
ENSAM: an efficient foundation model for
interactive segmentation of 3D medical images

Elias Stenhede[0009−0005−2654−4553],
Agnar Martin Bjørnstad[0009−0005−4207−6278], and

Arian Ranjbar[0000−0002−0422−2255]

Medical Technology & E-health, Akershus University Hospital,
1478 Lørenskog, Norway

arian.ranjbar@medisin.uio.no

Abstract. We present ENSAM (Equivariant, Normalized, Segment Any-
thing Model), a lightweight and promptable model for universal medical
image segmentation in 3D. Designed for interactive use and constrained
computational settings, ENSAM is trained from scratch on less than
5,000 images using a single GPU. The model integrates a SegResNet-
based encoder with a prompt encoder and mask decoder in a U-Net-style
configuration, featuring cross-attention at the latent level. To improve
training speed and efficiency, we incorporate relative positional encoding,
normalized attention, and the Muon optimizer. Evaluated on a diverse
validation set spanning CT, MRI, PET, ultrasound, and microscopy, EN-
SAM achieves competitive performance with an average AUC dice score
of 1.948 across five simulated user interactions while requiring signifi-
cantly fewer computational resources than existing foundation models.
Ablation studies confirm the benefits of our architectural and optimiza-
tion choices, suggesting ENSAM as a scalable and efficient foundation
for future medical image segmentation research.

Keywords: Medical Imaging · Multimodal · 3D Interactive Segmen-
tation

1 Introduction

1.1 Background

Accurate segmentation of three-dimensional (3D) or two-dimensional plus time
(2D+t) medical images has become fundamental for numerous clinical tasks, in-
cluding diagnosis, treatment planning, and disease monitoring. While 3D images
provide much richer spatial context compared to 2D images, technical challenges
arise in processing and storing large amounts of high-resolution 3D data. In the
last decade, specialized deep learning model have shown success in automat-
ing segmentation tasks when trained using high-quality pixel-level labels [15].
More recently, the advent of large pretrained foundation models in natural lan-
guage processing has demonstrated that models trained on massive and diverse
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datasets can generalize effectively to downstream tasks [5, 27, 4, 30], surpassing
the performance of specialized models.

Motivated by this, foundation models for natural image segmentation has
been developed, most notably SAM [14] for 2D and subsequently SAM2 [28] for
2D+t. While providing impressive segmentations for natural images, they do not
immediately provide useful segmentations when applied to medical images. To
address this performance gap, the 2025 CVPR Workshop on Foundation Models
for Medical Vision was established, including a challenge aimed at improving
segmentation accuracy on medical modalities. In this paper, we present our
contribution to that effort: an efficient SAM model for medical 3D imaging.

1.2 Related work

Several previous attempts at building a SAM for medical imaging exists. Med-
SAM [19] adapt SAM to the medical domain by fine-tuning on medical segmen-
tation datasets, achieving improved performance across several imaging modali-
ties, but is limited by only supporting an initial bounding box and no subsequent
clicks. It further only supports 2D slices and lacks volumetric consistency. Med-
SAM2 [21] adapts SAM2 for and supports segmentation of 2D+t and 3D medical
images, but also lacks support for iterative segmentation refinement.

Models inspired by but not directly utilizing weights from SAM or SAM2 have
also been proposed. SAM-Med3D [31] demonstrates the feasibility of training
using medical data only and supports iterative refinement, but fails to generalize
well to unseen classes and requires many interactions to match the performance
of task-specific baselines such as nnU-Net [9]. SegVol [6] introduces more prompt
types, including text, boxes, and clicks, and is trained on Computed Tomography
(CT) images only.

Other models build on established segmentation architectures to enhance
performance in medical imaging tasks. SegResNet [22], a U-Net-based architec-
ture augmented with a variational decoder head for regularization, has proven
highly effective, winning multiple 3D medical image segmentation challenges [25,
24, 23]. It serves as the backbone in VISTA3D [8], a model trained on both CT
and MRI data, which leverages supervoxels generated by SAM during training
in addition to conventional segmentation masks.

The model nnInteractive [7] advances the state-of-the-art further by sup-
porting bounding box, click, lasso, and scribble prompts, with the latter two
providing stronger guidance. It is trained on a multimodal set of 3D medical
datasets using both traditional segmentation masks and supervoxels from SAM
and SAM2. Unlike the other models that rely on cross-attention, nnInteractive
integrates user input through dense feature maps.

1.3 Objective and contribution

As the field of interactive 3D medical image segmentation rapidly evolves, each
new model often demonstrates improvements over selected baselines. However,
a unified and independent comparison of these models on a common benchmark
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has not yet been established. This challenge addresses that gap by evaluat-
ing participants on a standardized hidden test set comprising multiple imaging
modalities, enabling a fair and unbiased comparison of methods based solely on
their generalization and segmentation performance.

ENSAM (Equivariant, Normalized, SAM in 3D) is designed to improve both
training efficiency and segmentation accuracy, addressing the often prohibitive
computational cost of training foundation models. Our objective is to achieve
performance comparable to, or surpassing, current state-of-the-art models, while
training on a single GPU. The name ENSAM also subtly reflects this goal, as
“ensam” (Swedish spelling) means sole/lonely in Germanic languages (cognate
with the English "onesome").

Our proposed model is inspired by SAM and the SegResNet architecture,
and introduces several improvements, such as relative position encodings in 3D
together with a normalized attention mechanism for the encoded user input,
trained by a Muon optimizer in place of Adam. All modifications are aimed at
accelerating training and enhancing data efficiency, while being scalable to larger
setups. Furthermore, our solution targets the coreset challenge, a sub-track of
the challenge, limiting the training dataset to 10% of the full set.

2 Method

The goal of the challenge is to develop a foundation model for universal medical
image segmentation; that is, given a medical image, the model should segment
any anatomical or pathological structure indicated by a user prompt (specifi-
cally, a bounding box or point-based clicks). Evaluation is conducted through
a simulated interactive setting, in which the model receives an image during
inference, with or without an initial bounding box, followed by five simulated
“clicks” representing iterative corrections made by a clinician.

To address this task, we propose a model based on three components: an
image encoder, a prompt encoder, and a mask decoder, configured into a U-
Net architecture. User prompts are integrated into the model via cross-attention
mechanisms applied at the bottleneck layer. With the chosen structure, we are
capable of simultaneously training all components, end-to-end. The following
subsections detail the proposed method, and an overview of the architecture is
provided in Figure 1.

2.1 Image Encoder

With the advent of vision transformers, several efforts have been made to adapt
transformer-based backbones for use as image encoders in segmentation models.
However, most benchmarks continue to show that CNN-based encoders outper-
form their transformer-based counterparts [1]. We adopt an architecture based
on the SegResNet model, [22], which comprises a cascade of residual blocks inter-
leaved with downsampling layers. An overview of the image encoder is illustrated
in Figure 2.
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Fig. 1: Network architecture of the proposed interactive segmentation model,
consisting of three main components: image encoder, prompt encoder, and mask
decoder. During an interactive segmentation session on a single sample, the
image encoder runs once, while the decoder updates the segmentation with each
new user input.

2.2 Prompt Encoder

The prompt encoder is responsible for taking input from the user and encoding it
in a format compatible with the rest of the model. The prompt encoder currently
supports 3D bounding boxes as well as foreground and background clicks. All
user interactions are represented as unit vectors with the same dimension d as
the image embeddings at the bottom latent space of the U-Net. In its current
implementation, boxes are represented by a pair of unit vectors and clicks by a
single vector, one for foreground and another for background clicks.

Each prompt and image embedding is associated with a 3D coordinate. This
coordinate information is essential for the mask decoder to reason about spatial
relations between prompts and image content. Traditionally, absolute positional
information has been added element-wise to embedding vectors [14], [19]. How-
ever, absolute encoding breaks equivariance. Using methods that instead encode
relative positional information has been shown to improve training efficiency and
final model performance both in 1D [29] as well as 2D and 3D tasks [26].

Lie Rotational Positional Encoding. To include relative positional informa-
tion when computing attention between embedding vectors, the attention blocks
are given pairs of embedding vectors and coordinates. Technically, positional in-
formation is encoded by applying position-dependent rotation matrices to key
and query vectors. As previously noted in [26], Lie algebras provide a suitable
framework in this setting, as the group of rotations SO(n) can be generated from
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Conv3D + ResBlock3D

StridedConv3D + ResBlock3D

StridedConv3D + 2×ResBlock3D

StridedConv3D + 4×ResBlock3D

(a) The image encoder consists of four
blocks. The initial Conv3D layer trans-
forms the image from single-channel to 16
channels. The StridedConv3D layers re-
duce the spatial dimensions by a factor of
2 and doubles the number of channels.

ResBlock3D

BatchNorm3D

ReLU

Conv3D

BatchNorm3D

ReLU

Conv3D

+

(b) Each residual block contains con-
volutional layers with skip connections.
Through all layers, the channel dimension
is kept constant, allowing for element-wise
addition of the residual activations.

Fig. 2: Architecture overview: (a) image encoder; (b) residual block used within
the encoder.

the Lie algebra so(n). In other words, for an embedding vector ei with coordinate
pi = (xi, yi, zi), the corresponding rotation matrix can be written as

R(pi) = exp (Axxi + Ayyi + Azzi) . (1)

where Ax, Ay, Az ∈ so(d) are learnable, skew-symmetric matrices of size d× d,
where d is the embedding dimension. Each matrix is parameterized by d(d−1)/2
values due to the skew-symmetry (A⊤ = −A).

Letting qi and kj be key and query vectors with positions pi = (xi, yi, zi) and
pj = (xj , yj , zj) respectively. The attention scores between qi and kj are then
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calculated as

AttnScore(qi, kj) = (R(pi)qi)⊤(R(pj)kj)
= q⊤

i R(pi)⊤R(pj)kj

= q⊤
i exp (Axxi + Ayyi + Azzi)⊤ exp (Axxj + Ayyj + Azzj) kj

= q⊤
i exp (−Axxi −Ayyi −Azzi) exp (Axxj + Ayyj + Azzj) kj

= q⊤
i exp (Ax(xj − xi) + Ay(yj − yi) + Az(zj − zi)) kj

= q⊤
i R(pj − pi)kj ,

which shows that the attention scores depend only on the relative position pj−pi

and coincides with the standard attention calculation when pj = pi, as exp(0) =
I.

Normalized Attention. Recent work by Loshchilov et al. [17] introduces a
normalized transformer architecture, capable of converging in 4-20 times fewer
training steps compared to the standard transformer, primarily demonstrated
on 1D natural language tasks. In ENSAM, we extend this approach to the 3D
medical image domain, combining it with LieRE. We hypothesize that their ben-
efits, namely faster convergence and improved numerical stability, can generalize
to volumetric data.

The normalized transformer replaces traditional layer normalization (e.g.,
RMSNorm or LayerNorm) and weight decay with ℓ2 normalization applied to
all weight matrices after each optimization step. Additional ℓ2 normalization
of activations is also performed. As a result, attention and MLP outputs are
constrained to lie on a unit hypersphere, which requires a modified residual
update strategy. Specifically, the standard residual addition:

x← x + Block(x) (2)

is replaced by

x← Norm (Norm(x) + λ(Norm(nBlock(x))−Norm(x))) . (3)

In eq. (3), Norm denotes ℓ2 normalization and λ ∈ Rd
+ is an eigen learning

rate that is learned for each block in the model. Block and nBlock denote the
blocks in a transformer architecture and a normalized transformer architecture,
respectively. Steps performed by cross-attention and MLP layers are performed
in using the same logic. This update rule can be interpreted as a constrained
optimization step on the unit hypersphere, which empirically stabilizes training
and accelerates convergence.

For initialization of e.g. λ, we used the values recommended by the original
authors. For such implementation specific details and theoretical justifications,
we refer readers to the original study [17].
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Image-Prompt Interaction. The interaction between user prompts and im-
age embeddings builds on the original SAM model, with modifications to the
attention mechanism, positional encoding, and postprocessing. Besides the im-
age embeddings, the prompt encoder processes user inputs and, when available,
segmentation logits from the previous step. These segmentation logits are down-
sampled using strided convolutions to align with the image embeddings and are
added element-wise. The interaction between user input and the modified image
embeddings follows a four-step process, using normalized attention and relative
positional encoding as core components.

1. Normalized self-attention is applied to the prompt embeddings.
2. The prompt embeddings attend to the image embeddings.
3. The updated prompt embeddings are passed through a multi-layer percep-

tron (MLP) with ReLU activation and a hidden dimension of 2d.
4. The image embeddings attend to the updated prompt embeddings.

All four steps incorporate residual connections on the hypersphere using
Equation (3). This four-step process is repeated twice and is illustrated in Fig-
ure 3.

×2Prompt self-attention

Prompt to image attention

Prompt through MLP

Image to prompt attention

StridedConv3D

+

Previous segmentation

Image embeddings

User prompts Embed

Fig. 3: The prompt encoder module encodes user input and modifies the image
embeddings before it is passed to the mask decoder. If a previous segmentation
exists, it is incorporated into the image embeddings via strided convolutions,
allowing for iterative refinement.

2.3 Mask Decoder

The mask decoder mirrors the image encoder, except for single residual blocks
per upsampling layer. The activations from skip-connections are concatenated
along the channel dimension and processed by a single ResBlock3D, followed by
trilinear upsampling. The final layer outputs logits with the same shape as the
input, containing the segmentation mask.
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2.4 Model Training and interaction simulation

During training, user interactions are simulated. If provided, initial prompts
are given as bounding boxes, calculated using the ground truth labels with an
added random offset, as to mimic human generation. An iterative refinement
click is then placed in the middle of the largest error region. In case the largest
error region is an undersegmentation, a foreground click is placed; otherwise, a
background click is used. In total, a bounding box and five clicks are provided
per training step.

To provide supervision for the model, we use the sum of generalized dice loss
and cross-entropy, as compound loss functions have been proven to be robust
in various medical image segmentation tasks [18]. Specifically, the cross-entropy
carries double the weight,

L = LDice + 2 · LCE = 1−
2

∑
i pigi∑

i p2
i +

∑
i g2

i

− 2
N

∑
i

gi log pi, (4)

where N is the number of voxels, p denotes the prediction and g the ground-
truth. The loss is averaged across all iterative steps.

To train the model in as high a resolution as possible without exceeding the
GPU memory constraints, gradient accumulation and a batch size of one is used.
The usage of batch size of one is also partly motivated by the varying data shapes.
A standard torch dataset/dataloader setup was used with 32 worker threads for
parallel data loading. Data preprocessing and augmentation was performed on
the fly within the dataset as it did not serve as a bottleneck for the training
pipeline.

Muon optimizer Following its recent success in speedrunning training of im-
age classification and language models, [11, 16], we investigate if the Muon op-
timizer [12] is effective for segmentation models. The Muon optimizer has, to
the best of our knowledge, not been benchmarked for segmentaion tasks at the
time of writing. Unlike traditional optimizers like Adam or SGD, Muon operates
on 2-dimensional weight matrices. To apply Muon to ENSAM, all weights with
dimension ≥ 2 is flattened beyond the first dimension. For example, 3D con-
volutional kernels are 5-dimensional, and needs flattening. For parameters with
dimension 1, Adam is used as per usual.

Muon replaces the conventional gradient descent update with a step along
UV ⊤, where UΣV ⊤ is the singular value decomposition (SVD) of the gradient
matrix. Rather than computing the full SVD, Muon employs an efficient approx-
imation [2, 3], which has been shown to achieve similar performance [16] while
significantly reducing computational cost.

2.5 Coreset selection strategy

The coreset track required the use of no more than 10% of the total training data,
corresponding to a maximum of 4,471 samples. To ensure diverse representation
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under this constraint, we aimed to select an approximately equal number of
samples from each dataset. In cases where a dataset contained fewer than 4471/N
samples (where N is the number of eligible datasets), all available samples from
that dataset were included.

Some datasets were excluded from the coreset selection process. The CT
Aorta dataset was omitted due to apparent issues with image normalization. In
addition, the microscopy datasets were excluded as many of them had issues in
the provided format. Since the ground truth annotations were stored using the
uint8 format, this led to instance merging due to label value overflow.

2.6 Post-processing

Although the model is trained to segment one instance at a time, multiple in-
stance prompts are typically provided during inference. To handle this, only one
encoder pass is needed for the input, while the prompt encoder and decoder can
be run in parallel for each instance. The final segmentation assigns each voxel
to the instance with the highest output logit, or to the background if no logit
exceeds a predefined threshold such as 0.

To ensure that each instance is assigned at least one voxel, the logits are
adjusted by adding a constant inside the bounding box of any instance that
initially has no assigned voxels. If every instance already has at least one voxel
assigned, no changes are made to the logits.

3 Experiments

3.1 Dataset and evaluation metrics

The development set is compiled by the organizers of the CVPR 2025 Founda-
tion Models for Interactive 3D Biomedical Image Segmentation Challenge. This
includes data normalization. The development set is an extension of the CVPR
2024 MedSAM on Laptop Challenge [20], including more 3D cases from pub-
lic datasets 1 and covering commonly used 3D modalities including CT, MRI,
Positron Emission Tomography (PET), Ultrasound (US), and microscopy im-
ages. The hidden test set is created by a community effort where all the cases
are unpublished. The annotations are either provided by the data contributors or
annotated by the challenge organizer with 3D Slicer [13] and MedSAM2 [21]. In
addition to using all training cases, the challenge contains a coreset track, where
participants can select 10% of the total training cases for model development.
The solution proposed in this paper specifically targets the latter corset track.

Each interactive segmentation is evaluated using the Dice Similarity Coeffi-
cient (DSC) and Normalized Surface Distance (NSD), which measure segmenta-
tion region overlap and boundary accuracy, respectively.

1 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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Ranking of participants is performed using four metrics: Area Under the
Curve (AUC) for DSC and NSD as well as final AUC and NSD. Denoting AUCi

as the DSC after the i-th user interaction, the AUC is calculated as

AUC_DSC = 1
2 (DSC1 + 2 ·DSC2 + 2 ·DSC3 + 2 ·DSC4 + DSC5) . (5)

The initial bounding box prediction is excluded from this calculation, as
it is optional. The same formula is used for computing AUC_NSD, mutatis
mutandis. The four metrics intend to capture both the iterative refinement and
final predictions.

Finally, to ensure practical applicability, inference time is capped at 90 sec-
onds per class. Any submission exceeding this limit receives a score of zero for
both DSC and NSD on the corresponding test case.

3.2 Implementation details

Preprocessing Following the practice in MedSAM [19], all images were pre-
processed by the challenge organizers into .npz format with an intensity range
normalized to [0, 255]. For CT images, the Hounsfield units were normalized us-
ing standard window width and level settings: soft tissue (W:400, L:40), lung
(W:1500, L:-160), brain (W:80, L:40), and bone (W:1800, L:400). Subsequently,
the intensity values were rescaled to the range of [0, 255]. For other images, the
intensity values were clipped to the range between the 0.5th and 99.5th per-
centiles before rescaling them to the range of [0, 255]. If the original intensity
range is already in [0, 255], no preprocessing was applied.

Environment settings The development environments and requirements are
presented in Table 1.

Table 1: Development environments and hardware.
Component Specification

System Debian 12
CPU Intel(R) Core(TM) i9-14900KF
RAM 2×48 GB; 4800 MT/s
GPU NVIDIA GeForce RTX 5090 32 GB
CUDA version 12.8
Programming language Python 3.12
Deep learning framework PyTorch 2.7.0, Torchvision 0.22.0
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Training protocols Training was performed after coreset selection, which in-
volved nearly uniform sampling across datasets. Therefore, oversampling was not
employed. Each training epoch consisted of sampling every data instance once
in randomized order and generating boxes or clicks for one randomly selected
labelled instance from the label data.

Part of the datasets used during training included irrelevant regions sur-
rounding the areas of interest. To focus computational resources on relevant
structures, training volumes were randomly cropped around the labelled regions
with a variable margin of 1 to 64 voxels in each spatial dimension. After crop-
ping, volumes that exceeded a predefined size threshold were downscaled via
max pooling to fit within GPU memory constraints. The shapes of training vol-
umes varied across samples. However, to ensure compatibility with the network
architecture, all spatial dimensions were adjusted to be divisible by 8 by zero
padding.

Following the spatial augmentations, the volumes were converted from uint8
format to a range between [0, 1] and an intensity augmentation was applied with
a probability of 0.5. Specifically, one of the following was randomly applied: bias
field distortion, Gaussian smoothing, or histogram shift.

Table 2: Parameters used during model training. FLOP were calculated for one
forward pass with the maximum patch volume, and only one user interaction.

Parameter Value

Batch size 1
Gradient accumulation steps 4
Patch size Variable
Maximum patch volume 4,194,304 ≈ 1613

Simulated clicks per step 5
Total epochs 15
Optimizer Muon and AdamW
Muon momentum 0.95
Initial learning rate 10−3

Learning rate scheduler Halved at epochs 2, 5, 10
Training time 6 hours
Loss function Soft Dice + 2×BCE
Number of model parameters 5.5 M
Number of FLOP 368 G

3.3 Ablations

To evaluate the contributions of LieRE and Muon, we conducted an ablation
study. First, ENSAM was trained using absolute position encoding with the
Adam optimizer. Next, we replaced absolute encoding with LieRE while retain-
ing the Adam optimizer. Finally, ENSAM was trained using both LieRE and the
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Muon optimizer. The results can be found in Figure 4, and we note that relative
position encoding and switching optimizer improves training speed, making the
model fit faster to the training data. For all experiments
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Fig. 4: Three variants of ENSAM trained on the same coreset using the same
seed. Relative position encodings improves training efficiency over absolute posi-
tion encodings. The Muon optimizer further improves upon the relative position
encodings. Besides speeding up training, the model trained with Muon also ends
up at a better final loss.

4 Results and discussion

4.1 Quantitative results on validation set

Our proposed model is benchmarked against four previously published interac-
tive segmentation models across all five modalities and the results are shown in
Table 3. On all five modalities, either VISTA3D or SegVol obtains the highest
score. Among the five modalities, ENSAM is second in ultrasound, third in MRI
and microscopy, and fourth in CT.

4.2 Fair comparison and reporting standards

Common pitfalls in evaluating segmentation models include confounding perfor-
mance boosters, lack of well-configured baselines, insufficient testing data, and
inconsistent use of evaluation metrics [10]. In this work, the same evaluation
data and metrics are used across all methods, providing a transparent and ac-
curate depiction of each model’s performance. That being said, our approach
is trained from scratch, only using 10% of the full challenge dataset, without
relying on pretrained model weights. Further, our method is trained on a sin-
gle GPU with 32G of VRAM for 6 hours as opposed to the baseline methods
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Table 3: Quantitative evaluation results on the validation set for the coreset
track. Note that the maximum for value for DSC AUC and NSD AUC is 4,
while the maximum value for DSC Final and NSD Final is 1.
Modality Method DSC AUC NSD AUC DSC Final NSD Final

CT

SAM-Med3D 2.28 2.27 0.57 0.57
VISTA3D 2.81 2.84 0.72 0.73
SegVol 2.98 3.12 0.75 0.78
nnInteractive - - - -
ENSAM 2.03 1.90 0.50 0.47

MRI

SAM-Med3D 1.76 1.81 0.45 0.46
VISTA3D 2.53 2.82 0.65 0.73
SegVol 2.67 3.15 0.67 0.79
nnInteractive - - - -
ENSAM 1.84 2.07 0.45 0.51

Microscopy

SAM-Med3D 0.30 0.02 0.08 0.00
VISTA3D 1.72 2.71 0.45 0.69
SegVol 2.04 3.47 0.51 0.87
nnInteractive - - - -
ENSAM 1.27 1.74 0.34 0.45

PET

SAM-Med3D 2.13 1.82 0.53 0.46
VISTA3D 2.39 2.10 0.61 0.54
SegVol 2.97 2.86 0.74 0.71
nnInteractive - - - -
ENSAM 2.16 1.94 0.51 0.45

Ultrasound

SAM-Med3D 1.36 1.81 0.39 0.51
VISTA3D 2.60 2.61 0.71 0.72
SegVol 1.24 1.80 0.31 0.45
nnInteractive - - - -
ENSAM 2.10 2.41 0.55 0.62
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that were originally trained using 100-1000 times more computational resources.
Lastly, we do not ensemble predictions or perform augmentations during evalua-
tion, to ensure performance is not artificially inflated in comparison to the other
methods. Thus, any observed performance gains should stem from methodologi-
cal advancements, and not increased compute budget, training data or test-time
tricks.

4.3 Qualitative results on validation set

In this section, we provide examples of relatively successful segmentations, as
well as interesting failure cases for images in each of the five modalities.

Figure 5 shows a relatively well-segmented CT image from the validation
set, while Figure 6 shows a less well-segmented sample from the same dataset.
Figure 7 shows an example from the MRI Spine dataset, illustrating a rela-

CT AbdomenAtlas BDMAP 00002174 (slice 99)

Image Ground Truth ENSAM

Fig. 5: Both successful and failed segmentation from the AbdomenAtlas dataset.
The model oversegments the lower part, but successfully segments the liver,
spleen, and kidneys.

CT AbdomenAtlas BDMAP 00000008 (slice 32)

Image Ground Truth ENSAM

Fig. 6: Failed segmentation from the AbdomenAtlas dataset. The model fails to
fully segment the liver.
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tively successful segmentation of vertebrae by the ENSAM model. The model
correctly identifies the majority of vertebral bodies, although misalignments and
oversegmentations can be observed in some regions. Overall, this case demon-
strates some anatomical plausibility. Figure 8 illustrates a challenging case from
the totalseg dataset. While some large structures are correctly localized, sev-
eral smaller or low-contrast organs are either missed, misplaced, or incorrectly
segmented.

MR Spider 104 t2 vet (slice 7)

Image Ground Truth ENSAM

Fig. 7: Shows an example from the Spider dataset, where the model successfully
segments the body of the vertebra but then fails to segment the posterior.

MR totalseg mr s0001 (slice 38)

Image Ground Truth ENSAM-3D

Fig. 8: Shows a slice from the totalseg dataset, where the larger structures are
correctly localized, however, ENSAM struggles with some other organs.

Figure 9 shows a case where ENSAM correctly segments the high uptake
regions in a PET image. In Figure 10, an example where ENSAM oversegments a
high-uptake region is shown. A possible explanation for oversegmentation might
be normalization issues.
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PET autoPET fdg 2f9aec0275 05 31 2 (slice 46)

Image Ground Truth ENSAM

Fig. 9: Shows a PET image where ENSAM successfully segments high-uptake
regions.

PET autoPET psma 995fbaec49f131ce (slice 25)

Image Ground Truth ENSAM

Fig. 10: Shows a PET image where ENSAM oversegments a high-uptake region.
Due to the preprocessing of the PET images, all values in its neighbourhood
are maximally bright, possibly making it difficult for ENSAM to distinguish the
borders.

Figure 11 shows a slice of a microscopy image with a high final NSD (>0.95).
In this volume, there are very many small labelled regions, and the labelling is
quite ambiguous with regards to which pixels should be included in an instance.
Figure 12 shows a slice from another microscopy dataset, where the model fails to
segment the vessels, but over-segments other parts of the image. As microscopy
was not included in the coreset, see Section 2.5, it is not surprising that the
model fails in this case.

Figure 13 shows a frame from a cardiac ultrasound video, where ENSAM
roughly segments the left ventricle and atrium, but fall short in anatomical
plausibility. The fact that ultrasound videos are 2D+t as opposed to 3D, and in
addition noisier than most other data sources, are likely what causes the jagged
edges of the segmentations. Figure 14 shows a frame from another ultrasound
dataset, where a 3D volume has been constructed by tracked freehand 2D ultra-
sound of a leg. The objects of interest are three muscles.
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Microscopy SELMA3D patchvolume cfos 009 (slice 48)

Image Ground Truth ENSAM

Fig. 11: Shows an example of a microscopy image where all labelled areas are
very small, making it easy to obtain high scores for surface-distance based. It is
hard to visually determine how well the model performs on this slice.

Microscopy SELMA3D patchvolume vessel 020 (slice 24)

Image Ground Truth ENSAM

Fig. 12: In this example, the model fails to segment the vessels, and oversegments
the other classes (barely visible in the image).

US Cardiac patient0214 2CH half sequence (slice 12)

Image Ground Truth ENSAM

Fig. 13: Shows a frame in a cardiac ultrasound video, where the left atrial walls,
blood volume and left atrium is annotated. The surface of the model predictions
is not as smooth as the annotations.
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US Low limb Leg12 (slice 213)

Image Ground Truth ENSAM

Fig. 14: Shows a slice from a 3D volume reconstructed from 2D handheld ultra-
sound. Three muscles in the lower leg are annotated and segmented.

4.4 Limitation and future work

Limitations to ENSAM. There are several limitations to our work, pertaining
to both the training and inference setup, as well as the model architecture.

First, our model was trained under constrained data and computational bud-
gets. Leveraging the full dataset alongside increased computational resources
would likely yield improved performance.

Second, while we conducted targeted ablation studies demonstrating that
the Muon optimizer outperforms AdamW and that relative positional encoding
is preferable to absolute positional encoding, we did not evaluate the impact of
normalized attention compared to the standard attention mechanism. Addition-
ally, due to computational constraints, we did not explore variations in model
size. It is therefore unlikely that the current architecture is optimal; for instance,
increasing the depth of the U-Net may lead to better results.

Third, as noted by Isensee et al. [7], 2D bounding boxes can be preferable to
3D ones even for 3D segmentation tasks, and click-based prompts may convey
less information compared to other prompt types. However, as the evaluation
protocol for this challenge relies on 3D boxes and clicks, the current version of
ENSAM supports only these prompt types.

Fourth, we have not conducted latency evaluations or user studies. To ro-
bustly assess the practical utility of interactive segmentation models, simulated
user interactions alone are insufficient, real user studies are essential.

Limitations in evaluation pipeline The validation set includes mostly CT
and MR. In the PET modality, a single dataset is included, and for US, two
datasets are used. One of the US datasets comprises 2D+t echocardiographic
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videos. The microscopy modality includes just eight volumes, several of which
contain only a small fraction of labelled voxels. As a result, conclusions regarding
model performance on US, PET and Microscopy should be interpreted with
caution due to limited sample diversity and volume.

In addition, the CT and MR subsets of the validation set are imbalanced
in terms of the number of samples taken from each dataset. This imbalance
may bias the evaluation and obscure insights into how well the model general-
izes across datasets within a modality. A more robust assessment, especially for
modalities like CT, could be achieved through a more uniform sampling strategy
that considers factors such as the number of labeled instances per dataset.

Lastly, the simulation of user input could be improved, aligning better with
the use case of the model. Currently, N interactions are provided between each
refinement step, with N being equal to the number of objects of interest in the
image. In reality, the user would probably want an updated segmentation after
each interaction.

Future directions The field is rapidly evolving, and future work should focus
on improving multiple areas. Below, we outline promising directions.

User input integration via attention: The comparative effectiveness of at-
tention based methods versus dense feature maps to incorporate user input
warrants further investigation. In particular, prompt types such as scribbles
and lassos have not yet been explored in the context of attention mechanisms
in 3D medical images.

Handling anisotropic spacing and physical coordinates: The impact of
anisotropic voxel spacing on position encoding remains an open question.
In this work, voxel spacing is disregarded, but future studies could examine
whether representing coordinates in physical units improves model perfor-
mance. A related challenge is the incorporation of spatiotemporal data in
training and evaluation.

Handling multiple objects: Current methods, including ENSAM and all base-
line models of the challenge, treat each object instance in parallel during
training and inference. Incorporating interactions between instances could
likely reduce the amount of required user input and improve inference effi-
ciency. For example, a foreground click for one instance could be interpreted
as a background click for others.

5 Conclusion

In this paper, we presented ENSAM, an efficient, promptable model for uni-
versal medical image segmentation. With compute restraint and training on a
coreset of the challenge data, we achieved an average AUC DSC of 1.984. Our
results demonstrate that the combination of relative positional encoding and
the Muon optimizer significantly improves both model performance and train-
ing efficiency. Furthermore, enabling the model to handle variable-shape inputs



20 E. Stenhede et al.

is critical for reducing computational overhead, particularly VRAM usage, and
facilitates inference at resolutions closer to the native input scale.
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