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Abstract

Numerous multimodal misinformation bench-
marks exhibit bias toward specific modalities,
allowing detectors to make predictions based
solely on one modality. While previous re-
search has quantified bias at the dataset level
or manually identified spurious correlations be-
tween modalities and labels, these approaches
lack meaningful insights at the sample level and
struggle to scale to the vast amount of online
information. In this paper, we investigate the
design for automated recognition of modality
bias at the sample level. Specifically, we pro-
pose three bias quantification methods based
on theories/views of different levels of granular-
ity: 1) a coarse-grained evaluation of modality
benefit; 2) a medium-grained quantification of
information flow; and 3) a fine-grained causal-
ity analysis. To verify the effectiveness, we
conduct a human evaluation on two popular
benchmarks. Experimental results reveal three
interesting findings that provide potential di-
rection toward future research: 1) Ensembling
multiple views is crucial for reliable automated
analysis; 2) Automated analysis is prone to
detector-induced fluctuations; and 3) Different
views produce a higher agreement on modality-
balanced samples but diverge on biased ones.

1 Introduction

The proliferation of online social media has ac-
celerated the dissemination of misinformation (Li
et al., 2024; Bu et al., 2024; Wang et al., 2024; Yue
et al., 2024b; Wan et al., 2024), particularly in mul-
timodal contexts where images and texts mutually
reinforce each other, enhancing persuasiveness and
deception to pepole (Tahmasebi et al., 2024; Guo
et al., 2024; Chen and Shu, 2023; Comito et al.,
2023). To verify the ability of Multimodal Mis-
information Detection (MMD) models to exploit
multimodal information, previous studies have pro-
posed several Multimodal Misinformation Bench-
marks (MMBSs) such as Fakeddit (Nakamura et al.,
2019) and MMFakeBench (Liu et al., 2024b).

However, these benchmarks exhibit bias to-
ward specific modality (Papadopoulos et al., 2024),
where one modality may dominate as the primary
source of information, thereby diminishing the role
of the other modality (Guo et al., 2023; Liang et al.,
2024). Such modality bias can lead to serious
problems: First, from the training aspect, models
trained on biased benchmarks may lack robustness
to the variation of that modality (Yang et al., 2024),
making them vulnerable to uni-modal attacks. Sec-
ond, from the evaluation aspect, biased benchmarks
may yield incomprehensive measurement of MMD
models, e.g., a model might perform well on a text-
biased benchmark because it learns spurious text-
label correlations instead of effectively integrating
multimodal information (Goyal et al., 2017).

Unfortunately, no systematic investigation has
been conducted on the modality bias of existing
MMBs. Current methods for detecting modality
bias on general multimodal benchmarks like visual
question answering can be broadly divided into two
categories: automated dataset-level quantification
and manual identification by human experts. For
the former one, Liang et al. (2024) utilize infor-
mation theory to measure redundancy, uniqueness,
and synergy across the entire dataset. However, as
illustrated in Figure 1, bias can vary significantly
across individual samples within a dataset, suggest-
ing that this approach lacks the granularity needed
to fully capture sample-specific biases. The latter
one, as demonstrated by Liu et al. (2024a), involves
detecting specific issues, such as spurious correla-
tions between text modalities and labels. While
manual identification can effectively detect biased
samples, it is limited by scalability and is imprac-
tical for handling a large volume of online data.
This naturally raises the question: is it possible to
automatically measure the modality bias at the
sample level without human intervention?

To this end, we conduct a systematic analysis
of modality bias in MMBs and verify whether ma-
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Figure 1: The automated analysis of samples from Fakeddit. For biased samples, we can directly infer from the
preferred modality like the Left (an unreasonable fat cat image) and Right (the impossibility of resurrection) one.

chines can automatically provide a reasonable mea-
surement. Modality bias can be classified into three
types: Uni-image, Uni-text, and Modality-balance,
which indicate image bias, text bias, and no bias.
We leverage three quantification methods of dif-
ferent granularities and adapt them to bias identi-
fication, i.e., modality benefit, modality flow, and
modality causal effect. At a coarse level, modal-
ity benefit identifies the input modality that con-
tributes the most for final predictions using Shapley
values (Wei et al., 2024; Shapley, 1953) from game
theory, which fairly assesses individual contribu-
tions of different players in cooperative scenarios.
At a medium level, modality flow utilizes saliency
scores (Michel et al., 2019; Wang et al., 2023),
which quantify attention interactions between dif-
ferent input modalities and output predictions to
inspect the decision-making process and determine
the prior modality. At the finest level, modality
causal effect constructs the causal inference graph
of MMD, which contains modality-balanced and
biased paths, and traces the path that has the maxi-
mal causal effect based on counterfactual reason-
ing (Chen et al., 2023b, 2024b). We treat these
methods as providing different views upon the de-
cision of modality bias and adopt a voting mech-
anism to integrate these three views to obtain an
ensembled multi-view output.

To validate the effectiveness of such automated
sample-specific bias analysis, we conduct a human
evaluation on 100 samples of Fakeddit (Nakamura
et al., 2019) and MMFakeBench (Liu et al., 2024b)
respectively. Experimental results reveal three
interesting findings that offer potential direction
and design consideration toward future automated
sample-specific modality bias analysis: 1) Ensem-
bling multiple views is crucial for a reliable au-
tomated analysis, which is not possible through
single-view analysis, because the intricate nature
of automated sample-specific modality bias detec-
tion is a complex task for machines. 2) Automated

analysis is prone to detector-induced fluctuations.
The performance of both single- and multi-view
analysis is sensitive to the choice of misinformation
detectors. This phenomenon is unavoidable since
each view is dependent on the parameters of the
chosen detector. Mitigating such sensitivity could
enhance its practicality for real-world deployment.
3) Different views produce a higher agreement on
modality-balanced samples but diverge on biased
ones. Overall, we believe that automated sample-
specific analysis has significant practical applica-
tions, e.g., cleaning a biased MMB by retaining
modality-balanced samples with high consistency.
Our contributions are as follows: Firstly, we are
the first to design an automated sample-specific
modality bias analysis for multimodal misinforma-
tion benchmarks. Secondly, we investigate the
effectiveness of the proposed automated analysis
via a human evaluation on two multimodal misin-
formation benchmarks. Thirdly, we uncover some
interesting findings from empirical experiments, of-
fering potential directions toward future research.

2 Related Work

2.1 Modality Bias

Modality bias is prevalent in various multimodal
learning tasks (Papadopoulos et al., 2023; Chen
et al., 2022). While there is no systematic anal-
ysis of modality bias in MMBs, prior research
has uncovered bias patterns in general multimodal
benchmarks like visual question answering (VQA).
Two common approaches for analyzing modality
bias include automated dataset-level quantification
and manual identification by human experts. In
the case of automated quantification, Liang et al.
(2024) measure modality interaction using infor-
mation theory and propose two PID estimators to
evaluate entire datasets. However, bias can vary
significantly across individual samples in MMBs,
which limits the ability of dataset-level approaches



to detect sample-specific biases. Regarding manual
identification, Goyal et al. (2017) reveal a spurious
correlation between text and labels in the VQA (An-
tol et al., 2015) dataset, where simply answering
“yes” to questions beginning with “Do you see a
...> achieves 87% accuracy without considering the
rest of the question or the image. Similarly, Liu
et al. (2024a) highlight that over 90% of the an-
swers to questions about whether the audio in the
MUSIC-AVQA (Li et al., 2022) dataset matches
the instrument shown in the video are “yes”. Pa-
padopoulos et al. (2024) simply hypothesize that
modality bias in multimodal misinformation bench-
marks stems from “asymmetric pairs” and they do
not make a systematical analysis on the automated
bias quantization. Although manual methods can
effectively detect and mitigate bias through tech-
niques like data augmentation or filtering rules,
they are impractical for analyzing the vast amount
of online multimodal misinformation.

Since bias can vary significantly across individ-
ual samples, this paper investigates the feasibility
of automated sample-specific modality bias analy-
sis and makes some interesting observations, pro-
viding potential direction and design consideration.

2.2 Multimodal Misinformation Benchmarks

Current multimodal misinformation benchmarks
can be broadly categorized into two types: real-
world and synthetic datasets. Fakeddit (Nakamura
etal., 2019), the largest multimodal misinformation
dataset, contains over 400k samples sourced from
the social networking platform Reddit. Among syn-
thetic datasets, NewsCLIPings (Luo et al., 2021) is
constructed using techniques such as scene learn-
ing, person matching, and CLIP (Radford et al.,
2021) to produce out-of-context samples. MM-
FakeBench (Liu et al., 2024b) leverages powerful
vision-language models like DALL-E3 (Ramesh
et al., 2022) to generate Al-based misinformation
related to textual veracity, visual veracity, and
cross-modal consistency distortion. However, as
discussed in the introduction, there exists signif-
icant modality bias in these benchmarks, which
presents clear drawbacks for both training and eval-
uating MMD models in real-world deployment.

In this paper, we perform the automated analysis
on two multimodal misinformation benchmarks: a
real-world dataset Fakeddit, and a synthetic dataset
MMFakeBench. By analyzing benchmarks of dif-
ferent scenarios, we seek to comprehensively vali-
date the effectiveness of our automated analysis.

3 Automated Sample-Specific Analysis

3.1 Overview

The overall workflow of automated analysis is il-
lustrated in Figure 2. Several misinformation de-
tectors are used to power the computation of auto-
mated analysis, i.e., the Image-only model, Image-
text model, Text-only model, and large vision-
language model. We need to fine-tune these models
for more reliable measurements because existing
models lack robust zero-shot capabilities for MMD.
For a multimodal misinformation benchmark, we
randomly select some samples (Subsetl) to fine-
tune the models and perform single- and multi-view
analysis on the remaining subset (Subset2).

3.2 Modality Benefit

From the view of modality benefit, we introduce
a Shapely value-based metric (Wei et al., 2024;
Shapley, 1953), which is designed for cooperative
games with n players, to observe the uni-modal
contribution by comparing the model’s prediction
with/without specific modality. For generalization,
we first illustrate the scenario with n modality and
then provide the formula when n = 2.

Each sample z = (2™, 2™2,...,2™") is with
n modality, y is the corresponding label, z™"
is the modality m; of sample z. Let M =
{my, ma, ..., my,} be the set of all modalities, M’
be the subset of M (M’ C M) and 2™’ be the in-
put sample x with modality set M’, we can define
a benefit function V' that maps the model’s pre-
diction with input M’ to its benefits: if § = v,
V(zM') = |M'|; otherwise, V(z™') = 0. Here
¢ is prediction and || denotes the number of input
M, i.e., if the model makes a correct prediction,
the benefit will be the number of input modalities.

Since a player can interact with other players, dif-
ferent permutations of input modalities may yield
varying outcomes. If we define a certain permuta-
tion as a strategy and let [ [, be the permutation
of M, there is |[],,] = n! strategies. For a strat-
egy m € [[,,, the marginal benefit of modality m;
of sample x in 7 can be defined as: v (m; 2™") =
V(m (™) Uz™)—V (7 (z™)), where m (x)
represents all predecessors of ¢ in 7. This for-
mula quantifies the increased benefit of modality
2™ compared to its predecessors. Considering the
marginal contribution of modality m; of sample x
in all strategies, the final benefit of modality m; is
given by: ¢y, = ZWEHM v (m; ™).

As shown in Figure 2(b), when it comes to the
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Figure 2: Illustration of proposed automated analysis for modality bias in multimodal misinformation benchmarks

multimodal misinformation samples with image  prompt for MMD is P = [...,IT,...,TT,...,OT],
and text (n = 2), there are simply two strategies ~ where [T = (ITy, 75, ...,IT,,) is the image to-
ken, TT = (TTy,TT3,...,TT),,) is the text token

in HM = {7(1 = (ml,mQ),ﬂ'Q = (mg,ml)}. The
final contribution of such a specific modality m; is
given by: ¢, = } [v(m1;2™) + v (ma;2™)] =
$[V (@™, 0m2) — V (0™,0™2) + V (22, 2™)
—V (2™2,0™1)] , where the above 0" denotes
the absence of modality m;. We adopt zero input
for image modality and placeholder padding
for text modality following Wei et al. (2024).
We set V (07me9¢,0%*) to zero and leverage
Image-only, Image-text, and Text-only models
to compute % (ximage’ Otext)’ 1% (xtext’ ximage)’
and V ('t 0"m29¢), respectively. Finally, we
can determine the bias type of each sample, i.e.,
Uni-image: ®image > Ptext, Modality-balance:
¢image = ¢t61‘t$ Uni-text: ¢image < sttea:t-

3.3 Modality Flow

Figure 2(c) depicts the view of modality flow: com-
paring the information flow from the image/text
to the output token intuitively reveals whether
the model relies more on image or text modal-
ity when making predictions. Computing accu-
rate attention interactions requires advanced mod-
els to provide reliable attention signals, so we

leverage a large vision-language model (LVLM)

rather than smaller models. Suppose the input

and OT is the output token which is usually the last
token. Following Wang et al. (2023), we employ
the saliency score to quantify critical token inter-

actions: S = ‘Zh A ®
sents the attention matrix of h—th attention head, ©®

is Hadamard product, P is the input prompt, £(-)
is the loss function of multimodal misinformation

8£(P) , where Ay, repre-

detection. Concretely, S(j1,j2) denotes the impor-
tance of the information flow from j,-th token to
71-th token. Based on the observation that shallow
layers are primarily used for token information ag-
gregation and analysis, and deep layers leverage
token information for prediction, we only calculate
the saliency score for the last attention layer. To
study the effect of different saliency calculations,
we compare our attention-based saliency score cal-
culation with another perturbation-based method
LIME (Ribeiro et al., 2016) in Appendix C.
Generally, the number of image tokens exceeds
that of text tokens. For instance, a 224 x 224 im-
age can be divided into 64 patch tokens, while
the corresponding text typically comprises fewer
than ten tokens. Since most image tokens may
represent background information, their individ-
ual contribution may be less significant compared



to single text tokens. Therefore, to assess the
overall contribution, we adopt the sum of the
saliency score as the final significance of infor-
mation flow from the respective modality to pre-
diction: Sy = > ' S(OT,ITy), ITy, € IT and
Sy = ZZ2 S(OT, TTk), TTy, € TT. we study
the effects of different computation strategies of
Sit and Sy in Appendix D.

Following Jin et al. (2021), we apply a normal-

ization to .S;; and Sy to map them to the same

: . — _ S - _5
interval: Sit,norm - SiTtSt,ﬂ Stt,norm - Sit':fstt .

In contrast to the discrete space of the Shapely
value, the value space of saliency scores is continu-
ous, which means Sit norm 7 Stt,norm €ven when
the sample is modality balanced. Therefore, we
define a hyperparameter threshold € to confine the
differences of modality-balanced cases. In other
words, when [Sit norm — Sttnorm| < €, we con-
sider the sample to be modality-balanced. We con-
duct a user study to determine the threshold € and
a detailed description can be found in Appendix E.

3.4 Modality Causal Effect

The causal mechanisms of MMD problem-solving
involve first analyzing the core information, such
as primary entities in images and main semantics
in text, and then combining them to derive the final
prediction. However, biased data can yield predic-
tions directly from a single modality.

In Figure 2(d), we illustrate all possible causal
reasoning paths for MMD, where different paths
correspond to different types of modality bias. Sup-
pose [ is the image, C'is the irrelevant visual con-
tent of the image, E is the core entity of the image,
T is the text, W is the core chunk of the text, R is
the irrelevant fragment of the text, F' is the infor-
mation fusion of ¥ and W, and O is the output, we
make the following definitions. Image Bias: the
model may directly predict through I — C' — O
and I — F — O. Text Bias: the inference paths
referred to as text bias include 7' — R — O and
T — W — O. Modality Balance: the desired
causal pathisvial - EF — F,T — W — F and
F — O. For core information extraction (C, E,
W and R), we utilize MiniCPM-V 2.6 and Llama3-
8B (Al@Meta, 2024) to process image and text,
respectively. Appendix F provides details of core
information extraction. Then we employ counter-
factual reasoning to quantify the causal effects of
different paths and identify bias types correspond-
ing to the path exhibiting the greatest causal effect.

Counterfactual reasoning can estimate the causal

effect of a treatment variable on a response vari-
able by comparing outcomes under conditions that
are different from the factual world. We denote
the causal mechanism of MMD as: Oc¢ .t =
OC=cE=eW=w,R=rF=Ff), f =
Fow=F(E=eW=uw).

Consider the variable W as an example. There
exist two paths between W and O, namely W —
F — O and W — O in the causal inference
graph. Following Chen et al. (2023b), we de-
fine the total effect (TE) of W = w on O as:
TEMWonO) = Oy.5 — Oy~ s+ , where * de-
notes the reference value. Total Effect can be in-
terpreted as the comparison between two potential
outcomes of W under two distinct treatments w
and w*. Meanwhile, Total Effect can be divided
into Natural Direct Effect (NDE) and Total Indi-
rect Effect (TIE). NDE is the causal effect of path
W — O which means information from W to F’
has been blocked, while TIE denotes the causal
effect of path W — F — O.

In the counterfactual scenario, W is supposed
to be the values w and w* simultaneously, where
w* influences the indirect path W — F — O,
while w influences the direct path W — O. In
other words, w* isolates the influence of W on
the intermediate factor F', thereby enabling us to
directly observe the effect of W on O. Therefore,
NDE(W on O) = Oy ¢+ — Oy~ 5+ and we have
TIEMWonO) =TE — NDE = Oy, — Oy, ¢+

Following previous studies (Chen et al., 2023b;
Wang et al., 2021), we also set other variables C,
F, and R to their reference value c*, ¢*, and r*
when W = w*. For such reference value, we
adopt zero input for ¢* and e*, and placeholder
padding for w* and *. To obtain the ensemble pre-
diction, we apply a non-linear fusion strategy. For
example,Oc.cwr,f = F (Oc, Oc, Ow,0r,Of) =
tanh(O.) +tanh(O¢) +tanh(Oy) +tanh(O;) +
Oy, where F(-) is the non-linear fusion strategy,
O, is the output of the irrelevant visual context
branch, O, is the outcome of the core entity branch,
Oy, is the result of the core semantic words branch,
O, is the output of the irrelevant word branch, Oy is
the output of fusion branch. To compute these out-
puts, we utilize the Image-only model for O, and
Oe, the Text-only model for O,, and O,, and the
Image-text model for O;. While F(-) can be any
differentiable binary function, Chen et al. (2023b)
observe that tanh-sum yields the best performance.

Similarly, we can compute the natural direct
effect of variable C, F, and R on O and the



total indirect effect of variable £ on O, i.e.,
NDE(ConO), NDE(EonO), NDE(R on O),
and TTE(E on O). As shown in Figure 2(d), these
causal effect items correspond to the six distinct
paths within the inference graph, with each path
associated with a specific modality bias type. For
each sample, we determine the bias type based on
the path exhibiting the greatest causal effect.

Finally, multi-view analysis is derived through a
prior majority voting, where the outcome is deter-
mined by the majority of three views. In the event
of a tie, priority is assigned to the category with the
larger number of samples in the human annotation.
Discussion of more ensemble strategies is shown
in Appendix B.

4 Experiment Setting

4.1 Benchmarks

We conduct the automated sample-specific modal-
ity bias analysis on two multimodal misinforma-
tion benchmarks, i.e., Fakeddit and MMFakeBench.
Fakeddit is a highly diverse real-world benchmark
and contains over six hundred thousand multimodal
samples. Moreover, MMFakeBench is a synthetic
dataset generated by large vision-language mod-
els like DALL-E3. These two benchmarks are
particularly representative due to their large scale
( 680K samples) and extensive coverage of diverse
domains, including real-world misinformation, Al-
generated synthetic content, satire, rumors, face
swaps, and Photoshop-edited images. A detailed
description of these datasets, along with their sta-
tistical distributions, is provided in AppendixG.

4.2 Models

We define the required types of misinformation
detection models for our multi-view analysis as
{Image-only, Image-text, Text-only, LVLM}. For
computational efficiency, we use the first three
types of models to support the analysis of modality
benefit and modality causal effect (Niu et al., 2021).
As for modality flow, computing accurate attention
interactions requires advanced models to provide
reliable attention signals, so we leverage a large
vision-language model (LVLM) rather than smaller
models. We select the following models for experi-
mentation, i.e., Image-only: UnivFD (Ojha et al.,
2023) and DT(I); Image-text: HAMMER (Shao
et al., 2023) and DT(I, T) (Papadopoulos et al.,
2024); Text-only: FFNews (Huang et al., 2022)
and DT(T); LVLM: MiniCPM-V 2.6 (Yao et al.,

2024). Since existing models demonstrate lim-
ited zero-shot detection performance, we first fine-
tune these models to improve their reliability. Ap-
pendix H describes details of selected models, the
selection criteria, and the fine-tuning process.

4.3 Implement Details

We conduct automated analysis on 100 samples
from each benchmark with the following model
group: {UnivFD, HAMMER, FFNews, MiniCPM-
V 2.6}. All experiments are conducted on one
A100 80GB GPU. The approximate inference time
of modality benefit, flow, and causal effect: 1 hour,
3 hours, and 2 hours every 60k samples respec-
tively. More experiment details can be found in
Appendix E, F.

4.4 Evaluation

We are the first to propose an automated sample-
specific modality bias analysis and no existing base-
lines are available for direct comparison. Therefore,
we conduct a human evaluation with three annota-
tors to validate the alignment of single- and multi-
view analysis and human judgment. To assess the
reliability and agreement of human annotations,
we conducted Krippendorff’s alpha test (Krippen-
dorff, 2011). Details of annotators’ demographic
characteristics, annotation procedure, and the re-
sult of Krippendorff’s alpha test can be found in
Appendix 1. We report the predicted proportions
of each modality bias type and the percentage
that aligns with human judgment. For example,
0.84[85.71] denotes that multi-view analysis clas-
sifies 0.84 of the samples as modality-balance, and
among these samples, 85.71% of the results are
consistent with human judgment.

5 Experimental Results

This section contains three interesting findings (5.1,
5.2, 5.3) about our proposed automated sample-
specific modality bias analysis. More ablation ex-
periments (i.e., the effect of ensemble strategies,
saliency score calculations, and computation strate-
gies of S;; and Sy in modality flow) and the error
analysis can be found in Appendix B, C, D, J.

5.1 Key to Reliable Automated Analysis

Table 1 depicts the quantification comparison of
automated analysis and human judgment.
Comparison of Proportion. According to
human judgment, most samples are modality-
balanced, while only a small proportion are bi-



| Fakeddit

‘ MMFakeBench

‘ Uni-image Modality-balance ~ Uni-text Acc ‘ Uni-image Modality-balance ~ Uni-text Acc

Human 0.18 0.78 0.04 - 0.13 0.74 0.13 -
Modality benefit 0.02[0.00] 0.90[78.89] 0.08[37.50] 74.00 | 0.47[10.64] 0.41[80.49] 0.12[66.67]  46.00
Modality flow 0.15[40.00] 0.52[88.46] 0.33[12.12] 56.00 - 0.67[71.64] 0.33[15.15] 53.00
Modality causal effect | 0.40[32.50] 0.56[92.86] 0.04[0.00]  65.00 | 0.10[40.00] 0.63[82.54] 0.27[40.74]  67.00
Multi-view analysis | 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 | 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00
Benefit-Flow 0.02[0.00] 0.91[79.12] 0.07[42.86] 75.00 | 0.16[0.00] 0.82[74.39] 0.02[0.00] 61.00
Benefit-Causal 0.05[0.00] 0.92[79.35] 0.03[0.00]  73.00 | 0.20[20.00] 0.69[84.06] 0.11[72.73]  70.00
Flow-Causal 0.22[31.82] 0.74[86.49] 0.04[0.00]  71.00 - 0.95[75.79] 0.05[60.00] 75.00

Table 1: The quantification comparison of automated analysis and human judgment. We report the predicted
proportion (without []) and accuracy (within []) of different bias types compared to human annotations. Acc denotes
the overall accuracy. The proportion ranges from 0O to 1 and the accuracy is presented as percentages (%).

ased. Although single-view analysis generally fol-
lows this pattern, notable differences exist in spe-
cific numerical values. For example, on Fakeddit,
modality benefit classifies 0.02 of the samples as
“Uni-image”, modality flow classifies 0.33 of the
samples as “Uni-text”, and modality causal effect
classifies 0.40 of the samples as “Uni-image”. A
similar trend is observed on MMFakeBench. How-
ever, multi-view analysis integrates the strengths
of each individual view, yielding results that most
closely align with human judgment.

Comparison of Accuracy. Different views
reveal distinct patterns of bias, and single-view
analysis may underperform in certain scenarios.
For example, the Modality Benefit analysis shows
strong performance (74.00%) on Fakeddit while
weak performance (46.00%) on MMFakeBench.
However, the ensemble multi-view analysis consis-
tently achieves the highest performance across both
datasets, underscoring the stability of multi-view
approaches in the complex task of automatically
detecting modality bias across diverse scenarios,
including both real-world and synthetic samples.

Ablation Study. We also conduct an ablation
study on three variants to assess the contribution of
each view: (1) Benefit-Flow: Omitting the modal-
ity causal effect. (2) Benefit-Causal: Removing
the modality flow. (3) Flow-Causal: Excluding the
modality benefit. As shown at the bottom of Ta-
ble 1, each view contributes meaningfully to the
multi-view analysis.

Multi-view analysis significantly outperforms
the three single-view methods in both performance
and stability. Therefore, we conclude that auto-
mated sample-specific modality bias analysis is a
complex task for machines. While reliable mea-
surements cannot be attained solely through single-
view analysis, ensemble multi-view demonstrates

Fakeddit ‘ Groupl Group2 Group3 Group4
Modality benefit 74.00 68.00 74.00 53.00
Modality causal effect | 65.00 68.00 62.00 66.00
Multi-view analysis 81.00 72.00 78.00 72.00

MMFakeBench Groupl Group2 Group3 Group4
Modality benefit 46.00 42.00 46.00 64.00
Modality causal effect | 67.00 68.00 49.00 69.00
Multi-view analysis 83.00 73.00 64.00 70.00

Table 2: The accuracy [%] of modality benefit, modality
causal effect, and multi-view analysis under different
types of misinformation detector.

promising potential for real-world deployment.

5.2 Vulnerability to Detector Fluctuations

In the computational process of automated analysis,
various misinformation detectors are involved, such
as the image-only, image-text, and text-only mod-
els utilized in modality benefit and modality causal
effect, as well as the LVLM employed in modality
flow. A pertinent question arises: is the automated
analysis robust to the different choices of misin-
formation detectors?

To answer this question, we evaluate the sensi-
tivity of modality benefit, modality causal effect,
and multi-view analysis by altering specific mod-
els and observing the change in accuracy based on
the same samples selected in Section 5.1'. We se-
lect four model combinations (across Image-only,
Image-text, and Text-only models):

* Groupl={UnivFD, HAMMER, FFNews }
* Group2={DTI), HAMMER, FFNews}

* Group3={UnivFD, DT(1, T), FFNews}

'"Due to the high computation cost and the strong stability
of LVLM compared to small models, we do not study the
sensitivity of modality flow.



e Group4={UnivFD, HAMMER, DT(T)}

As illustrated in Table 2, when considering
the average performance on Fakeddit and MM-
FakeBench, the maximum fluctuation exceeds 10%
for both single-view and multi-view scenarios, indi-
cating that automated analysis is prone to detector-
induced fluctuations. We take this phenomenon as
unavoidable because each view quantifies modality
bias based on models’ output, and the performance
of different models can vary significantly. Transfer-
ring the model for a specific modality inevitably af-
fects the distribution of prediction for that modality,
which in turn influences the calculation of modality
contribution in each view.

Therefore, in practical applications, certain im-
provements are necessary to enhance the robust-
ness of automated analysis. On the one hand, the
simplest approach is to ensemble various misinfor-
mation detectors for each view, thus leveraging the
strengths of different types of detectors. However,
this method introduces additional computational
overhead and is more suitable for scenarios where
real-time consideration is low-priority, such as pre-
liminary cleaning of modality-biased benchmarks.
On the other hand, model-agnostic features can be
incorporated to compute detectors’ output, such
as edge or texture features for images and TF-IDF
features for text. While this reduces reliance on
specific model architectures, it requires the design
of effective model-agnostic feature extraction meth-
ods to ensure that these features can capture the key
information related to modality bias.

5.3 Modality-balanced vs. Biased Samples

Table 1 reveals that multi-view analysis achieves
high accuracy on modality-balanced samples but
exhibits lower accuracy on biased ones. For ex-
ample, on Fakeddit, the accuracy of multi-view
analysis on “Modality-balance” samples is 85.71%,
whereas on “Uni-text” samples, the accuracy drops
to 37.50%. A similar trend is observed on MM-
FakeBench, where the accuracy on “Modality-
balance” samples is 86.08%, but on “Uni-image”
samples, it decreases to 57.14%. What contribute
to this performance discrepancy?

To answer this question, we use Venn diagrams
to visualize the intersections among different views
to analyze the consistency of multi-view analysis.
It is important to note that this analysis encom-
passes the entire dataset, rather than those samples
from human evaluations. As illustrated in Figure 3,

Uni-image Modality-balance Uni-text
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Figure 3: The Venn diagram of three single-views on
Fakeddit (top three) and MMFakeBench (bottom three).

different views exhibit high alignment on modality-
balanced samples but significant divergence on bi-
ased samples. We attribute this divergence to the
fact that different views possess distinct patterns
for capturing bias. Generally, higher consistency
among views yields higher accuracy, and thus, this
divergence leads to suboptimal accuracy on biased
samples. In real-world deployment, if our objective
is to clean a modality-biased benchmark by retain-
ing only modality-balanced samples, the results of
the automated analysis can serve as a robust refer-
ence. Conversely, if the focus is on biased samples,
it becomes necessary to employ related techniques
to mitigate this divergence, thereby ensuring the
reliability of the results. For instance, a calibra-
tor could be designed to post-process the predicted
probabilities of biased samples of each view.

6 Conclusion

In this work, we investigate whether it is possible
to establish an automated sample-specific modality
bias analysis for existing multimodal misinforma-
tion benchmarks. We first propose three quantifica-
tion methods based on different theories and adapt
them to bias identification, i.e., the view of modal-
ity benefit, modality flow, and modality causal ef-
fect. Then we conduct a human evaluation on two
multimodal misinformation benchmarks to study
the practicability of automated analysis and de-
rive three interesting findings that offer design con-
sideration and improvement direction toward fu-
ture research. Experimental results indicate that
automated sample-specific modality bias analysis
holds promising potential for practical applications.
This suggests its capability to perform tasks like
dataset cleaning (i.e., retaining modality-balanced
samples) to mitigate the severity of modality bias.



7 Limitations

There are two limitations in this work. Firstly, due
to the substantial workload associated with human
evaluation, it is challenging to scale the number of
test samples. We randomly selected 100 samples
for human evaluation to validate the effectiveness
of our proposed multi-view analysis. However, a
larger sample size could enhance statistical signifi-
cance and provide a more robust evaluation. Sec-
ondly, we do not study the effect of different large
vision-language models (e.g., larger and stronger
LVLMs) on modality flow view because of LVLMs’
high computation cost of saliency score calculation
based on the loss backward process.
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A Description of Appendix

This appendix contains the investigation of differ-
ent settings (B, C, D), the detailed information
about corresponding processes (E, F, G, H, I), the
error analysis of multi-view output (J), and discus-
sion of some considerations (K), which contributes
to a comprehensive understanding and evaluation
of this paper. Appendix B examines how vari-
ous methods of combining multi-view can influ-
ence performance. Appendix C delves into the
effect of different saliency score calculation meth-
ods. Appendix D study the effect of different com-
putation strategies of S;; and Sy in the view of
modality flow. Appendix E describes the deter-
mination and impact of super-hyperparameter e.
Appendix F focuses on the core information ex-
traction prompts and the effect of different extrac-
tion model combinations. Appendix G provides a
quantitative overview of multimodal misinforma-
tion benchmarks utilized in our work. Appendix H
detailedly clarifies the model description, model se-
lection criteria, and fine-tuning details. Appendix I
presents the details of human annotation and in-
struction. Appendix J conducts an error analysis
of the ensemble multi-view analysis. Appendix K
discusses several considerations of this work, like
the versatility of our proposed automated analysis.

B Effect of Ensemble Strategies

We explore the impact of different ensemble strate-
gies in Table 3, including random majority voting,
prior majority voting (ours), and weighted voting.
The weights assigned to each view are [0.3, 0.2,
0.5], which are determined based on the average
performance of single-view analysis. For instance,
modality causal effect ranks second on Fakeddit
and first on MMFakeBench, demonstrating over-
all superior performance among three single-view
analyses. Therefore, we assign a weight of 0.5
to this view. Different voting strategies exhibit
varying performance across different benchmarks.
Overall, prior majority voting demonstrates the
most stability and optimal performance.
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C Effect of Saliency Score Calculations

Table 4 presents the results of our saliency score
calculations and LIME for comparative analysis,
specifically focusing on multi-view analysis and
inference speed. FPS (Frame Per Second) denotes
the number of samples that can be processed per
second (i.e., a higher value indicates faster). The
choice of saliency score calculation method has
relatively little impact on the inference speed com-
pared to the performance of multi-view analysis.

D Effect of Computation Strategies

As for the computation strategies of .S;; and Sy,
we report the predicted proportion under sum, av-
erage and maximum conditions in Table 6. We
observe that the results of average and maximum
strategies are highly unreasonable, which exhibits
a strong bias toward text modality. We refer to this
phenomenon as the modality gap. For instance, the
image modality typically contains more tokens than
the text modality, but many of these tokens often
carry background information with minimal impact
on the output. When using the average strategy, the
contribution of the text modality is exaggerated. A
similar problem arises with the maximum strategy,
likely due to inherent differences in how the LVLM
assigns attention to individual tokens of different
modalities. This could be attributed to the fact that
LVLMs consist of a superior language model (>7B)
paired with a simple small image encoder (500M).

E Determination of Threshold

We conduct a user study to determine the threshold
in the view of modality flow, selecting 20 samples
from Fakeddit and MMFakeBench and manually
annotating the types of modality bias. It is impor-
tant to note that these samples are used for tuning
the threshold and are different from those used for
human evaluation. In this user study, the first author
of this paper serves as the data annotator and adopts
the same criteria described in Appendix 1. By ad-
justing the threshold from O to 0.4 in increments
of 0.05, we identify the threshold that achieves the
highest accuracy for the modality flow analysis. As
shown in Figure 4, we set the threshold as 0.25.
We also present the results of the ensemble multi-
view analysis under different threshold e in Table 5.
The general trend observed is that, as the threshold
increases, accuracy initially rises, then stabilizes,
and eventually declines. It is consistent with the
findings from the above user study (Figure 4).



‘ Fakeddit ‘ MMFakeBench
Ensemble Strategy ‘ Uni-image  Modality-balance ~ Uni-text Acc ‘ Uni-image Modality-balance ~ Uni-text Acc

0.13[46.15] 0.77[84.42] 0.10[30.00] 74.00 | 0.14[28.57] 0.65[83.08] 0.21[52.38]  69.00
0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 | 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00
0.19[36.84] 0.73[86.30] 0.08[37.50] 73.00 | 0.07[57.14] 0.69[84.06] 0.24[45.83] 73.00

Random majority voting
Prior majority voting (Ours)
Weighted voting

Table 3: The effect of different ensemble strategies on the multi-view analysis.

‘ Fakeddit ‘ MMFakeBench ‘ Inference Speed

‘ Uni-image  Modality-balance Uni-text Acc ‘ Uni-image  Modality-balance ~ Uni-text Acc ‘ FPS
Ours | 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 | 0.07[57.14] 0.79[86.08] 0.14[78.57]  83.00 0.4942
LIME | 0.06[66.67] 0.91[80.22] 0.03[0.00]  77.00 | 0.07[57.14] 0.69[84.06] 0.24[45.83] 73.00 0.3489

Table 4: The effect of different saliency score calculations on the multi-view analysis.

\ Fakeddit \ MMFakeBench
€ ‘ Uni-image  Modality-balance Uni-text Acc ‘ Uni-image Modality-balance Uni-text Acc
0 0.10[60.00] 0.81[85.19] 0.09[33.33] 78.00 | 0.22[22.73] 0.58[82.76] 0.20[55.00] 64.00

0.05 0.10[60.00]  0.81[85.19]  0.09[33.33] 78.00 | 0.18[22.22]  0.62[82.26]  0.20[55.00] 66.00
0.10 0.08[75.00]  0.84[85.71]  0.08[37.50] 81.00 | 0.18[22.22]  0.62[82.26]  0.20[55.00] 66.00
0.15 0.08[75.00]  0.84[85.71]  0.08[37.50] 81.00 | 0.18[22.22]  0.67[83.58]  0.15[73.33] 71.00
0.20 0.08[75.00]  0.84[85.71]  0.08[37.50] 81.00 | 0.15[26.67]  0.71[84.51]  0.14[78.57] 75.00
0.25 (Ours) | 0.08[75.00]  0.84[85.71]  0.08[37.50] 81.00 | 0.07[57.14]  0.79[86.08]  0.14[78.57] 83.00
0.30 0.08[75.00]  0.84[85.71]  0.08[37.50] 81.00 | 0.07[57.14]  0.79[86.08]  0.14[78.57] 83.00
0.35 0.06[66.67]  0.87[83.91]  0.07[42.86] 80.00 | 0.07[57.14]  0.79[86.08]  0.14[78.57] 83.00
0.40 0.06[66.67]  0.87[83.91]  0.07[42.86] 80.00 | 0.07[57.14]  0.82[82.93]  0.11[72.73] 80.00

Table 5: The effect of different threshold e on the multi-view analysis.

‘ Uni-image Modality-balance  Uni-text - Fakeddit ~o~ MMFakeBench
Sum(Ours) | 0.15 0.52 0.33 "
Avg 0.00 0.00 1.00 & /_:: ":_'
Max 0.08 0.00 0.92 55 of

45

Acc

Table 6: The predicted proportion [0-1] of modality flow

under different aggregation strategies. *

25

15
F Core Information Extraction 0 005 01 015 02 025 03 035 04

In the view of modality causal effect, we first lever-
age two large models to extract the core informa-
tion and then construct the causal graph. Specif-
ically, we utilize MiniCPM-V 2.6 to identify the

Figure 4: Accuracy of the view of modality flow with
varying threshold e on Fakeddit and MMFakeBench.

core entity F and irrelevant visual content C' of denotes the bottom-right coordinate. Remem-
images. Llama3-8B is employed to recognize the ber to apply coordinate normalization, which
core word W and irrelevant word R of texts. Noted means the coordinate range from O to 1.
that these large models used for core information
extraction do not require further fine-tuning. The * Llama3-8B: Please identify the keyword that
prompts are as follows: can represent the core semantic information of
this sentence: < T'ext >. Output the words in
* MiniCPM-V 2.6: < I'mage > Please iden- the format of [wordl, word2, ..., wordn] if the
tify the core entity in this image. Output the core semantic is wordl, word?2, ..., and wordn.
corresponding entity region coordinates in the Please note that the number of words would
format of [x1, y1, x2, y2], where (x1, yl) not be fixed. It depends on your understanding
denotes the top-left coordinate and (x2, y2) of the sentence.
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Text Core Word

How to self-diagnose
yourself with a mental
iliness in 3 easy steps.

'self-diagnose’,
'mental illness'

The tree was angry at

me for felling it. ‘tree’, ‘angry’

This melted car in

i 'melted car'
Lille France.

David Attenborough
served as director
of BBC Two.

‘David',
'Attenborough',
'director’, 'BBC'

Figure 5: Examples of core information extraction.

Here we provide some examples (Figure 5) to
validate the reliability of the extraction results.

To study the effect of different core information
extraction models, we adopt additional large mod-
els, specifically another LVLM, Ovis1.6-Gemma?2-
9B (Lu et al., 2024), and another LLM, Yi-1.5-
9B (Young et al., 2024). Table 7 depicts the en-
semble multi-view analysis of different model com-
binations. Generally, the stronger a large model’s
reasoning ability, the more accurately it can extract
core information. So the overall accuracy of multi-
view analysis will be higher. This phenomenon
further corroborates the universality and extensi-
bility of the proposed automated analysis. As the
capabilities of large models enhance, the accuracy
of our proposed automated sample-specific modal-
ity bias analysis is anticipated to improve further.

G Statistics of Benchmarks

Table 8 depicts the statistics of two multimodal mis-
information benchmarks, i.e., Fakeddit and MM-
FakeBench. Specifically, we report the number
of each category (i.e., Real or Fake). Constructed
from popular online media, Fakeddit is a highly
diverse real-world English benchmark and contains
over six hundred thousand multimodal samples.
In contrast, MMFakeBench is a synthetic English
dataset generated by Large Vision-language models
(LVLM) like DALL-E3. For a multimodal misin-
formation benchmark with a predefined partition of
“Train”, “Valid”, and “Test” sets, we first randomly
select 40% of the samples from the “Train” set
to fine-tune the models, and then perform sample-
specific modality bias analysis on the remaining
60% of the “Train” set, the “Valid” set, and the
“Test” set. To avoid confusion, we refer to the
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data used for fine-tuning as “Finetune_train” and
“Finetune_valid” , while the remaining subsets used
for automated analysis are referred to as “Analy-
sis_train”, “Analysis_valid”, and “Analysis_test”.

H Model Description, Selection Criteria,
and Fine-tuning Details

Model Description. We first introduce models uti-
lized in each view. UnivFD (Ojha et al., 2023) is a
versatile fake image detector that operates within
a feature space not explicitly trained to distinguish
real from fake images. HAMMER (Shao et al.,
2023), a multimodal detector built on ALBEF (Li
et al., 2021), detects manipulation across different
multimedia types. FFNews (Huang et al., 2022)
specializes in detecting textual fake news, particu-
larly human-generated misinformation. MiniCPM-
V 2.6 (Yao et al., 2024) excels in multimodal un-
derstanding and outperforms some closed-source
LVLMs like Gemini-1.5-Pro (Duan et al., 2024).
DT(-) (Papadopoulos et al., 2024) utilizes CLIP
ViT-L/14 (Radford et al., 2021) to extract modal-
ity features, with different variants (DT(I), DT(T),
DT(I,T)) representing different modality inputs.
Model Selection Criteria. We select these
misinformation detection models based on their
strong performance and report the detailed quanti-
tative comparison with some other models in Ta-
ble 9. For Image-only models, we show the per-
formance of Patch classifier (Chai et al., 2020),
Co-occurence (Nataraj et al., 2019) and UnivFD
on FaceForensics++ (Rossler et al., 2019) and
LDM (Rombach et al., 2022). For Image-text mod-
els, we depict the performance of CLIP (Radford
et al., 2021), ViLT (Kim et al., 2021) and HAM-
MER on DGM4 (Shao et al., 2023). For Text-
only models, we compare the performance of DE-
FEND (Shu et al., 2019), DualEmo (Vaibhav et al.,
2019) and FFNews on PolitiFact (Shu et al., 2020)
and LUN (Rashkin et al., 2017). For LVLM, we
compare three models of different serials (Ovis1.5-
Gemma2-9B (Lu et al., 2024), InternVL2-8B-
MPO (Chen et al., 2023a), and MiniCPM-V-2.6)
and report the average score of eight evaluation
datasets (i.e., MMBench (Liu et al., 2025), MM-
Star (Chen et al., 2024a), MMMU (Yue et al.,
2024a), MathVista (Lu et al., 2023), AI2D (Kem-
bhavi et al., 2016), HallusionBench (Guan et al.,
2024), MM Vet (Yu et al., 2023), OCRBench (Liu
et al., 2024c)) based on VLMEvalKit (Duan et al.,
2024). Note that our framework is adaptable to any



| Fakeddit | MMFakeBench
Model Combination ‘ Uni-image  Modality-balance Uni-text Acc ‘ Uni-image Modality-balance ~ Uni-text Acc
MiniCPM-V 2.6, Llama3-8B (Ours) | 0.08[75.00] 0.84[85.71] 0.08[37.50] 81.00 | 0.07[57.14] 0.79[86.08] 0.14[78.57] 83.00
MiniCPM-V 2.6, Yi-1.5-9B 0.11[54.55] 0.80[86.25] 0.09[33.33] 78.00 | 0.03[0.00] 0.86[79.07] 0.11[72.73] 76.00
Ovis1.6-Gemma2-9B, Llama3-8B | 0.11[54.55] 0.81[85.19] 0.08[37.50] 78.00 | 0.12[33.33] 0.74[85.14] 0.14[78.57] 78.00
Ovis1.6-Gemma2-9B, Yi-1.5-9B | 0.12[50.00] 0.80[85.00] 0.08[37.50] 77.00 | 0.06[0.00] 0.83[81.93] 0.11[72.73]  76.00
Table 7: The effect of different extraction models on the multi-view analysis.
Fakeddit MMFakeBench Image-only model  FaceForensics++ LDM
. . #Real 80465 1044 Patch classifier 75.54 79.09
Finetune_train o\ 153981 2556 Co-occurence 57.10 70.70
UnivFD 84.50 94.19
. ., #Real 8796 125
Finetune_valid #Fake 13843 275 Image-text model DGM4
Analvsis (i, FReal 132820 1831 CLIP 76.40
YIS #Fake 204409 4169 ViLT 78.38
HAMMER 86.39
Analysis_valid Real 23320 300 Text-only model PolitiFact LUN
YIS #Fake 35979 700 ext-only mode oltifac
DEFEND 2. 1.
. #Real 23507 - 82.67 81.33
Analysis_test #Fak 35764 DualEmo 87.78 81.78
ake - FFNews 88.00 82.53
Total #Real 268908 3300 LVLM Param (B) Avg Score
#Fake 413274 7700
Ovisl.5-Gemma2-9B 11.4 64.00
Table 8: Statistics of the Fakeddit and MMFakeBench. Inter'nYLZ—SB—MPO 8 64.50
MiniCPM-V-2.6 8 65.20

misinformation detection method and LVLM.
Fine-tuning Details. Due to the limited per-
formance of existing models in multimodal mis-
information detection under zero-shot scenarios,
fine-tuning is required for a robust and accurate
measurement. Specifically, we apply supervised
fine-tuning (SFT) to UnivFD, HAMMER, FFNews,
DT), DT, T), and DT(T) for 10 epochs. As
for the MiniCPM-V 2.6, we apply LoRA-based
parameter-efficient fine-tuning for 1 epoch consid-
ering the balance of resources and accuracy. All
hyperparameters are consistent with their original
work and experiments are conducted on one A100
80GB GPU. The accuracy of tuned models on the
“Finetune_valid” set is shown in Table 10.

I Human Annotation

Liang et al. (2024) show that human judgment can
be used as a reliable estimator of multimodal inter-
action. Following their design, we also conduct a
human evaluation with three annotators to demon-
strate the effectiveness of multi-view analysis. we
recruited the annotators from the local universi-
ties of China through public advertisement with
a specified pay rate. They are neither the authors
nor members of the authors’ research group and
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Table 9: Quantitative comparison of misinformation
detection models and LVLMs.

Model Fakeddit MMFakeBench
Image-onl UnivFD 79.94 74.25
ge-only DT(I) 88.01 80.75
Imace-text HAMMER 92.41 81.00
& DT(I, T) 93.40 83.75
Text-onl FFNews 89.20 86.04
y DT(T) 88.73 75.50
LVLM MiniCPM-V 2.6 94.61 95.00

Table 10: The accuracy of tuned models on the “Fine-
tune_valid” set of Fakeddit and MMFakeBench.

are all working towards a graduate degree in com-
puter science and possess knowledge of multimodal
learning. We pay them 50 CNY an hour. We show
both modalities to annotators and ask them to an-
notate the type of modality bias for each sample.
We randomly select 100 samples from each dataset
to conduct the experiment. For Fakeddit, there
are 60 samples from “Analysis_train”, 20 samples
from “Analysis_valid”, and 20 samples from “Anal-
ysis_test”. For MMFakeBench, there are 60 sam-
ples from “Analysis_train” and 40 samples from
“Analysis_valid”. We clarify the annotation proce-



Uni-image Modality-balance Uni-text
Fakeddit 0.8251 0.8913 0.8122
MMFakeBench 0.8298 0.8940 0.8031

Table 11: The Krippendorff’s alpha test of human anno-
tations.

dure and judgment criteria before annotation.

¢ Instruction: Given a multimodal news sample,
it contains both news caption and news image.
You need to rate the following three questions
ranging from 0-5.

Question 1. (Uni-Image): The extent to which
Image modality enables you to predict with-
out the other modality.

Question 2. (Uni-Text): The extent to which
Text modality enables you to predict without
the other modality.

Question 3. (Modality-balance): The extent
to which both modalities enable you to pre-
dict that you would not otherwise make using
either modality individually.

For a specific sample, we first average the three
scores of each annotator respectively, and then se-
lect the type with the highest score as the bias type
of this sample.

We conducted Krippendorff’s alpha test (Krip-
pendorff, 2011) to assess the reliability and agree-
ment of human annotations. As presented in Ta-
ble 11, all alpha values exceed 0.8, which demon-
strates a high level of agreement among the three
annotators and further substantiate the validity of
our human annotations.

J Error Analysis

As shown in Figure 6, we conduct an error analysis
on the “Uni-image” category, which exhibited the
lowest performance in our multi-view analysis. We
found that the multi-view analysis struggles to cor-
rectly identify well-edited images (Figure 6, left)
or images synthesized by large vision-language
models (Figure 6, right). Although these images
may appear seamless at the pixel level, they con-
tain misinformation at the semantic level. However,
the multi-view analysis incorrectly classifies these
samples as ‘“Modality-balance”. We attribute this
issue to the limitations of current MMD models,
which are not yet equipped to handle such complex

16

How long can we let
poverty sustain itself

i s

A teenager is on the
snow with his skis

Multi-view analysis: ity-bal

Figure 6: Error cases of multi-view analysis. The modal-
ity bias of these two samples should be “Uni-image”.

cases. As more advanced techniques are developed,
these types of errors may decrease, improving the
accuracy of automated bias evaluation systems.

K Discussion

Firstly, the definition of “modality bias” is derived
from (Guo et al., 2023), referring to the tendency of
a model to rely on a single modality (e.g., image or
text) for decision-making. However, there might be
multiple forms of modality bias in practical appli-
cations according to varying definitions. Theoret-
ically, each view (i.e., Modality benefit, Modality
flow, and Modality causal effect) holds a distinct
bias recognition pattern, so the ensemble multi-
view analysis is robust to such diverse forms of
bias.

Secondly, from the view of modality bene-
fit, we can determine the type of modality bias
by comparing the final output benefit of image
modality and text modality. Nevertheless, when
V(™ 0m2) 'V (0™, 0™2), V (™2, 2™) | and
V (z™2,0™1) all equal zero, the model is unable
to make accurate predictions. In such cases, we
hyposize the difficulty of samples exceeds the dis-
criminative capacity of this view, and the Shapely
value cannot provide a reasonable classification.

Thirdly, we investigate the automated sample-
specific modality bias analysis for multimodal mis-
information benchmarks. This deepens our under-
standing of such benchmarks and provides new
insights for online multimodal content analysis.
However, this method can be applied not only in the
field of misinformation detection. Our automated
analysis is broadly applicable to general tasks like
visual question answering (VQA) and extends to
other modalities like audio.

Fourthly, while our work focuses on identifying
and analyzing modality bias, improving misinfor-
mation detection based on bias analysis is a direc-



tion worthy of in-depth exploration. We encourage
future work to improve model training by leverag-
ing modality bias analysis results as auxiliary la-
bels during the optimization process of multimodal
misinformation detection.

Fifthly, in real-time applications, the primary
computation cost arises from the inference of large
models. While the forward of modality flow in-
volves a MiniCPM-V 2.6, the modality causal ef-
fect incorporates both MiniCPM-V 2.6 and Llama3-
8B. This results in a relatively slower inference
speed for these two views. A potential approach is
utilizing quantized versions of large models in real-
time applications to reduce computational costs.
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