
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPPO: ACCELERATING PPO-BASED RLHF VIA
PIPELINE OVERLAP

Anonymous authors
Paper under double-blind review

ABSTRACT

Proximal Policy Optimization (PPO)-based reinforcement learning from human
feedback (RLHF) is a widely adopted paradigm for aligning large language models
(LLMs) with human preferences. However, its training pipeline suffers from
substantial inefficiencies due to sequential multi-model dependencies (e.g., reward
model depends on actor outputs) and long-tail response lengths, where a few long
responses straggle the stage completion. We present OPPO, a novel, lightweight,
and model-agnostic PPO-based RLHF framework that improves training efficiency
by overlapping pipeline execution. OPPO introduces two novel techniques: (1)
Intra-step overlap, which streams upstream model outputs (e.g., actor model) in
right-sized chunks, enabling the downstream model (e.g., reward) to begin prefill
while the upstream continues decoding; and (2) Inter-step overlap, which adaptively
overcommits a few prompts and defers long generations to future steps, mitigating
tail latency without discarding partial work. OPPO integrates easily with existing
PPO implementations with a lightweight wrapper. Extensive evaluations show that
OPPO accelerates PPO-based RLHF training by 1.8×–2.8× and improves GPU
utilization by 1.4×–2.1× without compromising training convergence.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning
large language models (LLMs) with human preferences. Among RLHF methods, Proximal Policy
Optimization (PPO) (Schulman et al., 2017) has been the de facto standard due to its training stability
and flexibility across diverse reward models and objectives. Following InstructGPT (Ouyang et al.,
2022), PPO remains the standard for online alignment in both research and industry. Recent work
shows it outperforms offline methods like DPO on reasoning tasks (Xu et al., 2024), and it supports
massive-scale training in modern tool chains (Shen et al., 2024). A standard PPO-based RLHF
pipeline involves four models: an actor (policy), a critic (value function), a reference policy (for
KL regularization), and a reward model trained on human-labeled preferences. Each training step
consists of three sequential stages: (1) Generation: the actor generates responses to prompts; (2)
Scoring: responses are evaluated by the critic, reference, and reward models; and (3) Training: the
actor, critic, and policy models are updated using advantage estimates and gradients.

Despite its effectiveness, PPO-based RLHF faces large training inefficiencies rooted in its multi-
model dependency. Running and coordinating four LLMs imposes substantial resource requirements,
and each stage is constrained by its slowest component. For example, the actor model’s generation
suffers from severe long-tail latency: a few long responses can delay downstream stages, such as the
reward and value models, leading to idle resources and poor training throughput of the pipeline. As
LLMs grow larger and context lengths increase, these bottlenecks worsen, (Grattafiori et al., 2024)
making PPO-based RLHF increasingly costly to train (§2.2).

Recent advances tackle PPO-based RLHF inefficiencies from both algorithmic and system angles. On
the algorithmic side, methods such as Direct Preference Optimization (DPO) (Rafailov et al., 2024)
and Group-Relative Policy Optimization (GRPO) (Shao et al., 2024) remove components like the
value or reward model. However, these approaches often suffer from instability due to sparse rewards,
requiring many rollouts to capture intrinsic advantages, and face task-specific reward design chal-
lenges (Feng et al., 2024; Fisch et al., 2025; Chen et al., 2024). Asynchronous RLHF (Noukhovitch
et al., 2025) reduces pipeline dependencies but introduces staleness, which can harm convergence

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Gen Stage Decoding

Pause Streaming Gen

Prompt

Streaming Gen

Scoring Stage Prefilling
Global setting: Batch size = 4

(a) Existing paradigm.

Intra-step Overlap Inter-step Overlap

… …

step k step k + 1 Δ = 2

(b) OPPO paradigm.

Figure 1: (a) In the existing paradigm, the scoring stage starts to process until that response is fully
generated. In contrast, (b) the OPPO paradigm interleaves scoring with generation without altering
the final responses (intra-step overlap), and carries unfinished overcommitted sequences into the next
iteration (inter-step overlap). A batch size of 4 and an overcommitment degree of 2 in illustrations.

(§2.2). In contrast, system-level approaches, such as RLHFuse (Zhong et al., 2025), AReal (Fu et al.,
2025), and Verl (Sheng et al., 2025), improve throughput via fine-grained parallelism, for example
by collocating models to reduce communication overhead or dynamically scaling GPU resources to
match workload demands.

In this paper, we explore a complementary opportunity to accelerate PPO-based RLHF: maximizing
execution overlap in the training pipeline. We introduce two novel insights: (1) Intra-step Overlap,
which streams tokens from the actor to downstream models, enabling generation and scoring stages
to overlap the execution without altering the generated response; and (2) Inter-step overlap, which
selective overcommits a few prompts per batch and selects faster completions, deferring stragglers to
future iterations to hide tail latency without wasting partial generation.

Realizing both overlaps introduces non-trivial challenges. First, overlapping generation and scoring
can hide the prefilling latency of downstream models during the decoding execution of the actor
model, but also increases resource contention, risking slowing generation due to concurrent executions.
Second, excessive overcommitment inflates batch sizes, deferring too many responses per iteration.
This not only raises per-batch latency but introduces staleness, ultimately harming convergence.

Contributions. In this paper, we present OPPO, a lightweight PPO-based RLHF training framework
that improves training efficiency via pipeline overlap, minimizing idle time without compromising
convergence. OPPO novelly address the aforementioned challenges:

• Intra-step Overlap: While the actor generates responses, OPPO streams newly generated tokens
to downstream models (e.g., reward model) in adaptive chunks. This enables incremental
prefilling and overlaps the generation and scoring stages. Chunk sizes are automatically adjusted
online, based on the leftover resource, to balance overlap against resource contention, preserving
algorithm correctness and stability (§3.1).

• Inter-step Overlap: To mitigate long-tail latency, OPPO adaptively overcommits a few prompts
per step. Long-response generations are deferred and resumed in future iterations, preserving
partial work and maintaining batch size. It adapts the overcommitment level online, trading small
statistical deviations (e.g., reward differences) for large throughput gains (§3.2).

• Generalized and lightweight: Our evaluations show that OPPO achieves 1.8×–2.8× speedup and
improves GPU utilization by 1.4×–2.1× for PPO-based RLHF with only a lightweight wrapper,
and generalizes to other paradigms such as DPO with similar benefits (§4).

2 BACKGROUND AND MOTIVATION

We next outline the PPO-based RLHF framework (§2.1), then highlight key inefficiencies in existing
training designs that motivate our work (§2.2).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

100

G
PU

 U
til

iz
at

io
n

(%
)

Actor
Generation

Reward
Scoring

Training

A40
A100
H20080

60

40

20

0

(a) GPU util. varies across stages.

Mid-phase
Converged

Warm-up

Pr
ob

ab
ili

ty
 D

en
si

ty

0

Output Length (#tokens)
0 2000

6e-4

5e-4

4e-4

3e-4

2e-4

1e-4

4000 6000 8000

(b) Heterogeneous rollout lengths.

-2
0 100 200 300

Training Time Steps

R
ew

ar
ds

-1

0

1

2 Staleness = 0
Staleness = 5
Staleness = 10

(c) Asynchrony hurts quality.

Figure 2: PPO-based RLHF faces (a) varying resource demands across pipeline stages, and (b)
response lengths across rollouts, both of which can produce stragglers that prolong step execution.
(c) Existing approaches for asynchronous training risk harming convergence.

2.1 BACKGROUND: PPO-BASED RLHF

Figure 1a depicts a single step of a standard PPO-based RLHF pipeline. Given a batch of prompts,
the actor model generates output sequences. These are then scored by a reward model, producing
scalar rewards that reflect alignment with human preferences. A reference model, typically a frozen
copy of the base pretrained model, computes a KL divergence penalty that regularizes the update,
discouraging the new policy from drifting too far from the original distribution.

The value model estimates the expected return of each sequence and computes its advantage Ât:

δt = rt + γV (st+1)− V (st) , Ât =

T−t−1∑
ℓ=0

(γλ)ℓδt+ℓ (1)

where rt is the reward at step t, V (st) is the estimated value of state st, γ is the discount factor, and
λ is the generalized advantage estimation (GAE) parameter. Every step actor model is updated by
optimizing the clipped surrogate objective:

Lclip(θj) = Et ∼ Dθj−1

[
min

(
rt(θj)Ât, clip (rt(θj), 1− ϵ, 1 + ϵ) Ât

)]
,

where rt (θj) =
πθj (at | st)
πθj−1 (at | st)

(2)

These four models (actor, reward, reference, and value) form a tightly coupled intra-step pipeline
spanning generation, scoring, and training stages. PPO-based RLHF typically runs hundreds of such
iterative steps, creating an inter-step pipeline across updates.

2.2 TRAINING INEFFICIENCY OF PPO-BASED RLHF

Unlike pre-training a single model, PPO-based RLHF pipelines introduce two types of execution de-
pendencies that limit hardware utilization and training speed: intra-step and inter-step dependencies.

Inefficiency due to Intra-step Dependency. Each model in the RLHF pipeline (e.g., actor, reward,
and value models) exhibits distinct computational characteristics. Figure 2a compares GPU utilization
across three GPUs (A40, A100, H200). Response generation in the actor model is memory-intensive
due to autoregressive per-token decoding, resulting in low GPU utilization (<40%), whereas scoring
and training stages are relatively compute-intensive (e.g., due to long-context prefilling in scoring).
This heterogeneous resource utilization highlights how mismatched compute demands across stages
create idle GPU time, motivating designs to scavenge unused resources.

The inefficiency is further amplified by the long-tailed distribution of response lengths (Figure 2b).
While most sequences are short, a subset of responses are significantly longer. Since stage completion

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

depends on the last sequence (rollout), these heterogeneous lengths introduce tail stragglers. Worse,
the length distribution evolves across stages (e.g., at the warm-up stage and converged stage), making
optimizations such as dynamically resizing GPU allocations challenging.

Inefficiency due to Inter-step Dependency. Each step involves updating model weights. A natural
strategy to improve throughput is to tolerate training staleness, where the reward model evaluates
actor outputs from previous steps instead of synchronizing in real time, as in AReal (Fu et al., 2025).
However, as shown in Figure 2c, asynchronous training (e.g., with staleness 5) can not only slows
step-to-reward convergence but also lowers the post-training model quality, emphasizing the need for
careful inter-step synchronization in RLHF pipelines.

3 OPPO: OVERLAPPING PPO-BASED RLHF TRAINING PIPELINES

To address both intra- and inter-step inefficiencies, we introduce OPPO, an Overlapped PPO-based
RLHF training paradigm. As illustrated in Figure 1, OPPO overlaps the training stages to reduce
idle time and improve resource efficiency, tackling two key sources of step latency: sequential
stage dependencies within a step, and the long-tailed distribution of output lengths. At its core are
two complementary techniques: (1) intra-step overlap, which overlaps reward scoring with actor
generation within a single step, and (2) inter-step overlap, which selectively overcommits a few
prompts and carries unfinished prompts into the next step to mitigate tail-induced stalling.

3.1 OVERLAPPING INTRA-STEP TRAINING PIPELINE

Sequential dependencies across pipeline stages and the long-tailed distribution of response lengths
often block downstream execution in PPO-based RLHF. For example, the reward model cannot begin
the scoring of a sequence (rollout) until the actor completes generation for that sequence, leading
to idle resources and underutilized GPUs. At the same time, heterogeneous resource utilization
across models presents a new opportunity: while the upstream actor continues memory-intensive
decoding, downstream operators (e.g., reward model) can start the (sub)prefilling of partial outputs in
a streaming manner.

By dividing actor generation into chunks and streaming them to the reward model, OPPO overlaps the
actor decoding stage with the reward prefilling stage, hiding latency and reducing execution bubbles.
This design naturally benefits setups where models are placed on separate GPUs, but also improves
efficiency when models are colocated, due to their mismatched compute demands (Figure 2a). To
realize intra-step overlap, OPPO partitions actor outputs into right-sized chunks and streams each
chunk to the reward model as it is generated. Scoring proceeds progressively within each PPO step:
while the actor decodes the k-th chunk, the reward model concurrently processes the prefilling of
(k − 1)-th chunk. At the end of the step, the reward model completes the last-chunk prefilling and
generates the score based on the entire sequence, whose previous chunks have already be processed.

Importantly, this streaming does not alter the response generation yi, the policy log-probabilities, or
the critic/value terms used in computing the advantage Â(yi). Formally, letting yi be the full response
and y

(1)
i , . . . , y

(Ti)
i its prefixes with y

(Ti)
i = yi, the streamed gradient estimator is

ĝstr(θ) =
1

B

B∑
i=1

Ti∑
t=1

1
(i,t)
fin Â(yi)∇θ log πθ(yi | xi), (3)

where 1
(i,t)
fin marks the final prefix. Because each sample follows exactly the same prefix, the inner

sum collapses, and ĝstr(θ) ≡ ĝstd(θ) point-wise. Thus, intra-step streaming does not change the PPO
update, preserving both expectation and variance of the gradient estimator.

Dynamic Control on Intra-step Overlap. However, streaming introduces a tradeoff in chunk size.
As shown in Figure 7b, large chunks (e.g., 3K tokens) result in low overlap, reducing the benefits
of intra-step streaming and reverting to baseline sequential execution. Conversely, small chunks
(e.g., 10 tokens) can cause severe resource contention, especially when models are colocated, due to
frequent GPU context switching to execute different models. OPPO addresses this by exploiting two
key insights: (1) the tradeoff between chunk size and overlap efficiency is monotonic and predictable,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 OPPO Training with Intra-step and Inter-step Overlap

Require: Batch size B, initial ∆, chunk size C, window size W , bounds ∆min,∆max

1: Initialize Buffer← FIFO(capacity = B +∆); reward_scores← []
2: for each training iteration do ▷ Stage 1: Fill buffer to capacity
3: while |Buffer| < B +∆ do
4: Buffer.add(sample_from_dataset())
5: end while ▷ Stage 2: Generation with intra-step overlap
6: finished← ∅
7: while |finished| < B do
8: active← Buffer.get_unfinished()
9: if |active| = 0 then

10: break
11: end if
12: parallel do
13: chunks← Actor.generate_chunk(active, size = C)
14: Reward.reward_incremental(active) ▷ Finished→prefill+decode; else→prefill.
15: Update_states(active, chunks)
16: end while ▷ Stage 3: PPO update with inter-step overlap
17: ppo_batch← finished[: B]
18: reward_scores.append(ppo_batch.r)
19: PPO.step(ppo_batch)
20: Buffer.remove(ppo_batch) ▷ Unfinished sequences remain for next iteration
21: if |reward_scores| ≥ 2W then ▷ Dynamic ∆ update
22: d← mean(reward_scores[−W :])−mean(reward_scores[−2W : −W])
23: ∆change ← max

(
1, ⌊∆/4⌋

)
24: ∆← clip(∆− sign(d) ·∆change, ∆min, ∆max)
25: Buffer.set_capacity(B +∆)
26: reward_scores = reward_scores[−W :]
27: end if
28: end for

and (2) PPO training runs for many steps, allowing ample opportunities for exploration. Therefore,
OPPO periodically (e.g., every 50 training steps) applies a few candidate chunk sizes (e.g., 128, 256,
512) across different steps and selects the best-performing configuration for subsequent windows.

3.2 OVERLAPPING INTER-STEP TRAINING PIPELINE

While intra-step overlap improves efficiency within a single PPO step, it does not fully address tail
latency caused by the heterogeneous response lengths of prompts in a batch. Here, the response must
complete generation before its reward scoring and subsequent policy updates. Due to the long-tailed
distribution of generation lengths, a few slow prompts can delay the entire step. This motivates an
inter-step design that allows overlapping across PPO steps without hurting convergence.

OPPO addresses this challenge by overcommitting a few additional prompts per batch to mitigate
long-tail stragglers. Specifically, if the original batch size is B, OPPO executes B + ∆ prompts
per step. The key insight is that sequence generation is typically not computation-bound, so adding
a few extra prompts has minimal impact on per-batch execution time while substantially reducing
the effect of long-tail sequences. During each step, the first B completed prompts are used for
PPO updates, while unfinished ∆ sequences are deferred to the next step. This mechanism ensures
that long sequences are not starved, finishing in subsequent steps, and partial work (generation) is
preserved across steps.

The overall procedure, combining intra- and inter-step overlap, is summarized in Algorithm 1,
where the buffer holds up to B +∆ sequences, and generation proceeds in parallel with intra-step
streaming. The threshold ∆ controlling the number of unfinished sequences carried over to the next
step introduces a tradeoff between efficiency and convergence. A small ∆ reduces overlap and may
leave GPUs idle due to tail sequences, while a large ∆ increases overlap but risks inflating per-step
latency and introducing staleness in the PPO update.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dynamic Control on Inter-step Overlap. OPPO automatically adjusts ∆ based on training
dynamics. Let Rt denote the average reward in step t, and consider a sliding window of w steps.
Define the slope of improvement over the window as st = 1

w

∑t
i=t−w+1(Ri−Ri−1) . The threshold

∆ is then updated according to

∆t+1 =

{
min(∆max,∆t + δinc) if st > 0 ,

max(∆min,∆t − δdec) if st ≤ 0 ,
(4)

where δinc and δdec are fixed momentum (e.g., 1), and ∆min and ∆max are bounds on the buffer size.
As training starts to converge and st → 0, ∆t naturally decays toward ∆min (often zero), preventing
overcomittement to ensure convergence while effectively mitigating tail-induced delays across steps.

4 EVALUATIONS

4.1 EXPERIMENTAL SETUP

All experiments are conducted on high-end NVIDIA GPUs with different configurations. Stack-
Exchange-Paired with Qwen2.5-7B-Instruct runs on 8×H200 (141GB) GPUs, while GSM8K with
Qwen2.5-7B runs on 4×GH200 (96GB) GPUs. Stack-Exchange-Paired with Qwen2.5-3B-Instruct
and OpenCoder-SFT with Qwen2.5-3B-Instruct are executed on 8×A100 (80GB) GPUs.

Models & Datasets. We follow state-of-the-art PPO settings using the Transformer Reinforcement
Learning (TRL) library (von Werra et al., 2020a). For actor models, we experiment with Qwen2.5-
7B, Qwen2.5-7B-Instruct, and Qwen2.5-3B-Instruct, each augmented with a value head for PPO
optimization. The reward model is either a Qwen2.5-7B or a rule-based evaluator (for math tasks).
We evaluate on three popular tasks widely used in RLHF research (detailed evaluation setup in
Appendix A.1):

• Free-form generation: Stack-Exchange-Paired (von Werra et al., 2020b), which contains QA pairs
with preference labels.

• Math reasoning: GSM8K (Cobbe et al., 2021), which consists of grade-school math word
problems. We convert it into preference format by ranking paired outputs by correctness and
reasoning clarity.

• Code generation: OpenCoder-SFT (Stage 2) (Huang et al., 2024), which contains large-scale
programming tasks across multiple languages.

Baselines. We follow the standard distributed PPO setting. Based on the memory and computation
resource requirements of each model, we allocate seven GPUs to the generation and training stages,
and one GPU to the scoring stage (i.e., reward model). We compare OPPO against TRL’s PPO (von
Werra et al., 2020a), the state-of-the-art and widely adopted framework in PPO. It is worth noting that
OPPO is complementary to existing PPO frameworks and can be integrated on top of them. Unless
otherwise specified, we use a training batch size of 112.

Metrics. We evaluate both efficiency and quality. Efficiency is measured by training speed, includ-
ing time-to-reward and step-to-reward. Quality is measured by the final achieved reward. All results
are averaged over five independent runs.

4.2 END-TO-END PERFORMANCE COMPARISON

We start by evaluating OPPO’s end-to-end efficiency and quality performance.

OPPO achieves substantial PPO training speedup. Figure 3 shows that OPPO consistently
accelerates PPO training by 1.8×–2.8× across all tasks. On Stack-Exchange with Qwen2.5-7B-
Instruct, OPPO reaches a reward of 4.17 in 2,300 minutes versus 4,300 minutes for the baseline,
yielding a 1.9× speedup. With Qwen2.5-3B-Instruct on the same dataset, OPPO achieves a reward
of 5.12 in 5,200 minutes compared to 13,000 minutes, corresponding to a 2.5× improvement. These
gains stem from two sources: (i) intra-step overlap, which hides reward prefilling latency during actor

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1.83x faster 2.50x faster 2.35x faster 2.80x faster

Figure 3: OPPO improves PPO-based RLHF training efficiency by 1.8×–2.8× over TRL across
datasets, enabled by overlapping actor generation with reward scoring and early stopping.

0 200 400 600 800
1
0
1
2
3
4
5 Stack-Exchange-Paired

Qwen2.5-7B-Instruct

OPPO
TRL

0 300 600 900 1200
1
0
1
2
3
4
5
6 Stack-Exchange-Paired

Qwen2.5-3B-Instruct

0 50 100 150 200
0.65

0.70

0.75

0.80

0.85 GSM8K
Qwen2.5-7B

0 30 60 90 120

0.5

0.5

1.5

2.5

3.5
OpenCoder-SFT (Stage 2)
Qwen2.5-3B-Instruct

Steps

R
ew

ar
ds

Figure 4: OPPO achieves efficiency gains without affecting training quality.

decoding, and (ii) inter-step overlap with dynamic deltas, which mitigates tail stragglers that would
otherwise block shorter generations. OPPO achieves 2.4× and 2.8× speedup on OpenCoder-SFT
(Stage 2) with Qwen2.5-3B-Instruct, and on GSM8K with Qwen2.5-7B, respectively.

OPPO preserves training convergence. Despite substantial wall-clock speedups, Figure 4 shows
that OPPO does not sacrifice training convergence. On Stack-Exchange, OPPO and the baseline
follow nearly identical trajectories on both Qwen2.5-7B-Instruct and Qwen2.5-3B-Instruct training,
such as reaching a reward of ∼2.0 by step 150, then plateauing ∼4.1 by step 600 and ∼5.12 by step
1,000, respectively. On GSM8K with Qwen2.5-7B, both methods exhibit the same characteristic
learning phases: an initial accuracy of 0.70, a dip to 0.66 around steps 25–50 as the model unlearns
initial biases, and steady improvement to 0.82 by step 200. Finally, on OpenCoder-SFT (Stage 2)
with Qwen2.5-3B-Instruct, both methods converge to a plateau around 2.4 by step 80. Across all
tasks, the near-identical step-to-reward curves confirm that OPPO achieves a near-optimal balance
between execution efficiency and convergence quality.

OPPO largely boosts hardware resource utilization. Figure 5 shows that OPPO substantially
improves GPU utilization. On the Stack-Exchange-Paired dataset with the Qwen2.5-7B-Instruct
model, utilization increases from 50.6% to 71.0%, a 1.4× improvement. With the Qwen2.5-3B-
Instruct model on the same dataset, utilization rises from 38.7% to 73.6%, a 1.9× improvement.
On GSM8K with the Qwen2.5-7B model, OPPO boosts utilization from 45.7% to 67.3%, a 1.5×
improvement. On OpenCoder-SFT (Stage 2) with the Qwen2.5-3B-Instruct model, GPU utilization
improves from 35.7% to 74.1%, corresponding to a 2.1× increase. Note that utilization does not reach
100% because of unavoidable parallelism bubbles, memory stalls, and communication overheads.

OPPO improves performance in multi-node settings. Table 1 shows that OPPO achieves 4.49×
lower end-to-end step latency than TRL on Stack-Exchange-Paired with the Qwen2.5-7B-Instruct
model across two nodes (each 4×A100-40GB).

OPPO delivers improvements over different model parallelism plans. The distinct system-level
benefits of OPPO are evaluated by comparing it against state-of-the-art frameworks, including VeRL
(configured with data parallelism (DP), sequence parallelism (SP), and fully async w/ SP) and AReaL.
Table 4 shows OPPO achieves the lowest latency (99.84s), outperforming VeRL w/ DP by 1.26×
and surpassing highly optimized systems such as AReaL and VeRL variants. These results suggest
that OPPO targets a latency source distinct from sequence-level optimizations. While frameworks
like VeRL and AReaL process responses only after full generation and leave the reward model idle,
OPPO ’s intra-step overlap streams intermediate chunks to utilize this time. Consequently, OPPO

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Actor Gen. +
Reward Scor.

Training
0

25

50

75

100

G
PU

 U
til

iz
at

io
n

(%
)

50.6

96.8

71.0

96.7
Stack-Exchange-Paired

Qwen2.5-7B-Instruct

OPPO
TRL

Actor Gen. +
Reward Scor.

Training
0

25

50

75

100

38.7

93.7

73.6

94.2
Stack-Exchange-Paired

Qwen2.5-3B-Instruct

Actor Gen. +
Reward Scor.

Training
0

25

50

75

100

45.7

93.0

67.3

93.5
GSM8K

Qwen2.5-7B

Actor Gen. +
Reward Scor.

Training
0

25

50

75

100

35.7

92.4
74.1

94.0
OpenCoder-SFT (Stage 2)
Qwen2.5-3B-Instruct

Figure 5: OPPO improves GPU utilization in the inference stage by 1.4×–2.1×, enabling more
efficient compute use by overlapping actor generation with reward scoring.

TRL OPPO

Mean latency (s) 498.30 111.08

Speed up 1.00x 4.49x

Table 1: OPPO achieves lower end-to-end step latency than TRL by 4.5× in multi-node settings.

addresses a bottleneck orthogonal to sequence parallelism, making it a complementary optimization
composable with existing strategies.

4.3 ABLATION STUDIES

Performance Breakdown by Design Components. We ablate OPPO into two variants to isolate the
impact of each design choice: (1) OPPO w/o Intra, which disables intra-step overlap (i.e., streaming
upstream decoding to the reward model), and (2) OPPO w/o Inter, which disables inter-step overlap
(i.e., batch overcommitment with dynamic ∆).

Figure 6 reports their performance on Stack-Exchange-Paired. For Qwen2.5-7B-Instruct, the TRL
baseline requires 4,200 minutes to reach a reward of 4.17. Adding only intra-step overlap reduces this
to 3,500 minutes (1.2× speedup), as streaming hides about 17% of scoring latency within generation.
However, the gain is bounded by stragglers from the longest sequences in each batch. Applying
only inter-step overlap reduces training time further to 2,700 minutes (1.6× speedup). For Qwen2.5-
3B-Instruct, the TRL baseline requires 13,000 minutes to reach a reward of 5.12. Intra-step overlap
reduces this to 10,000 minutes (1.3× speedup), while inter-step overlap achieves 6,300 minutes
(2.06× speedup). Again, all configurations converge to similar final rewards, confirming that intra-
and inter-step overlaps address orthogonal bottlenecks while preserving training quality.

Robustness and Staleness. As detailed in Algorithm 1, the ∆ controller adapts to a windowed
reward trend, updating ∆ only through bounded, gradual steps. This design prevents abrupt jumps
and effectively filters short-term oscillations. The request-deferral distribution in Table 2 confirms
the stability of this approach: the vast majority of requests are processed immediately, and nearly
all deferred requests are delayed by only a single step. This indicates neither perpetual deferral of
difficult prompts nor excessive staleness that would affect rewards.

0 350 700 1050 1400
Times (minutes)

1

0

1

2

3

4

R
ew

ar
ds

OPPO w/ dynamic
OPPO w/ fixed = 4
OPPO w/ fixed = 8

(a) Inter-step adaptation (∆).

100 500 1000 2000 3000
Chunk Size

0

50

100

150

200

250

300

St
ep

 S
pe

ed
 (s

ec
on

ds
)

225

184

228

264

300

187
171

209

246

283

228

188

228

260

303
7B actor & 7B reward
3B actor & 3B reward
7B actor & 3B reward

(b) Impact of chunk size.

Figure 7: Ablation studies on efficiency: (a) fixed vs. dynamic ∆,
and (b) chunk size effect on step speed.

Effectiveness of Inter-step
Adaptation. Figure 7a com-
pares OPPO with fixed and
dynamic ∆. With fixed ∆ = 4,
training converges more slowly
since fewer long-tail generations
are stopped early, limiting
overlap benefits. Fixed ∆ = 8
accelerates convergence by skip-
ping more long-tail generations,
but its static threshold cannot
adapt well across all phases of
training. In contrast, dynamic ∆

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000
1

0

1

2

3

4
Stack-Exchange-Paired

Qwen2.5-7B-Instruct

OPPO
TRL
OPPO w/o Intra
OPPO w/o Inter

0 3000 6000 9000 12000
1
0
1
2
3
4
5

Stack-Exchange-Paired
Qwen2.5-3B-Instruct

Times (minutes)
R

ew
ar

ds

Figure 6: Performance breakdown showing the impact of OPPO’s intra- and inter-step overlaps. Both
optimizations drive the 1.8×–2.8× speedup without harming convergence quality.

Deferred steps 0 1 2 3 Avg. deferred steps

Share of requests 78.48% 20.20% 0.23% 1.05% 0.24

Table 2: Distribution of requests deferral shows most requests are not deferred, and nearly all others
are delayed by only a single step.

consistently achieves the best performance by adapting the threshold over time, leading to faster
convergence and more stable rewards. These results underscore that static choices of ∆ create
efficiency–stability tradeoffs, whereas dynamic ∆ eliminates this tension by adjusting to the evolving
distribution of rollout lengths throughout training.

Impact of Streaming Degrees. Figure 7b shows the effect of chunk size on step speed across
different model sizes. Small chunks (100 tokens) incur high scheduling and GPU context-switch
overhead, reducing throughput despite high overlap. Moderate chunks (500 tokens) strike the best
balance, yielding the fastest step speeds by maximizing overlap while avoiding overhead. Large
chunks (1000–3000 tokens) reduce overlap opportunities and push execution closer to sequential
mode, causing step speeds to rise again. These results highlight that throughput is highly sensitive to
chunk size, and the optimal setting depends on model scale and workload.

OPPO Preserves Final Accuracy. Table 3 shows that for the 3B model, OPPO consistently
outperforms the TRL baseline across all benchmarks, with gains ranging from 0.07 to 0.92 percentage
points (mean: 0.48 pp). For the 7B model, the differences are minimal (-0.24 to +0.25 pp; mean:
+0.02 pp): OPPO achieves higher accuracy on ARC-Challenge, HellaSwag, and GSM8K, while
showing slight declines on ARC-Easy and TruthfulQA-MC2. These fluctuations fall within the
expected statistical variance of RLHF training. Overall, the comparable performance across both
model scales confirms that OPPO’s pipeline-overlap strategy accelerates training without sacrificing
model quality.

Applicability beyond PPO. OPPO’s benefits extend to any online preference-optimization method
involving variable-length on-policy generations (e.g., DPO or GRPO). These methods can adopt the
same scheduling logic: generate B+∆ items, update on the first B completions, and carry unfinished
long generations forward to the next iteration. This strategy reduces tail latency without altering the
optimization objective or the distribution of responses used for updates. As shown in Figure 3, OPPO
achieves 2.35× faster convergence in a rule-based PPO setting on GSM8K (without a reward model),
confirming that the inter-step overlap mechanism remains effective even in non-standard or simplified
RLHF pipelines.

5 RELATED WORK

PPO-based RLHF Efficiency. Hydra-PPO (Santacroce et al., 2023) reduces memory and latency
by combining LoRA with parameter sharing across actor, critic, and reward models. Offline PPO
methods (Hu et al., 2023; Noukhovitch et al., 2025) improve stability and efficiency by training from
fixed preference datasets, avoiding costly online rollouts. Data-centric approaches such as LIMO (Ye
et al., 2025) and S1 (Muennighoff et al., 2025) demonstrate that small, curated datasets can yield

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Qwen2.5-3B Model Qwen2.5-7B Model

Tasks TRL OPPO Change TRL OPPO Change

ARC-Challenge 48.89 49.57 +0.68 55.55 55.80 +0.25
ARC-Easy 74.54 75.08 +0.54 81.57 81.36 -0.21
HellaSwag 75.01 75.19 +0.18 80.70 80.79 +0.09
TruthfulQA MC2 59.07 59.99 +0.92 64.27 64.03 -0.24
GSM8K 63.46 63.53 +0.07 82.56 82.79 +0.23

Average 64.19 64.67 +0.48 72.93 72.95 +0.02

Table 3: Evaluation results on core tasks (0-shot) and math tasks (5-shot). We report accuracy (%) for
TRL-trained models and OPPO-trained models, along with the absolute change.

VeRL w/ DP VeRL w/ DP+SP VeRL Fully Async w/ SP AReaL OPPO

Mean latency (s) 125.36 120.47 161.21 109.92 99.84

Table 4: OPPO achieves the lowest per-step latency under identical hardware and rollout settings,
suggesting system-level benefits beyond VeRL (DP, DP+SP, Fully Async w/ SP) and AReaL.

competitive performance. LIMR (Li et al., 2025) prioritizes samples using impact-based scoring,
while ADARFT (Shi et al., 2025) adopts a lightweight curriculum that adjusts difficulty through
reward signals. These methods primarily optimize data or optimization strategy, whereas our work
focuses on improving system-level efficiency by restructuring PPO’s execution pipeline.

Model Training Efficiency. System-level techniques seek to accelerate RLHF training by rethink-
ing the execution stack. TRL (von Werra et al., 2020a) provides scalable multi-node training with
parameter-efficient fine-tuning. OpenRLHF (Hu et al., 2025b) integrates vLLM (Kwon et al., 2023)
with Ray (Liaw et al., 2018) to accelerate generation and scheduling. HybridFlow (Sheng et al., 2025)
improves throughput by combining single- and multi-controller paradigms, while RLHFuse (Zhong
et al., 2025) boosts GPU utilization through stage fusion and micro-batch scheduling. Our approach
complements these efforts by compounding PPO’s disaggregated stages with intra- and inter-step
overlap, further improving utilization and throughput.

RLHF Optimizations. Another active direction reduces algorithmic complexity or improves
robustness. Critic-free algorithms—such as GRPO (Shao et al., 2024), ReMax (Li et al., 2024),
RLOO (Ahmadian et al., 2024), and REINFORCE++ (Hu et al., 2025a)—remove the value network,
estimating advantages directly from normalized rewards over multiple rollouts. RL-free methods
including DPO (Rafailov et al., 2024) and EXO (Ji et al., 2024) bypass reinforcement learning entirely,
while robustness-focused methods like RLP (Lang et al., 2024) and BSPO (Dai et al., 2025) mitigate
reward misalignment. Other efforts, such as LoCo-RLHF (Lee et al., 2024), address preference
heterogeneity. Our method is orthogonal to these algorithmic improvements, as it preserves PPO
semantics while accelerating its execution.

6 CONCLUSION

We introduce OPPO, a lightweight framework for efficient PPO-based RLHF training by maximizing
execution overlap. OPPO introduces a new dimension of efficiency—intra-step overlap, which
streams actor tokens to downstream models for incremental prefilling, and inter-step overlap, which
strategically defers stragglers to future steps. Both overlaps convert idle time into useful work.
Our extensive evaluations across free-form generation, math reasoning, and code generation tasks,
show that OPPO accelerates PPO training by up to 2.8×, raises GPU utilization by over 2.1×, and
generalizes to alternative paradigms such as DPO.

Reproducibility Statement: Due to space limits, we add the statement to Appendix A.3.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms, 2024. URL https://arxiv.org/abs/2402.14740.

Zhuotong Chen, Fang Liu, Jennifer Zhu, Wanyu Du, and Yanjun Qi. Towards improved preference
optimization pipeline: from data generation to budget-controlled regularization, 2024. URL
https://arxiv.org/abs/2411.05875.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Juntao Dai, Taiye Chen, Yaodong Yang, Qian Zheng, and Gang Pan. Mitigating reward over-
optimization in rlhf via behavior-supported regularization, 2025. URL https://arxiv.org/
abs/2503.18130.

Duanyu Feng, Bowen Qin, Chen Huang, Zheng Zhang, and Wenqiang Lei. Towards analyzing and
understanding the limitations of dpo: A theoretical perspective, 2024. URL https://arxiv.
org/abs/2404.04626.

Adam Fisch, Jacob Eisenstein, Vicky Zayats, Alekh Agarwal, Ahmad Beirami, Chirag Nagpal, Pete
Shaw, and Jonathan Berant. Robust preference optimization through reward model distillation,
2025. URL https://arxiv.org/abs/2405.19316.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
reinforcement learning system for language reasoning, 2025. URL https://arxiv.org/
abs/2505.24298.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson,
Ava Spataru, Baptiste Roziere, and Bethany Biron. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Jian Hu, Li Tao, June Yang, and Chandler Zhou. Aligning language models with offline learning
from human feedback, 2023. URL https://arxiv.org/abs/2308.12050.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm
with robustness to both prompt and reward models, 2025a. URL https://arxiv.org/abs/
2501.03262.

Jian Hu, Xibin Wu, Wei Shen, Jason Klein Liu, Zilin Zhu, Weixun Wang, Songlin Jiang, Haoran
Wang, Hao Chen, Bin Chen, Weikai Fang, Xianyu, Yu Cao, Haotian Xu, and Yiming Liu. Openrlhf:
An easy-to-use, scalable and high-performance rlhf framework, 2025b. URL https://arxiv.
org/abs/2405.11143.

11

https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2411.05875
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2503.18130
https://arxiv.org/abs/2503.18130
https://arxiv.org/abs/2404.04626
https://arxiv.org/abs/2404.04626
https://arxiv.org/abs/2405.19316
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2505.24298
https://zenodo.org/records/12608602
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2308.12050
https://arxiv.org/abs/2501.03262
https://arxiv.org/abs/2501.03262
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2405.11143

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models, 2024. URL https://arxiv.org/abs/2411.04905.

Haozhe Ji, Cheng Lu, Yilin Niu, Pei Ke, Hongning Wang, Jun Zhu, Jie Tang, and Minlie Huang.
Towards efficient exact optimization of language model alignment, 2024. URL https://arxiv.
org/abs/2402.00856.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Hao Lang, Fei Huang, and Yongbin Li. Fine-tuning language models with reward learning on policy,
2024. URL https://arxiv.org/abs/2403.19279.

Seong Jin Lee, Will Wei Sun, and Yufeng Liu. Low-rank contextual reinforcement learning from
heterogeneous human feedback, 2024. URL https://arxiv.org/abs/2412.19436.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling, 2025. URL
https://arxiv.org/abs/2502.11886.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models,
2024. URL https://arxiv.org/abs/2310.10505.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion Stoica.
Tune: A research platform for distributed model selection and training, 2018. URL https:
//arxiv.org/abs/1807.05118.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, and
Aaron Courville. Asynchronous rlhf: Faster and more efficient off-policy rl for language models,
2025. URL https://arxiv.org/abs/2410.18252.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Michael Santacroce, Yadong Lu, Han Yu, Yuanzhi Li, and Yelong Shen. Efficient rlhf: Reducing the
memory usage of ppo, 2023. URL https://arxiv.org/abs/2309.00754.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

12

https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2402.00856
https://arxiv.org/abs/2402.00856
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2403.19279
https://arxiv.org/abs/2412.19436
https://arxiv.org/abs/2502.11886
https://arxiv.org/abs/2310.10505
https://arxiv.org/abs/1807.05118
https://arxiv.org/abs/1807.05118
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2410.18252
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2309.00754
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gerald Shen, Zhilin Wang, Olivier Delalleau, Jiaqi Zeng, Yi Dong, Daniel Egert, Shengyang Sun,
Jimmy Zhang, Sahil Jain, Ali Taghibakhshi, Markel Sanz Ausin, Ashwath Aithal, and Oleksii
Kuchaiev. Nemo-aligner: Scalable toolkit for efficient model alignment, 2024. URL https:
//arxiv.org/abs/2405.01481.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceed-
ings of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297.
ACM, March 2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/
3689031.3696075.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning
via adaptive curriculum learning, 2025. URL https://arxiv.org/abs/2504.05520.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020a.

Leandro von Werra et al. Stack-exchange-paired dataset. https://huggingface.co/
datasets/lvwerra/stack-exchange-paired, 2020b. Accessed: 2025-09-23.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao
Yu, and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study, 2024. URL
https://arxiv.org/abs/2404.10719.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning, 2025. URL https://arxiv.org/abs/2502.03387.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Yinmin Zhong, Zili Zhang, Bingyang Wu, Shengyu Liu, Yukun Chen, Changyi Wan, Hanpeng Hu,
Lei Xia, Ranchen Ming, Yibo Zhu, and Xin Jin. Optimizing rlhf training for large language models
with stage fusion, 2025. URL https://arxiv.org/abs/2409.13221.

13

https://arxiv.org/abs/2405.01481
https://arxiv.org/abs/2405.01481
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/2504.05520
https://github.com/huggingface/trl
https://huggingface.co/datasets/lvwerra/stack-exchange-paired
https://huggingface.co/datasets/lvwerra/stack-exchange-paired
https://arxiv.org/abs/2404.10719
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2409.13221

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MODEL EVALUATION PROTOCOL

We conduct comprehensive evaluations to assess the impact of OPPO on model quality across
different model scales. Our evaluation protocol compares models trained by TRL with standard
PPO-based RLHF against models trained with our proposed overlapping optimization techniques.
We evaluate two model configurations: Qwen2.5-7B and Qwen2.5-3B each fine-tuned on the stack
exchange paired dataset for comparable training steps.

A.1.1 BENCHMARK SUITE

To ensure a comprehensive assessment of model capabilities, we employ the Language Model
Evaluation Harness (Gao et al., 2024),a standardized framework for evaluating language models
across diverse tasks. Our evaluation suite comprises six core benchmarks that assess different aspects
of model performance:

Reasoning and Common Sense Tasks:

• HellaSwag (Zellers et al., 2019): Evaluates commonsense reasoning through sentence completion,
requiring models to select plausible continuations of everyday scenarios.

• ARC (AI2 Reasoning Challenge) (Clark et al., 2018): Comprises two subsets—ARC-Easy and
ARC-Challenge—assessing scientific reasoning through grade-school science questions of varying
difficulty.

Truthfulness and Mathematical Reasoning:

• TruthfulQA-MC2 (Lin et al., 2022): Measures the model’s tendency to generate truthful responses
through multiple-choice questions designed to elicit common misconceptions.

• GSM8K (Cobbe et al., 2021): Evaluates mathematical reasoning through grade school math word
problems requiring multi-step solutions.

A.1.2 EVALUATION METRICS

For each benchmark, we report multiple metrics to capture nuanced performance differences:

• Standard Accuracy (acc): Raw accuracy scores computed directly from model predictions.

• Normalized Accuracy (acc_norm): Length-normalized accuracy accounting for varying response
lengths, particularly relevant for multiple-choice tasks.

• Exact Match Scores: For GSM8K, we report both strict-match scores (requiring exact numerical
answers) and flexible-extract scores (allowing for minor formatting variations).

A.1.3 EVALUATION PIPELINE

Our evaluation pipeline follows a systematic approach to ensure reproducible and reliable results:
Stage 1: Environment Configuration. Each evaluation begins with proper environment initialization,
including CUDA device allocation and verification of GPU availability. We employ float16 precision
for all evaluations to maintain consistency with training configurations while optimizing memory
utilization.

Stage 2: Batch Processing. Models are evaluated using adaptive batch sizing based on available
GPU memory. For 7B models, we utilize a batch size of 4, while 3B models support a batch size of 8,
maximizing throughput without encountering out-of-memory errors. All evaluations employ greedy
decoding to ensure deterministic and reproducible results.

Stage 3: Task-Specific Evaluation. Each benchmark task is evaluated independently to isolate
performance characteristics. The evaluation harness automatically handles task-specific preprocessing,
including few-shot prompt construction where applicable. For reasoning asks (ARC, HellaSwag),
we employ 25-shot, 10-shot, and 5-shot evaluations, respectively, following established protocols.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

TruthfulQA-MC2 uses 0-shot evaluation to assess inherent model knowledge without exemplar
influence.

A.1.4 STATISTICAL CONSIDERATIONS

To ensure statistical validity of our comparisons, we maintain consistent evaluation conditions across
all model pairs:

• Fixed random seeds for reproducible prompt sampling
• Identical prompt formulations and few-shot examples
• Consistent tokenization and preprocessing pipelines
• Synchronized evaluation checkpoints (e.g., 800 steps for 7B models, 1200 steps for 3B models)

Evaluations are conducted on NVIDIA A100 40GB GPUs, with complete evaluation of a single model
requiring approximately 2-3 hours depending on model size. The evaluation pipeline is designed to be
portable and reproducible, with automated dependency management and environment configuration
scripts to facilitate replication across different computational environments.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used a large language model (ChatGPT) solely as a writing assist tool to check grammar,
improve readability, and polish sentence clarity.

A.3 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details throughout
the paper and supplementary materials. The complete OPPO algorithm is specified in Algorithm 1,
with detailed descriptions of the intra-step and inter-step overlap mechanisms in Sections 3.1 and
3.2. Experimental configurations, including model architectures and training settings for both 3B
and 7B models, are detailed in Section 4.1 and Appendix A. We utilize publicly available datasets
with standard preprocessing procedures described in Section 4. The dynamic control parameters for
overcommitment degree adaptation are fully specified in Sections 3.1 and 3.2, including bounds,
momentum values, and window sizes. Our implementation requires minimal modifications to existing
PPO codebases, with the specific integration points outlined in Section 3. All experiments were
conducted on NVIDIA A100 and H200 GPUs. We will release our implementation code upon
publication to facilitate reproduction and adoption of OPPO in existing RLHF pipelines.

15

	Introduction
	Background and Motivation
	Background: PPO-based RLHF
	Training Inefficiency of PPO-based RLHF

	OPPO: Overlapping PPO-based RLHF Training Pipelines
	Overlapping Intra-step Training Pipeline
	Overlapping Inter-step Training Pipeline

	Evaluations
	Experimental Setup
	End-to-end Performance Comparison
	Ablation Studies

	Related Work
	Conclusion
	Appendix
	Model Evaluation Protocol
	Benchmark Suite
	Evaluation Metrics
	Evaluation Pipeline
	Statistical Considerations

	The Use of Large Language Models (LLMs)
	Reproducibility statement

