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Abstract

Probabilistic circuits (PCs) are a family of generative models which allows for the
computation of exact likelihoods and marginals of its probability distributions. PCs
are both expressive and tractable, and serve as popular choices for discrete density
estimation tasks. However, large PCs are susceptible to overfitting, and only a
few regularization strategies (e.g., dropout, weight-decay) have been explored.
We propose HyperSPNs: a new paradigm of generating the mixture weights of
large PCs using a small-scale neural network. Our framework can be viewed as a
soft weight-sharing strategy, which combines the greater expressiveness of large
models with the better generalization and memory-footprint properties of small
models. We show the merits of our regularization strategy on two state-of-the-
art PC families introduced in recent literature — RAT-SPNs and EiNETs — and
demonstrate generalization improvements in both models on a suite of density
estimation benchmarks in both discrete and continuous domains.

1 Introduction

One of the core motivations for building models of probability distributions from data is to reason
about the data distribution. For example, given a model of the distribution over driving routes,
we may like to reason about the probability that a driver will take a certain route given that there
is congestion on a certain street. Or, given a distribution over weather conditions, we may like
to reason about the probability of it raining k times in the next year. Traditional probabilistic
models such as Categorical/Gaussian Mixture Models or Hidden Markov Models (HMMs) are well-
equipped to answer these types of queries with exact probabilities that are consistent with the model
distribution [1]. However, their learned model distribution might not accurately approximate the data
distribution due to their simplicity.

On the other end of the spectrum, the modern wave of deep generative models has largely focused
on learning accurate approximations of the true data distribution, at the cost of tractability. High
capacity models such as autoregressive or flow models can mimic the true data distribution with great
fidelity [33, 13, 22]. However, they are not designed for reasoning about the probability distribution
beyond computation of likelihoods. More illustrative of this trend are GANs and EBMs, which are
expressive enough to sample high-quality images, but give up even the ability to compute exact
likelihoods [9, 14].

To maintain the ability to reason about the distribution induced by our model, we need to explore
within tractable probabilistic models. Of these model families, probabilistic circuits (e.g. Sum
Product Networks) are one of the most expressive and general, subsuming shallow mixture models,
and HMMs while maintaining their tractable properties [6, 26, 34]. Their expressive power comes
from their hierarchical / deep architecture, allowing them to express a large number of modes in
their distribution. Their tractability comes from global constraints imposed in their network structure,
enabling efficient and exact computation of likelihoods, marginals, and more. Probabilistic circuits
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(PC) are a popular choice for density estimation [35, 18] and approximate inference in discrete
settings [30].

Given the status of probabilistic circuits as one of the most expressive models among tractable
probabilistic model families, recent works have looked into pushing the limits of expressivity of
probabilistic circuits [15, 25, 24]. Naturally, the bigger and deeper the probabilistic circuit, the greater
the expressiveness of the model. This has led to a trend of building large probabilistic circuits via
design choices such as tensorizing model parameters, forgoing structure learning, and more. For
example, [24] report the training of probabilistic circuits with 9.4M parameters.

However, larger probabilistic circuits are more susceptible to overfitting. In addition, the so-called
double-descent phenomenon [19] (wherein highly overparameterized models exhibit low generaliza-
tion gap) has yet to be observed in probabilistic circuits. This puts even more importance on effective
regularization strategies for training large probabilistic circuits. Recent works have used dropout [25]
and weight decay [37], but there has not been much exploration of other regularization strategies.

In this work, we propose HyperSPNs, which regularize by aggressively limiting the degrees of
freedom of the model. Drawing inspiration from HyperNetworks [11], we generate the weights
of the probabilistic circuit via a small-scale external neural network. More precisely, we partition
the parameters (mixture weights) of the PC into several sectors. For each sector, we learn a low-
dimensional embedding, then map that to the parameters of the sector using the neural network. The
generated parameters still structurally form a PC, so we retain the same ability to reason about the
probability distribution induced by the HyperSPN.

HyperSPNs combine the greater expressiveness of large probabilistic circuits with the better gener-
alization of models with fewer degrees of freedom. The external neural network has much fewer
parameters than the original PC, effectively regularizing the PC through a soft weight-sharing strat-
egy. As a bonus, the memory requirement for storing the model is much smaller, and the memory
requirement for evaluating the model can also be drastically reduced by materializing sectors of the
PC “on the fly”. We verify the empirical performance of HyperSPNs on density estimation tasks for
the Twenty Datasets benchmark [12], the Amazon Baby Registries benchmark [8], and the Street
View House Numbers (SVHN) [20] dataset, showing generalization improvements over competing
regularization strategies in all three settings. Our results suggest that HyperSPNs are a promising
framework for training probabilistic circuits.

2 Background

Probabilistic circuits (PCs) are a family of generative models known for their tractability proper-
ties [6, 26, 34]. They support efficient and exact inference routines for computing likelihoods and
marginals/conditionals of their probability distribution. The internals of a PC consist of a network
(edge-weighted Directed Acyclic Graph) of sum and product nodes, stacked in a deep/hierarchical
manner and evaluated from leaves to root. PCs gain their tractability by enforcing various structural
constraints on their network, such as decomposability, which restricts children of the same product
node to have disjoint scopes [5, 6]. Different combination of constraints leading to different types of
PCs, including Arithmetic Circuits [6], and most notably Sum Product Networks (SPNs) [26].

The probability of an input & on the PC is defined to be the value g;oo(x) obtained at the root of the
PC after evaluating the network topologically bottom-up. Internally, edges leading into a sum node
are weighted with mixture probabilities « (that sum to 1), and edges leading into a product node are
unweighted. Leaf nodes at the base of the network contain leaf distributions /. The nodes of the PC
are evaluated as follows, with ch(¢) denoting the children of node i:

li(x) 1 is leaf node
9i(®) = $ X jcen() ijgj(®) iis sumnode
Hjech(i) g;(x) 1 is product node

As long as the leaf distributions are tractable and the network structure satisfies the constraints of
decomposability and smoothness, the output at g, is guaranteed to be normalized, and corresponding
marginals/conditionals can be evaluated with linear-time exact inference algorithms [5, 6].

The network structure of a PC refers to the set of nodes and edge connections in the DAG, excluding
the edge weights. There are various ways of constructing the network structure of PCs, e.g., through
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(b) Counting the # of pa-
(a) We show the structure of a RAT-SPN over n = 4 variables using layer size rameters, given the num-
k = 3. Solid edges are weighted with trainable parameters, and dashed edges are ber of variables n and
unweighted. Each fully connected layer of solid edges can be treated as a sector. layer size k.

Figure 1: Given a RAT-SPN, we can partition its set of parameters into sectors. The trainable
parameters (solid edges) in Figure 1a can be grouped into fully-connected layers of size 1 x k, k X k,
and k x 2, oriented in a binary-tree structure. In Figure 1b, we visualize the sectors as blocks, counting
the number of blocks in each layer of the binary tree to arrive at the total parameter count. The sector
abstraction is a key ingredient in implementing the HyperSPN’s soft weight-sharing strategy.

the use of domain knowledge or through search-based methods [6, 17, 7, 28]. Recently, there has
been a trend of abstracting away individual sum and product nodes, and instead dealing directly
with layers that satisfy the structural constraints necessary for tractability [25, 24, 30]. Prescribing a
network structure through a stacking of these layers leads to memory and hardware efficiencies that
allow us to scale up the training of PCs to millions of edges.

Given a PC with a fixed network structure, we can learn its edge weights to best fit the probability
distribution of data. We will refer to the full set of mixture probabilities leading into sum nodes
in the PC as its parameters. These parameters can be learned using methods such as Expectation-
Maximization (EM) [23], signomial program formulations [38], or simply via (projected) gradient
descent. EM has been a well-studied choice for optimizing PCs [23, 24], although it requires hand-
derived updates that can be tedious and sometimes even incorrect [26]. In this work, we rely on
gradient descent, which is straightforward and works out-of-the-box on new families of models [37].

Learning a PC with a large number of parameters can be prone to overfitting. One regularization
strategy that has been proposed is “probabilistic dropout” [25], which takes inspiration from the
standard dropout technique in neural networks [31] and randomly ignores a subset of edges leading
into sum nodes. Weight decay has also been commonly used as another form of regularization [37].
Unfortunately, there has been little exploration done around regularization strategies, and some
current approaches only work in limited settings (e.g., dropout has been limited to settings that use
PCs as a discriminative classifier [25]).

2.1 RAT-SPNs

Two particular PC structures have been recently proposed, namely RAT-SPNs [25] and EiNETs [24],
both of which scale to millions of parameters. They are conceptually similar, the main difference
being that EiNETs are designed for better GPU performance. To ground our discussion around
regularizing large PCs, we will describe our methods just on RAT-SPNS, although we also apply our
methods on EiNETs in later experiments too. In RAT-SPNSs, the input variables are organized into a
binary tree, with one leaf in the binary tree corresponding to each variable. We start from the base
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Figure 2: HyperSPN: we introduce a small-scale external neural network that generates the parameters
of the underlying SPN. Using the sector abstraction from Figure 1, we learn an embedding of
dimension h for each of the 2n — 1 sectors. The neural network maps each embedding to the
parameters of its corresponding sector, which materializes the underlying SPN.

of the SPN and construct its full structure by stacking sum layers and product layers. For each leaf
node in the binary tree, we create one fully connected sum layer on top of the SPN leaves. For each
internal node in the binary tree, we create one product layer that merges its two children layers in the
SPN, and then stack one fully connected sum layer on top. We illustrate this construction in Figure 1.
Finally, RAT-SPNs create so-called replicas of this structure, by repeating the construction but with
permuted orderings of input variables in the binary tree leaves. The replicas are then combined under
one top-level mixture distribution (for readability, Figure 1 does not show any replicas).

The size of each sum layer in the RAT-SPN is determined by a single constant k. For convenience,
we also let the size of each product layer be k. This fully specifies the structure of our SPN. For the
rest of the paper, it is helpful to abstractly group the parameters of the RAT-SPN into disjoint sectors.
Corresponding to the root of the binary tree, we have a sector with 1 x k parameters. Corresponding to
each internal node in the binary tree, we have a sector with k£ x k parameters. Finally, corresponding
to each leaf in the binary tree, we have a sector with k x [ parameters, where [ is the number of SPN
leaf distributions per variable (we use [ = 2 unless otherwise stated).

As shown in Figure 1, for n variables (where n is a power of 2) and 7 replicas, this corresponds to
2n — 1 sectors totaling O(rnk?) parameters. In particular, for each replica there are (n — 2)k? +
(2n 4 1)k parameters. For example, in a problem domain with 1000 variable, using layer size k = 10
and replica » = 10 leads to a RAT-SPN of around 1M parameters.

3 HyperSPNs

X

We propose HyperSPNs, an approach of regularizing proba-
bilistic circuits with a large number of parameters by limiting l
the degrees of freedom of the model using an external neural

network. We describe our method concretely on RAT-SPNS,  cmbeddings —> "% —> gy

which we will refer to as simply SPNs. network

To regularize the SPN, we introduce a smaller-scale external backowandpass = forwand uss 1
neural network to generate the parameters of the SPN (see Pk
Figure 2). We associate each of the sectors of the SPN with Figure 3: We depict the computation
a sector embedding. For each sector, we map the embedding graph when training a HyperSPN. The
to the parameters of the sector via the neural network. Then, red modules have trainable parame-
we use these mapped parameters directly as the parameters ters, whereas the gray module does not.
of the SPN, re-normalize such that parameters leading int0  Req arrows show the flow of gradients
a sum node add up to 1, and evaluate the SPN as usual. We during backpropagation.

visualize the computation graph of this process in Figure 3.

We materialize the SPN in the forward pass, and propagate

the gradients through the SPN in the backward pass. We optimize the neural network and embeddings
jointly using gradient descent.
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(a) Large SPN has too much flexi- (b) Small SPN is limited in the (c) HyperSPN has many clusters,
bility in fitting its clusters. flexibility and number of clusters. with shared degree of freedom.

Figure 4: We visualize the soft weight-sharing effect in HyperSPNs, with training data in blue and
testing data in orange. HyperSPNs use a large underlying SPN structure, allowing for a large number
of clusters (3 in each quadrant) to fit the data well. Since the SPN parameters correspond to directly
mixture weights, the weight-sharing strategy in HyperSPNs prevent overfitting by limiting the degrees
of freedom across clusters. We depict this as fixing the shape of the cluster-triples across quadrants.

HyperSPNs can aggressively reduce the degrees of freedom of the original SPN. Using embeddings
of size h, the number of learnable parameters is reduced to O((rn + k?)h). For the same above
example with n = 1000,k = 10,r = 10, choosing embeddings of dimension & = 5 reduces the
number of learnable parameters 20 fold, from around 1M down to around 50k parameters.

The lower degrees of freedom mitigates overfitting of the model. At the same time, the materialized
SPN has a large number of mixture weights, and thus can express distribution families with a greater
number of clusters compared to a small SPN with the same degrees of freedom. We visualize this with
a motivating example in Figure 4, where we represent a dataset using a grid that is split recursively
for each variable (we only draw the splits for the first 2 variables; the rest is implied). Intuitively,
the number of parameters of the SPN is tied closely to the number of clusters in the distribution.
As a result, training a large SPN can produce many clusters that overfit to the training points in
blue (Figure 4a), and training a small SPN can lead to coarse factorizations and inflexible clusters
(Figure 4b). Both cases can lead to poor generalization on the testing points in orange.

On the other hand, the HyperSPN uses a soft weight-sharing strategy by storing its parameters as
low-dimensional embeddings and decoding them through a small-scale shared neural network. This
allows the model to learn a high number of clusters without suffering from too high of a degree of
freedom. In Figure 4c, we visualize the soft weight-sharing as fixing the shape of the cluster-triples
within each quadrant, while still giving the model control over the center position of each cluster-triple.
In this way, HyperSPNs can improve generalization compared to a large SPN with the same number
of mixture weights and a small SPN with the same degrees of freedom. We verify this phenomenon
on a hand-crafted dataset in the Appendix, and further observe similar improvements on real world
datasets in our experiments.

3.1 Memory-Efficient Evaluation

Another merit of HyperSPNss is the ability for low-memory storage of the model, since we only need
to store the embeddings and the neural network, which together have much fewer parameters than the
SPN. Importantly, our abstraction of the SPN structure into sectors allows us to forgo storage of the
nodes and edges in the SPN network. Moreover, not only can we be memory-efficient during storage
, but we can also be memory-efficient during evaluation. To do so, we materialize sectors of the SPN
on the fly, and erase them from memory when they become unnecessary.

The sectors of the SPN are structured as a binary tree, so to evaluate each sector we need all the input
values leading into the sector. These input values correspond to the output values (each a vector of
size k) of its children sectors. Evaluating the binary tree bottom-up depth-wise is possible, but is
also costly since the leaf layer has n sectors leading to O(nk) cost for storing the output values of
children sectors. Rather, we can proceed greedily, evaluating leaf sectors left-to-right and propagating
values up a sectors as soon as all of its children sectors have been evaluated. A simple recursive
argument shows that this procedure requires storing only O(k logn) intermediate values at a time,
and is provably optimal.



Proposition 1. Evaluating a complete binary-tree computation graph requires ©(logn) memory,
where n is the number of leaves in the complete binary-tree, and the memory cost of storing each
intermediate value and performing each computation is assumed to be a constant.

Proof. Perform the sequence of computations based on a post-order traversal of the binary tree,
erasing children values from memory when their parent value has been computed. This process
requires storing at most log n + 1 intermediate values at any time. To show optimality, let C'(¢) denote
the optimal memory cost needed to compute the value for a node ¢. For non-leaf nodes i, Let j; be
the first child of 7 that we begin to process, and j» be the second. Since we processed 7, first (which
requires at least 1 unit of memory throughout), we have C(i) > 1 4 C(j2). As the base case, for
leaf nodes i, we have C(i) = 1. Thus, the optimal memory cost for the whole computation is at least
C(root) = logn + 1. O

Corollary 1. Evaluating a HyperSPN with an underlying RAT-SPN structure requires O(klogn +
h(k* + rn)) memory.

The cost in Corollary 1 can be broken down into two parts, where O(k logn) memory is required
for storing intermediate values in the binary-tree computation graph, and O(h(rn + k?)) memory is
required for storing the HyperSPN parameters and materializing the SPN one sector at a time.

The takeaway is that both storing and evaluating a HyperSPN require less memory than storing and
evaluating the underlying SPN, which require O(rnk?) memory. This memory efficiency arises from
our key insight of using sector abstractions to enable 1) encoding the SPN parameters as embeddings,
2) forgoing storage of the nodes and edges in the SPN network, and 3) mapping the SPN to a
binary-tree computation graph that allows for a low-memory evaluation order.

4 Experiments

We experiment with HyperSPN on three sets of density estimation tasks: the Twenty Datasets
benchmark, the Amazon Baby Registries benchmark, and the Street View House Numbers (SVHN)
dataset. All runs were done using a single GPU. We primarily compare with weight decay as the
competing regularization method. We also include comparisons with smaller SPNs that have the
same degrees of freedom as our HyperSPN, and with results reported from other works in literature.
We omit results on dropout because in our experimentation (and as suggested by [25]), dropout on
SPNs worked poorly for these generative density estimation tasks. In all three sets of tasks, we find
that HyperSPNs give better generalization performance than weight decay, when comparing using the
same underlying SPN structure and optimizer. Furthermore, HyperSPNs outperforms results reported
in literature on EiNETs trained using the same optimization method (Adam), and is competitive
against results reported on stochastic EM (sEM).

4.1 Twenty Datasets

The Twenty Datasets benchmark [12] is a standard benchmark used in comparing PC models. Our
experiment aims to compare the use of HyperSPN against the baseline of regularization via weight
decay, using the same underlying SPN structure for both. We use the RAT-SPN structure described
in Section 2.1, choosing layer size parameter £ = 5 and replicas r = 50, randomizing the variable
orders for each replica. The number of learnable parameters in this SPN structure is shown in the #
Params column under Weight Decay in Table 1. For Weight Decay, we vary the weight decay value
between le-3, 1e-4, and le-5.

The HyperSPN uses the exact same underlying SPN structure, along with an external neural network
(a 2 layer MLP of width 20) and embeddings of dimension ranging between h = 5,10,20. The
number of learnable parameters in the HyperSPN is around 5 times smaller, as shown in the # Params
column under HyperSPN. We describe more details of our training setup in the Appendix.

In Table 1, we show in bold the better of the results between Weight Decay and HyperSPN. We see
that HyperSPN outperforms Weight Decay on all but two of the datasets. On top of that, storing and
evaluating the HyperSPN can be much more memory-efficient, as shown by the reduced number of
trainable parameters and as described by the techniques in Section 3.1.



Table 1: Twenty Datasets. We plot the test log-likelihood and the number of trainable parameters.
Bold values indicate the best results between the two regularization strategies of Weight Decay and
HyperSPN, using the same SPN structure and optimizer. Underlined values indicate the best results
when compared also to reported values in literature using EINETs/Adam* and RAT-SPN/sEM'.

Adam Adam Adam sEM

Name Variables Weight Decay HyperSPN *

Log-LH # Params | Log-LH # Params || Log-LH | Log-LH
NLTCS 16 -6.02 40050 -6.01 9115 -6.04 -6.01
MSNBC 17 -6.04 42550 -6.05 9615 -6.03 -6.04
KDDCup2k 64 -2.14 160050 -2.13 33115 -2.15 -2.13
Plants 69 -13.41 172550 -13.27 35615 -13.74 -13.44
Audio 100 -40.14 250050 -39.74 51115 -40.22 -39.96
Jester 100 -52.99 250050 -52.74 51115 -53.10 -52.97
Netflix 100 -57.18 250050 -56.62 51115 -57.10 -56.85
Accidents 111 -35.55 277550 -35.40 56615 -37.45 -35.49
Retail 135 -10.90 337550 -10.89 68615 -10.97 -10.91
Pumsb-star 163 -31.08 407550 -31.07 82615 -39.23 -32.53
DNA 180 -98.42 450050 -98.79 91115 -97.68 -97.23
Kosarek 190 -10.88 475050 -10.90 96115 -10.92 -10.89
MSWeb 294 -10.14 735050 -9.90 148115 -10.26 -10.12
Book 500 -34.84 1250050 | -34.86 251115 -35.15 -34.68
EachMovie 500 -52.85 1250050 | -51.62 251115 -55.49 -53.63
WebKB 839 -159.68 2097550 | -157.69 420615 -160.51 | -157.53
Reuters-52 889 -90.15 2222550 | -86.12 445615 -92.76 -87.37
20Newsgrp 910 -154.36 2275050 | -152.49 456115 -154.41 | -152.06
BBC 1058 -262.77 2645050 | -254.44 530115 -267.86 | -252.14
Ad 1556 -54.82 3890050 | -28.58 779115 -63.82 -48.47

On the two right-most columns, we directly copy over results reported in literature. We compare with
training EiNETs on Adam (the same optimizer as our setup) [24], and training RAT-SPNs on sEM (a
similar network structure as our setup) [25]. We see that HyperSPN also compares favorably to these
reported results (the best values underlined).

To illustrate the regularization effects of HyperSPN, we plot training curves on the training and
validation data for the Plants and for Pumsb-star datasets. We use the same HyperSPN model
described above. For clarity, let M denote the size of its underlying SPN and m denote its true
number of learnable parameters (those in its external neural network and embeddings). We then
construct two SPNs — one with size M (SPN-Large) and one with size m (SPN-Small) — and overlay
their training curves in Figure 5. For both plots in Figure 5a and 5b, SPN-Large suffers from
overfitting on the training data (presumably due to the large degrees of freedom), and SPN-Small fits
the data poorly (presumably limited by the size of the SPN). Instead, HyperSPN strikes the balance
between the expressiveness of a large underlying SPN, and regularization properties from the compact
neural network with low degrees of freedom. This translates to better generalization on the validation
data shown in the plots of Figure 5, and on the testing data shown in Table 1.

4.2 Amazon Baby Registries

We conduct similar experiments on the Amazon Baby Registries dataset [8]. We repeat the same
experimental setup of maximizing the log-likelihood of data, and use the same model structure for
HyperSPN and Weight Decay as their respective structures described in the previous section.

In Table 2, we see that HyperSPN clearly outperforms Weight Decay as a regularization technique,
giving better test log-likelihoods (in bold) while using around 5 times fewer trainable parameters. On
the right-most column we include results as reported in literature [37] on training EiNETs using SEM.
Although the comparison with this right-most column is hard to interpret due to the differences in
model architecture, optimization procedure, and regularization, we still note that HyperSPNs compare
favorably on the majority of the datasets (best values underlined).
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Figure 5: We plot the training curves on Plants and Pumsb-star from the Twenty Datasets benchmark.
The HyperSPN has the same underlying SPN as SPN-Large, but limits its degrees of freedom to the
same as those of SPN-Small. In both plots, HyperSPN fits the data better than SPN-Small, and is
better regularized than SPN-Large, leading to the best results on the validation set (solid orange line).

The experimental results on the Amazon Baby Registries benchmark confirm our findings in the
previous subsection. On both tasks, HyperSPNs generalizes much better than Weight Decay when
compared on the same underlying SPN structure, while enabling more memory-efficient storage and
evaluation of the model.

Table 2: Amazon Baby Registries. We plot the test log-likelihood and the number of trainable
parameters. Bold values indicate the best results between the two regularization strategies of Weight
Decay and HyperSPN, using the same SPN structure and optimizer. Underlined values indicate the
best results when compared also to reported values in literature using EiNETs/sEM*.

Adam Adam sEM

Name Variables Weight Decay HyperSPN *
Log-LH #Params | Log-LH # Params || Log-LH

Apparel 100 -9.32 250050 -9.28 50655 -9.24
Bath 100 -8.54 250050 -8.52 50655 -8.49
Bedding 100 -8.59 250050 -8.57 50655 -8.55
Carseats 34 -4.72 85050 -4.65 17655 -4.72
Diaper 100 -9.99 250050 -9.91 50655 -9.86
Feeding 100 -11.35 250050 -11.30 50655 -11.27
Furniture 32 -4.54 80050 -4.32 16655 -4.38
Gear 100 -9.21 250050 -9.21 50655 -9.18
Gifts 16 -3.43 40050 -3.40 8655 -3.42
Health 62 -7.49 155050 -7.41 31655 -1.47
Media 58 -7.86 145050 -7.83 29655 -7.82
Moms 16 -3.48 40050 -3.47 8655 -3.48
Safety 36 -4.48 90050 -4.34 18655 -4.39
Strollers 40 -5.25 100050 -5.00 20655 -5.07
Toys 62 -7.83 155050 -1.79 31655 -7.84

Sample Quality In addition to generalization performance on log-likelihood, we can examine the
sample quality of HyperSPNs in comparison to standard SPNs. To estimate sample quality, we take
the approach of applying kernel density estimation / Parzen windows [3] using the test dataset. Out
of the 35 datasets from the above Twenty Datasets and Amazon Baby Registries, we observe that
HyperSPNs report better sample quality for 29 of them, compared to SPNs trained with weight decay.
We report the full results of this experiment in the Appendix.

4.3 Street View House Numbers (SVHN)

Lastly, we experiment on the SVHN dataset [20]. We use the infrastructure provided by [24], which
groups the train/valid/test data into 100 clusters, then learns a separate PC for each cluster. The final
density estimator is a combination of all the individual PCs under one mixture distribution. Here, we
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Figure 6: We plot the improvement in test log-likelihood on the Street View House Numbers (SVHN)
dataset when using HyperSPN instead of weight decay. Following the setup from [24], the dataset is
split into 100 clusters and a separate HyperSPN is learned for each cluster. We sort the cluster index

by improvement for readability. The dashed blue line corresponds to the average (weighted by cluster
size) log-likelihood improvement of 9.

study the performance of each individual PC on each cluster separately, comparing between weight
decay and HyperSPN when trained using Adam.

The underlying PC structure is an EiNET with leaves that hold continuous distributions [24]. To
introduce soft weight-sharing of the HyperSPN on the EiNET, we partition the parameters into
sectors of size 40, which is the number of sum nodes used in each layer in the setup of [24]. We
use an embedding size of h = 8, which reduces the number of learnable edge-parameters in the
EiNET by about 5 fold. In Figure 6, we plot the difference between HyperSPN and weight decay
in log-likelihood on the test set, sorted in increasing order for readability. The higher the value, the
more improvement we observe when using HyperSPN as the regularization method. In around 70%
of the clusters, we see an improvement in generalization, and on average (weighted by cluster size)
the HyperSPN achieves an improvement in log-likelihood of 9 + 4.

Our experiments suggest that HyperSPNs give a superior regularization strategy for PCs compared
to the primary alternative of weight decay. HyperSPNs also lead to better performance than other
reported approaches in literature that use the same optimizer (Adam), as well as other reported
methods that use sSEM. Our experimental results are general, showing that HyperSPNs are applicable
across three standard benchmarks, across PCs with discrete and continuous leaf distributions, and
across different state-of-the-art structures such as RAT-SPNs and EiNETs.

5 Related Work

Many existing works focus on structure learning for probabilistic circuits, covering a wide range
of PC types [7, 28, 27, 15]. These approaches often regularize by limiting the complexity of the
structure [7, 35]. However, structure learning in general can be tedious and difficult to tune [25].

Recent works have embraced a more deep-learning-like framework by prescribing the structure of the
PC and learning only the model parameters [25, 24]. This framework leads to the training of large PCs
with millions of parameters. However, little exploration has been done around regularization in this
new parameter-centric framework. For generative settings, dropout was suggested as unsuitable [25],
leaving only weight decay as the primary parameter regularization method. Concurrently, other
works [16] look into data softening and entropy regularization techniques. In our work, we propose
the new regularization strategy of HyperSPNs which show promising improvements in generalization.

Finally, the idea of generating parameters with an external neural network comes from HyperNet-
works [11], which were introduced as an effective architecture for recurrent models. Soft weight-
sharing strategies in general [21] have also shown good empirical results [2] and proven useful for
neural network compression [32]. There have also been recent work on using similar techniques to
parameterize conditional SPNs [29, 36].



6 Conclusion

We propose HyperSPNs, a new paradigm of training large probabilistic circuits using a small-scale
external neural network to generate the parameters of the probabilistic circuit. HyperSPNs provide
regularization by aggressively reducing the degrees of freedom through a soft weight-sharing strategy.
We show empirical improvements in the generalization performance of PCs compared to competing
regularization methods, across both discrete and continuous density estimation tasks, and across
different state-of-the-art PC structures. As a bonus, HyperSPNs enable memory-efficient storage and
evaluation, combining the expressiveness of large PCs with the compactness of small models.

Limitations and Future Work Our analysis of the memory efficiency of HyperSPNs is limited
their storage and evaluation, since training HyperSPNs involves manipulating of the gradients through
the underlying SPN. Future work can look into combining HyperSPNs with techniques from memory-
efficient back propagation [4, 10] to train very large SPNs that do not fit in memory.
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