ENSAM: an efficient foundation model for
interactive segmentation of 3D medical images
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Abstract. We present ENSAM (Equivariant, Normalized, Segment Any-
thing Model), a lightweight and promptable model for universal 3D med-
ical image segmentation. ENSAM combines a SegResNet-based encoder
with a prompt encoder and mask decoder in a U-Net-style architecture,
using latent cross-attention, relative positional encoding, normalized at-
tention, and the Muon optimizer for training. ENSAM is designed to
achieve good performance under limited data and computational bud-
gets, and is trained from scratch on under 5,000 volumes from multiple
modalities (CT, MRI, PET, ultrasound, microscopy) on a single 32 GB
GPU in 6 hours. As part of the CVPR 2025 Foundation Models for In-
teractive 3D Biomedical Image Segmentation Challenge, ENSAM was
evaluated on the hidden test set with multimodal 3D medical images,
obtaining a DSC AUC of 2.404, NSD AUC of 2.266, final DSC of 0.627,
and final NSD of 0.597, outperforming two previously published base-
line models (VISTA3D, SAM-Med3D) and matching the third (SegVol),
surpassing its performance in final DSC but trailing behind in the other
three metrics. In the coreset track of the challenge, ENSAM ranks 5th
of 10 overall and best among the approaches not utilizing pretrained
weights. Ablation studies confirm that our use of relative positional en-
codings and the Muon optimizer each substantially speed up convergence
and improve segmentation quality.
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1 Introduction

Accurate segmentation of three-dimensional (3D) or two-dimensional plus time
(2D+t) medical images has become fundamental for numerous clinical tasks, in-
cluding diagnosis, treatment planning, and disease monitoring. While 3D images
provide much richer spatial context compared to 2D images, technical challenges
arise in processing and storing large amounts of high-resolution 3D data. In the
last decade, specialized deep learning models have shown success in automat-
ing segmentation tasks when trained using high-quality pixel-level labels [22].
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More recently, the advent of large pretrained foundation models in natural lan-
guage processing has demonstrated that models trained on massive and diverse
datasets can generalize effectively to downstream tasks [7, 36, 6, 39], surpassing
the performance of specialized models.

Motivated by this, foundation models for natural image segmentation have
been developed, most notably SAM [20] for 2D and subsequently SAM2 [37] for
2D+t. While providing impressive segmentations for natural images, they do not
immediately provide useful segmentations when applied to medical images. To
address this performance gap, the 2025 CVPR Workshop on Foundation Models
for Medical Vision was established, including a challenge aimed at improving
segmentation accuracy on medical modalities. In this paper, we present our
contribution to that effort: an efficient SAM model for medical 3D imaging.

1.1 Related work

Several previous attempts at building a SAM for medical imaging exist. Med-
SAM [26] adapts SAM to the medical domain by fine-tuning on medical segmen-
tation datasets, achieving improved performance across several imaging modali-
ties, but is limited by only supporting an initial bounding box and no subsequent
clicks. It further only supports 2D slices and lacks volumetric consistency. Med-
SAM2 [28] adapts SAM2 for and supports segmentation of 2D+t and 3D medical
images, but also lacks support for iterative segmentation refinement.

Models inspired by but not directly utilizing weights from SAM or SAM?2
have also been proposed. SAM-Med3D [40] demonstrates the feasibility of train-
ing using medical data only and supports iterative refinement, but fails to gen-
eralize well to unseen classes and requires many interactions to match the per-
formance of task-specific baselines such as nnU-Net [13]. SegVol [3] introduces
more prompt types, including text, boxes, and clicks, and is trained on Com-
puted Tomography (CT) images only.

Other models build on established segmentation architectures to enhance
performance in medical imaging tasks. SegResNet [29], a U-Net-based architec-
ture augmented with a variational decoder head for regularization, has proven
highly effective, winning multiple 3D medical image segmentation challenges [32,

, 30]. Tt serves as the backbone in VISTA3D [11], a model trained on both CT
and MRI data, which leverages supervoxels generated by SAM during training
in addition to conventional segmentation masks.

The model nnlnteractive [9] advances the state-of-the-art further by sup-
porting bounding box, click, lasso, and scribble prompts, with the latter two
providing stronger guidance. It is trained on a multimodal set of 3D medical
datasets using both traditional segmentation masks and supervoxels from SAM
and SAM2. Unlike the other models that rely on cross-attention, nnlnteractive
integrates user input through dense feature maps.
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1.2 Objective and contribution

As the field of interactive 3D medical image segmentation rapidly evolves, each
new model often demonstrates improvements over selected baselines. However,
a unified and independent comparison of these models on a common benchmark
has not yet been established. This challenge addresses that gap by evaluat-
ing participants on a standardized hidden test set comprising multiple imaging
modalities, enabling a fair and unbiased comparison of methods based solely on
their generalization and segmentation performance.

ENSAM (Equivariant, Normalized, SAM in 3D) is designed to improve both
training efficiency and segmentation accuracy, addressing the often prohibitive
computational cost of training foundation models. Our objective is to achieve
performance comparable to, or surpassing, current state-of-the-art models, while
training on a single GPU. The name ENSAM also subtly reflects this goal, as
“ensam” (Swedish spelling) means sole/lonely in Germanic languages.

Our proposed model is inspired by SAM and the SegResNet architecture,
and introduces several improvements, such as relative position encodings in 3D
together with a normalized attention mechanism for the encoded user input,
trained by a Muon optimizer in place of Adam. All modifications are aimed at
accelerating training and enhancing data efficiency, while being scalable to larger
setups. Furthermore, our solution targets the coreset challenge, a sub-track of
the challenge, limiting the training dataset to 10% of the full set.

2 Method

The goal of the challenge is to develop a foundation model for universal medical
image segmentation; that is, given a medical image, the model should segment
any anatomical or pathological structure indicated by a user prompt (specifi-
cally, a bounding box or point-based clicks). Evaluation is conducted through
a simulated interactive setting, in which the model receives an image during
inference, with or without an initial bounding box, followed by five simulated
“clicks” representing iterative corrections made by a clinician.

To address this task, we propose a model based on three components: an
image encoder, a prompt encoder, and a mask decoder, configured into a U-
Net architecture. User prompts are integrated into the model via cross-attention
mechanisms applied at the bottleneck layer. With the chosen structure, we are
capable of simultaneously training all components, end-to-end. The following
subsections detail the proposed method, and an overview of the architecture is
provided in Figure 1.

2.1 Image Encoder

With the advent of vision transformers, several efforts have been made to adapt
transformer-based backbones for use as image encoders in segmentation models.
However, most benchmarks continue to show that CNN-based encoders outper-
form their transformer-based counterparts [3]. We adopt an architecture based
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Fig.1: Network architecture of the proposed interactive segmentation model,
consisting of three main components: image encoder, prompt encoder, and mask
decoder. During an interactive segmentation session on a single sample, the
image encoder runs once, while the decoder updates the segmentation with each
new user input.

on the SegResNet model, [29], which comprises a cascade of residual blocks inter-
leaved with downsampling layers. An overview of the image encoder is illustrated
in Figure 2.

2.2 Prompt Encoder

The prompt encoder is responsible for taking input from the user and encoding it
in a format compatible with the rest of the model. The prompt encoder currently
supports 3D bounding boxes as well as foreground and background clicks. All
user interactions are represented as unit vectors with the same dimension d as
the image embeddings at the bottom latent space of the U-Net. In its current
implementation, boxes are represented by a pair of unit vectors and clicks by a
single vector, one for foreground and another for background clicks.

Each prompt and image embedding is associated with a 3D coordinate. This
coordinate information is essential for the mask decoder to reason about spatial
relations between prompts and image content. Traditionally, absolute positional
information has been added element-wise to embedding vectors [20], [26]. How-
ever, absolute encoding breaks equivariance. Using methods that instead encode
relative positional information has been shown to improve training efficiency and
final model performance both in 1D [38] as well as 2D and 3D tasks [34].

Lie Rotational Positional Encoding. To include relative positional informa-
tion when computing attention between embedding vectors, the attention blocks



ENSAM 5

ResBlock3D
s N
Conv3D + ResBlock3D F-==>
BatchNorm3D
L J
e l DY
StridedConv3D + ResBlock3D F--->
k )

IS l 2| BatchNorm3D
StridedConv3D + 2xResBlock3D - - - >

L J
IS l 2|

StridedConv3D + 4xResBlock3D ———

L J ]

(a) The image encoder consists of four (b) Each residual block contains con-
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Fig.2: Architecture overview: (a) image encoder; (b) residual block used within
the encoder.

are given pairs of embedding vectors and coordinates. Technically, positional in-
formation is encoded by applying position-dependent rotation matrices to key
and query vectors. As previously noted in [34], Lie algebras provide a suitable
framework in this setting, as the group of rotations SO(n) can be generated from
the Lie algebra so(n). In other words, for an embedding vector e; with coordinate
pi = (x4, i, 2i), the corresponding rotation matrix can be written as

R(pi) = exp (Azxz + Ayyi + Azzi) 5 (1>

where A;, Ay, A, are learnable, skew-symmetric matrices of size d x d, where d
is the embedding dimension. Each matrix is parameterized by d(d — 1)/2 values
due to the skew-symmetry (AT = —A).

Letting ¢; and k; be key and query vectors with positions p; = (z;,y;, 2;) and
p; = (z;,y;, 2;) respectively. The attention scores between ¢; and k; are then
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calculated as

AttnScore(q;, kj) = (R(pi)as) " (R(p;)k;)

= q{ R(pi)" R(p;)k;
=q; exp (Ay2; + Ay + A z,) exp (Azz; + Ayy; + Azzj) kj
= q; exp (—A,x; — Ayy; — ALzi)exp (Agz; + Ayyy; + Aszj) Ky
= g exp (Ag(aj — x3) + Ay(y; — yi) + Az — 20)) b
= ¢/ R(p; — pi)k;,

which shows that the attention scores depend only on the relative position p; —p;
and coincides with the standard attention calculation when p; = p;, as exp(0) =
1.

Normalized Attention. Recent work by Loshchilov et al. [24] introduces a
normalized transformer architecture, which can converge in 4-20 times fewer
training steps compared to the standard transformer, primarily demonstrated
on 1D natural language tasks. In ENSAM, we extend this approach to the 3D
medical image domain, combining it with LieRE. We hypothesize that their ben-
efits, namely faster convergence and improved numerical stability, can generalize
to volumetric data.

The normalized transformer replaces traditional layer normalization (e.g.,
RMSNorm [412] or LayerNorm [2]) and weight decay with ¢; normalization ap-
plied to all weight matrices after each optimization step. An additional /5 nor-
malization of activations is also performed. As a result, attention and MLP
outputs are constrained to lie on a unit hypersphere, which requires a modified
residual update strategy. Specifically, the standard residual addition:

x < x + Block(z) (2)
is replaced by

2 < Norm (Norm(z) + A(Norm(nBlock(z)) — Norm(x))) . (3)

In eq. (3), Norm denotes ¢3 normalization and A € Ri is an eigen learning
rate that is learned for each block in the model. Block and nBlock denote the
blocks in a transformer architecture and a normalized transformer architecture,
respectively. Steps performed by cross-attention and MLP layers are performed
using the same logic. This update rule can be interpreted as a constrained opti-
mization step on the unit hypersphere, which empirically stabilizes training and
accelerates convergence.

For initialization of e.g. A, we used the values recommended by the original
authors. For such implementation, specific details and theoretical justifications,
we refer readers to the original study [24].
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Image-Prompt Interaction. The interaction between user prompts and im-
age embeddings builds on the original SAM model, with modifications to the
attention mechanism, positional encoding, and postprocessing. Besides the im-
age embeddings, the prompt encoder processes user inputs and, when available,
segmentation logits from the previous step. These segmentation logits are down-
sampled using strided convolutions to align with the image embeddings and are
added element-wise. The interaction between user input and the modified image
embeddings follows a four-step process, using normalized attention and relative
positional encoding as core components.

1. Normalized self-attention is applied to the prompt embeddings.

2. The prompt embeddings attend to the image embeddings.

3. The updated prompt embeddings are passed through a multi-layer percep-
tron (MLP) with ReLU activation and a hidden dimension of 2d.

4. The image embeddings attend to the updated prompt embeddings.

All four steps incorporate residual connections on the hypersphere using
Equation (3). This four-step process is repeated twice and is illustrated in Fig-
ure 3.

e B
User prompts Embed )[ Prompt self-attention ] X2
17
Previous segmentation StridedConv3D >[ Prompt to image attention ]
v 7
Image embeddings [ Prompt through MLP ]
7
>[ Image to prompt attention ]——)
&

v

Fig. 3: The prompt encoder module encodes user input and modifies the image
embeddings before it is passed to the mask decoder. If a previous segmentation
exists, it is incorporated into the image embeddings via strided convolutions,
allowing for iterative refinement.

2.3 Mask Decoder

The mask decoder mirrors the image encoder, except for single residual blocks
per upsampling layer. The activations from skip-connections are concatenated
along the channel dimension and processed by a single ResBlock3D, followed by
trilinear upsampling. The final layer outputs logits with the same shape as the
input, containing the segmentation mask.
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2.4 Model Training and interaction simulation

During training, user interactions are simulated. If provided, initial prompts are
given as bounding boxes, calculated using the ground truth labels with an added
random offset, to mimic human generation. An iterative refinement click is then
placed in the middle of the largest error region. In case the largest error region
is an undersegmentation, a foreground click is placed; otherwise, a background
click is used. In total, a bounding box and five clicks are provided per training
step.

To provide supervision for the model, we use the sum of generalized dice loss
and cross-entropy, as compound loss functions have been proven to be robust
in various medical image segmentation tasks [25]. Specifically, the cross-entropy
carries double the weight,

2> . pigi 2 Z
= ice 2. = ]. - Z— — 741 i, 4
£= Loiee + 2 Lo Eip12+2i 91‘2 N i giloep ( )

where N is the number of voxels, p denotes the prediction and g the ground-
truth. The loss is averaged across all iterative steps.

To train the model in as high a resolution as possible without exceeding the
GPU memory constraints, gradient accumulation and a batch size of one are
used. The usage of a batch size of one is also partly motivated by the varying
data shapes. A standard torch dataset/dataloader setup was used with 32 worker
threads for parallel data loading. Data preprocessing and augmentation were
performed on the fly within the dataset, as it did not serve as a bottleneck for
the training pipeline.

Muon optimizer Following its recent success in speedrunning training of image
classification and language models, [17, 23], we investigate if the Muon optimizer
[18] is effective for segmentation models. The Muon optimizer has, to the best
of our knowledge, not been benchmarked for segmentation tasks at the time
of writing. Unlike traditional optimizers like Adam or SGD, Muon operates on
2-dimensional weight matrices. To apply Muon to ENSAM, all weights with
dimension > 2 are flattened beyond the first dimension. For example, 3D con-
volutional kernels are 5-dimensional and need flattening. For parameters with
dimension 1, Adam is used as per usual.

Muon replaces the conventional gradient descent update with a step along
UV, where UXVT is the singular value decomposition (SVD) of the gradient
matrix. Rather than computing the full SVD, Muon employs an efficient approx-
imation [4, 5], which has been shown to achieve similar performance [23] while
significantly reducing computational cost.

2.5 Coreset selection strategy

The coreset track in the challenge required the use of no more than 10% of the
total training data, corresponding to a maximum of 4,471 samples. To ensure
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diverse representation under this constraint, we aimed to select an approximately
equal number of samples from each dataset. In cases where a dataset contained
fewer than 4471/N samples (where N is the number of eligible datasets), all
available samples from that dataset were included.

Some datasets were excluded from the coreset selection process. The CT
Aorta dataset was omitted due to apparent issues with image normalization. In
addition, the microscopy datasets were excluded as many of them had issues in
the provided format. Since the ground truth annotations were stored using the
uint8 format, this led to instance merging due to label value overflow.

2.6 Post-processing

Although the model is trained to segment one instance at a time, multiple in-
stance prompts are typically provided during inference. To handle this, only one
encoder pass is needed for the input, while the prompt encoder and decoder can
be run in parallel for each instance. The final segmentation assigns each voxel
to the instance with the highest output logit, or to the background if no logit
exceeds a predefined threshold, such as 0.

To ensure that each instance is assigned at least one voxel, the logits are
adjusted by adding a constant inside the bounding box of any instance that
initially has no assigned voxels. If every instance already has at least one voxel
assigned, no changes are made to the logits.

3 Experiments

3.1 Dataset and evaluation metrics

The development set is compiled by the organizers of the CVPR 2025 Founda-
tion Models for Interactive 3D Biomedical Image Segmentation Challenge. This
includes data normalization. The development set is an extension of the CVPR
2024 MedSAM on Laptop Challenge [27], including more 3D cases from pub-
lic datasets ® and covering commonly used 3D modalities including CT, MRI,
Positron Emission Tomography (PET), Ultrasound (US), and microscopy im-
ages. The hidden test set is created by a community effort where all the cases
are unpublished. The annotations are either provided by the data contributors or
annotated by the challenge organizer with 3D Slicer [19] and MedSAM?2 [28]. In
addition to using all training cases, the challenge contains a coreset track, where
participants can select 10% of the total training cases for model development.
The solution proposed in this paper specifically targets the latter coreset track.

Each interactive segmentation is evaluated using the Dice Similarity Coeffi-
cient (DSC) and Normalized Surface Distance (NSD), which measure the overlap
of segmentation regions and the accuracy of boundaries, respectively.

3 A complete list is available at https://medsam-datasetlist.github.io/
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Ranking of participants is performed using four metrics: Area Under the

Curve (AUC) for DSC and NSD, as well as final AUC and NSD. Denoting AUC;
as the DSC after the i-th user interaction, the AUC is calculated as

AUC_DSC = = (DSC; +2-DSCy + 2 - DSCs5 + 2 - DSCy + DSC5) . (5)

DO =

The initial bounding box prediction is excluded from this calculation, as it is
optional. The same formula is used for computing AUC__NSD, mutatis mutan-
dis. The four metrics intend to capture both the iterative refinement and final
predictions.

Finally, to ensure practical applicability, inference time is capped at 90 sec-
onds per class. Any submission exceeding this limit receives a score of zero for
both DSC and NSD on the corresponding test case.

3.2 Implementation details

Preprocessing Following the practice in MedSAM [26], all images were pre-
processed by the challenge organizers into .npz format with an intensity range
normalized to [0, 255]. For CT images, the Hounsfield units were normalized us-
ing standard window width and level settings: soft tissue (W:400, 1:40), lung
(W:1500, L:-160), brain (W:80, L:40), and bone (W:1800, L:400). Subsequently,
the intensity values were rescaled to the range of [0,255]. For other images, the
intensity values were clipped to the range between the 0.5th and 99.5th per-
centiles before rescaling them to the range of [0,255]. If the original intensity
range is already in [0, 255], no preprocessing was applied.

Environment settings The development environments and requirements are
presented in Table 1.

Table 1: Development environments and hardware.

Component Specification

System Debian 12

CPU Intel(R) Core(TM) i9-14900KF
RAM 2x48 GB; 4800 MT /s

GPU NVIDIA GeForce RTX 5090 32 GB
CUDA version 12.8

Programming language Python 3.12
Deep learning framework PyTorch 2.7.0, Torchvision 0.22.0

Training protocols Training was performed after coreset selection, which in-
volved nearly uniform sampling across datasets. Therefore, oversampling was not
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employed. Each training epoch consisted of sampling every data instance once
in randomized order and generating boxes or clicks for one randomly selected
labelled instance from the label data.

Part of the datasets used during training included irrelevant regions sur-
rounding the areas of interest. To focus computational resources on relevant
structures, training volumes were randomly cropped around the labelled regions
with a variable margin of 1 to 64 voxels in each spatial dimension. After crop-
ping, volumes that exceeded a predefined size threshold were downscaled via
max pooling to fit within GPU memory constraints. The shapes of training vol-
umes varied across samples. However, to ensure compatibility with the network
architecture, all spatial dimensions were adjusted to be divisible by 8 by zero
padding.

Following the spatial augmentations, the volumes were converted from uint8
format to a range between [0, 1], and an intensity augmentation was applied with
a probability of 0.5. Specifically, one of the following was randomly applied: bias
field distortion, Gaussian smoothing, or histogram shift.

Table 2: Parameters used during model training. FLOPs were calculated for one
forward pass with the maximum patch volume and only one user interaction.

Parameter Value
Batch size 1
Gradient accumulation steps 4

Patch size Variable

Maximum patch volume 4,194,304 ~ 1613
Simulated clicks per step 5

Total epochs 15

Optimizer Muon and AdamW
Muon momentum 0.95

Initial learning rate 1073

Learning rate scheduler Halved at epochs 2, 5, 10
Training time 6 hours

Loss function Soft Dice + 2-BCE
Number of model parameters 5.5 M

Number of FLOPs 368 G

3.3 Ablations

To evaluate the contributions of LieRE and Muon, we conducted an ablation
study. First, ENSAM was trained using absolute position encoding with the
Adam optimizer. Next, we replaced absolute encoding with LieRE while retain-
ing the Adam optimizer. Finally, ENSAM was trained using both LieRE and the
Muon optimizer. The results can be found in Figure 4, and we note that relative
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position encoding and switching optimizer improve training speed, making the
model fit faster to the training data.

Training Dice Score Training Loss
—— Abs. PE
0.7 A 2 5 1 Rel. PE
75 3 —— Rel. PE + Muon opt.
£06 =
) O
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205 1 8
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Fig.4: Three variants of ENSAM trained on the same coreset using the same
seed. Relative position encodings improve training efficiency over absolute posi-
tion encodings. The Muon optimizer further improves upon the relative position
encodings. Besides speeding up training, the model trained with Muon also ends
up at a better final loss.

4 Results and discussion

4.1 Quantitative results on validation set

Our proposed model is benchmarked against four previously published interac-
tive segmentation models across all five modalities, and the results are shown in
Table 3. On all five modalities, either VISTA3D or SegVol obtains the highest
score. Among the five modalities, ENSAM is second in ultrasound, third in MRI
and microscopy, and fourth in CT.

4.2 Fair comparison and reporting standards

Common pitfalls in evaluating segmentation models include confounding perfor-
mance boosters, lack of well-configured baselines, insufficient testing data, and
inconsistent use of evaluation metrics [14]. In this work, the same evaluation data
and metrics are used across all methods, providing a transparent and accurate
depiction of each model’s performance. That being said, our approach is trained
from scratch, only using 10% of the full challenge dataset, without relying on
pretrained model weights. Further, our method is trained on a single GPU with
32 GB of VRAM for 6 hours as opposed to the baseline methods that were
originally trained using 100-1000 times more computational resources. Lastly,
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Table 3: Quantitative evaluation results on the validation set for the coreset
track. The maximum value for DSC AUC and NSD AUC is 4, while the maximum
value for DSC Final and NSD Final is 1.

Modality Method DSC AUC NSD AUC DSC Final NSD Final
SegVol 2.98 3.12 0.75 0.78
oT ENSAM (ours) 2.03 1.90 0.50 0.47
VISTA3D 2.81 2.84 0.72 0.73
SAM-Med3D 2.28 2.27 0.57 0.57
SegVol 2.67 3.15 0.67 0.79
MR ENSAM (ours) 1.84 2.07 0.45 0.51
VISTA3D 2.53 2.82 0.65 0.73
SAM-Med3D 1.76 1.81 0.45 0.46
SegVol 2.04 3.47 0.51 0.87
Mi ENSAM (ours) 1.27 1.74 0.34 0.45
1CTOSCORY 19 A 3D 1.72 2.71 0.45 0.69
SAM-Med3D 0.30 0.02 0.08 0.00
SegVol 2.97 2.86 0.74 0.71
PET ENSAM (ours) 2.16 1.94 0.51 0.45
VISTA3D 2.39 2.10 0.61 0.54
SAM-Med3D 2.13 1.82 0.53 0.46
SegVol 1.24 1.80 0.31 0.45
Ult d ENSAM (ours) 2.10 2.41 0.55 0.62
rasoune 19 rA3D 2.60 2.61 0.71 0.72

SAM-Med3D 1.36 1.81 0.39 0.51
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we do not ensemble predictions or perform augmentations during evaluation, to
ensure performance is not artificially inflated in comparison to the other meth-
ods. Thus, any observed performance gains should stem from methodological
advancements, and not increased compute budget, training data, or test-time
tricks.

4.3 Qualitative results on validation set

In this section, we provide examples of relatively successful segmentations, as
well as interesting failure cases for images in each of the five modalities. For
each modality, we compare ENSAM’s outputs against the all-data submissions
from SAM-Med3D, VISTA3D, and SegVol. Each of which was trained on roughly
ten times more annotated volumes than ENSAM.

Figure 5 presents two AbdomenAtlas CT examples: In the first, ENSAM ac-
curately delineates the liver, spleen, and kidneys. In the second, ENSAM over-
segments some parts in the left and middle parts of the slice.

Image Ground Truth  ENSAM  SAM-Med3D  VISTA3D SegVol

[
4

W LY Gl g QL

td
CT AbdomenAtlas 00002174 (slice 99)

659 @59 GiH

JOO8 ( hu 32)

Fig.5: Top row: Shows an example from the AbdomenAtlas dataset where
ENSAM successfully segments the liver, spleen, and kidneys. Bottom row:
Shows an example from the same dataset where ENSAM oversegments some
parts.

Figure 6 presents two MRI slices: a slice from the Spider dataset where
ENSAM captures the central vertebral bodies but fails at posterior elements; a
slice from the TotalSeg dataset illustrating correct localization of large structures
but failure on smaller structures.

Figure 7 illustrates PET segmentation: both ENSAM and the baseline models
provide similar outputs but are often over- or undersegmented, likely due to
intensity clipping during preprocessing.

Figure 8 highlights microscopy challenges: first, a slice from a microscopy
volume, dense, small regions where some baseline models oversegment the image.
Second, a slice with vessels where all models fail to detect thin vasculature.
This might reflect the absence of microscopy data in the coreset when training
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Image Ground Truth  ENSAM SAM Med3D  VISTA3D Seg\/ol
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Fig. 6: Top row: Shows an example from the MR Spider dataset, where ENSAM
successfully segments the body of the vertebra but then fails to segment the
posterior. Bottom row: shows an example where ENSAM is relatively successful
in segmenting the bottom part, whereas all models fail in segmenting the top
part of the slice.

Image Ground Truth ~ ENSAM  SAM-Med3D  VISTA3D SegVol
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PET autoPET aec0275 (slice 46)
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PET autoPET psma 995 (slice 25)

Fig. 7: Top row: Shows a PET image where ENSAM successfully segments high-
uptake regions. Bottom row: Shows a PET image where ENSAM oversegments
a high-uptake region. Due to the preprocessing of the PET images, all values
in their neighbourhood are maximally bright, possibly making it difficult for
ENSAM to distinguish the borders.

ENSAM (see Section 2.5), but also the general ambiguity in segmenting vessels
using sparse prompts like single points.

Figure 9 presents two ultrasound frames: The first is a frame from a cardiac
2D+t video where ENSAM outlines the left ventricle and atrium with jagged
edges from motion and speckle noise; The second shows a freehand-leg recon-
struction slice segmenting three lower-leg muscles with minor boundary artifacts.
For this case, SAM-Med3D’s inference code crashed, and the other baseline mod-
els severely undersegmented all three muscles.
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Microscopy SELMA3D vessel 020 (slice 24)

Fig.8: Top row: Shows an example of a microscopy image where all labelled
areas are very small, making it easy to obtain high scores for surface-distance-
based metrics. It is hard to visually determine how well the model performs
on this slice. In this case, SAM-Med3D and SegVol oversegment the volume.
Bottom row: Shows an example where all models fail to segment the vessels.
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Fig.9: Top row: Shows a frame in a cardiac ultrasound video, where the left
atrial walls, blood volume, and left atrium are annotated. The surface of EN-
SAM'’s predictions is not as smooth as the annotations. Bottom row: Shows
a slice from a 3D volume reconstructed from 2D handheld ultrasound. Three
muscles in the lower leg are annotated and segmented relatively successfully by
ENSAM. For this case, the inference code provided for SAM-Med3D crashed.
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4.4 Results on final testing set

Results for the hidden test set were calculated by challenge participants and
baseline contributors submitting Docker containers to the challenge organizers,
ensuring fair comparison.

Comparison against baseline models Qualitative results when compared to
previously published baselines are summarized in Table 4. ENSAM outperforms
VISTA3D and SAM-MED3D. Across all modalities and metrics, either ENSAM
or SegVol performs the best. Notably, ENSAM performs better on the hidden test
set as compared to the validation set. This likely reflects the uniform sampling
strategy used during training: its broad coverage supports generalization to the
diverse hidden test set but is less optimal for the unbalanced validation set.

Table 4: Quantitative evaluation results on the test set for the coreset track. The
maximum value for DSC AUC and NSD AUC is 4, while the maximum value
for DSC Final and NSD Final is 1.

Modality Method DSC AUC NSD AUC DSC Final NSD Final
SegVol 2.27 2.16 0.57 0.54
cT ENSAM (ours) 2.35 2.02 0.63 0.56
VISTA3D 2.22 1.99 0.58 0.53
SAM-Med3D 2.12 1.75 0.54 0.45
SegVol 2.74 3.03 0.68 0.76
MRI ENSAM (ours) 2.45 2.52 0.63 0.65
VISTA3D 2.41 2.51 0.63 0.67
SAM-Med3D 2.12 2.12 0.54 0.54
SegVol 2.74 3.88 0.68 0.97
Microsco ENSAM (ours) 2.57 3.76 0.67 0.94
PY VISTA3D 1.84 2.50 0.47 0.63
SAM-Med3D 0.31 0.03 0.08 0.01
SegVol 2.78 2.30 0.70 0.57
PET ENSAM (ours) 2.28 1.84 0.56 0.46
VISTA3D 1.76 1.28 0.45 0.33
SAM-Med3D 2.31 1.76 0.58 0.45
SegVol 0.79 1.29 0.20 0.32
Ultrasound ENSAM (ours) — 1.79 2.04 0.47 0.55
VISTA3D 0.76 0.82 0.24 0.31

SAM-Med3D 0.60 0.40 0.15 0.10
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4.5 Unified analysis of validation results

When jointly considering the quantitative and qualitative validation results, sev-
eral trends emerge. First, the baseline models generally perform strongly on CT
and MR, where SegVol and VISTA3D consistently outperform ENSAM in both
AUC-based metrics and final DSC/NSD scores (Table 3). This reflects the rela-
tive advantage of methods trained on larger or more modality-specific datasets;
some of the baselines also include the validation set for pretraining.

Second, it is worth noting that the AUC metrics reported in Table 3 are not
directly visible in the qualitative plots, which only illustrate the final segmen-
tation after the last user interaction. In this final step, ENSAM often produces
competitive or visually appealing results, particularly in some ultrasound and
microscopy cases.

Third, the hidden test set provides additional evidence: ENSAM slightly
surpasses all baselines in the final DSC metric after five refinement iterations
Table 4. This suggests that ENSAM, although initially trailing, converges to a
performance level comparable to state-of-the-art baselines after sufficient user
interaction.

Finally, it should be emphasized that the validation set was imbalanced
in terms of dataset composition, with many samples drawn from only a few
datasets. This imbalance may have biased performance estimates for certain
modalities, especially microscopy, and limits the reliability of conclusions drawn
solely from validation results.

Comparison against other challenge participants Table 5 summarizes the
performance of the coreset track participants. Our submission ranked 5th out
of 10 teams, placing highest among the participants not leveraging any external
pretrained weights.

Table 5: Quantitative evaluation results on the test set for the coreset track. The
team names correspond to the names on the official leaderboard. DSC AUC and
NSD AUC range from 0 to 4; higher is better.

Team Initialization DSC AUC NSD AUC DSC Final NSD Final
aim [10] Efficient TAM 3.10 3.23 0.80 0.89
norateam [33] nnlnteractive 291 2.97 0.75 0.78
yiooo [13] VISTA3D & SAM-Med3D  2.90 2.90 0.75 0.75
lexor [1] SegVol 2.50 2.57 0.63 0.64
ahus (ours) - 2.40 2.27 0.63 0.60
hanglok [15] VISTA3D 2.12 2.01 0.55 0.53
cemrg [35] - 1.89 1.62 0.48 0.41
sail [10] SAM-Med2D 1.65 1.59 0.41 0.40
dtftech [12]  SegVol 1.59 1.08 0.42 0.28

owwwen [21] SAM-Med3D 0.96 0.50 0.24 0.12
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4.6 Limitation and future work

Limitations to ENSAM. There are several limitations to our work, both in
the training and inference setup, as well as the model architecture.

First, our model was trained under constrained data and computational bud-
gets. Leveraging the full dataset alongside increased computational resources
would likely yield improved performance.

Second, while we conducted targeted ablation studies demonstrating that
the Muon optimizer outperforms AdamW and that relative positional encoding
is preferable to absolute positional encoding, we did not evaluate the impact of
normalized attention compared to the standard attention mechanism. Addition-
ally, due to computational constraints, we did not explore variations in model
size. It is therefore unlikely that the current architecture is optimal; for instance,
increasing the depth of the U-Net may lead to better results.

Third, as noted by Isensee et al. [9], 2D bounding boxes can be preferable to
3D ones even for 3D segmentation tasks, and click-based prompts may convey
less information compared to other prompt types. However, as the evaluation
protocol for this challenge relies on 3D boxes and clicks, the current version of
ENSAM supports only these prompt types.

Fourth, we have not conducted latency evaluations or user studies. To ro-
bustly assess the practical utility of interactive segmentation models, simulated
user interactions alone are insufficient; real user studies are essential.

Limitations in evaluation pipeline While the test set contains unpublished
medical images and annotations providing a fair comparison between models, the
validation set includes mostly CT and MR images. In the PET modality, a single
dataset is included, and for US, two datasets are used. One of the US datasets
comprises 2D+t echocardiographic videos. The microscopy modality includes
just eight volumes, several of which contain only a small fraction of labelled
voxels. As a result, quantitative conclusions regarding model performance on
US, PET, and Microscopy should be interpreted with caution due to limited
sample diversity and volume.

In addition, the CT and MR subsets of the validation set are imbalanced
in terms of the number of samples taken from each dataset. This imbalance
may bias the evaluation and obscure insights into how well the model general-
izes across datasets within a modality. A more robust assessment, especially for
modalities like CT, could be achieved through a more uniform sampling strategy
that considers factors such as the number of labeled instances per dataset.

Lastly, the simulation of user input could be improved, aligning better with
the use case of the model. Currently, N interactions are provided between each
refinement step, with /N being equal to the number of objects of interest in the
image. In reality, the user would probably want an updated segmentation after
each interaction.

Future directions The field is rapidly evolving, and future work should focus
on improving multiple areas. Below, we outline promising directions.
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User input integration via attention: The comparative effectiveness of at-
tention based methods versus dense feature maps to incorporate user input
warrants further investigation. In particular, prompt types such as scribbles
and lassos have not yet been explored in the context of attention mechanisms
in 3D medical images.

Handling anisotropic spacing and physical coordinates: The impact of
anisotropic voxel spacing on position encoding remains an open question.
In this work, voxel spacing is disregarded, but future studies could examine
whether representing coordinates in physical units improves model perfor-
mance. A related challenge is the incorporation of spatiotemporal data in
training and evaluation.

Handling multiple objects: Current methods, including ENSAM and all base-
line models of the challenge, treat each object instance in parallel during
training and inference. Incorporating interactions between instances could
likely reduce the amount of required user input and improve inference effi-
ciency. For example, a foreground click for one instance could be interpreted
as a background click for others.

5 Conclusion

In this paper, we presented ENSAM, an efficient, promptable model for uni-
versal medical image segmentation. With compute restraint and training on a
coreset of the challenge data, we achieved a DSC AUC of 2.404, NSD AUC
of 2.266, final DSC of 0.627, and final NSD of 0.597. Our results demonstrate
that the combination of relative positional encoding and the Muon optimizer
significantly improves both model performance and training efficiency. Further-
more, enabling the model to handle variable-shape inputs is critical for reducing
computational overhead, particularly VRAM usage, and facilitates inference at
resolutions closer to the native input scale.
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