’s
rating. This numerical gap is then incorporated into feedback, which guides response regeneration.
The corresponding prompt is shown in Figure 7.

Candidate Response Regeneration with Feedback Prompt

You are provided with a detailed video description, an instruction, a gold standard response for a video understanding task
(such as captioning, question answering, instruction following, or event description), and a set of generated responses, each
intended to match a specific quality rating from 4 to 1. However, some generated responses were evaluated and found to deviate
from their intended quality levels.

Task:
Your task is to regenerate revised responses only for those entries where the absolute difference between the intended rating and
the evaluation rating is greater than zero (i.e., |intended rating − eval rating| > 0). For each such entry, produce a
revised response that strictly conforms to the intended quality rating, based on the definitions in the rating guidelines below. Use
the video description as the factual grounding for determining what content is valid. Adjust the response so that its evaluation
rating would now exactly match the intended rating.

- If the eval rating is higher than the intended rating, degrade the response by introducing errors such as hallucinations, factual
distortions, vagueness, or grammar issues.
- If the eval rating is lower than the intended rating, improve the response by clarifying actions, reducing errors, or restoring key
context from the video description.

Rating Guidelines:
- Rating 4: Mostly accurate with minor issues. Preserves key meaning with small lapses.
- Rating 3: Partially correct. Conveys the general idea but with noticeable errors/omissions.
- Rating 2: Poor alignment. Serious flaws, loosely related to task or video.
- Rating 1: Unrelated or incorrect. Fails to reflect the video or follow the instruction.

Example:
Instruction: “Can you give a brief summary of the video content?”
Video Description: “A large group of people are participating in an aerobics class inside a spacious indoor venue...”
Gold Standard Response (Rating 5): “The video is about a group of people doing a step exercise class, with some confusion
among the participants. The focus is on the main woman, who stops at the end and walks towards the camera.”
Rating 4: “The video shows a group of people in a step exercise class, with some participants appearing confused during the
workout. The main woman stops exercising at the end and moves toward the camera.”
Rating 3: “The video features people doing an aerobics class with stepping movements and some coordination issues. There’s a
woman who seems to be leading the group, and she approaches the camera at some point during the session.”
Rating 2: “The video shows several people in what appears to be a dance or fitness routine taking place indoors. A woman in the
group walks around and comes closer to where the video is being filmed, while others continue moving in the background.”
Rating 1: “The video depicts a cooking demonstration where a chef wearing workout clothes explains different healthy recipes to
a small audience in what looks like a kitchen or dining area, with people standing around tables.”

Output Format:
Your final output must be a valid JSON object. For each entry where |intended rating − eval rating| > 0,
include a key "rating {i}" and update the value with a newly revised response that adheres precisely to the intended qual-
ity rating. If the eval rating is equal to the intended rating, do not modify or include that entry. Only output the revised responses.

Input:
Instruction:

{instruction}

Video Description:

{video_description}

Gold Standard Response (Rating 5):

{gold_standard_response}

Feedback Data (JSON):

{feedback_data}

Output (according to the JSON schema):

{output_format}

Figure 7: LLM-as-judge prompt for regenerating responses to align with intended quality ratings.
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A.3.2 TRAINING AND EVALUATION

Pointwise For pointwise evaluation, we prompt the model to produce a reasoning sequence fol-
lowed by a scalar score, as illustrated in Figure 10.

Evaluating Model-Generated Responses Prompt

You are provided with a video, a corresponding instruction, and a response generated by a model. The instruction defines a video
understanding task, which may take any form — including but not limited to open-ended question answering, captioning,
instruction following, temporal reasoning, or multi-step inference grounded in the video. These tasks are open-ended and
often require complex or nuanced reasoning over the visual and temporal content.

Your task is to evaluate the quality of the response, considering how well it satisfies the task defined by the instruction, based on
the content of the video. This is a holistic judgment and should be based on the overall correctness, relevance, completeness, and
grounding of the response.

Task:
For each response:
- Assess how well it addresses the task in the instruction in the context of the video.
- Consider whether the response is accurate, relevant, complete, and grounded in the video.
- Provide a brief rationale explaining the overall quality and alignment of the response with the instruction inside <thinking>
</thinking>.
- Output a score from 1 (worst) to 5 (best) indicating the overall quality inside <score> </score>.

Rating Guidelines:
- Rating 5: Fully accurate, complete, and well-grounded. The response precisely follows the instruction with no notable errors or
omissions.
- Rating 4: Mostly accurate with minor issues. The response preserves the key meaning and relevance, with only small lapses in
detail or precision.
- Rating 3: Partially correct. The response conveys the general idea but includes noticeable errors, omissions, or misinterpretations.
- Rating 2: Poor alignment. The response has serious flaws and only loosely relates to the instruction or video.
- Rating 1: Unrelated or incorrect. The response fails to reflect the video or follow the instruction meaningfully.

Input:
Instruction:

{instruction}

Response:

{response}

Output (Strict Format):

<thinking>{{your reasoning and explanation for the rating}}</thinking>
<score>{{integer score from 1 to 5}}</score>

Figure 8: LLM-as-judge prompt for evaluating model-generated responses to video understanding
tasks.

Rubric Generation We employ GPT-4o-mini to construct evaluation rubrics conditioned on the
instruction, the video description (serving as a proxy for the video content), and the gold standard
response.

We provide example rubrics generated by different models in Table 5

Pointwise Training, Evaluation, and Rubric Generation We use the prompt in Figure 10 to train
VideoJudge models and to evaluate responses in a pointwise setup. The prompt in Figure 11 extends
this by enabling models to both train and evaluate in a pointwise setting while also generating rubrics
at test time. Finally, Figure 12 shows the prompt used to evaluate rubrics produced by different
models.

Pairwise training and evaluation. We provide the prompt to train and evaluate models in a pair-
wise setup without feedback in Figure 13 and with feedback generation in Figure 14.
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Instruction-Specific Rubrics Generation Prompt

You are provided with a video (or a detailed description), a corresponding instruction, and a reference response. The instruction
defines a video understanding task, which may involve open-ended question answering, captioning, instruction following,
temporal reasoning, or multi-step inference grounded in the video. Such tasks are open-ended and often require complex or
nuanced reasoning over the visual and temporal content.

Your task is to generate an instruction-specific evaluation rubric.
The rubric will be used to rate the quality of any response to the instruction on a 1–5 scale.
The reference response is provided only to help you define what a perfect answer (Rating 5) looks like, but during evaluation
the rubric must stand alone — evaluators will not be given the reference response.

Important Note:
Read the provided video description as if you are watching the video yourself.
Pay close attention to all details in the video description and the reference response.
Use these to construct precise, example-specific scoring rubrics that can be applied without needing the reference later.

Task:
For the given video, instruction, and reference response:
- Generate a single 1–5 scoring rubric tailored to this instruction.
- Each score level (1 through 5) must include a clear, example-specific description of what a response at that level would look like.
- Use the reference response to anchor what counts as a ”5 (Excellent)” answer.
- Ensure that the rubric is self-contained so that it can be applied without access to the reference response.

Rating Guidelines:
- Rating 1 (Very Poor): Completely wrong, irrelevant, or missing.
- Rating 2 (Poor): Vague, incomplete, or largely inaccurate with minimal grounding.
- Rating 3 (Fair): Partially correct, captures some aspects but misses key details.
- Rating 4 (Good): Mostly correct and grounded, covers most important aspects but not fully comprehensive.
- Rating 5 (Excellent): Fully correct, detailed, coherent, and well-grounded — aligned with the reference response.

Input:
Video Content (as detailed description):

{video_description}

Instruction:

{instruction}

Gold Standard Reference Response:

{reference_response}

Output (Strict Format):

**Rubric (Scale 1{5):**
- **Rating 1 (Very Poor):** [instruction-specific description]
- **Rating 2 (Poor):** [instruction-specific description]
- **Rating 3 (Fair):** [instruction-specific description]
- **Rating 4 (Good):** [instruction-specific description]
- **Rating 5 (Excellent):** [instruction-specific description]

Figure 9: LLM-as-judge prompt for generating instruction-specific rubrics for video understanding
tasks.

A.4 BOOSTRAPPING PROCESS

A.5 EVALUATION DATA

A.6 HYPERPARAMETERS

In Table 7 we provide a detailed list of hyperparameters we use in our experiments. We use Qwen2.5-
VL 3 as training framework vLLM (Kwon et al., 2023) for evaluation. We keep all other parameters
as default until stated otherwise.
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Table 5: Rubrics generated by different models for the instruction “What is the man wearing while
climbing the rock?”.

Instruction What is the man wearing while climbing the rock?
Reference Response The man is wearing a grey west while climbing the rock.

Model Rubric

Qwen2.5-VL-3B **Rubric (Scale 1–5):** - **Rating 1 (Very Poor):** The response does not address the instruction at all or
provides irrelevant information. - **Rating 2 (Poor):** The response partially addresses the instruction but
contains significant inaccuracies or irrelevant details. - **Rating 3 (Fair):** The response addresses the instruc-
tion but lacks detail or is not entirely accurate. - **Rating 4 (Good):** The response addresses the instruction
adequately and provides relevant information, but there are some inaccuracies or omissions. - **Rating 5 (Ex-
cellent):** The response addresses the instruction thoroughly and accurately, providing all necessary details
and information.

Qwen2.5-VL-7B **Rubric (Scale 1–5):** - **Rating 1 (Very Poor):** The response does not mention the man climbing the
rock and instead describes a different scene or activity. - **Rating 2 (Poor):** The response mentions the man
climbing the rock but includes irrelevant details or descriptions that do not match the video content. - **Rating
3 (Fair):** The response accurately describes the man climbing the rock but may include minor inaccuracies or
omissions. - **Rating 4 (Good):** The response accurately describes the man climbing the rock and includes
relevant details, but there might be some minor inaccuracies or omissions. - **Rating 5 (Excellent):** The
response accurately describes the man climbing the rock, includes all relevant details, and does not contain any
inaccuracies or omissions.

Qwen2.5-VL-32B **Rubric (Scale 1–5):** - **Rating 1 (Very Poor):** The response is completely unrelated to the video content
and does not mention any clothing or climbing gear. It may describe an entirely different scene or activity.
- **Rating 2 (Poor):** The response mentions some clothing or gear, but it is incorrect or irrelevant to the
video. For example, it might describe a bright red helmet or a beach setting, which are not present in the
video. - **Rating 3 (Fair):** The response partially describes the clothing or gear worn by the man climbing
the rock, but it is incomplete or contains minor inaccuracies. For example, it might mention a shirt and shorts
but fail to note the climbing harness or shoes. - **Rating 4 (Good):** The response accurately describes most
of the clothing and gear worn by the man climbing the rock, including a shirt, shorts, climbing harness, and
shoes. However, it may miss minor details or fail to mention the climbing rope. - **Rating 5 (Excellent):** The
response provides a complete and accurate description of all the clothing and gear worn by the man climbing the
rock, including a shirt, shorts, climbing harness, shoes, and the climbing rope. It is precise and fully grounded
in the video content.

Qwen2.5-VL-72B **Rubric (Scale 1–5):** - **Rating 1 (Very Poor):** The response does not mention any clothing or equipment
the man is wearing while climbing the rock. It fails to describe the climbing activity and instead provides irrel-
evant details about a beach scene. - **Rating 2 (Poor):** The response mentions some clothing or equipment
but includes significant inaccuracies or irrelevant details. It may describe the wrong activity or setting, such
as sitting on a rock or being on a beach. - **Rating 3 (Fair):** The response partially describes the man’s
attire while climbing but misses key details. It may mention some correct elements but lacks completeness or
accuracy in describing the climbing gear and setting. - **Rating 4 (Good):** The response accurately describes
the man’s attire, including a tank top, shorts, and climbing shoes, while climbing the rock. It may also mention
the climbing harness and rope but could be slightly lacking in detail or context. - **Rating 5 (Excellent):**
The response comprehensively and accurately describes the man’s attire, including a tank top, shorts, climbing
shoes, a harness, and a rope, while climbing the rock. It provides a clear and detailed account of the climbing
activity and setting, matching the video content perfectly.

GPT-4o-mini **Rubric (Scale 1–5):** - **Rating 1 (Very Poor):** The response completely fails to address the instruction,
providing irrelevant information about the climbing scene or omitting any mention of the man’s clothing. -
**Rating 2 (Poor):** The response offers vague or inaccurate information about the man’s clothing, such as a
general description (e.g., “he is wearing something”) but fails to specify or properly identify the clothing item.
- **Rating 3 (Fair):** The response provides a partially correct description of the man’s clothing but may miss
critical details, such as the specific color or type of clothing, leading to an incomplete answer (e.g., “the man
is wearing a shirt”). - **Rating 4 (Good):** The response accurately identifies the man’s clothing with most
important details provided, such as the color and type of the clothing, but might lack some additional context
or minor details (e.g., “the man is wearing a grey tank top”). - **Rating 5 (Excellent):** The response is fully
correct, detailed, and coherent, clearly stating that the man is wearing a grey tank top while climbing the rock,
and aligns perfectly with the instruction.

VideoJudge-3B **Rubric (Scale 1–5):** - **Rating 1 (Very Poor):** The response completely misses the question about
what the man is wearing while climbing, providing irrelevant information or no answer at all. - **Rating 2
(Poor):** The response gives a vague or incomplete answer regarding the man’s clothing, such as mentioning
he is “dressed” or “wearing something,” but lacks specific details or accuracy. - **Rating 3 (Fair):** The re-
sponse provides some correct information about the man’s clothing but misses key details, such as stating he is
“wearing shorts” without specifying the color or type of clothing. - **Rating 4 (Good):** The response accu-
rately describes the man’s clothing while climbing, mentioning specific items like “a tank top and shorts,” but
may lack additional context or detail about his overall appearance. - **Rating 5 (Excellent):** The response
fully and accurately describes the man’s clothing while climbing, clearly stating “the man is wearing a tank top
and shorts,” and may also include additional relevant details about his appearance or actions.
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Evaluating Model-Generated Responses Prompt

You are provided with a video, a corresponding instruction, and a response generated by a model. The instruction defines a video
understanding task, which may take any form — including but not limited to open-ended question answering, captioning,
instruction following, temporal reasoning, or multi-step inference grounded in the video. These tasks are open-ended and
often require complex or nuanced reasoning over the visual and temporal content.

Your task is to evaluate the quality of the response, considering how well it satisfies the task defined by the instruction, based on
the content of the video. This is a holistic judgment and should be based on the overall correctness, relevance, completeness, and
grounding of the response.

Task:
For each response:
- Assess how well it addresses the task in the instruction in the context of the video.
- Consider whether the response is accurate, relevant, complete, and grounded in the video.
- Provide a brief rationale explaining the overall quality and alignment of the response with the instruction inside <thinking>
</thinking>.
- Output a score from 1 (worst) to 5 (best) indicating the overall quality inside <score> </score>.

Rating Guidelines:
- Rating 5: Fully accurate, complete, and well-grounded. The response precisely follows the instruction with no notable errors or
omissions.
- Rating 4: Mostly accurate with minor issues. The response preserves the key meaning and relevance, with only small lapses in
detail or precision.
- Rating 3: Partially correct. The response conveys the general idea but includes noticeable errors, omissions, or misinterpretations.
- Rating 2: Poor alignment. The response has serious flaws and only loosely relates to the instruction or video.
- Rating 1: Unrelated or incorrect. The response fails to reflect the video or follow the instruction meaningfully.

Input:
Instruction:

{instruction}

Response:

{response}

Output (Strict Format):

<thinking>{{your reasoning and explanation for the rating}}</thinking>
<score>{{integer score from 1 to 5}}</score>

Figure 10: LLM-as-judge prompt for evaluating model-generated responses to video understanding
tasks.

Algorithm 1 Bootstrapping Training Data with Self-Refinement
Input: Video v, instruction x, gold response y∗, generator G, evaluator E, threshold α, max itera-

tions T
Output: Bootstrapped dataset D
Initialize D ← {(v, x, y∗, N)} // gold response with max rating
for r ∈ {1, . . . , N − 1} do

y
(r)
0 ← G(pgen∥v∥x∥y∗, r) // initial generation

for t ∈ {0, . . . , T − 1} do
r̂, f

(r)
t ← E(peval∥v∥x∥y∗∥y(r)t )

if |r − r̂| ≤ α then
D ← D ∪ {(v, x, y(r)t , r)}

break
else

y
(r)
t+1 ← G(pref∥v∥x∥y∗∥y(r)t ∥f

(r)
t , r)

return D

A.7 HUMAN EVALUATION

A.7.1 PAIRWISE

A.8 RESULTS

3https://github.com/QwenLM/Qwen2.5-VL
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Rubric Generation and Response Evaluation Prompt

You are provided with a video, a corresponding instruction, and a response generated by a model. The instruction defines a video
understanding task, which may take any form — including but not limited to open-ended question answering, captioning,
instruction following, temporal reasoning, or multi-step inference grounded in the video. These tasks are open-ended and
often require complex or nuanced reasoning over the visual and temporal content.

Your task has two parts:

Part 1 — Rubric Generation:
- Generate an instruction-specific evaluation rubric on a 1–5 scale for this example.
- The rubric must define what a Rating 1 through Rating 5 response would look like in the context of this exact video and
instruction.
- The rubric should be tailored to this instruction and grounded in the video content, not generic.
- Each rating should describe concrete aspects of the video/instruction that would or would not appear in a response at that level.
- The rubric should be self-contained so it can later be applied to any response to the same instruction, without needing additional
references.
- Output your rubric within <rubric></rubric>.

Part 2 — Response Evaluation:
- Using the rubric you just generated, evaluate the provided response.
- Assess how well it addresses the task in the instruction in the context of the video.
- Consider whether the response is accurate, relevant, complete, and grounded in the video.
- Provide a brief rationale explaining the overall quality and alignment of the response with the instruction inside <thinking>
</thinking>.
- Output a score from 1 (worst) to 5 (best) indicating the overall quality inside <score> </score>.

Input:
Instruction:

{instruction}

Response:

{response}

Output (Strict Format):

<rubric>

**Rubric (Scale 1{5):**
- **Rating 1 (Very Poor):** [instruction-specific description referencing video details]
- **Rating 2 (Poor):** [instruction-specific description referencing video details]
- **Rating 3 (Fair):** [instruction-specific description referencing video details]
- **Rating 4 (Good):** [instruction-specific description referencing video details]
- **Rating 5 (Excellent):** [instruction-specific description referencing video details]
</rubric>
<thinking>{{your reasoning and explanation for the rating}}</thinking>
<score>{{integer score from 1 to 5}}</score>

Figure 11: LLM-as-judge prompt for generating rubrics and evaluating responses to video under-
standing tasks.

Rubric Generation

Human Evaluation of Generated Rubrics We conduct a human evaluation study on Ama-
zon Mechanical Turk to compare the quality of rubrics generated for video–instruction–response
triplets. The evaluation dataset consists of 300 randomly sampled rubrics for 6 models, including
VideoJudge-3B (which we train). For each example, we generated rubrics using VideoJudge as one
option and compared them against rubrics produced by five other models: GPT-4-mini, Qwen-3B,
Qwen-7B, Qwen-32B, and Qwen-72B. Annotators were given the video along with its description,
the instructions to the models, a reference response illustrating a good answer, and two candidate
rubrics (A and B), each defined on a 1–5 scale. Their task was to compare the two rubrics and
select the one they considered more effective for evaluating AI-generated responses to the given
instruction. Each rubric pair was assessed independently by three annotators. The full annotation
framework, including the instructions provided and a representative Human Intelligence Task (HIT)
example, is shown in Figure 16.

Decoding Temperature We provide other metrics for decoding at different temperature in Ta-
ble 17.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Rubric Comparison Prompt

You are provided with a video, a corresponding instruction, and a reference response. The instruction defines a video
understanding task, which may take any form — including but not limited to open-ended question answering, captioning,
instruction following, temporal reasoning, or multi-step inference grounded in the video. These tasks are open-ended and
often require complex or nuanced reasoning over the visual and temporal content.

You are also provided with two rubrics (Rubric A and Rubric B), each generated by a model. These rubrics are intended to
evaluate responses to the instruction on a 1–5 scale.

Your task is to decide which rubric is better for evaluating responses to the instruction. This is a holistic judgment and it should
be based on the rubric’s specificity, clarity, coverage, and usefulness for evaluation.

Task:
For each pair of rubrics:
- Assess which rubric better reflects the instruction and video content (instruction-specificity).
- Consider whether the rubric is self-contained and usable without the reference response.
- Evaluate the clarity, distinctness, and logical progression of the rating levels (1–5).
- Judge which rubric provides better coverage of key aspects required to evaluate responses.
- Provide a brief rationale explaining your choice inside <thinking> </thinking>.
- Output the preferred rubric as A or B inside <answer> </answer>.

Guidelines for Comparison:
- Prefer the rubric that is more specific to the given instruction and video.
- Prefer the rubric that is clear, well-structured, and easy to apply.
- Prefer the rubric that captures all important aspects of what makes a good or bad response.
- If both rubrics are strong, choose the one that is slightly more precise or comprehensive.
- Do not output a tie — always select either A or B.

Input:
Instruction:

{instruction}

Reference Response:

{ref_response}

Rubric A:

{rubric_a}

Rubric B:

{rubric_b}

Output (Strict Format):

<thinking>{{your reasoning and explanation for why one rubric is better}}</thinking>
<answer>{{A or B}}</answer>

Figure 12: LLM-as-judge prompt for pairwise comparison of two instruction-specific rubrics.

Number of Frames We provide other metrics for max frames ablation in Table 18.

A.9 REPRODUCIBILITY

We anonymously release the model checkpoints and datasets used to train our judge models. Ta-
ble 10 provides a detailed overview of the released artifacts, including their names, descriptions, and
anonymized links.
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Pairwise Response Comparison Prompt

You are provided with a video, a corresponding instruction, and two candidate responses generated by two models. The
instruction defines a video understanding task, which may involve open-ended question answering, captioning, instruction
following, temporal reasoning, or multi-step inference grounded in the video. Such tasks are open-ended and often require
complex or nuanced reasoning over the visual and temporal content.

Your task is to compare the two responses and decide which one better addresses the instruction, based on the content of the
video. Make a holistic judgment that considers correctness, relevance, completeness, and grounding.

Task:
For the given pair of responses:
- Judge which response better addresses the instruction in the context of the video.
- Consider whether each response is accurate, relevant, complete, and grounded in the video.
- Output only A or B, wrapped strictly inside <answer></answer> tags.

Evaluation Guidelines:
- Accuracy: Prefer responses that are factually correct and consistent with the video.
- Relevance: Prefer responses that directly answer the instruction without digression.
- Completeness: Prefer responses that capture all key aspects needed for a full answer.
- Grounding: Prefer responses clearly supported by the video, avoiding hallucinations.
- If one response contains hallucinations, irrelevant content, or omissions, prefer the other.
- If both responses are strong, choose the one that is more precise and detailed.
- If both responses are weak, choose the one that is less flawed.

Input:
Instruction:

{instruction}

Response A:

{response_a}

Response B:

{response_b}

Output (Strict Format):

<answer>{{A_or_B}}</answer>

Figure 13: LLM-as-judge prompt for pairwise comparison of model-generated responses to video
understanding tasks.
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Pairwise Response Evaluation with Reasoning Prompt

You are provided with a video, a corresponding instruction, and two candidate responses generated by two models. The
instruction defines a video understanding task, which may involve open-ended question answering, captioning, instruction
following, temporal reasoning, or multi-step inference grounded in the video. Such tasks are open-ended and often require
complex or nuanced reasoning over the visual and temporal content.

Your task is to compare the two responses and decide which one better addresses the instruction, based on the content of the
video. Make a holistic judgment that considers correctness, relevance, completeness, and grounding.

Task:
For the given pair of responses:
- First, evaluate Response A (strengths and weaknesses).
- Then, evaluate Response B (strengths and weaknesses).
- Finally, compare them and decide which one better satisfies the instruction in the context of the video.
- Ground your reasoning in the video content — treat it as if you are directly watching the video.
- Write the reasoning inside <thinking></thinking>.
- After the reasoning, output only A or B, wrapped strictly inside <answer></answer> tags.

Evaluation Guidelines:
- Accuracy: Prefer responses that are factually correct and consistent with the video.
- Relevance: Prefer responses that directly answer the instruction without digression.
- Completeness: Prefer responses that capture all key aspects needed for a full answer.
- Grounding: Prefer responses clearly supported by the video, avoiding hallucinations.
- If one response contains hallucinations, irrelevant content, or omissions, prefer the other.
- If both responses are strong, choose the one that is more precise and detailed.
- If both responses are weak, choose the one that is less flawed.

Input:
Instruction:

{instruction}

Response A:

{response_a}

Response B:

{response_b}

Output (Strict Format):

<thinking>
{{Evaluate Response A -> Evaluate Response B -> Compare them concisely,
explaining why one is better, grounded in the video.}}
</thinking>
<answer>{{A_or_B}}</answer>

Figure 14: LLM-as-judge prompt for pairwise evaluation of responses with explicit stepwise rea-
soning.

0 20 40 60 80 100
VideoJudge-3B Win Rate

vs Qwen-7B

vs Qwen-3B

vs Qwen-32B

vs Qwen-72B

vs GPT-4o-mini

86.0% 14.0%

82.0% 18.0%

62.3% 37.7%

51.7% 48.3%

51.0% 49.0%

Win Loss

(a) Majority vote with 3 annotators

0 20 40 60 80 100
VideoJudge-3B Win Rate

vs Qwen-3B

vs Qwen-7B

vs GPT-4o-mini

vs Qwen-32B

vs Qwen-72B

98.3% 1.7%

96.3% 3.7%

92.7% 7.3%

90.0% 10.0%

71.3% 28.7%

Win Loss

(b) LLM-as-Judge based evaluation

Figure 15: Win rate of VideoJudge-3B compared to other models under two evaluation settings.
15a: majority voting of human annotator, where the most common annotators’ choice determines the
label. 15b: LLM-as-Judge preference with deterministic decoding (T = 0). Across both settings,
VideoJudge-3B consistently produces high-quality rubrics and achieves performance competitive
with, or surpassing, models up to 25× larger, including proprietary systems such as GPT-4o-mini.
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Table 6: Representative examples of video frames paired with instructions and bootstrapped re-
sponses at different rating levels (R1–R5) generated by our pipeline.

Video Frames Instruction and Responses

Instruction: What is the man wearing while ironing the dress shirt?

R5: The video shows a white building from the outside, the inside of a ballet studio
where children practice, a girl speaking from inside a well-lit studio, children walking
through the school, and a boy and a girl dancing in a studio as other children watch.

R4: The video features an exterior view of a grand building, followed by scenes inside a
ballet studio where young dancers practice. There are moments showing a girl speaking
and other children walking through the school, along with a boy and a girl performing
ballet moves while others observe.

R3: The video features a beautiful building at the start, then transitions into a ballet class
where children are practicing their routines. A girl talks at one point, and there are some
glimpses of kids walking around. The main focus is on the ballet practice, with some
children watching and learning.

R2: The video shows a building and then cuts to some kids who are doing ballet in a
studio. There is a girl who talks briefly, and some kids are just wandering around. The
dancing is mixed with scenes of children doing other activities, which makes it hard to
tell what’s happening.

R1: The video features a beautiful building at the start, then transitions into a ballet class
where children are practicing their routines. A girl talks at one point, and there are some
glimpses of kids walking around. The main focus is on the ballet practice, with some
children watching and learning.

Instruction: Can you describe in detail what happens in the video?

R5: The video depicts a ship in the sea during the daytime, with a hill visible in the
distance at the shore. The ship is dangerously tilted towards the left and appears to be on
the verge of capsizing, while all its sails are fully deployed. Another group of people can
be seen approaching the ship in a motorboat. The video ends with the camera panning
around the motorboat and the surrounding area. There are no visible signs of distress or
emergency response. Overall, the video captures a dramatic and potentially hazardous
situation on the high seas.

R4: The video shows a sailing yacht navigating through rough waters during the day,
with a distant coastline visible. The yacht is leaning significantly to one side, giving
the impression that it might capsize, and all its sails are up. A motorboat approaches
the yacht, but there are no signs of distress. The scene captures an adventurous sailing
experience in open waters.

R3: The video features a yacht sailing in the ocean on a sunny day, with some hills visible
far in the background. The yacht is leaning to one side, which could look dangerous. All
the sails are fully deployed, and it appears to be a thrilling experience. There seems to be
no immediate danger, and the overall atmosphere feels calm despite the tilt of the yacht,
making it look like a leisurely outing rather than an emergency.

R2: The video presents a boat moving across the water, and it’s bright outside. There
are some distant landforms, possibly hills. The boat seems to be leaning, which might
suggest it’s having trouble. A small boat is around, but it’s unclear what the situation is.
The video feels like it’s capturing a sailing adventure.

R1: The video shows a large ship floating in calm waters, with people enjoying a picnic
on the deck. In the background, there’s a beautiful sunset, and the ship appears to be
stationary. The focus is on people laughing and eating, with no signs of sailing or any
movement.
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Table 7: Training and evaluation hyperparameters.

Hyperparameter Value

Training

Learning rate 2e-7
Batch size (per device) 16
Gradient accumulation steps 1
Num. train epochs 2
Warmup ratio 0.03
Weight decay 0.0
Max grad norm 1.0
LR scheduler Cosine
Precision bfloat16
Max sequence length 128,000
Video max frames 60
Video max frame pixels 25,088
Video min frame pixels 3,136
Gradient checkpointing True
tune mm vision False
tune mm mlp True
tune mm llm True

Evaluation

max new tokens 1024
fps 1
max frames 180
max pixels 20480 × 28 × 28
min pixels 16 × 28 × 28

Table 8: Pairwise human evaluation results across two annotators. The table reports overall inter-
annotator agreement and Cohen’s Kappa as measures of reliability. Preference distributions show
the proportion of times each annotator selected response b versus response a, indicating a slight
bias toward b. Correctness is computed as the fraction of instances where the annotator’s preferred
response matches the higher-rated (gold) response, with both annotators showing high accuracy over
250 samples each. The last two rows capture error analysis: in 11 cases (4.4%), both annotators
agreed on an incorrect answer, while in 13 cases (5.2%), the annotators disagreed on a correct
answer, highlighting residual uncertainty.

Metric Value

Agreement 94.80
Cohen’s Kappa 89.54

Annotator1 Preference (b / a) 53.2 / 46.8
Annotator2 Preference (b / a) 54.4 / 45.6

Annotator1 Correctness 92.40 (250 samples)
Annotator2 Correctness 93.60 (250 samples)

Both agreed on wrong answers 11 / 250 (4.4)
Both disagreed on correct answers 13 / 250 (5.2)
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Table 9: Comparison of annotator decisions across instruction–response pairs.

Instruction Response A Response B A1 A2

What is happening in the
video?

The video shows a couple dancing out-
side, with some people watching them.
Children are playing in the background,
and there might be someone cooking
food. Another couple appears later, but
the details are a bit unclear.

In the video, a couple is moving around
in what looks like a backyard gather-
ing. There are kids playing, and it seems
like a party. A few adults are standing
around, but it’s hard to see what’s really
happening.

A A

Can you describe the
video in detail?

In the video, a man in a camouflage shirt
is seen doing nail care for a woman. He
appears to be using some kind of prod-
uct, and there are people sitting nearby.
The lighting seems good, and the focus
is on the nails, but there are moments
where it shifts away from the main ac-
tion.

The video features a casual setting where
a person is doing something with nails.
There is a man in a camouflage shirt, and
it looks like he is applying some kind
of treatment. Other people are around,
but the details about the process are quite
vague and unclear.

B A

Can you describe the
competition the man is
participating in?

The video shows a man participating in
a sports competition where he throws a
round object in a circular area. He at-
tempts to throw it a long distance, and
there are some spectators watching, but
the focus on the throwing technique is
not very clear, and the details about the
event are vague.

In the video, a man is seen throwing a
discus in a competition. He spins to gain
speed and then throws it. The footage
captures him from different perspectives,
and there are some people in the crowd,
but not many details about them.

A B

What is the woman wear-
ing and what is behind
her?

The woman has on a green shirt, and
there seems to be a clothing item behind
her, but it’s not specific. The room is
bright, and there might be some products
nearby, but the details are unclear.

The woman is wearing a green top, and
behind her is a denim jacket. She is in
a well-lit room with a window, and there
are some products on a table, but it’s not
clear what specific items they are.

B B

Figure 16: Example of the Human Evaluation MTurk Interface. Annotators were provided with a
video, its description, the instruction, a reference response, and two candidate rubrics. They com-
pared the rubrics and selected the one they considered more effective for evaluating AI-generated
responses.
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Figure 17: Comparison of Zero-Shot vs Finetuned models across temperatures using Pearson,
RMSE, and MAE metrics.
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Figure 18: Training vs. evaluation results across Pearson, RMSE, and MAE metrics for max-frame
ablation.
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Table 10: List of released artifacts to ensure full reproducibility of our work. We provide both model
checkpoints and datasets used for training and evaluation. Specifically, the Models include point-
wise and pairwise variants of our VideoJudge across different parameter scales (3B and 7B). The
Data section contains curated pointwise and pairwise training sets (VideoJudge-20K, VideoJudge-
20K-Preference), along with evaluation benchmarks (VideoJudgeLLaVA, VideoJudgeVCG) and a
sampled subset (VCGLLaVA-1K-Mix-Sampled). Finally, the Misc section includes the full collec-
tion of prompts used for response generation, evaluation, and rubric construction. All artifacts are
hosted on Hugging Face and are accessible via the provided links; the repositories are functional but
the hosting identity has been anonymized for review.

Artifact Description
Models
VideoJudgeR-3B Pointwise VideoJudge (3B) model trained to generate in-

stance specific rubrics, reasoning and score
VideoJudge-3B Pointwise VideoJudge (3B) model trained to generate

reasoning and score
VideoJudge-7B Pointwise VideoJudge (7B) model trained to generate

reasoning and score
VideoJudgePreference-3B Pairwise VideoJudge (3B) model trained to generate rea-

soning and preference
VideoJudgePreference-7B Pairwise VideoJudge (7B) model trained to generate rea-

soning and preference

Data
VideoJudge-20K Pointwise training data for VideoJudge models
VideoJudge-20K-Preference Pairwise training data for VideoJudge models
VideoJudgeLLaVA Pointwise evaluation data sourced from VideoLLaVa
VideoJudgeVCG Pointwise evaluation data sourced from VideoChatGPT
VCGLLaVA-1K-Mix-Sampled 1K sampled from the mix of VideoJudgeLLaVA and

VideoJudgeVCG

Misc
Prompts A directory consisting all the prompts
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https://huggingface.co/xyzasdfghjkl123456/VideoJudgeR-3B
https://huggingface.co/xyzasdfghjkl123456/VideoJudge-3B
https://huggingface.co/xyzasdfghjkl123456/VideoJudge-7B
https://huggingface.co/xyzasdfghjkl123456/VideoJudgePreference-3B
https://huggingface.co/xyzasdfghjkl123456/VideoJudgePreference-7B
https://huggingface.co/datasets/xyzasdfghjkl123456/VideoJudge-20K
https://huggingface.co/datasets/xyzasdfghjkl123456/VideoJudge-20K-Preference
https://huggingface.co/datasets/xyzasdfghjkl123456/VideoJudgeLLaVA
https://huggingface.co/datasets/xyzasdfghjkl123456/VideoJudgeVCG
https://huggingface.co/datasets/xyzasdfghjkl123456/VCGLLaVA-1K-Mix-Sampled
https://huggingface.co/datasets/xyzasdfghjkl123456/Prompts
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