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Abstract
Numerous multimodal misinformation bench-001
marks exhibit bias toward specific modalities,002
allowing detectors to make predictions based003
solely on one modality. While previous re-004
search has quantified bias at the dataset level005
or manually identified spurious correlations be-006
tween modalities and labels, these approaches007
lack meaningful insights at the sample level and008
struggle to scale to the vast amount of online009
information. In this paper, we investigate the010
design for automated recognition of modality011
bias at the sample level. Specifically, we pro-012
pose three bias quantification methods based013
on theories/views of different levels of granular-014
ity: 1) a coarse-grained evaluation of modality015
benefit; 2) a medium-grained quantification of016
information flow; and 3) a fine-grained causal-017
ity analysis. To verify the effectiveness, we018
conduct a human evaluation on two popular019
benchmarks. Experimental results reveal three020
interesting findings that provide potential di-021
rection toward future research: 1) Ensembling022
multiple views is crucial for reliable automated023
analysis; 2) Automated analysis is prone to024
detector-induced fluctuations; and 3) Different025
views produce a higher agreement on modality-026
balanced samples but diverge on biased ones.027

1 Introduction028

The proliferation of online social media has ac-029

celerated the dissemination of misinformation (Li030

et al., 2024; Bu et al., 2024; Wang et al., 2024; Yue031

et al., 2024b; Wan et al., 2024), particularly in mul-032

timodal contexts where images and texts mutually033

reinforce each other, enhancing persuasiveness and034

deception to pepole (Tahmasebi et al., 2024; Guo035

et al., 2024; Chen and Shu, 2023; Comito et al.,036

2023). To verify the ability of Multimodal Mis-037

information Detection (MMD) models to exploit038

multimodal information, previous studies have pro-039

posed several Multimodal Misinformation Bench-040

marks (MMBs) such as Fakeddit (Nakamura et al.,041

2019) and MMFakeBench (Liu et al., 2024b).042

However, these benchmarks exhibit bias to- 043

ward specific modality (Papadopoulos et al., 2024), 044

where one modality may dominate as the primary 045

source of information, thereby diminishing the role 046

of the other modality (Guo et al., 2023; Liang et al., 047

2024). Such modality bias can lead to serious 048

problems: First, from the training aspect, models 049

trained on biased benchmarks may lack robustness 050

to the variation of that modality (Yang et al., 2024), 051

making them vulnerable to uni-modal attacks. Sec- 052

ond, from the evaluation aspect, biased benchmarks 053

may yield incomprehensive measurement of MMD 054

models, e.g., a model might perform well on a text- 055

biased benchmark because it learns spurious text- 056

label correlations instead of effectively integrating 057

multimodal information (Goyal et al., 2017). 058

Unfortunately, no systematic investigation has 059

been conducted on the modality bias of existing 060

MMBs. Current methods for detecting modality 061

bias on general multimodal benchmarks like visual 062

question answering can be broadly divided into two 063

categories: automated dataset-level quantification 064

and manual identification by human experts. For 065

the former one, Liang et al. (2024) utilize infor- 066

mation theory to measure redundancy, uniqueness, 067

and synergy across the entire dataset. However, as 068

illustrated in Figure 1, bias can vary significantly 069

across individual samples within a dataset, suggest- 070

ing that this approach lacks the granularity needed 071

to fully capture sample-specific biases. The latter 072

one, as demonstrated by Liu et al. (2024a), involves 073

detecting specific issues, such as spurious correla- 074

tions between text modalities and labels. While 075

manual identification can effectively detect biased 076

samples, it is limited by scalability and is imprac- 077

tical for handling a large volume of online data. 078

This naturally raises the question: is it possible to 079

automatically measure the modality bias at the 080

sample level without human intervention? 081

To this end, we conduct a systematic analysis 082

of modality bias in MMBs and verify whether ma- 083
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“Roman officer is 
scouting for the enemy.”

“Adolf Hitler comes 
back to life.” 

“This super huge 
cat that broken a 

world record.”

Multi-view analysis: Multi-view analysis: Multi-view analysis:

Uni-image Modality-balance Uni-text

Figure 1: The automated analysis of samples from Fakeddit. For biased samples, we can directly infer from the
preferred modality like the Left (an unreasonable fat cat image) and Right (the impossibility of resurrection) one.

chines can automatically provide a reasonable mea-084

surement. Modality bias can be classified into three085

types: Uni-image, Uni-text, and Modality-balance,086

which indicate image bias, text bias, and no bias.087

We leverage three quantification methods of dif-088

ferent granularities and adapt them to bias identi-089

fication, i.e., modality benefit, modality flow, and090

modality causal effect. At a coarse level, modal-091

ity benefit identifies the input modality that con-092

tributes the most for final predictions using Shapley093

values (Wei et al., 2024; Shapley, 1953) from game094

theory, which fairly assesses individual contribu-095

tions of different players in cooperative scenarios.096

At a medium level, modality flow utilizes saliency097

scores (Michel et al., 2019; Wang et al., 2023),098

which quantify attention interactions between dif-099

ferent input modalities and output predictions to100

inspect the decision-making process and determine101

the prior modality. At the finest level, modality102

causal effect constructs the causal inference graph103

of MMD, which contains modality-balanced and104

biased paths, and traces the path that has the maxi-105

mal causal effect based on counterfactual reason-106

ing (Chen et al., 2023b, 2024b). We treat these107

methods as providing different views upon the de-108

cision of modality bias and adopt a voting mech-109

anism to integrate these three views to obtain an110

ensembled multi-view output.111

To validate the effectiveness of such automated112

sample-specific bias analysis, we conduct a human113

evaluation on 100 samples of Fakeddit (Nakamura114

et al., 2019) and MMFakeBench (Liu et al., 2024b)115

respectively. Experimental results reveal three116

interesting findings that offer potential direction117

and design consideration toward future automated118

sample-specific modality bias analysis: 1) Ensem-119

bling multiple views is crucial for a reliable au-120

tomated analysis, which is not possible through121

single-view analysis, because the intricate nature122

of automated sample-specific modality bias detec-123

tion is a complex task for machines. 2) Automated124

analysis is prone to detector-induced fluctuations. 125

The performance of both single- and multi-view 126

analysis is sensitive to the choice of misinformation 127

detectors. This phenomenon is unavoidable since 128

each view is dependent on the parameters of the 129

chosen detector. Mitigating such sensitivity could 130

enhance its practicality for real-world deployment. 131

3) Different views produce a higher agreement on 132

modality-balanced samples but diverge on biased 133

ones. Overall, we believe that automated sample- 134

specific analysis has significant practical applica- 135

tions, e.g., cleaning a biased MMB by retaining 136

modality-balanced samples with high consistency. 137

Our contributions are as follows: Firstly, we are 138

the first to design an automated sample-specific 139

modality bias analysis for multimodal misinforma- 140

tion benchmarks. Secondly, we investigate the 141

effectiveness of the proposed automated analysis 142

via a human evaluation on two multimodal misin- 143

formation benchmarks. Thirdly, we uncover some 144

interesting findings from empirical experiments, of- 145

fering potential directions toward future research. 146

2 Related Work 147

2.1 Modality Bias 148

Modality bias is prevalent in various multimodal 149

learning tasks (Papadopoulos et al., 2023; Chen 150

et al., 2022). While there is no systematic anal- 151

ysis of modality bias in MMBs, prior research 152

has uncovered bias patterns in general multimodal 153

benchmarks like visual question answering (VQA). 154

Two common approaches for analyzing modality 155

bias include automated dataset-level quantification 156

and manual identification by human experts. In 157

the case of automated quantification, Liang et al. 158

(2024) measure modality interaction using infor- 159

mation theory and propose two PID estimators to 160

evaluate entire datasets. However, bias can vary 161

significantly across individual samples in MMBs, 162

which limits the ability of dataset-level approaches 163
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to detect sample-specific biases. Regarding manual164

identification, Goyal et al. (2017) reveal a spurious165

correlation between text and labels in the VQA (An-166

tol et al., 2015) dataset, where simply answering167

“yes” to questions beginning with “Do you see a168

...” achieves 87% accuracy without considering the169

rest of the question or the image. Similarly, Liu170

et al. (2024a) highlight that over 90% of the an-171

swers to questions about whether the audio in the172

MUSIC-AVQA (Li et al., 2022) dataset matches173

the instrument shown in the video are “yes”. Pa-174

padopoulos et al. (2024) simply hypothesize that175

modality bias in multimodal misinformation bench-176

marks stems from “asymmetric pairs” and they do177

not make a systematical analysis on the automated178

bias quantization. Although manual methods can179

effectively detect and mitigate bias through tech-180

niques like data augmentation or filtering rules,181

they are impractical for analyzing the vast amount182

of online multimodal misinformation.183

Since bias can vary significantly across individ-184

ual samples, this paper investigates the feasibility185

of automated sample-specific modality bias analy-186

sis and makes some interesting observations, pro-187

viding potential direction and design consideration.188

2.2 Multimodal Misinformation Benchmarks189

Current multimodal misinformation benchmarks190

can be broadly categorized into two types: real-191

world and synthetic datasets. Fakeddit (Nakamura192

et al., 2019), the largest multimodal misinformation193

dataset, contains over 400k samples sourced from194

the social networking platform Reddit. Among syn-195

thetic datasets, NewsCLIPings (Luo et al., 2021) is196

constructed using techniques such as scene learn-197

ing, person matching, and CLIP (Radford et al.,198

2021) to produce out-of-context samples. MM-199

FakeBench (Liu et al., 2024b) leverages powerful200

vision-language models like DALL-E3 (Ramesh201

et al., 2022) to generate AI-based misinformation202

related to textual veracity, visual veracity, and203

cross-modal consistency distortion. However, as204

discussed in the introduction, there exists signif-205

icant modality bias in these benchmarks, which206

presents clear drawbacks for both training and eval-207

uating MMD models in real-world deployment.208

In this paper, we perform the automated analysis209

on two multimodal misinformation benchmarks: a210

real-world dataset Fakeddit, and a synthetic dataset211

MMFakeBench. By analyzing benchmarks of dif-212

ferent scenarios, we seek to comprehensively vali-213

date the effectiveness of our automated analysis.214

3 Automated Sample-Specific Analysis 215

3.1 Overview 216

The overall workflow of automated analysis is il- 217

lustrated in Figure 2. Several misinformation de- 218

tectors are used to power the computation of auto- 219

mated analysis, i.e., the Image-only model, Image- 220

text model, Text-only model, and large vision- 221

language model. We need to fine-tune these models 222

for more reliable measurements because existing 223

models lack robust zero-shot capabilities for MMD. 224

For a multimodal misinformation benchmark, we 225

randomly select some samples (Subset1) to fine- 226

tune the models and perform single- and multi-view 227

analysis on the remaining subset (Subset2). 228

3.2 Modality Benefit 229

From the view of modality benefit, we introduce 230

a Shapely value-based metric (Wei et al., 2024; 231

Shapley, 1953), which is designed for cooperative 232

games with n players, to observe the uni-modal 233

contribution by comparing the model’s prediction 234

with/without specific modality. For generalization, 235

we first illustrate the scenario with n modality and 236

then provide the formula when n = 2. 237

Each sample x = (xm1 , xm2 , ..., xmn) is with 238

n modality, y is the corresponding label, xmi 239

is the modality mi of sample x. Let M = 240

{m1,m2, ...,mn} be the set of all modalities, M ′ 241

be the subset of M (M ′ ⊆ M) and xM
′

be the in- 242

put sample x with modality set M ′, we can define 243

a benefit function V that maps the model’s pre- 244

diction with input M ′ to its benefits: if ŷ = y, 245

V (xM
′
) = |M ′|; otherwise, V (xM

′
) = 0. Here 246

ŷ is prediction and || denotes the number of input 247

M ′, i.e., if the model makes a correct prediction, 248

the benefit will be the number of input modalities. 249

Since a player can interact with other players, dif- 250

ferent permutations of input modalities may yield 251

varying outcomes. If we define a certain permuta- 252

tion as a strategy and let
∏

M be the permutation 253

of M , there is |
∏

M | = n! strategies. For a strat- 254

egy π ∈
∏

M , the marginal benefit of modality mi 255

of sample x in π can be defined as: v (π;xmi) = 256

V (π (xmi) ∪ xmi)− V (π (xmi)) , where π (xmi) 257

represents all predecessors of xmi in π. This for- 258

mula quantifies the increased benefit of modality 259

xmi compared to its predecessors. Considering the 260

marginal contribution of modality mi of sample x 261

in all strategies, the final benefit of modality mi is 262

given by: ϕmi =
1
n!

∑
π∈

∏
M
v (π;xmi). 263

As shown in Figure 2(b), when it comes to the 264
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(b) The view of modality benefit

(c) The view of modality flow

(d) The view of modality causal effect
(a) The automated analysis pipeline for 
a multimodal misinformation benchmark

Subset 1 Subset 2

Image-only 
Model

Image-text 
Model

Text-only 
Model

VLM

Automated analysis

Finetune

Evaluation at sam
ple-level

Figure 2: Illustration of proposed automated analysis for modality bias in multimodal misinformation benchmarks.

multimodal misinformation samples with image265

and text (n = 2), there are simply two strategies266

in
∏

M = {π1 = (m1,m2), π2 = (m2,m1)}. The267

final contribution of such a specific modality m1 is268

given by: ϕm1 = 1
2 [v (π1;x

m1) + v (π2;x
m1)] =269

1
2 [V (xm1 , 0m2)− V (0m1 , 0m2) + V (xm2 , xm1)270

−V (xm2 , 0m1)] , where the above 0mi denotes271

the absence of modality mi. We adopt zero input272

for image modality and placeholder padding273

for text modality following Wei et al. (2024).274

We set V
(
0image, 0text

)
to zero and leverage275

Image-only, Image-text, and Text-only models276

to compute V
(
ximage, 0text

)
, V

(
xtext, ximage

)
,277

and V
(
xtext, 0image

)
, respectively. Finally, we278

can determine the bias type of each sample, i.e.,279

Uni-image: ϕimage > ϕtext, Modality-balance:280

ϕimage = ϕtext, Uni-text: ϕimage < ϕtext.281

3.3 Modality Flow282

Figure 2(c) depicts the view of modality flow: com-283

paring the information flow from the image/text284

to the output token intuitively reveals whether285

the model relies more on image or text modal-286

ity when making predictions. Computing accu-287

rate attention interactions requires advanced mod-288

els to provide reliable attention signals, so we289

leverage a large vision-language model (LVLM)290

rather than smaller models. Suppose the input291

prompt for MMD is P = [..., IT, ..., TT, ..., OT ], 292

where IT = (IT1, IT2, ..., ITn1) is the image to- 293

ken, TT = (TT1, TT2, ..., TTn2) is the text token 294

and OT is the output token which is usually the last 295

token. Following Wang et al. (2023), we employ 296

the saliency score to quantify critical token inter- 297

actions: S =
∣∣∣∑hAh ⊙ ∂L(P )

∂Ah

∣∣∣ , where Ah repre- 298

sents the attention matrix of h-th attention head, ⊙ 299

is Hadamard product, P is the input prompt, L(·) 300

is the loss function of multimodal misinformation 301

detection. Concretely, S(j1, j2) denotes the impor- 302

tance of the information flow from j2-th token to 303

j1-th token. Based on the observation that shallow 304

layers are primarily used for token information ag- 305

gregation and analysis, and deep layers leverage 306

token information for prediction, we only calculate 307

the saliency score for the last attention layer. To 308

study the effect of different saliency calculations, 309

we compare our attention-based saliency score cal- 310

culation with another perturbation-based method 311

LIME (Ribeiro et al., 2016) in Appendix C. 312

Generally, the number of image tokens exceeds 313

that of text tokens. For instance, a 224 × 224 im- 314

age can be divided into 64 patch tokens, while 315

the corresponding text typically comprises fewer 316

than ten tokens. Since most image tokens may 317

represent background information, their individ- 318

ual contribution may be less significant compared 319
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to single text tokens. Therefore, to assess the320

overall contribution, we adopt the sum of the321

saliency score as the final significance of infor-322

mation flow from the respective modality to pre-323

diction: Sit =
∑n1

k S(OT, ITk), ITk ∈ IT and324

Stt =
∑n2

k S(OT, TTk), TTk ∈ TT . we study325

the effects of different computation strategies of326

Sit and Stt in Appendix D.327

Following Jin et al. (2021), we apply a normal-328

ization to Sit and Stt to map them to the same329

interval: Sit,norm = Sit
Sit+Stt

, Stt,norm = Stt
Sit+Stt

.330

In contrast to the discrete space of the Shapely331

value, the value space of saliency scores is continu-332

ous, which means Sit,norm ̸= Stt,norm even when333

the sample is modality balanced. Therefore, we334

define a hyperparameter threshold ϵ to confine the335

differences of modality-balanced cases. In other336

words, when |Sit,norm − Stt,norm| < ϵ, we con-337

sider the sample to be modality-balanced. We con-338

duct a user study to determine the threshold ϵ and339

a detailed description can be found in Appendix E.340

3.4 Modality Causal Effect341

The causal mechanisms of MMD problem-solving342

involve first analyzing the core information, such343

as primary entities in images and main semantics344

in text, and then combining them to derive the final345

prediction. However, biased data can yield predic-346

tions directly from a single modality.347

In Figure 2(d), we illustrate all possible causal348

reasoning paths for MMD, where different paths349

correspond to different types of modality bias. Sup-350

pose I is the image, C is the irrelevant visual con-351

tent of the image, E is the core entity of the image,352

T is the text, W is the core chunk of the text, R is353

the irrelevant fragment of the text, F is the infor-354

mation fusion of E and W , and O is the output, we355

make the following definitions. Image Bias: the356

model may directly predict through I → C → O357

and I → E → O. Text Bias: the inference paths358

referred to as text bias include T → R → O and359

T → W → O. Modality Balance: the desired360

causal path is via I → E → F , T → W → F and361

F → O. For core information extraction (C, E,362

W and R), we utilize MiniCPM-V 2.6 and Llama3-363

8B (AI@Meta, 2024) to process image and text,364

respectively. Appendix F provides details of core365

information extraction. Then we employ counter-366

factual reasoning to quantify the causal effects of367

different paths and identify bias types correspond-368

ing to the path exhibiting the greatest causal effect.369

Counterfactual reasoning can estimate the causal370

effect of a treatment variable on a response vari- 371

able by comparing outcomes under conditions that 372

are different from the factual world. We denote 373

the causal mechanism of MMD as: Oc,e,w,r,f = 374

O (C = c, E = e,W = w,R = r, F = f) , f = 375

Fe,w = F (E = e,W = w). 376

Consider the variable W as an example. There 377

exist two paths between W and O, namely W → 378

F → O and W → O in the causal inference 379

graph. Following Chen et al. (2023b), we de- 380

fine the total effect (TE) of W = w on O as: 381

TE(W on O) = Ow,f − Ow∗,f∗ , where ∗ de- 382

notes the reference value. Total Effect can be in- 383

terpreted as the comparison between two potential 384

outcomes of W under two distinct treatments w 385

and w∗. Meanwhile, Total Effect can be divided 386

into Natural Direct Effect (NDE) and Total Indi- 387

rect Effect (TIE). NDE is the causal effect of path 388

W → O which means information from W to F 389

has been blocked, while TIE denotes the causal 390

effect of path W → F → O. 391

In the counterfactual scenario, W is supposed 392

to be the values w and w∗ simultaneously, where 393

w∗ influences the indirect path W → F → O, 394

while w influences the direct path W → O. In 395

other words, w∗ isolates the influence of W on 396

the intermediate factor F , thereby enabling us to 397

directly observe the effect of W on O. Therefore, 398

NDE(W on O) = Ow,f∗ − Ow∗,f∗ and we have 399

TIE(W on O) = TE −NDE = Ow,f −Ow,f∗ . 400

Following previous studies (Chen et al., 2023b; 401

Wang et al., 2021), we also set other variables C, 402

E, and R to their reference value c∗, e∗, and r∗ 403

when W = w∗. For such reference value, we 404

adopt zero input for c∗ and e∗, and placeholder 405

padding for w∗ and r∗. To obtain the ensemble pre- 406

diction, we apply a non-linear fusion strategy. For 407

example,Oc,e,w,r,f = F (Oc, Oe, Ow, Or, Of ) = 408

tanh(Oc)+ tanh(Oe)+ tanh(Ow)+ tanh(Or)+ 409

Of , where F(·) is the non-linear fusion strategy, 410

Oc is the output of the irrelevant visual context 411

branch, Oe is the outcome of the core entity branch, 412

Ow is the result of the core semantic words branch, 413

Or is the output of the irrelevant word branch, Of is 414

the output of fusion branch. To compute these out- 415

puts, we utilize the Image-only model for Oc and 416

Oe, the Text-only model for Ow and Or, and the 417

Image-text model for Of . While F(·) can be any 418

differentiable binary function, Chen et al. (2023b) 419

observe that tanh-sum yields the best performance. 420

Similarly, we can compute the natural direct 421

effect of variable C, E, and R on O and the 422
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total indirect effect of variable E on O, i.e.,423

NDE(C on O), NDE(E on O), NDE(R on O),424

and TIE(E on O). As shown in Figure 2(d), these425

causal effect items correspond to the six distinct426

paths within the inference graph, with each path427

associated with a specific modality bias type. For428

each sample, we determine the bias type based on429

the path exhibiting the greatest causal effect.430

Finally, multi-view analysis is derived through a431

prior majority voting, where the outcome is deter-432

mined by the majority of three views. In the event433

of a tie, priority is assigned to the category with the434

larger number of samples in the human annotation.435

Discussion of more ensemble strategies is shown436

in Appendix B.437

4 Experiment Setting438

4.1 Benchmarks439

We conduct the automated sample-specific modal-440

ity bias analysis on two multimodal misinforma-441

tion benchmarks, i.e., Fakeddit and MMFakeBench.442

Fakeddit is a highly diverse real-world benchmark443

and contains over six hundred thousand multimodal444

samples. Moreover, MMFakeBench is a synthetic445

dataset generated by large vision-language mod-446

els like DALL-E3. These two benchmarks are447

particularly representative due to their large scale448

( 680K samples) and extensive coverage of diverse449

domains, including real-world misinformation, AI-450

generated synthetic content, satire, rumors, face451

swaps, and Photoshop-edited images. A detailed452

description of these datasets, along with their sta-453

tistical distributions, is provided in AppendixG.454

4.2 Models455

We define the required types of misinformation456

detection models for our multi-view analysis as457

{Image-only, Image-text, Text-only, LVLM}. For458

computational efficiency, we use the first three459

types of models to support the analysis of modality460

benefit and modality causal effect (Niu et al., 2021).461

As for modality flow, computing accurate attention462

interactions requires advanced models to provide463

reliable attention signals, so we leverage a large464

vision-language model (LVLM) rather than smaller465

models. We select the following models for experi-466

mentation, i.e., Image-only: UnivFD (Ojha et al.,467

2023) and DT(I); Image-text: HAMMER (Shao468

et al., 2023) and DT(I, T) (Papadopoulos et al.,469

2024); Text-only: FFNews (Huang et al., 2022)470

and DT(T); LVLM: MiniCPM-V 2.6 (Yao et al.,471

2024). Since existing models demonstrate lim- 472

ited zero-shot detection performance, we first fine- 473

tune these models to improve their reliability. Ap- 474

pendix H describes details of selected models, the 475

selection criteria, and the fine-tuning process. 476

4.3 Implement Details 477

We conduct automated analysis on 100 samples 478

from each benchmark with the following model 479

group: {UnivFD, HAMMER, FFNews, MiniCPM- 480

V 2.6}. All experiments are conducted on one 481

A100 80GB GPU. The approximate inference time 482

of modality benefit, flow, and causal effect: 1 hour, 483

3 hours, and 2 hours every 60k samples respec- 484

tively. More experiment details can be found in 485

Appendix E, F. 486

4.4 Evaluation 487

We are the first to propose an automated sample- 488

specific modality bias analysis and no existing base- 489

lines are available for direct comparison. Therefore, 490

we conduct a human evaluation with three annota- 491

tors to validate the alignment of single- and multi- 492

view analysis and human judgment. To assess the 493

reliability and agreement of human annotations, 494

we conducted Krippendorff’s alpha test (Krippen- 495

dorff, 2011). Details of annotators’ demographic 496

characteristics, annotation procedure, and the re- 497

sult of Krippendorff’s alpha test can be found in 498

Appendix I. We report the predicted proportions 499

of each modality bias type and the percentage 500

that aligns with human judgment. For example, 501

0.84[85.71] denotes that multi-view analysis clas- 502

sifies 0.84 of the samples as modality-balance, and 503

among these samples, 85.71% of the results are 504

consistent with human judgment. 505

5 Experimental Results 506

This section contains three interesting findings (5.1, 507

5.2, 5.3) about our proposed automated sample- 508

specific modality bias analysis. More ablation ex- 509

periments (i.e., the effect of ensemble strategies, 510

saliency score calculations, and computation strate- 511

gies of Sit and Stt in modality flow) and the error 512

analysis can be found in Appendix B, C, D, J. 513

5.1 Key to Reliable Automated Analysis 514

Table 1 depicts the quantification comparison of 515

automated analysis and human judgment. 516

Comparison of Proportion. According to 517

human judgment, most samples are modality- 518

balanced, while only a small proportion are bi- 519
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Fakeddit MMFakeBench

Uni-image Modality-balance Uni-text Acc Uni-image Modality-balance Uni-text Acc

Human 0.18 0.78 0.04 - 0.13 0.74 0.13 -
Modality benefit 0.02[0.00] 0.90[78.89] 0.08[37.50] 74.00 0.47[10.64] 0.41[80.49] 0.12[66.67] 46.00
Modality flow 0.15[40.00] 0.52[88.46] 0.33[12.12] 56.00 - 0.67[71.64] 0.33[15.15] 53.00

Modality causal effect 0.40[32.50] 0.56[92.86] 0.04[0.00] 65.00 0.10[40.00] 0.63[82.54] 0.27[40.74] 67.00
Multi-view analysis 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00

Benefit-Flow 0.02[0.00] 0.91[79.12] 0.07[42.86] 75.00 0.16[0.00] 0.82[74.39] 0.02[0.00] 61.00
Benefit-Causal 0.05[0.00] 0.92[79.35] 0.03[0.00] 73.00 0.20[20.00] 0.69[84.06] 0.11[72.73] 70.00
Flow-Causal 0.22[31.82] 0.74[86.49] 0.04[0.00] 71.00 - 0.95[75.79] 0.05[60.00] 75.00

Table 1: The quantification comparison of automated analysis and human judgment. We report the predicted
proportion (without []) and accuracy (within []) of different bias types compared to human annotations. Acc denotes
the overall accuracy. The proportion ranges from 0 to 1 and the accuracy is presented as percentages (%).

ased. Although single-view analysis generally fol-520

lows this pattern, notable differences exist in spe-521

cific numerical values. For example, on Fakeddit,522

modality benefit classifies 0.02 of the samples as523

“Uni-image”, modality flow classifies 0.33 of the524

samples as “Uni-text”, and modality causal effect525

classifies 0.40 of the samples as “Uni-image”. A526

similar trend is observed on MMFakeBench. How-527

ever, multi-view analysis integrates the strengths528

of each individual view, yielding results that most529

closely align with human judgment.530

Comparison of Accuracy. Different views531

reveal distinct patterns of bias, and single-view532

analysis may underperform in certain scenarios.533

For example, the Modality Benefit analysis shows534

strong performance (74.00%) on Fakeddit while535

weak performance (46.00%) on MMFakeBench.536

However, the ensemble multi-view analysis consis-537

tently achieves the highest performance across both538

datasets, underscoring the stability of multi-view539

approaches in the complex task of automatically540

detecting modality bias across diverse scenarios,541

including both real-world and synthetic samples.542

Ablation Study. We also conduct an ablation543

study on three variants to assess the contribution of544

each view: (1) Benefit-Flow: Omitting the modal-545

ity causal effect. (2) Benefit-Causal: Removing546

the modality flow. (3) Flow-Causal: Excluding the547

modality benefit. As shown at the bottom of Ta-548

ble 1, each view contributes meaningfully to the549

multi-view analysis.550

Multi-view analysis significantly outperforms551

the three single-view methods in both performance552

and stability. Therefore, we conclude that auto-553

mated sample-specific modality bias analysis is a554

complex task for machines. While reliable mea-555

surements cannot be attained solely through single-556

view analysis, ensemble multi-view demonstrates557

Fakeddit Group1 Group2 Group3 Group4

Modality benefit 74.00 68.00 74.00 53.00
Modality causal effect 65.00 68.00 62.00 66.00
Multi-view analysis 81.00 72.00 78.00 72.00

MMFakeBench Group1 Group2 Group3 Group4

Modality benefit 46.00 42.00 46.00 64.00
Modality causal effect 67.00 68.00 49.00 69.00
Multi-view analysis 83.00 73.00 64.00 70.00

Table 2: The accuracy [%] of modality benefit, modality
causal effect, and multi-view analysis under different
types of misinformation detector.

promising potential for real-world deployment. 558

5.2 Vulnerability to Detector Fluctuations 559

In the computational process of automated analysis, 560

various misinformation detectors are involved, such 561

as the image-only, image-text, and text-only mod- 562

els utilized in modality benefit and modality causal 563

effect, as well as the LVLM employed in modality 564

flow. A pertinent question arises: is the automated 565

analysis robust to the different choices of misin- 566

formation detectors? 567

To answer this question, we evaluate the sensi- 568

tivity of modality benefit, modality causal effect, 569

and multi-view analysis by altering specific mod- 570

els and observing the change in accuracy based on 571

the same samples selected in Section 5.11. We se- 572

lect four model combinations (across Image-only, 573

Image-text, and Text-only models): 574

• Group1={UnivFD, HAMMER, FFNews} 575

• Group2={DT(I), HAMMER, FFNews} 576

• Group3={UnivFD, DT(I, T), FFNews} 577

1Due to the high computation cost and the strong stability
of LVLM compared to small models, we do not study the
sensitivity of modality flow.
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• Group4={UnivFD, HAMMER, DT(T)}578

As illustrated in Table 2, when considering579

the average performance on Fakeddit and MM-580

FakeBench, the maximum fluctuation exceeds 10%581

for both single-view and multi-view scenarios, indi-582

cating that automated analysis is prone to detector-583

induced fluctuations. We take this phenomenon as584

unavoidable because each view quantifies modality585

bias based on models’ output, and the performance586

of different models can vary significantly. Transfer-587

ring the model for a specific modality inevitably af-588

fects the distribution of prediction for that modality,589

which in turn influences the calculation of modality590

contribution in each view.591

Therefore, in practical applications, certain im-592

provements are necessary to enhance the robust-593

ness of automated analysis. On the one hand, the594

simplest approach is to ensemble various misinfor-595

mation detectors for each view, thus leveraging the596

strengths of different types of detectors. However,597

this method introduces additional computational598

overhead and is more suitable for scenarios where599

real-time consideration is low-priority, such as pre-600

liminary cleaning of modality-biased benchmarks.601

On the other hand, model-agnostic features can be602

incorporated to compute detectors’ output, such603

as edge or texture features for images and TF-IDF604

features for text. While this reduces reliance on605

specific model architectures, it requires the design606

of effective model-agnostic feature extraction meth-607

ods to ensure that these features can capture the key608

information related to modality bias.609

5.3 Modality-balanced vs. Biased Samples610

Table 1 reveals that multi-view analysis achieves611

high accuracy on modality-balanced samples but612

exhibits lower accuracy on biased ones. For ex-613

ample, on Fakeddit, the accuracy of multi-view614

analysis on “Modality-balance” samples is 85.71%,615

whereas on “Uni-text” samples, the accuracy drops616

to 37.50%. A similar trend is observed on MM-617

FakeBench, where the accuracy on “Modality-618

balance” samples is 86.08%, but on “Uni-image”619

samples, it decreases to 57.14%. What contribute620

to this performance discrepancy?621

To answer this question, we use Venn diagrams622

to visualize the intersections among different views623

to analyze the consistency of multi-view analysis.624

It is important to note that this analysis encom-625

passes the entire dataset, rather than those samples626

from human evaluations. As illustrated in Figure 3,627

Uni-image Modality-balance Uni-text

Modality benefit Modality flow Modality causal effect

Figure 3: The Venn diagram of three single-views on
Fakeddit (top three) and MMFakeBench (bottom three).

different views exhibit high alignment on modality- 628

balanced samples but significant divergence on bi- 629

ased samples. We attribute this divergence to the 630

fact that different views possess distinct patterns 631

for capturing bias. Generally, higher consistency 632

among views yields higher accuracy, and thus, this 633

divergence leads to suboptimal accuracy on biased 634

samples. In real-world deployment, if our objective 635

is to clean a modality-biased benchmark by retain- 636

ing only modality-balanced samples, the results of 637

the automated analysis can serve as a robust refer- 638

ence. Conversely, if the focus is on biased samples, 639

it becomes necessary to employ related techniques 640

to mitigate this divergence, thereby ensuring the 641

reliability of the results. For instance, a calibra- 642

tor could be designed to post-process the predicted 643

probabilities of biased samples of each view. 644

6 Conclusion 645

In this work, we investigate whether it is possible 646

to establish an automated sample-specific modality 647

bias analysis for existing multimodal misinforma- 648

tion benchmarks. We first propose three quantifica- 649

tion methods based on different theories and adapt 650

them to bias identification, i.e., the view of modal- 651

ity benefit, modality flow, and modality causal ef- 652

fect. Then we conduct a human evaluation on two 653

multimodal misinformation benchmarks to study 654

the practicability of automated analysis and de- 655

rive three interesting findings that offer design con- 656

sideration and improvement direction toward fu- 657

ture research. Experimental results indicate that 658

automated sample-specific modality bias analysis 659

holds promising potential for practical applications. 660

This suggests its capability to perform tasks like 661

dataset cleaning (i.e., retaining modality-balanced 662

samples) to mitigate the severity of modality bias. 663
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7 Limitations664

There are two limitations in this work. Firstly, due665

to the substantial workload associated with human666

evaluation, it is challenging to scale the number of667

test samples. We randomly selected 100 samples668

for human evaluation to validate the effectiveness669

of our proposed multi-view analysis. However, a670

larger sample size could enhance statistical signifi-671

cance and provide a more robust evaluation. Sec-672

ondly, we do not study the effect of different large673

vision-language models (e.g., larger and stronger674

LVLMs) on modality flow view because of LVLMs’675

high computation cost of saliency score calculation676

based on the loss backward process.677
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A Description of Appendix999

This appendix contains the investigation of differ-1000

ent settings (B, C, D), the detailed information1001

about corresponding processes (E, F, G, H, I), the1002

error analysis of multi-view output (J), and discus-1003

sion of some considerations (K), which contributes1004

to a comprehensive understanding and evaluation1005

of this paper. Appendix B examines how vari-1006

ous methods of combining multi-view can influ-1007

ence performance. Appendix C delves into the1008

effect of different saliency score calculation meth-1009

ods. Appendix D study the effect of different com-1010

putation strategies of Sit and Stt in the view of1011

modality flow. Appendix E describes the deter-1012

mination and impact of super-hyperparameter ϵ.1013

Appendix F focuses on the core information ex-1014

traction prompts and the effect of different extrac-1015

tion model combinations. Appendix G provides a1016

quantitative overview of multimodal misinforma-1017

tion benchmarks utilized in our work. Appendix H1018

detailedly clarifies the model description, model se-1019

lection criteria, and fine-tuning details. Appendix I1020

presents the details of human annotation and in-1021

struction. Appendix J conducts an error analysis1022

of the ensemble multi-view analysis. Appendix K1023

discusses several considerations of this work, like1024

the versatility of our proposed automated analysis.1025

B Effect of Ensemble Strategies1026

We explore the impact of different ensemble strate-1027

gies in Table 3, including random majority voting,1028

prior majority voting (ours), and weighted voting.1029

The weights assigned to each view are [0.3, 0.2,1030

0.5], which are determined based on the average1031

performance of single-view analysis. For instance,1032

modality causal effect ranks second on Fakeddit1033

and first on MMFakeBench, demonstrating over-1034

all superior performance among three single-view1035

analyses. Therefore, we assign a weight of 0.51036

to this view. Different voting strategies exhibit1037

varying performance across different benchmarks.1038

Overall, prior majority voting demonstrates the1039

most stability and optimal performance.1040

C Effect of Saliency Score Calculations 1041

Table 4 presents the results of our saliency score 1042

calculations and LIME for comparative analysis, 1043

specifically focusing on multi-view analysis and 1044

inference speed. FPS (Frame Per Second) denotes 1045

the number of samples that can be processed per 1046

second (i.e., a higher value indicates faster). The 1047

choice of saliency score calculation method has 1048

relatively little impact on the inference speed com- 1049

pared to the performance of multi-view analysis. 1050

D Effect of Computation Strategies 1051

As for the computation strategies of Sit and Stt, 1052

we report the predicted proportion under sum, av- 1053

erage and maximum conditions in Table 6. We 1054

observe that the results of average and maximum 1055

strategies are highly unreasonable, which exhibits 1056

a strong bias toward text modality. We refer to this 1057

phenomenon as the modality gap. For instance, the 1058

image modality typically contains more tokens than 1059

the text modality, but many of these tokens often 1060

carry background information with minimal impact 1061

on the output. When using the average strategy, the 1062

contribution of the text modality is exaggerated. A 1063

similar problem arises with the maximum strategy, 1064

likely due to inherent differences in how the LVLM 1065

assigns attention to individual tokens of different 1066

modalities. This could be attributed to the fact that 1067

LVLMs consist of a superior language model (>7B) 1068

paired with a simple small image encoder (500M). 1069

E Determination of Threshold 1070

We conduct a user study to determine the threshold 1071

in the view of modality flow, selecting 20 samples 1072

from Fakeddit and MMFakeBench and manually 1073

annotating the types of modality bias. It is impor- 1074

tant to note that these samples are used for tuning 1075

the threshold and are different from those used for 1076

human evaluation. In this user study, the first author 1077

of this paper serves as the data annotator and adopts 1078

the same criteria described in Appendix I. By ad- 1079

justing the threshold from 0 to 0.4 in increments 1080

of 0.05, we identify the threshold that achieves the 1081

highest accuracy for the modality flow analysis. As 1082

shown in Figure 4, we set the threshold as 0.25. 1083

We also present the results of the ensemble multi- 1084

view analysis under different threshold ϵ in Table 5. 1085

The general trend observed is that, as the threshold 1086

increases, accuracy initially rises, then stabilizes, 1087

and eventually declines. It is consistent with the 1088

findings from the above user study (Figure 4). 1089
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Fakeddit MMFakeBench

Ensemble Strategy Uni-image Modality-balance Uni-text Acc Uni-image Modality-balance Uni-text Acc

Random majority voting 0.13[46.15] 0.77[84.42] 0.10[30.00] 74.00 0.14[28.57] 0.65[83.08] 0.21[52.38] 69.00
Prior majority voting (Ours) 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00

Weighted voting 0.19[36.84] 0.73[86.30] 0.08[37.50] 73.00 0.07[57.14] 0.69[84.06] 0.24[45.83] 73.00

Table 3: The effect of different ensemble strategies on the multi-view analysis.

Fakeddit MMFakeBench Inference Speed

Uni-image Modality-balance Uni-text Acc Uni-image Modality-balance Uni-text Acc FPS

Ours 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00 0.4942
LIME 0.06[66.67] 0.91[80.22] 0.03[0.00] 77.00 0.07[57.14] 0.69[84.06] 0.24[45.83] 73.00 0.3489

Table 4: The effect of different saliency score calculations on the multi-view analysis.

Fakeddit MMFakeBench

ϵ Uni-image Modality-balance Uni-text Acc Uni-image Modality-balance Uni-text Acc

0 0.10[60.00] 0.81[85.19] 0.09[33.33] 78.00 0.22[22.73] 0.58[82.76] 0.20[55.00] 64.00
0.05 0.10[60.00] 0.81[85.19] 0.09[33.33] 78.00 0.18[22.22] 0.62[82.26] 0.20[55.00] 66.00
0.10 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.18[22.22] 0.62[82.26] 0.20[55.00] 66.00
0.15 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.18[22.22] 0.67[83.58] 0.15[73.33] 71.00
0.20 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.15[26.67] 0.71[84.51] 0.14[78.57] 75.00

0.25 (Ours) 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00
0.30 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00
0.35 0.06[66.67] 0.87[83.91] 0.07[42.86] 80.00 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00
0.40 0.06[66.67] 0.87[83.91] 0.07[42.86] 80.00 0.07[57.14] 0.82[82.93] 0.11[72.73] 80.00

Table 5: The effect of different threshold ϵ on the multi-view analysis.

Uni-image Modality-balance Uni-text

Sum(Ours) 0.15 0.52 0.33
Avg 0.00 0.00 1.00
Max 0.08 0.00 0.92

Table 6: The predicted proportion [0-1] of modality flow
under different aggregation strategies.

F Core Information Extraction1090

In the view of modality causal effect, we first lever-1091

age two large models to extract the core informa-1092

tion and then construct the causal graph. Specif-1093

ically, we utilize MiniCPM-V 2.6 to identify the1094

core entity E and irrelevant visual content C of1095

images. Llama3-8B is employed to recognize the1096

core word W and irrelevant word R of texts. Noted1097

that these large models used for core information1098

extraction do not require further fine-tuning. The1099

prompts are as follows:1100

• MiniCPM-V 2.6: < Image > Please iden-1101

tify the core entity in this image. Output the1102

corresponding entity region coordinates in the1103

format of [x1, y1, x2, y2], where (x1, y1)1104

denotes the top-left coordinate and (x2, y2)1105
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Fakeddit MMFakeBench

Figure 4: Accuracy of the view of modality flow with
varying threshold ϵ on Fakeddit and MMFakeBench.

denotes the bottom-right coordinate. Remem- 1106

ber to apply coordinate normalization, which 1107

means the coordinate range from 0 to 1. 1108

• Llama3-8B: Please identify the keyword that 1109

can represent the core semantic information of 1110

this sentence: < Text >. Output the words in 1111

the format of [word1, word2, ..., wordn] if the 1112

core semantic is word1, word2, ..., and wordn. 1113

Please note that the number of words would 1114

not be fixed. It depends on your understanding 1115

of the sentence. 1116
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How to self-diagnose 
yourself with a mental 
illness in 3 easy steps.

'melted car'

Image TextCore Entity Core Word

The tree was angry at 
me for felling it.

This melted car in 
Lille France.

'self-diagnose', 
'mental illness'

'tree', 'angry'

'David', 
'Attenborough', 
'director', 'BBC'

David Attenborough 
served as director 

of BBC Two.

Figure 5: Examples of core information extraction.

Here we provide some examples (Figure 5) to1117

validate the reliability of the extraction results.1118

To study the effect of different core information1119

extraction models, we adopt additional large mod-1120

els, specifically another LVLM, Ovis1.6-Gemma2-1121

9B (Lu et al., 2024), and another LLM, Yi-1.5-1122

9B (Young et al., 2024). Table 7 depicts the en-1123

semble multi-view analysis of different model com-1124

binations. Generally, the stronger a large model’s1125

reasoning ability, the more accurately it can extract1126

core information. So the overall accuracy of multi-1127

view analysis will be higher. This phenomenon1128

further corroborates the universality and extensi-1129

bility of the proposed automated analysis. As the1130

capabilities of large models enhance, the accuracy1131

of our proposed automated sample-specific modal-1132

ity bias analysis is anticipated to improve further.1133

G Statistics of Benchmarks1134

Table 8 depicts the statistics of two multimodal mis-1135

information benchmarks, i.e., Fakeddit and MM-1136

FakeBench. Specifically, we report the number1137

of each category (i.e., Real or Fake). Constructed1138

from popular online media, Fakeddit is a highly1139

diverse real-world English benchmark and contains1140

over six hundred thousand multimodal samples.1141

In contrast, MMFakeBench is a synthetic English1142

dataset generated by Large Vision-language models1143

(LVLM) like DALL-E3. For a multimodal misin-1144

formation benchmark with a predefined partition of1145

“Train”, “Valid”, and “Test” sets, we first randomly1146

select 40% of the samples from the “Train” set1147

to fine-tune the models, and then perform sample-1148

specific modality bias analysis on the remaining1149

60% of the “Train” set, the “Valid” set, and the1150

“Test” set. To avoid confusion, we refer to the1151

data used for fine-tuning as “Finetune_train” and 1152

“Finetune_valid” , while the remaining subsets used 1153

for automated analysis are referred to as “Analy- 1154

sis_train”, “Analysis_valid”, and “Analysis_test”. 1155

H Model Description, Selection Criteria, 1156

and Fine-tuning Details 1157

Model Description. We first introduce models uti- 1158

lized in each view. UnivFD (Ojha et al., 2023) is a 1159

versatile fake image detector that operates within 1160

a feature space not explicitly trained to distinguish 1161

real from fake images. HAMMER (Shao et al., 1162

2023), a multimodal detector built on ALBEF (Li 1163

et al., 2021), detects manipulation across different 1164

multimedia types. FFNews (Huang et al., 2022) 1165

specializes in detecting textual fake news, particu- 1166

larly human-generated misinformation. MiniCPM- 1167

V 2.6 (Yao et al., 2024) excels in multimodal un- 1168

derstanding and outperforms some closed-source 1169

LVLMs like Gemini-1.5-Pro (Duan et al., 2024). 1170

DT(·) (Papadopoulos et al., 2024) utilizes CLIP 1171

ViT-L/14 (Radford et al., 2021) to extract modal- 1172

ity features, with different variants (DT(I), DT(T), 1173

DT(I,T)) representing different modality inputs. 1174

Model Selection Criteria. We select these 1175

misinformation detection models based on their 1176

strong performance and report the detailed quanti- 1177

tative comparison with some other models in Ta- 1178

ble 9. For Image-only models, we show the per- 1179

formance of Patch classifier (Chai et al., 2020), 1180

Co-occurence (Nataraj et al., 2019) and UnivFD 1181

on FaceForensics++ (Rossler et al., 2019) and 1182

LDM (Rombach et al., 2022). For Image-text mod- 1183

els, we depict the performance of CLIP (Radford 1184

et al., 2021), ViLT (Kim et al., 2021) and HAM- 1185

MER on DGM4 (Shao et al., 2023). For Text- 1186

only models, we compare the performance of DE- 1187

FEND (Shu et al., 2019), DualEmo (Vaibhav et al., 1188

2019) and FFNews on PolitiFact (Shu et al., 2020) 1189

and LUN (Rashkin et al., 2017). For LVLM, we 1190

compare three models of different serials (Ovis1.5- 1191

Gemma2-9B (Lu et al., 2024), InternVL2-8B- 1192

MPO (Chen et al., 2023a), and MiniCPM-V-2.6) 1193

and report the average score of eight evaluation 1194

datasets (i.e., MMBench (Liu et al., 2025), MM- 1195

Star (Chen et al., 2024a), MMMU (Yue et al., 1196

2024a), MathVista (Lu et al., 2023), AI2D (Kem- 1197

bhavi et al., 2016), HallusionBench (Guan et al., 1198

2024), MMVet (Yu et al., 2023), OCRBench (Liu 1199

et al., 2024c)) based on VLMEvalKit (Duan et al., 1200

2024). Note that our framework is adaptable to any 1201
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Fakeddit MMFakeBench

Model Combination Uni-image Modality-balance Uni-text Acc Uni-image Modality-balance Uni-text Acc

MiniCPM-V 2.6, Llama3-8B (Ours) 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00
MiniCPM-V 2.6, Yi-1.5-9B 0.11[54.55] 0.80[86.25] 0.09[33.33] 78.00 0.03[0.00] 0.86[79.07] 0.11[72.73] 76.00

Ovis1.6-Gemma2-9B, Llama3-8B 0.11[54.55] 0.81[85.19] 0.08[37.50] 78.00 0.12[33.33] 0.74[85.14] 0.14[78.57] 78.00
Ovis1.6-Gemma2-9B, Yi-1.5-9B 0.12[50.00] 0.80[85.00] 0.08[37.50] 77.00 0.06[0.00] 0.83[81.93] 0.11[72.73] 76.00

Table 7: The effect of different extraction models on the multi-view analysis.

Fakeddit MMFakeBench

Finetune_train
#Real 80465 1044
#Fake 123281 2556

Finetune_valid
#Real 8796 125
#Fake 13843 275

Analysis_train
#Real 132820 1831
#Fake 204409 4169

Analysis_valid
#Real 23320 300
#Fake 35979 700

Analysis_test
#Real 23507 -
#Fake 35764 -

Total
#Real 268908 3300
#Fake 413274 7700

Table 8: Statistics of the Fakeddit and MMFakeBench.

misinformation detection method and LVLM.1202

Fine-tuning Details. Due to the limited per-1203

formance of existing models in multimodal mis-1204

information detection under zero-shot scenarios,1205

fine-tuning is required for a robust and accurate1206

measurement. Specifically, we apply supervised1207

fine-tuning (SFT) to UnivFD, HAMMER, FFNews,1208

DT(I), DT(I, T), and DT(T) for 10 epochs. As1209

for the MiniCPM-V 2.6, we apply LoRA-based1210

parameter-efficient fine-tuning for 1 epoch consid-1211

ering the balance of resources and accuracy. All1212

hyperparameters are consistent with their original1213

work and experiments are conducted on one A1001214

80GB GPU. The accuracy of tuned models on the1215

“Finetune_valid” set is shown in Table 10.1216

I Human Annotation1217

Liang et al. (2024) show that human judgment can1218

be used as a reliable estimator of multimodal inter-1219

action. Following their design, we also conduct a1220

human evaluation with three annotators to demon-1221

strate the effectiveness of multi-view analysis. we1222

recruited the annotators from the local universi-1223

ties of China through public advertisement with1224

a specified pay rate. They are neither the authors1225

nor members of the authors’ research group and1226

Image-only model FaceForensics++ LDM

Patch classifier 75.54 79.09
Co-occurence 57.10 70.70

UnivFD 84.50 94.19

Image-text model DGM4

CLIP 76.40
ViLT 78.38

HAMMER 86.39

Text-only model PolitiFact LUN

DEFEND 82.67 81.33
DualEmo 87.78 81.78
FFNews 88.00 82.53

LVLM Param (B) Avg Score

Ovis1.5-Gemma2-9B 11.4 64.00
InternVL2-8B-MPO 8 64.50

MiniCPM-V-2.6 8 65.20

Table 9: Quantitative comparison of misinformation
detection models and LVLMs.

Model Fakeddit MMFakeBench

Image-only
UnivFD 79.94 74.25
DT(I) 88.01 80.75

Image-text
HAMMER 92.41 81.00

DT(I, T) 93.40 83.75

Text-only
FFNews 89.20 86.04
DT(T) 88.73 75.50

LVLM MiniCPM-V 2.6 94.61 95.00

Table 10: The accuracy of tuned models on the “Fine-
tune_valid” set of Fakeddit and MMFakeBench.

are all working towards a graduate degree in com- 1227

puter science and possess knowledge of multimodal 1228

learning. We pay them 50 CNY an hour. We show 1229

both modalities to annotators and ask them to an- 1230

notate the type of modality bias for each sample. 1231

We randomly select 100 samples from each dataset 1232

to conduct the experiment. For Fakeddit, there 1233

are 60 samples from “Analysis_train”, 20 samples 1234

from “Analysis_valid”, and 20 samples from “Anal- 1235

ysis_test”. For MMFakeBench, there are 60 sam- 1236

ples from “Analysis_train” and 40 samples from 1237

“Analysis_valid”. We clarify the annotation proce- 1238
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Uni-image Modality-balance Uni-text

Fakeddit 0.8251 0.8913 0.8122
MMFakeBench 0.8298 0.8940 0.8031

Table 11: The Krippendorff’s alpha test of human anno-
tations.

dure and judgment criteria before annotation.1239

• Instruction: Given a multimodal news sample,1240

it contains both news caption and news image.1241

You need to rate the following three questions1242

ranging from 0-5.1243

• Question 1. (Uni-Image): The extent to which1244

Image modality enables you to predict with-1245

out the other modality.1246

• Question 2. (Uni-Text): The extent to which1247

Text modality enables you to predict without1248

the other modality.1249

• Question 3. (Modality-balance): The extent1250

to which both modalities enable you to pre-1251

dict that you would not otherwise make using1252

either modality individually.1253

For a specific sample, we first average the three1254

scores of each annotator respectively, and then se-1255

lect the type with the highest score as the bias type1256

of this sample.1257

We conducted Krippendorff’s alpha test (Krip-1258

pendorff, 2011) to assess the reliability and agree-1259

ment of human annotations. As presented in Ta-1260

ble 11, all alpha values exceed 0.8, which demon-1261

strates a high level of agreement among the three1262

annotators and further substantiate the validity of1263

our human annotations.1264

J Error Analysis1265

As shown in Figure 6, we conduct an error analysis1266

on the “Uni-image” category, which exhibited the1267

lowest performance in our multi-view analysis. We1268

found that the multi-view analysis struggles to cor-1269

rectly identify well-edited images (Figure 6, left)1270

or images synthesized by large vision-language1271

models (Figure 6, right). Although these images1272

may appear seamless at the pixel level, they con-1273

tain misinformation at the semantic level. However,1274

the multi-view analysis incorrectly classifies these1275

samples as “Modality-balance”. We attribute this1276

issue to the limitations of current MMD models,1277

which are not yet equipped to handle such complex1278

How long can we let 
poverty sustain itself

A teenager is on the 
snow with his skis

Multi-view analysis: Modality-balance

Figure 6: Error cases of multi-view analysis. The modal-
ity bias of these two samples should be “Uni-image”.

cases. As more advanced techniques are developed, 1279

these types of errors may decrease, improving the 1280

accuracy of automated bias evaluation systems. 1281

K Discussion 1282

Firstly, the definition of “modality bias” is derived 1283

from (Guo et al., 2023), referring to the tendency of 1284

a model to rely on a single modality (e.g., image or 1285

text) for decision-making. However, there might be 1286

multiple forms of modality bias in practical appli- 1287

cations according to varying definitions. Theoret- 1288

ically, each view (i.e., Modality benefit, Modality 1289

flow, and Modality causal effect) holds a distinct 1290

bias recognition pattern, so the ensemble multi- 1291

view analysis is robust to such diverse forms of 1292

bias. 1293

Secondly, from the view of modality bene- 1294

fit, we can determine the type of modality bias 1295

by comparing the final output benefit of image 1296

modality and text modality. Nevertheless, when 1297

V (xm1 , 0m2) , V (0m1 , 0m2) , V (xm2 , xm1) , and 1298

V (xm2 , 0m1) all equal zero, the model is unable 1299

to make accurate predictions. In such cases, we 1300

hyposize the difficulty of samples exceeds the dis- 1301

criminative capacity of this view, and the Shapely 1302

value cannot provide a reasonable classification. 1303

Thirdly, we investigate the automated sample- 1304

specific modality bias analysis for multimodal mis- 1305

information benchmarks. This deepens our under- 1306

standing of such benchmarks and provides new 1307

insights for online multimodal content analysis. 1308

However, this method can be applied not only in the 1309

field of misinformation detection. Our automated 1310

analysis is broadly applicable to general tasks like 1311

visual question answering (VQA) and extends to 1312

other modalities like audio. 1313

Fourthly, while our work focuses on identifying 1314

and analyzing modality bias, improving misinfor- 1315

mation detection based on bias analysis is a direc- 1316

16



tion worthy of in-depth exploration. We encourage1317

future work to improve model training by leverag-1318

ing modality bias analysis results as auxiliary la-1319

bels during the optimization process of multimodal1320

misinformation detection.1321

Fifthly, in real-time applications, the primary1322

computation cost arises from the inference of large1323

models. While the forward of modality flow in-1324

volves a MiniCPM-V 2.6, the modality causal ef-1325

fect incorporates both MiniCPM-V 2.6 and Llama3-1326

8B. This results in a relatively slower inference1327

speed for these two views. A potential approach is1328

utilizing quantized versions of large models in real-1329

time applications to reduce computational costs.1330
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