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ABSTRACT

Proximal Policy Optimization (PPO)-based reinforcement learning from human
feedback (RLHF) is a widely adopted paradigm for aligning large language models
(LLMs) with human preferences. However, its training pipeline suffers from
substantial inefficiencies due to sequential multi-model dependencies (e.g., reward
model depends on actor outputs) and long-tail response lengths, where a few long
responses straggle the stage completion. We present OPPO, a novel, lightweight,
and model-agnostic PPO-based RLHF framework that improves training efficiency
by overlapping pipeline execution. OPPO introduces two novel techniques: (1)
Intra-step overlap, which streams upstream model outputs (e.g., actor model) in
right-sized chunks, enabling the downstream model (e.g., reward) to begin prefill
while the upstream continues decoding; and (2) Inter-step overlap, which adaptively
overcommits a few prompts and defers long generations to future steps, mitigating
tail latency without discarding partial work. OPPO integrates easily with existing
PPO implementations with a lightweight wrapper. Extensive evaluations show that
OPPO accelerates PPO-based RLHF training by 1.8×–2.8× and improves GPU
utilization by 1.4×–2.1× without compromising training convergence.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning
large language models (LLMs) with human preferences. Among RLHF methods, Proximal Policy
Optimization (PPO) (Schulman et al., 2017) has been the de facto standard due to its training stability
and flexibility across diverse reward models and objectives. Following InstructGPT (Ouyang et al.,
2022), PPO remains the standard for online alignment in both research and industry. Recent work
shows it outperforms offline methods like DPO on reasoning tasks (Xu et al., 2024), and it supports
massive-scale training in modern tool chains (Shen et al., 2024). A standard PPO-based RLHF
pipeline involves four models: an actor (policy), a critic (value function), a reference policy (for
KL regularization), and a reward model trained on human-labeled preferences. Each training step
consists of three sequential stages: (1) Generation: the actor generates responses to prompts; (2)
Scoring: responses are evaluated by the critic, reference, and reward models; and (3) Training: the
actor, critic, and policy models are updated using advantage estimates and gradients.

Despite its effectiveness, PPO-based RLHF faces large training inefficiencies rooted in its multi-
model dependency. Running and coordinating four LLMs imposes substantial resource requirements,
and each stage is constrained by its slowest component. For example, the actor model’s generation
suffers from severe long-tail latency: a few long responses can delay downstream stages, such as the
reward and value models, leading to idle resources and poor training throughput of the pipeline. As
LLMs grow larger and context lengths increase, these bottlenecks worsen, (Grattafiori et al., 2024)
making PPO-based RLHF increasingly costly to train (§2.2).

Recent advances tackle PPO-based RLHF inefficiencies from both algorithmic and system angles. On
the algorithmic side, methods such as Direct Preference Optimization (DPO) (Rafailov et al., 2024)
and Group-Relative Policy Optimization (GRPO) (Shao et al., 2024) remove components like the
value or reward model. However, these approaches often suffer from instability due to sparse rewards,
requiring many rollouts to capture intrinsic advantages, and face task-specific reward design chal-
lenges (Feng et al., 2024; Fisch et al., 2025; Chen et al., 2024). Asynchronous RLHF (Noukhovitch
et al., 2025) reduces pipeline dependencies but introduces staleness, which can harm convergence
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(a) Existing paradigm.
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… …
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(b) OPPO paradigm.

Figure 1: (a) In the existing paradigm, the scoring stage starts to process until that response is fully
generated. In contrast, (b) the OPPO paradigm interleaves scoring with generation without altering
the final responses (intra-step overlap), and carries unfinished overcommitted sequences into the next
iteration (inter-step overlap). A batch size of 4 and an overcommitment degree of 2 in illustrations.

(§2.2). In contrast, system-level approaches, such as RLHFuse (Zhong et al., 2025), AReal (Fu et al.,
2025), and Verl (Sheng et al., 2025), improve throughput via fine-grained parallelism, for example
by collocating models to reduce communication overhead or dynamically scaling GPU resources to
match workload demands.

In this paper, we explore a complementary opportunity to accelerate PPO-based RLHF: maximizing
execution overlap in the training pipeline. We introduce two novel insights: (1) Intra-step Overlap,
which streams tokens from the actor to downstream models, enabling generation and scoring stages
to overlap the execution without altering the generated response; and (2) Inter-step overlap, which
selective overcommits a few prompts per batch and selects faster completions, deferring stragglers to
future iterations to hide tail latency without wasting partial generation.

Realizing both overlaps introduces non-trivial challenges. First, overlapping generation and scoring
can hide the prefilling latency of downstream models during the decoding execution of the actor
model, but also increases resource contention, risking slowing generation due to concurrent executions.
Second, excessive overcommitment inflates batch sizes, deferring too many responses per iteration.
This not only raises per-batch latency but introduces staleness, ultimately harming convergence.

Contributions. In this paper, we present OPPO, a lightweight PPO-based RLHF training framework
that improves training efficiency via pipeline overlap, minimizing idle time without compromising
convergence. OPPO novelly address the aforementioned challenges:

• Intra-step Overlap: While the actor generates responses, OPPO streams newly generated tokens
to downstream models (e.g., reward model) in adaptive chunks. This enables incremental
prefilling and overlaps the generation and scoring stages. Chunk sizes are automatically adjusted
online, based on the leftover resource, to balance overlap against resource contention, preserving
algorithm correctness and stability (§3.1).

• Inter-step Overlap: To mitigate long-tail latency, OPPO adaptively overcommits a few prompts
per step. Long-response generations are deferred and resumed in future iterations, preserving
partial work and maintaining batch size. It adapts the overcommitment level online, trading small
statistical deviations (e.g., reward differences) for large throughput gains (§3.2).

• Generalized and lightweight: Our evaluations show that OPPO achieves 1.8×–2.8× speedup and
improves GPU utilization by 1.4×–2.1× for PPO-based RLHF with only a lightweight wrapper,
and generalizes to other paradigms such as DPO with similar benefits (§4).

2 BACKGROUND AND MOTIVATION

We next outline the PPO-based RLHF framework (§2.1), then highlight key inefficiencies in existing
training designs that motivate our work (§2.2).
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Figure 2: PPO-based RLHF faces (a) varying resource demands across pipeline stages, and (b)
response lengths across rollouts, both of which can produce stragglers that prolong step execution.
(c) Existing approaches for asynchronous training risk harming convergence.

2.1 BACKGROUND: PPO-BASED RLHF

Figure 1a depicts a single step of a standard PPO-based RLHF pipeline. Given a batch of prompts,
the actor model generates output sequences. These are then scored by a reward model, producing
scalar rewards that reflect alignment with human preferences. A reference model, typically a frozen
copy of the base pretrained model, computes a KL divergence penalty that regularizes the update,
discouraging the new policy from drifting too far from the original distribution.

The value model estimates the expected return of each sequence and computes its advantage Ât:

δt = rt + γV (st+1)− V (st) , Ât =

T−t−1∑
ℓ=0

(γλ)ℓδt+ℓ (1)

where rt is the reward at step t, V (st) is the estimated value of state st, γ is the discount factor, and
λ is the generalized advantage estimation (GAE) parameter. Every step actor model is updated by
optimizing the clipped surrogate objective:

Lclip(θj) = Et ∼ Dθj−1

[
min

(
rt(θj)Ât, clip (rt(θj), 1− ϵ, 1 + ϵ) Ât

)]
,

where rt (θj) =
πθj (at | st)
πθj−1 (at | st)

(2)

These four models (actor, reward, reference, and value) form a tightly coupled intra-step pipeline
spanning generation, scoring, and training stages. PPO-based RLHF typically runs hundreds of such
iterative steps, creating an inter-step pipeline across updates.

2.2 TRAINING INEFFICIENCY OF PPO-BASED RLHF

Unlike pre-training a single model, PPO-based RLHF pipelines introduce two types of execution de-
pendencies that limit hardware utilization and training speed: intra-step and inter-step dependencies.

Inefficiency due to Intra-step Dependency. Each model in the RLHF pipeline (e.g., actor, reward,
and value models) exhibits distinct computational characteristics. Figure 2a compares GPU utilization
across three GPUs (A40, A100, H200). Response generation in the actor model is memory-intensive
due to autoregressive per-token decoding, resulting in low GPU utilization (<40%), whereas scoring
and training stages are relatively compute-intensive (e.g., due to long-context prefilling in scoring).
This heterogeneous resource utilization highlights how mismatched compute demands across stages
create idle GPU time, motivating designs to scavenge unused resources.

The inefficiency is further amplified by the long-tailed distribution of response lengths (Figure 2b).
While most sequences are short, a subset of responses are significantly longer. Since stage completion

3
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depends on the last sequence (rollout), these heterogeneous lengths introduce tail stragglers. Worse,
the length distribution evolves across stages (e.g., at the warm-up stage and converged stage), making
optimizations such as dynamically resizing GPU allocations challenging.

Inefficiency due to Inter-step Dependency. Each step involves updating model weights. A natural
strategy to improve throughput is to tolerate training staleness, where the reward model evaluates
actor outputs from previous steps instead of synchronizing in real time, as in AReal (Fu et al., 2025).
However, as shown in Figure 2c, asynchronous training (e.g., with staleness 5) can not only slows
step-to-reward convergence but also lowers the post-training model quality, emphasizing the need for
careful inter-step synchronization in RLHF pipelines.

3 OPPO: OVERLAPPING PPO-BASED RLHF TRAINING PIPELINES

To address both intra- and inter-step inefficiencies, we introduce OPPO, an Overlapped PPO-based
RLHF training paradigm. As illustrated in Figure 1, OPPO overlaps the training stages to reduce
idle time and improve resource efficiency, tackling two key sources of step latency: sequential
stage dependencies within a step, and the long-tailed distribution of output lengths. At its core are
two complementary techniques: (1) intra-step overlap, which overlaps reward scoring with actor
generation within a single step, and (2) inter-step overlap, which selectively overcommits a few
prompts and carries unfinished prompts into the next step to mitigate tail-induced stalling.

3.1 OVERLAPPING INTRA-STEP TRAINING PIPELINE

Sequential dependencies across pipeline stages and the long-tailed distribution of response lengths
often block downstream execution in PPO-based RLHF. For example, the reward model cannot begin
the scoring of a sequence (rollout) until the actor completes generation for that sequence, leading
to idle resources and underutilized GPUs. At the same time, heterogeneous resource utilization
across models presents a new opportunity: while the upstream actor continues memory-intensive
decoding, downstream operators (e.g., reward model) can start the (sub)prefilling of partial outputs in
a streaming manner.

By dividing actor generation into chunks and streaming them to the reward model, OPPO overlaps the
actor decoding stage with the reward prefilling stage, hiding latency and reducing execution bubbles.
This design naturally benefits setups where models are placed on separate GPUs, but also improves
efficiency when models are colocated, due to their mismatched compute demands (Figure 2a). To
realize intra-step overlap, OPPO partitions actor outputs into right-sized chunks and streams each
chunk to the reward model as it is generated. Scoring proceeds progressively within each PPO step:
while the actor decodes the k-th chunk, the reward model concurrently processes the prefilling of
(k − 1)-th chunk. At the end of the step, the reward model completes the last-chunk prefilling and
generates the score based on the entire sequence, whose previous chunks have already be processed.

Importantly, this streaming does not alter the response generation yi, the policy log-probabilities, or
the critic/value terms used in computing the advantage Â(yi). Formally, letting yi be the full response
and y

(1)
i , . . . , y

(Ti)
i its prefixes with y

(Ti)
i = yi, the streamed gradient estimator is

ĝstr(θ) =
1

B

B∑
i=1

Ti∑
t=1

1
(i,t)
fin Â(yi)∇θ log πθ(yi | xi), (3)

where 1
(i,t)
fin marks the final prefix. Because each sample follows exactly the same prefix, the inner

sum collapses, and ĝstr(θ) ≡ ĝstd(θ) point-wise. Thus, intra-step streaming does not change the PPO
update, preserving both expectation and variance of the gradient estimator.

Dynamic Control on Intra-step Overlap. However, streaming introduces a tradeoff in chunk size.
As shown in Figure 7b, large chunks (e.g., 3K tokens) result in low overlap, reducing the benefits
of intra-step streaming and reverting to baseline sequential execution. Conversely, small chunks
(e.g., 10 tokens) can cause severe resource contention, especially when models are colocated, due to
frequent GPU context switching to execute different models. OPPO addresses this by exploiting two
key insights: (1) the tradeoff between chunk size and overlap efficiency is monotonic and predictable,
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Algorithm 1 OPPO Training with Intra-step and Inter-step Overlap

Require: Batch size B, initial ∆, chunk size C, window size W , bounds ∆min,∆max

1: Initialize Buffer← FIFO(capacity = B +∆); reward_scores← [ ]
2: for each training iteration do ▷ Stage 1: Fill buffer to capacity
3: while |Buffer| < B +∆ do
4: Buffer.add(sample_from_dataset())
5: end while ▷ Stage 2: Generation with intra-step overlap
6: finished← ∅
7: while |finished| < B do
8: active← Buffer.get_unfinished()
9: if |active| = 0 then

10: break
11: end if
12: parallel do
13: chunks← Actor.generate_chunk(active, size = C)
14: Reward.reward_incremental(active) ▷ Finished→prefill+decode; else→prefill.
15: Update_states(active, chunks)
16: end while ▷ Stage 3: PPO update with inter-step overlap
17: ppo_batch← finished[: B]
18: reward_scores.append(ppo_batch.r)
19: PPO.step(ppo_batch)
20: Buffer.remove(ppo_batch) ▷ Unfinished sequences remain for next iteration
21: if |reward_scores| ≥ 2W then ▷ Dynamic ∆ update
22: d← mean(reward_scores[−W :])−mean(reward_scores[−2W : −W ])
23: ∆change ← max

(
1, ⌊∆/4⌋

)
24: ∆← clip(∆− sign(d) ·∆change, ∆min, ∆max)
25: Buffer.set_capacity(B +∆)
26: reward_scores = reward_scores[−W :]
27: end if
28: end for

and (2) PPO training runs for many steps, allowing ample opportunities for exploration. Therefore,
OPPO periodically (e.g., every 50 training steps) applies a few candidate chunk sizes (e.g., 128, 256,
512) across different steps and selects the best-performing configuration for subsequent windows.

3.2 OVERLAPPING INTER-STEP TRAINING PIPELINE

While intra-step overlap improves efficiency within a single PPO step, it does not fully address tail
latency caused by the heterogeneous response lengths of prompts in a batch. Here, the response must
complete generation before its reward scoring and subsequent policy updates. Due to the long-tailed
distribution of generation lengths, a few slow prompts can delay the entire step. This motivates an
inter-step design that allows overlapping across PPO steps without hurting convergence.

OPPO addresses this challenge by overcommitting a few additional prompts per batch to mitigate
long-tail stragglers. Specifically, if the original batch size is B, OPPO executes B + ∆ prompts
per step. The key insight is that sequence generation is typically not computation-bound, so adding
a few extra prompts has minimal impact on per-batch execution time while substantially reducing
the effect of long-tail sequences. During each step, the first B completed prompts are used for
PPO updates, while unfinished ∆ sequences are deferred to the next step. This mechanism ensures
that long sequences are not starved, finishing in subsequent steps, and partial work (generation) is
preserved across steps.

The overall procedure, combining intra- and inter-step overlap, is summarized in Algorithm 1,
where the buffer holds up to B +∆ sequences, and generation proceeds in parallel with intra-step
streaming. The threshold ∆ controlling the number of unfinished sequences carried over to the next
step introduces a tradeoff between efficiency and convergence. A small ∆ reduces overlap and may
leave GPUs idle due to tail sequences, while a large ∆ increases overlap but risks inflating per-step
latency and introducing staleness in the PPO update.

5
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Dynamic Control on Inter-step Overlap. OPPO automatically adjusts ∆ based on training
dynamics. Let Rt denote the average reward in step t, and consider a sliding window of w steps.
Define the slope of improvement over the window as st = 1

w

∑t
i=t−w+1(Ri−Ri−1) . The threshold

∆ is then updated according to

∆t+1 =

{
min(∆max,∆t + δinc) if st > 0 ,

max(∆min,∆t − δdec) if st ≤ 0 ,
(4)

where δinc and δdec are fixed momentum (e.g., 1), and ∆min and ∆max are bounds on the buffer size.
As training starts to converge and st → 0, ∆t naturally decays toward ∆min (often zero), preventing
overcomittement to ensure convergence while effectively mitigating tail-induced delays across steps.

4 EVALUATIONS

4.1 EXPERIMENTAL SETUP

All experiments are conducted on high-end NVIDIA GPUs with different configurations. Stack-
Exchange-Paired with Qwen2.5-7B-Instruct runs on 8×H200 (141GB) GPUs, while GSM8K with
Qwen2.5-7B runs on 4×GH200 (96GB) GPUs. Stack-Exchange-Paired with Qwen2.5-3B-Instruct
and OpenCoder-SFT with Qwen2.5-3B-Instruct are executed on 8×A100 (80GB) GPUs.

Models & Datasets. We follow state-of-the-art PPO settings using the Transformer Reinforcement
Learning (TRL) library (von Werra et al., 2020a). For actor models, we experiment with Qwen2.5-
7B, Qwen2.5-7B-Instruct, and Qwen2.5-3B-Instruct, each augmented with a value head for PPO
optimization. The reward model is either a Qwen2.5-7B or a rule-based evaluator (for math tasks).
We evaluate on three popular tasks widely used in RLHF research (detailed evaluation setup in
Appendix A.1):

• Free-form generation: Stack-Exchange-Paired (von Werra et al., 2020b), which contains QA pairs
with preference labels.

• Math reasoning: GSM8K (Cobbe et al., 2021), which consists of grade-school math word
problems. We convert it into preference format by ranking paired outputs by correctness and
reasoning clarity.

• Code generation: OpenCoder-SFT (Stage 2) (Huang et al., 2024), which contains large-scale
programming tasks across multiple languages.

Baselines. We follow the standard distributed PPO setting. Based on the memory and computation
resource requirements of each model, we allocate seven GPUs to the generation and training stages,
and one GPU to the scoring stage (i.e., reward model). We compare OPPO against TRL’s PPO (von
Werra et al., 2020a), the state-of-the-art and widely adopted framework in PPO. It is worth noting that
OPPO is complementary to existing PPO frameworks and can be integrated on top of them. Unless
otherwise specified, we use a training batch size of 112.

Metrics. We evaluate both efficiency and quality. Efficiency is measured by training speed, includ-
ing time-to-reward and step-to-reward. Quality is measured by the final achieved reward. All results
are averaged over five independent runs.

4.2 END-TO-END PERFORMANCE COMPARISON

We start by evaluating OPPO’s end-to-end efficiency and quality performance.

OPPO achieves substantial PPO training speedup. Figure 3 shows that OPPO consistently
accelerates PPO training by 1.8×–2.8× across all tasks. On Stack-Exchange with Qwen2.5-7B-
Instruct, OPPO reaches a reward of 4.17 in 2,300 minutes versus 4,300 minutes for the baseline,
yielding a 1.9× speedup. With Qwen2.5-3B-Instruct on the same dataset, OPPO achieves a reward
of 5.12 in 5,200 minutes compared to 13,000 minutes, corresponding to a 2.5× improvement. These
gains stem from two sources: (i) intra-step overlap, which hides reward prefilling latency during actor

6
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1.83x faster 2.50x faster 2.35x faster 2.80x faster

Figure 3: OPPO improves PPO-based RLHF training efficiency by 1.8×–2.8× over TRL across
datasets, enabled by overlapping actor generation with reward scoring and early stopping.
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Figure 4: OPPO achieves efficiency gains without affecting training quality.

decoding, and (ii) inter-step overlap with dynamic deltas, which mitigates tail stragglers that would
otherwise block shorter generations. OPPO achieves 2.4× and 2.8× speedup on OpenCoder-SFT
(Stage 2) with Qwen2.5-3B-Instruct, and on GSM8K with Qwen2.5-7B, respectively.

OPPO preserves training convergence. Despite substantial wall-clock speedups, Figure 4 shows
that OPPO does not sacrifice training convergence. On Stack-Exchange, OPPO and the baseline
follow nearly identical trajectories on both Qwen2.5-7B-Instruct and Qwen2.5-3B-Instruct training,
such as reaching a reward of ∼2.0 by step 150, then plateauing ∼4.1 by step 600 and ∼5.12 by step
1,000, respectively. On GSM8K with Qwen2.5-7B, both methods exhibit the same characteristic
learning phases: an initial accuracy of 0.70, a dip to 0.66 around steps 25–50 as the model unlearns
initial biases, and steady improvement to 0.82 by step 200. Finally, on OpenCoder-SFT (Stage 2)
with Qwen2.5-3B-Instruct, both methods converge to a plateau around 2.4 by step 80. Across all
tasks, the near-identical step-to-reward curves confirm that OPPO achieves a near-optimal balance
between execution efficiency and convergence quality.

OPPO largely boosts hardware resource utilization. Figure 5 shows that OPPO substantially
improves GPU utilization. On the Stack-Exchange-Paired dataset with the Qwen2.5-7B-Instruct
model, utilization increases from 50.6% to 71.0%, a 1.4× improvement. With the Qwen2.5-3B-
Instruct model on the same dataset, utilization rises from 38.7% to 73.6%, a 1.9× improvement.
On GSM8K with the Qwen2.5-7B model, OPPO boosts utilization from 45.7% to 67.3%, a 1.5×
improvement. On OpenCoder-SFT (Stage 2) with the Qwen2.5-3B-Instruct model, GPU utilization
improves from 35.7% to 74.1%, corresponding to a 2.1× increase. Note that utilization does not reach
100% because of unavoidable parallelism bubbles, memory stalls, and communication overheads.

OPPO improves performance in multi-node settings. Table 1 shows that OPPO achieves 4.49×
lower end-to-end step latency than TRL on Stack-Exchange-Paired with the Qwen2.5-7B-Instruct
model across two nodes (each 4×A100-40GB).

OPPO delivers improvements over different model parallelism plans. The distinct system-level
benefits of OPPO are evaluated by comparing it against state-of-the-art frameworks, including VeRL
(configured with data parallelism (DP), sequence parallelism (SP), and fully async w/ SP) and AReaL.
Table 4 shows OPPO achieves the lowest latency (99.84s), outperforming VeRL w/ DP by 1.26×
and surpassing highly optimized systems such as AReaL and VeRL variants. These results suggest
that OPPO targets a latency source distinct from sequence-level optimizations. While frameworks
like VeRL and AReaL process responses only after full generation and leave the reward model idle,
OPPO ’s intra-step overlap streams intermediate chunks to utilize this time. Consequently, OPPO
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Figure 5: OPPO improves GPU utilization in the inference stage by 1.4×–2.1×, enabling more
efficient compute use by overlapping actor generation with reward scoring.

TRL OPPO

Mean latency (s) 498.30 111.08

Speed up 1.00x 4.49x

Table 1: OPPO achieves lower end-to-end step latency than TRL by 4.5× in multi-node settings.

addresses a bottleneck orthogonal to sequence parallelism, making it a complementary optimization
composable with existing strategies.

4.3 ABLATION STUDIES

Performance Breakdown by Design Components. We ablate OPPO into two variants to isolate the
impact of each design choice: (1) OPPO w/o Intra, which disables intra-step overlap (i.e., streaming
upstream decoding to the reward model), and (2) OPPO w/o Inter, which disables inter-step overlap
(i.e., batch overcommitment with dynamic ∆).

Figure 6 reports their performance on Stack-Exchange-Paired. For Qwen2.5-7B-Instruct, the TRL
baseline requires 4,200 minutes to reach a reward of 4.17. Adding only intra-step overlap reduces this
to 3,500 minutes (1.2× speedup), as streaming hides about 17% of scoring latency within generation.
However, the gain is bounded by stragglers from the longest sequences in each batch. Applying
only inter-step overlap reduces training time further to 2,700 minutes (1.6× speedup). For Qwen2.5-
3B-Instruct, the TRL baseline requires 13,000 minutes to reach a reward of 5.12. Intra-step overlap
reduces this to 10,000 minutes (1.3× speedup), while inter-step overlap achieves 6,300 minutes
(2.06× speedup). Again, all configurations converge to similar final rewards, confirming that intra-
and inter-step overlaps address orthogonal bottlenecks while preserving training quality.

Robustness and Staleness. As detailed in Algorithm 1, the ∆ controller adapts to a windowed
reward trend, updating ∆ only through bounded, gradual steps. This design prevents abrupt jumps
and effectively filters short-term oscillations. The request-deferral distribution in Table 2 confirms
the stability of this approach: the vast majority of requests are processed immediately, and nearly
all deferred requests are delayed by only a single step. This indicates neither perpetual deferral of
difficult prompts nor excessive staleness that would affect rewards.
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Figure 7: Ablation studies on efficiency: (a) fixed vs. dynamic ∆,
and (b) chunk size effect on step speed.

Effectiveness of Inter-step
Adaptation. Figure 7a com-
pares OPPO with fixed and
dynamic ∆. With fixed ∆ = 4,
training converges more slowly
since fewer long-tail generations
are stopped early, limiting
overlap benefits. Fixed ∆ = 8
accelerates convergence by skip-
ping more long-tail generations,
but its static threshold cannot
adapt well across all phases of
training. In contrast, dynamic ∆
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Figure 6: Performance breakdown showing the impact of OPPO’s intra- and inter-step overlaps. Both
optimizations drive the 1.8×–2.8× speedup without harming convergence quality.

Deferred steps 0 1 2 3 Avg. deferred steps

Share of requests 78.48% 20.20% 0.23% 1.05% 0.24

Table 2: Distribution of requests deferral shows most requests are not deferred, and nearly all others
are delayed by only a single step.

consistently achieves the best performance by adapting the threshold over time, leading to faster
convergence and more stable rewards. These results underscore that static choices of ∆ create
efficiency–stability tradeoffs, whereas dynamic ∆ eliminates this tension by adjusting to the evolving
distribution of rollout lengths throughout training.

Impact of Streaming Degrees. Figure 7b shows the effect of chunk size on step speed across
different model sizes. Small chunks (100 tokens) incur high scheduling and GPU context-switch
overhead, reducing throughput despite high overlap. Moderate chunks (500 tokens) strike the best
balance, yielding the fastest step speeds by maximizing overlap while avoiding overhead. Large
chunks (1000–3000 tokens) reduce overlap opportunities and push execution closer to sequential
mode, causing step speeds to rise again. These results highlight that throughput is highly sensitive to
chunk size, and the optimal setting depends on model scale and workload.

OPPO Preserves Final Accuracy. Table 3 shows that for the 3B model, OPPO consistently
outperforms the TRL baseline across all benchmarks, with gains ranging from 0.07 to 0.92 percentage
points (mean: 0.48 pp). For the 7B model, the differences are minimal (-0.24 to +0.25 pp; mean:
+0.02 pp): OPPO achieves higher accuracy on ARC-Challenge, HellaSwag, and GSM8K, while
showing slight declines on ARC-Easy and TruthfulQA-MC2. These fluctuations fall within the
expected statistical variance of RLHF training. Overall, the comparable performance across both
model scales confirms that OPPO’s pipeline-overlap strategy accelerates training without sacrificing
model quality.

Applicability beyond PPO. OPPO’s benefits extend to any online preference-optimization method
involving variable-length on-policy generations (e.g., DPO or GRPO). These methods can adopt the
same scheduling logic: generate B+∆ items, update on the first B completions, and carry unfinished
long generations forward to the next iteration. This strategy reduces tail latency without altering the
optimization objective or the distribution of responses used for updates. As shown in Figure 3, OPPO
achieves 2.35× faster convergence in a rule-based PPO setting on GSM8K (without a reward model),
confirming that the inter-step overlap mechanism remains effective even in non-standard or simplified
RLHF pipelines.

5 RELATED WORK

PPO-based RLHF Efficiency. Hydra-PPO (Santacroce et al., 2023) reduces memory and latency
by combining LoRA with parameter sharing across actor, critic, and reward models. Offline PPO
methods (Hu et al., 2023; Noukhovitch et al., 2025) improve stability and efficiency by training from
fixed preference datasets, avoiding costly online rollouts. Data-centric approaches such as LIMO (Ye
et al., 2025) and S1 (Muennighoff et al., 2025) demonstrate that small, curated datasets can yield
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Qwen2.5-3B Model Qwen2.5-7B Model

Tasks TRL OPPO Change TRL OPPO Change

ARC-Challenge 48.89 49.57 +0.68 55.55 55.80 +0.25
ARC-Easy 74.54 75.08 +0.54 81.57 81.36 -0.21
HellaSwag 75.01 75.19 +0.18 80.70 80.79 +0.09
TruthfulQA MC2 59.07 59.99 +0.92 64.27 64.03 -0.24
GSM8K 63.46 63.53 +0.07 82.56 82.79 +0.23

Average 64.19 64.67 +0.48 72.93 72.95 +0.02

Table 3: Evaluation results on core tasks (0-shot) and math tasks (5-shot). We report accuracy (%) for
TRL-trained models and OPPO-trained models, along with the absolute change.

VeRL w/ DP VeRL w/ DP+SP VeRL Fully Async w/ SP AReaL OPPO

Mean latency (s) 125.36 120.47 161.21 109.92 99.84

Table 4: OPPO achieves the lowest per-step latency under identical hardware and rollout settings,
suggesting system-level benefits beyond VeRL (DP, DP+SP, Fully Async w/ SP) and AReaL.

competitive performance. LIMR (Li et al., 2025) prioritizes samples using impact-based scoring,
while ADARFT (Shi et al., 2025) adopts a lightweight curriculum that adjusts difficulty through
reward signals. These methods primarily optimize data or optimization strategy, whereas our work
focuses on improving system-level efficiency by restructuring PPO’s execution pipeline.

Model Training Efficiency. System-level techniques seek to accelerate RLHF training by rethink-
ing the execution stack. TRL (von Werra et al., 2020a) provides scalable multi-node training with
parameter-efficient fine-tuning. OpenRLHF (Hu et al., 2025b) integrates vLLM (Kwon et al., 2023)
with Ray (Liaw et al., 2018) to accelerate generation and scheduling. HybridFlow (Sheng et al., 2025)
improves throughput by combining single- and multi-controller paradigms, while RLHFuse (Zhong
et al., 2025) boosts GPU utilization through stage fusion and micro-batch scheduling. Our approach
complements these efforts by compounding PPO’s disaggregated stages with intra- and inter-step
overlap, further improving utilization and throughput.

RLHF Optimizations. Another active direction reduces algorithmic complexity or improves
robustness. Critic-free algorithms—such as GRPO (Shao et al., 2024), ReMax (Li et al., 2024),
RLOO (Ahmadian et al., 2024), and REINFORCE++ (Hu et al., 2025a)—remove the value network,
estimating advantages directly from normalized rewards over multiple rollouts. RL-free methods
including DPO (Rafailov et al., 2024) and EXO (Ji et al., 2024) bypass reinforcement learning entirely,
while robustness-focused methods like RLP (Lang et al., 2024) and BSPO (Dai et al., 2025) mitigate
reward misalignment. Other efforts, such as LoCo-RLHF (Lee et al., 2024), address preference
heterogeneity. Our method is orthogonal to these algorithmic improvements, as it preserves PPO
semantics while accelerating its execution.

6 CONCLUSION

We introduce OPPO, a lightweight framework for efficient PPO-based RLHF training by maximizing
execution overlap. OPPO introduces a new dimension of efficiency—intra-step overlap, which
streams actor tokens to downstream models for incremental prefilling, and inter-step overlap, which
strategically defers stragglers to future steps. Both overlaps convert idle time into useful work.
Our extensive evaluations across free-form generation, math reasoning, and code generation tasks,
show that OPPO accelerates PPO training by up to 2.8×, raises GPU utilization by over 2.1×, and
generalizes to alternative paradigms such as DPO.

Reproducibility Statement: Due to space limits, we add the statement to Appendix A.3.
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A APPENDIX

A.1 MODEL EVALUATION PROTOCOL

We conduct comprehensive evaluations to assess the impact of OPPO on model quality across
different model scales. Our evaluation protocol compares models trained by TRL with standard
PPO-based RLHF against models trained with our proposed overlapping optimization techniques.
We evaluate two model configurations: Qwen2.5-7B and Qwen2.5-3B each fine-tuned on the stack
exchange paired dataset for comparable training steps.

A.1.1 BENCHMARK SUITE

To ensure a comprehensive assessment of model capabilities, we employ the Language Model
Evaluation Harness (Gao et al., 2024),a standardized framework for evaluating language models
across diverse tasks. Our evaluation suite comprises six core benchmarks that assess different aspects
of model performance:

Reasoning and Common Sense Tasks:

• HellaSwag (Zellers et al., 2019): Evaluates commonsense reasoning through sentence completion,
requiring models to select plausible continuations of everyday scenarios.

• ARC (AI2 Reasoning Challenge) (Clark et al., 2018): Comprises two subsets—ARC-Easy and
ARC-Challenge—assessing scientific reasoning through grade-school science questions of varying
difficulty.

Truthfulness and Mathematical Reasoning:

• TruthfulQA-MC2 (Lin et al., 2022): Measures the model’s tendency to generate truthful responses
through multiple-choice questions designed to elicit common misconceptions.

• GSM8K (Cobbe et al., 2021): Evaluates mathematical reasoning through grade school math word
problems requiring multi-step solutions.

A.1.2 EVALUATION METRICS

For each benchmark, we report multiple metrics to capture nuanced performance differences:

• Standard Accuracy (acc): Raw accuracy scores computed directly from model predictions.

• Normalized Accuracy (acc_norm): Length-normalized accuracy accounting for varying response
lengths, particularly relevant for multiple-choice tasks.

• Exact Match Scores: For GSM8K, we report both strict-match scores (requiring exact numerical
answers) and flexible-extract scores (allowing for minor formatting variations).

A.1.3 EVALUATION PIPELINE

Our evaluation pipeline follows a systematic approach to ensure reproducible and reliable results:
Stage 1: Environment Configuration. Each evaluation begins with proper environment initialization,
including CUDA device allocation and verification of GPU availability. We employ float16 precision
for all evaluations to maintain consistency with training configurations while optimizing memory
utilization.

Stage 2: Batch Processing. Models are evaluated using adaptive batch sizing based on available
GPU memory. For 7B models, we utilize a batch size of 4, while 3B models support a batch size of 8,
maximizing throughput without encountering out-of-memory errors. All evaluations employ greedy
decoding to ensure deterministic and reproducible results.

Stage 3: Task-Specific Evaluation. Each benchmark task is evaluated independently to isolate
performance characteristics. The evaluation harness automatically handles task-specific preprocessing,
including few-shot prompt construction where applicable. For reasoning asks (ARC, HellaSwag),
we employ 25-shot, 10-shot, and 5-shot evaluations, respectively, following established protocols.
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TruthfulQA-MC2 uses 0-shot evaluation to assess inherent model knowledge without exemplar
influence.

A.1.4 STATISTICAL CONSIDERATIONS

To ensure statistical validity of our comparisons, we maintain consistent evaluation conditions across
all model pairs:

• Fixed random seeds for reproducible prompt sampling
• Identical prompt formulations and few-shot examples
• Consistent tokenization and preprocessing pipelines
• Synchronized evaluation checkpoints (e.g., 800 steps for 7B models, 1200 steps for 3B models)

Evaluations are conducted on NVIDIA A100 40GB GPUs, with complete evaluation of a single model
requiring approximately 2-3 hours depending on model size. The evaluation pipeline is designed to be
portable and reproducible, with automated dependency management and environment configuration
scripts to facilitate replication across different computational environments.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used a large language model (ChatGPT) solely as a writing assist tool to check grammar,
improve readability, and polish sentence clarity.

A.3 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details throughout
the paper and supplementary materials. The complete OPPO algorithm is specified in Algorithm 1,
with detailed descriptions of the intra-step and inter-step overlap mechanisms in Sections 3.1 and
3.2. Experimental configurations, including model architectures and training settings for both 3B
and 7B models, are detailed in Section 4.1 and Appendix A. We utilize publicly available datasets
with standard preprocessing procedures described in Section 4. The dynamic control parameters for
overcommitment degree adaptation are fully specified in Sections 3.1 and 3.2, including bounds,
momentum values, and window sizes. Our implementation requires minimal modifications to existing
PPO codebases, with the specific integration points outlined in Section 3. All experiments were
conducted on NVIDIA A100 and H200 GPUs. We will release our implementation code upon
publication to facilitate reproduction and adoption of OPPO in existing RLHF pipelines.
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