
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COGNITIVELY INSPIRED REFLECTIVE EVOLUTION:
INTERACTIVE MULTI-TURN LLM–EA SYNTHESIS OF
HEURISTICS FOR COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing effective heuristics for NP-hard combinatorial optimization problems
remains a challenging, expertise-driven task. Recent uses of large language mod-
els (LLMs) primarily rely on one-shot code synthesis, producing fragile, unval-
idated heuristics and under-utilizing LLMs’ capacity for iterative reasoning and
structured reflection. In this paper, we introduce Cognitively Inspired Reflec-
tive Evolution (CIRE), a hybrid framework that embeds LLMs as interactive,
multi-turn reasoners within an evolutionary algorithm (EA). CIRE (i) constructs
performance-profile clusters of candidate heuristics to give the LLM compact,
behaviorally coherent context; (ii) engages the model in multi-turn, feedback-
driven reflection tasks that produce explainable performance analyses and targeted
heuristic refinements to broaden the exploration–exploitation frontier; and (iii) in-
tegrates and selectively validates these proposals via an EA meta-controller that
adaptively balances search. Extensive experiments on benchmark combinatorial
optimization show that CIRE yields heuristics that are both more robust and more
diverse, achieving consistent, statistically significant gains over one-shot LLM
generation, genetic programming baselines, and population-based EAs without
LLM feedback. These findings suggest that interactive, cognitively inspired multi-
turn reasoning is a promising paradigm for automated heuristic design.

1 INTRODUCTION

Combinatorial optimization problems (COPs) such as the Traveling Salesman Problem (TSP), vehi-
cle routing, and task scheduling lie at the heart of logistics, network design, and industrial planning.
These problems are NP-hard, and exact algorithms become impractical as instance size grows. As
a result, practical success relies on heuristics that can produce high-quality approximate solutions
under limited computational budgets Blum & Roli (2003). The ability to design strong heuristics is
therefore a cornerstone of progress in both operations research and artificial intelligence, with direct
implications for real-world decision-making systems.

Despite their importance, heuristics are typically the product of painstaking, expert-driven trial-
and-error Burke et al. (2013). The design process requires deep domain knowledge and extensive
experimentation, often yielding solutions that are brittle or highly problem-specific. Efforts to au-
tomate this process through evolutionary algorithms (EAs) and genetic programming have shown
promise Branke et al. (2016), but these methods frequently generate redundant or fragile rules, and
struggle to capture higher-level insight into why certain heuristics succeed or fail. Thus, existing
approaches can generate candidate heuristics, but they lack systematic mechanisms for critiquing
and refining those heuristics to boost performance.

The emergence of large language models (LLMs) offers a new opportunity to revisit this challenge
Liu et al. (2024). Modern LLMs are not only capable of producing executable code, but also of gen-
erating natural-language explanations, comparative analyses, and step-by-step reasoning Wei et al.
(2022); Ye et al. (2024); Surina et al. (2025). Recent attempts to apply LLMs for heuristic synthesis
generally focus on one-shot code generation, where the model outputs a heuristic implementation
that is then evaluated. While attractive, this paradigm often results in unstable or unvalidated solu-
tions, and underutilizes the LLM’s potential for iterative reflection and improvement. For example,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

AlphaCode uses large-scale sampling and filtering of many candidate programs rather than relying
on a single synthesized solution Li et al. (2022). Treating LLMs as static code generators thus fails to
exploit their deeper cognitive capabilities—namely, the ability to analyze feedback and self-improve
over multiple interactions.

To address this gap, we introduce Cognitively Inspired Reflective Evolution (CIRE), a hybrid
LLM–EA framework that reconceptualizes LLMs as interactive, multi-turn reasoners for automated
heuristic design, rather than passive one-shot coders. Instead of producing heuristics in isolation,
our approach leverages the LLM’s capacity for critique, reflection, and refinement in tandem with
evolutionary search. Concretely, CIRE (i) constructs performance-profile clusters of heuristics,
grouping candidate solutions into behaviorally coherent sets that provide the model with structured
context; (ii) engages the LLM in multi-turn, feedback-driven reflection, where the model analyzes
the strengths and weaknesses of these clusters and proposes targeted refinements that systematically
expand the exploration–exploitation space; and (iii) integrates these refinements into an EA meta-
controller that adaptively balances exploration and exploitation via selective validation and survival.
This synergy between evolutionary search and cognitively inspired reflection transforms heuristic
design into an iterative, guided exploration process.

Our contributions are summarized as follows:

• We propose a cognitively inspired LLM–EA framework that redefines LLMs as interactive,
multi-turn reasoners within evolutionary search, rather than static code generators.

• We develop a clustering-based reflective feedback mechanism that structures the LLM’s
analysis around behaviorally coherent groups of heuristics, enabling more informative and
generalizable refinements.

• We design a feedback-driven, multi-turn prompting strategy that broadens the explo-
ration–exploitation frontier and integrate it into an EA meta-controller for stable, verifiable
search.

• We empirically evaluate our framework on benchmark combinatorial optimization prob-
lem, showing that CIRE yields heuristics that are more robust and diverse, with statistically
significant gains over one-shot LLM generation, classical genetic programming baselines,
and EA search without LLM feedback.

2 RELATED WORKS

Research on designing heuristics for NP-hard combinatorial optimization problems—such as the
Bin Packing Problem (BPP) and the Traveling Salesman Problem (TSP)—has a long and influen-
tial history. Classical heuristics for TSP date back to nearest-neighbor and insertion procedures
analyzed by Rosenkrantz et al. (1977), followed by powerful local-improvement strategies such as
2-opt, 3-opt, and the Lin–Kernighan method. In parallel, the BPP has been shaped by simple greedy
rules, including First Fit and Best Fit Sgall (2014). These manually crafted heuristics are valued
for their efficiency and interpretability, yet they remain brittle, highly problem-specific, and diffi-
cult to generalize across distributions Blum & Roli (2003); Burke et al. (2013). Such limitations
motivated early attempts to automate the discovery of heuristics. A prominent direction was the
development of hyper-heuristics and evolutionary approaches that evolve heuristic rules from prim-
itive components Branke et al. (2016). These methods demonstrated the feasibility of automatic
heuristic construction, often surpassing hand-crafted baselines. However, they frequently converged
to redundant or fragile structures and produced heuristics that were difficult to interpret or refine.
Reinforcement learning and neural combinatorial optimization later extended automated design by
training policies directly on optimization tasks, but typically required extensive training data, heavy
computation, and suffered from poor out-of-distribution generalization.

A significant leap in AI-driven algorithm design was made by DeepMind’s AlphaCode Li et al.
(2022), which demonstrated that large Transformer models, combined with extensive sampling and
filtering, can generate solutions at a competitive programming level. Despite its success, AlphaCode
relied heavily on scale and lacked a mechanism for iterative self-improvement—an ability essential
for heuristic design, where refinement and error correction are crucial. This limitation motivated a
shift toward using LLMs as reasoning agents that iteratively generate, critique, and refine heuristics.
FunSearch Romera-Paredes et al. (2023) first showed that evolving LLM-generated programs can

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

surpass classical heuristics for online bin packing. The Evolution of Heuristics (EoH) framework Liu
et al. (2024) extended this idea by co-evolving both code and natural-language “thoughts,” improv-
ing robustness through reasoning-guided evolution. ReEvo Ye et al. (2024) introduced reflective
critique, but its mechanism primarily compared heuristics in pairs, which can limit the richness of
feedback and restrict exploration diversity. HSEvo Dat et al. (2025) further addressed diversity loss,
and Hemberg et al. Hemberg et al. (2024) integrated LLMs directly as mutation operators within
genetic programming pipelines.

A key insight motivating our work arises from recent reinforcement learning studies comparing Di-
rect Preference Optimization (DPO) with Group Relative Policy Optimization (GRPO) Du et al.
(2025); Shao et al. (2024). These studies report that group-based preference signals—where the
model reasons over sets of trajectories rather than isolated pairs—yield more stable learning dy-
namics and stronger performance on tasks involving program synthesis and code optimization. This
trend highlights a broader principle: group-level feedback provides richer comparative structure,
enabling the model to extract more nuanced patterns than pairwise comparisons allow. Inspired
by this, heuristic design should similarly move beyond pairwise reflection. While ReEvo’s pair-
wise critique encourages refinement, it restricts the LLM’s ability to understand broader behavioral
patterns across the population of heuristics. In contrast, group-based reflection enables the LLM
to analyze clusters of heuristics, identifying shared failure modes, contrasting exploration strate-
gies, and synthesizing improvements that leverage strengths from multiple groups. This mirrors
the advantages of GRPO-like group reasoning: better structural feedback, more stable refinement,
and improved coverage of the exploration–exploitation landscape. Overall, the trajectory of prior
work—from expert-crafted heuristics, to evolutionary and learning-based automation, to reflective
LLM-driven synthesis—reveals persistent challenges: one-shot brittleness, limited interpretability,
and insufficient mechanisms for structured improvement. Our framework builds on these insights
by combining multi-turn reflection with cluster-based, group-level comparative feedback, enabling
LLMs not only to generate heuristics but also to reason across populations of candidates and evolve
more generalizable, robust strategies over time.

3 METHODOLOGY

3.1 OVERVIEW

Our proposed method, Cognitively Inspired Reflective Evolution (CIRE), as shown in Figure 1,
is motivated by the way human cognition develops strategies through incremental reasoning and
self-reflection. Humans rarely arrive at effective solutions in a single attempt; instead, they progress
step by step, comparing alternatives, grouping related ideas, reflecting on their strengths and weak-
nesses, and refining them through iterative deliberation. Inspired by this process, CIRE establishes a
multi-turn mechanism that enables large language models (LLMs) to evolve heuristics dynamically,
transcending the limitations of static, one-shot generation.

The framework unfolds through stages:

• Grouping and Behavioral Clustering: The initial pool of heuristics is organized into
groups using two complementary strategies: one ensures the existence of groups with struc-
tural or performance similarity, while the other enforces diversity in semantics and design.
This dual mechanism establishes a rich basis for reflection, ensuring that feedback is con-
textualized both within coherent heuristic families and across contrasting perspectives.

• Reflective Multi-turn Refinement: Within each group, the LLM engages in a structured
multi-turn dialogue. Instead of isolated prompt calls, the model critiques why certain
heuristics succeed or fail, extracts comparative insights, and synthesizes refined or entirely
novel variants. This reflective evolution mirrors human cognitive processes of critique and
incremental improvement, allowing the search to progressively deepen.

3.2 GROUPING AND BEHAVIORAL CLUSTERING

Representation. Each heuristic candidate is evaluated on a benchmark set I = {1, . . . ,m}.
Let ei(h) denote the objective value obtained by heuristic h on instance i. To support more ex-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Cognitively Inspired Reflective Evolution (CIRE): The framework begins with Pop-
ulation Initialization to create a diverse set of candidate heuristics. Candidates are then organized
in Grouping to ensure both coherence and diversity. Reflective Multi-turn Refinement iteratively
evaluates, diagnoses, and improves heuristics. Finally, Population Management retains candidates
that balance quality and diversity, enabling sustained heuristic evolution.

pressive feedback and nuanced comparison, we encode each heuristic using a normalized perfor-
mance–profile vector:

z(h) =
e(h)− e∗

e∗
, (1)

where
e(h) =

(
e1(h), . . . , em(h)

)⊤
, e∗ =

(
e∗1, . . . , e

∗
m

)⊤
, (2)

and
e∗i = min

h′∈H
ei(h

′), i = 1, . . . ,m. (3)

Here, e∗i denotes the best-known cost on instance i across all heuristics in H. This instance-wise nor-
malization preserves each heuristic’s full performance profile, enabling precise diagnostics, clearer
comparisons, and more informative signals for ranking or refinement.

General idea. Adequate reflection arises only when the LLM interacts with well-structured
heuristic sets. Homogeneous groups support fine-grained, instance-level comparison, whereas het-
erogeneous groups broaden the abstraction space and stimulate creative synthesis. CIRE exploits
both perspectives: it first constructs homogeneous groups using a static clustering method followed
by LLM-based refinement, ensuring internally coherent sets of heuristics. It then forms hetero-
geneous groups by combining heuristics from distinct homogeneous groups, thereby increasing
diversity and expanding the reflective space to elicit more innovative heuristic improvements.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

HOMOGENEOUS GROUPS (SIMILARITY-DRIVEN)

Homogeneous groups comprise heuristics with similar behavior or structural traits. We quantify
similarity between heuristics hi and hj by integrating two complementary signals:

• Performance similarity. Behavioral similarity is measured in the normalized performance
space z(·) via cosine similarity:

simperf(hi, hj) =
z(hi)

⊤z(hj)

∥z(hi)∥2 ∥z(hj)∥2
, (4)

• Semantic similarity. Structural resemblance is assessed with CodeBLEU, which extends
BLEU by incorporating lexical, syntactic, semantic, and data-flow aspects:

simcode(hi, hj) = CodeBLEU(hi, hj) ∈ [0, 1]. (5)

The overall similarity is defined as a weighted combination of the two signals:

sim(hi, hj) = α × simperf(hi, hj) + β × simcode(hi, hj), α, β ≥ 0. (6)

Clustering procedure:

To construct homogeneous groups we represent heuristics as a weighted similarity graph

G = (H,E,W ), Wij = sim(hi, hj) ((hi, hj) ∈ E), (7)

where H is the set of heuristics and W ∈ R|H|×|H| stores pairwise similarities. Normalize W by its
global maximum and form dissimilarities

W̃ =
W

maxp,q Wpq
, dij = 1− W̃ij , D = (dij)i,j . (8)

Clustering is sensitive to granularity: too few groups collapses distinctions, while too many frag-
ments structure. CIRE therefore uses a two-phase routine:

1. Initial over-partitioning. Apply agglomerative clustering with linkage L to obtain a fine
partition

(C1, . . . , Cm) = AgglomerativeL(D; m), m ≫ 1, (9)
chosen so that clusters are tight:

diam(Cℓ) = max
x,y∈Cℓ

d(x, y) ≤ δ, δ ≪ 1. (10)

2. LLM-guided refinement. Provide the full over-partition C0 = {C1, . . . , Cm} to an LLM
which returns a globally restructured partition

Cref = ΦLLM(C0,W ), (11)

subject to the partition constraints⋃
C∈Cref

C = H, Cp ∩ Cq = ∅ (p ̸= q). (12)

HETEROGENEOUS GROUPS (DIVERSITY-DRIVEN)

Diversity via entropy. The diversity of a homogeneous cluster G = {h1, . . . , hm} is quantified
by the entropy of its internal similarity distribution. Since the composite similarity sim is symmetric,
we consider only unordered pairs (i, j) with i < j. Normalized affinities are defined as

pij =
sim(hi, hj)∑

u<v sim(hu, hv)
, i < j, (13)

which form a valid probability distribution. The entropy score of G is then

H(G) = −
∑
i<j

pij log pij , (14)

with larger values indicating higher internal heterogeneity.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Entropy-weighted sampling. Given k homogeneous clusters {G1, . . . , Gk}, sampling weights
are assigned proportionally to their entropy values:

wi =
H(Gi)∑k
j=1 H(Gj)

, i = 1, . . . , k. (15)

For a target heterogeneous group size L, the contribution of each cluster is

Li = ⌊wi · L⌋, (16)

Li heuristics are drawn uniformly at random from Gi. The final heterogeneous group is the union

Ghet =

k⋃
i=1

Si, Si ⊆ Gi, |Si| = Li. (17)

3.3 REFLECTIVE MULTI-TURN REFINEMENT

CIRE organizes the search as a sequence of iterative turns, each following the loop

observe → reason → act.

This cycle ensures that each LLM invocation contributes to a coherent refinement trajectory rather
than producing isolated trials.

State and reflection. At turn t, the LLM is provided with a compact state representation

St = {(hj , diagj)
m
j=1, history<t, directions} (18)

hj are candidate heuristics in the group and diagj are diagnostic features (cost, delta-improvement
vector). Reflection over St allows the model to identify structural weaknesses, recurring failure
modes, and latent strengths, thereby grounding subsequent reasoning in accumulated knowledge.

Adaptive strategy: exploration vs. exploitation. Conditioned on the reflective analysis, the
model decides between two complementary modes. Exploration is triggered when recent refine-
ments plateau or converge to structurally similar outcomes, signaling entrapment in a local opti-
mum. In this mode, the LLM proposes divergent heuristics, such as new operators or recombinations
across clusters, to enlarge the search horizon. Exploitation is selected when promising candidates
are detected. Here, the model performs targeted refinement, including parameter tuning, incremental
patching, or structural polishing, to systematically transform partial successes into competitive so-
lutions. This dynamic alternation between diversification and intensification is critical for avoiding
stagnation while consolidating gains.

Action and observation. Once a strategy is chosen, the model outputs actionable artifacts—such
as patches, new DSL entries, or modified code—accompanied by a short rationale and confidence
estimate. With probability p, additional performance observations relative to the current best are
injected into St, sharpening the reflective analysis and aligning the strategy with outcome-based ev-
idence. A fixed maximum-turn budget further regulates the trajectory: early turns favor exploratory
breadth, while later turns naturally prioritize exploitative depth.

Resulting workflow. The integration of reflection, adaptive strategy selection, and observation-
driven feedback yields coherent refinement trajectories {h(1), h(2), . . . , h(T )}. This workflow
achieves sample-efficient improvement, systematically escaping local optima while progressively
optimizing promising directions—outcomes unattainable under naive re-prompting.

4 EXPERIMENTAL

4.1 EMPIRICAL EVALUATION

For evaluation, we seek to answer the following question:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

RQ1.[Effectiveness] How effectively does CIRE generate higher-quality solver code compared to
baseline approaches and the effect across different LLM types?

RQ2.[Reasoning] How does CIRE behave across successive reasoning iterations, and how do these
iterations influence code correctness and solution quality?

RQ3.[Ablation Study] How critical is each component of our method to overall performance?

Datasets. We evaluate CIRE on two canonical combinatorial optimization tasks: TSP and Online
Bin Packing. The TSP benchmark spans instance sizes from 10 to 200 nodes, while the Bin Packing
benchmark covers capacity settings from 100 to 500.

Models. We employ DeepSeek V3, a state-of-the-art large language model (LLM), as the backbone
for heuristic generation.

Baselines. We benchmark against competitive state-of-the-art methods, including EoH (Liu et al.
(2024)) and Re-evo (Ye et al. (2024)), as well as several classical heuristic approaches.

Metrics. We assess performance using the optimality gap, defined as the relative deviation of a
solution from the corresponding optimal or best-known value.

4.2 RESULTS

RQ1. [Effectiveness] We compare our method with strong baselines on BPP and TSP, and evaluate
its robustness across different LLM backbones.

Table 1: Online bin packing results. Fraction of excess bins to lower bound (lower is better) on
Weibull instances.

Heuristic
Capacity = 100 Capacity = 300 Capacity = 500

1k 5k 10k 1k 5k 10k 1k 5k 10k

First Fit 5.32% 4.40% 4.44% 1.34% 0.93% 0.92% 0.25% 0.50% 0.50%
Best Fit 4.87% 4.08% 4.09% 1.19% 0.84% 0.86% 0.25% 0.50% 0.47%
EoH 3.03% 2.15% 0.33% 0.60% 0.63% 0.58% 0.25% 0.50% 0.47%
ReEvo 3.78% 0.80% 0.33% 1.04% 0.27% 0.19% 0.25% 0.50% 0.47%
CIRE (ours) 2.34% 1.13% 0.59% 0.30% 0.24% 0.16% 0.25% 0.50% 0.45%

Table 2: Baseline OR-Tools Results for the Traveling Salesman Problem.

Heuristic TSP10 (%) TSP20 (%) TSP50 (%) TSP100 (%) TSP200 (%)

EoH 3.52 9.33 10.24 11.39 15.58
ReEvo 4.22 6.74 11.63 11.01 15.58

CIRE(ours) 2.11 6.74 9.20 12.64 11.46

Quantitative Evaluation. Across all bin-packing settings (Table 1), CIRE consistently outper-
forms both classical heuristics and recent adaptive methods. Under tight capacity (C=100), CIRE
reduces the excess fraction to 2–3%, compared to 4–5% for First Fit and Best Fit. At medium
capacity (C=300), CIRE achieves below 0.3% excess on long streams, while adaptive baselines
such as ReEvo fluctuate between 0.2–0.6%. Even at large capacities (C=500), where all methods
converge, CIRE maintains a measurable advantage. A similar trend appears in TSP benchmarks
(Table 2), where CIRE achieves consistently lower optimality gaps than state-of-the-art LLM-based
approaches (EOH, ReEvo) across instance sizes n ∈ [10, 200]. These results highlight CIRE’s abil-
ity to generalize across problem scales and combinatorial structures.

Effect of LLM Backbone. To isolate whether performance stems from the LLM or from the
CIRE workflow itself, we evaluate CIRE with a diverse set of models—deepseek-v3-0324,
kimi-k2-instruct, qwen3-coder, 480b-35a, and glm-4.5 which shown in Table 3.
(These models span instruction-tuned, code-centric, and large general-purpose LLM families, pro-
viding a representative capability spectrum.) Across all backbones, CIRE remains highly sta-
ble: the best average gap is obtained with deepseek-v3-0324 (1.13) and the worst with

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Online Bin Packing: Method Across Models

Heuristic Model Gap(%)
CIRE deepseek-v3-0324 1.13
CIRE kimi-k2-instruct 1.95
CIRE qwen3-coder-480b-35a 1.41
CIRE glm-4.5 1.20
EOH deepseek-v3-0324 2.15

Table 4: Coefficient Tuning for TSP 50

α Gap(%)
0.2 15.79
0.4 14.06
0.5 9.20
0.6 15.97
0.8 12.5

Table 5: Analysis of Reasoning Categories, their frequency, and examples.

Reasoning Category Description Freq Example
Paradigm shift Completely changes the algo-

rithm family.
16 Given that the highest-

performing known approach
is ”Stabilized Harmonic-
Arctanh” ... I should explore
this proven algorithmic
family rather than tuning the
existing simpler approaches.

Heuristic modification Same algorithm family and
pipeline structure, but deci-
sion/scoring logic is substan-
tially rewritten.

89 ... Given the significant per-
formance gap and clear in-
dication that Worst-Fit works
better, we should focus on re-
fining this approach ...
.

Hyperparameter tuning Only numeric changes
(weights, thresholds,
constants) with formu-
las/pipeline unchanged.

75 ... Given the regression, we
should: 1. Revert to the sim-
pler 0.0386 version 2. Make
minimal adjustments to core
parameters ...
.

kimi-k2-instruct (1.95). The narrow performance band indicates that strong results arise
not from the raw power of the underlying LLM, but from CIRE’s structured reasoning and refine-
ment workflow. This independence from a specific backbone underscores CIRE as a robust and
general optimization framework.

RQ2.[Reasoning] We investigate how CIRE’s multi-turn reasoning shapes code correctness and so-
lution quality. Using LLM-assisted classification, each refinement step is categorized as a paradigm
shift, heuristic modification, or hyperparameter tuning (Table 5). The distribution shows a domi-
nant reliance on heuristic modification (89) and hyperparameter tuning (75), with paradigm shifts
occurring only rarely (16), indicating that CIRE quickly commits to exploitation after brief initial
exploration.

Turn-by-turn analysis (Figure 2) further reveals a consistent pattern: exploration via paradigm
shifts occurs mainly at the first and final iterations. In contrast, the middle iterations concentrate on
fine-grained exploitation. This behavior highlights a key insight: LLM-based optimization naturally
follows an explore-then-exploit reasoning trajectory, with focused mid-stage refinement driving most
of the performance gains.

RQ3.[Ablation Study] To disentangle the contribution of each component in our method, we con-
duct a comprehensive ablation study.

Effect of Multi-turn Refinement and Solution Grouping. Table 6 reports the results on the TSP50
benchmark. The full model achieves a 9.20% optimality gap, while ablating either multi-turn re-
finement or solution grouping degrades performance to 17.18%, the worst gap among all variants.
This consistent degradation highlights that our strong performance cannot be attributed to a single

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Ablation study analyzing the impact of multi-turn and grouping mechanisms.

Setting Gap(%)
w/o multi-turn 17.18
w/o grouping (randomly choose group) 15.97
Ours (Full method) 9.20

1 2 3 4 5 6
0

1

2

3

4

5

Turn

Fr
eq

ue
nc

y

(a) Paradigm Shift

1 2 3 4 5 6
0

5

10

15

20

Turn

(b) Heuristic Modification

1 2 3 4 5 6
0

5

10

15

20

Turn

(c) Hyperparameter tuning

Figure 2: Frequency distributions of turns across three different scenarios.

design choice. Instead, it is the joint effect of multi-turn reasoning and grouping—both essential for
stabilizing the LLM’s code generation and guiding it toward higher-quality optimization solutions.

Effect of Similarity Coefficient Tuning. We further investigate the impact of the parameter α,
which balances behavioral similarity and CodeBLEU-based semantic similarity in our hybrid simi-
larity metric. As shown in Table 4, the best performance is achieved at α = 0.5, indicating that both
behavioral and semantic signals are indispensable. This balanced configuration yields the most
reliable similarity estimates, and we adopt α = 0.5 across all experiments.

Summary of Findings. Across all ablations, we observe that removing any component—multi-
turn refinement, grouping, or balanced similarity estimation—leads to consistent and measurable
performance degradation. These results provide strong evidence that our method derives its effec-
tiveness from a carefully designed combination of components, each playing a distinct and comple-
mentary role in enabling LLMs to generate high-quality optimization code.

5 CONCLUSION

CIRE reconceptualizes LLM-based heuristic discovery as a reflective, multi-turn refinement pro-
cess in which each model invocation contributes to a coherent trajectory of reasoning rather than
an isolated trial. By embedding diagnostic feedback into every turn, the framework establishes
a foundation of reflection that allows the model to recognize strengths, diagnose weaknesses, and
build on structural patterns uncovered in earlier attempts. This reflective state underpins a principled
balance between exploration—introducing qualitatively new strategies to escape local optima and
broaden the search space—and exploitation, where targeted tuning systematically enhances promis-
ing heuristics by refining parameters, operators, or structural decisions. The integration of obser-
vation signals further grounds this process in empirical evidence, aligning model reasoning with
measurable progress and preventing divergence into unproductive paths. Through this interplay of
reflection, adaptive decision-making, and performance-driven guidance, CIRE achieves both ro-
bustness and sample efficiency while advancing a general methodology in which LLMs operate as
adaptive problem solvers rather than static generators. This perspective lays a professional foun-
dation for extending multi-turn refinement beyond the studied benchmarks, offering a principled
blueprint for deploying LLMs in a wide range of combinatorial optimization domains where itera-
tive reasoning and adaptive search are indispensable.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003. doi: 10.1145/937503.
937505.

Juergen Branke, Torsten Hildebrandt, and Bernd Scholz-Reiter. Automated design of production
scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation, 20(1):110–
124, 2016. doi: 10.1109/TEVC.2015.2429432.

Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and John R.
Woodward. Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research
Society, 64(12):1695–1724, 2013. doi: 10.1057/jors.2012.8.

P. V. T. Dat, B. Q. H. Tan, S. T. Nguyen, T. T. Xuan, T. K. Nguyen, H. N. Nguyen, U. M. O’Reilly,
and B. Le. HSEvo: Elevating automatic heuristic design with diversity. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2025.

Mingzhe Du, Luu Anh Tuan, Yue Liu, Yuhao Qing, Dong Huang, Xinyi He, Qian Liu, Zejun Ma,
and See-kiong Ng. Afterburner: Reinforcement learning facilitates self-improving code efficiency
optimization. Neurips 2025, 2025.

Erik Hemberg, Stephen Moskal, and Una-May O’Reilly. Evolving code with a large language
model. Genetic Programming and Evolvable Machines, 25(2):21, 2024. doi: 10.1007/
s10710-024-09497-7.

Yujia Li, David Choi, Junyoung Chung, Matt Kusner, Marc G. Bellemare, Demis Hassabis, et al.
Competition-level code generation with AlphaCode. Science, 378(6624):1092–1097, 2022. doi:
10.1126/science.abq1158.

Zhihan Liu, Zipeng Hu, Ziliang Jin, Zitao Wang, Yang Mei, and Hong Zhang. Evolution of heuris-
tics: Towards efficient automatic algorithm design using large language models. In Advances in
Neural Information Processing Systems 37, 2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, et al. FunSearch: Large language models as automatic heuristic designers. arXiv
preprint, 2023.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. An analysis of several heuristics for the traveling
salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977. doi: 10.1137/0206051.

Jiri Sgall. Online bin packing: Old algorithms and new results. Theory of Computing Systems, 55
(3):498–515, 2014. doi: 10.1007/s00453-013-9799-1.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
learning. arXiv preprint arXiv:2504.05108, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems 35, pp. 24824–24837. Curran Associates, Inc., 2022.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 APPENDIX

6.1 PROMPT

Online Bin Packing Prompt Formulation

TASK SUMMARY

You are an AI assistant whose job is to iteratively produce and
refine Python heuristic implementations for the Bin Packing
Online Problem.

You will be given an existing heuristic (or helper functions). Use
multi-turn reasoning: at each turn you must reflect, then
either **explore** a new heuristic family or **exploit**
(refine) the last submitted heuristic, and finally receive an
observation/feedback from the environment.

---

### FUNCTION CONTRACT (must be strictly respected)
- Language: Python only. Only standard library and numpy allowed

(if already used by provided code).
- Required signature:

def score(item, bins)
- Input arguments:

- item: int # size of current item
- bins : Numpy arrays # the rest capacities of feasible bins,

which are larger than the item size.
- Return: scores (Numpy array)
- Correctness rules:

- ’item’ is of type int
- ’bins’ and ’scores’ are both Numpy arrays.

Travelling Salesman Problem Prompt Formulation

TASK SUMMARY

You are an AI assistant whose job is to iteratively produce and
refine Python heuristic implementations for the Travelling
salesman problem.

Given a set of nodes with their coordinates, \
you need to find the shortest route that visits each node once and

returns to the starting node. \
The task can be solved step-by-step by starting from the current

node and iteratively choosing the next node. \
You will be given an existing heuristic, Let use multi-turn

reasoning: at each turn you must reflect, then either
**explore** a new heuristic family or **exploit** the last
submitted heuristic, and finally receive an
observation/feedback from the environment.

### FUNCTION CONTRACT (must be strictly respected)
- Language: Python only. Only standard library and numpy allowed

(if already used by provided code).
- Required signature:

def select_next_node(current_node, destination_node,
univisited_nodes, distance_matrix)

- Input arguments: This function should accept 4 inputs:
’current_node’, ’destination_node’, ’univisited_nodes’,
’distance_matrix’

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

- Output: The function should return 1 output: ’next_node’
- Correctness rules: ’current_node’, ’destination_node’,

’next_node’, and ’unvisited_nodes’ are node IDs.
’distance_matrix’ is the distance matrix of nodes. All are
Numpy arrays.

Do not give additional explanations.

Prompt Template for the THINK Step

ALWAYS REMEMBER THAT, LOWER fitness score = BETTER solution.
First,based on the evalutation result from <observation> or GROUP

REFLECTION,
you should do some critical reasoning about the previous

approach(s) ABOUT:
+ its logical algorithm
+ its heuristic components/hyperparamters/features specifically.

Then, think about the affect of these parameters/hyperparamters
to the fitness score result (in detailed).

Then, you can:

1. Explore a totally new approach, to make some experiments to get
informations.

OR
2. Focus on the behaviour of the heuristic features/components

from the fitness result to tune them and get better result from
the test evaluation.

You are ONLY allowed to do reasoning, NOT to generate code.
Note that, your reasoning should be very BRIEF but STILL critical

and concise, focus on analyzing the heuristic
components/features.

At the last of your response, there must be one of the tags
<explore> or <exploit>, which indicate your decision.

Prompt Template for the Exploration Phase

Now, BASED solely on your REASONING, generate EXACTLY ONE solution
for exploring.

Your output MUST be exactly the SAME as the following format:
<explore>
<algorithm>
# clear and completete algorithm description of the proposed

heuristic.
</algorithm>
<code>
# the completely new Python function implementation for the

algorithm in <algorithm> : ‘score(...)‘ (only code inside
‘<code>‘).

</code>
</explore>
OUTPUT RULE:
Always output exactly one <explore> block containing both

<algorithm> and <code>, nothing else.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Prompt Template for the Exploitation Phase

Now, BASED solely on your REASONING, generate EXACTLY ONE solution
for exploiting.

Your output MUST be exactly the SAME as the following format:
<exploit>
<algorithm>
# Clear algorithm description of the improvements you’re making to

the selected algorithm
</algorithm>
<code>
# Complete and concise Python function implementation with your

refinements: ‘score(...)‘
</code>
</exploit>
OUTPUT RULE:
Always output exactly one <exploit> block containing both

<algorithm> and <code>, nothing else.

6.2 REASONING BEHAVIOR

As shown in Fig. 3, the cognitively inspired reflective evolution process demonstrates how score
dynamics and strategic adaptation interact to drive progress beyond local optima. At the outset,
when the system observed a fitness of 0.042, considerably worse than the best-known score of 0.031,
it recognized stagnation and initiated an exploratory shift. This led to the generation of Adaptive
Resonance Packing (ARP), a structurally novel heuristic that improved the score to 0.036. Although
this gain was modest, the introduction of ARP provided a fertile ground for subsequent refinements.

Building on this foundation, the process transitioned into targeted exploitation. By tuning ARP
through dynamic bandwidth control, exponential gap weighting, and softmax normalization, the
system sought to consolidate and optimize the idea. While the score did not improve beyond 0.036,
this stage illustrates the reflective nature of the method: rather than abandoning a promising ap-
proach, it strategically invested in fine-tuning, ensuring stability before pursuing further change.

When performance remained unchanged, the system’s observation mechanism signaled diminishing
returns and prompted a more dramatic innovation. This shift produced Quantum Tunneling Bin
Packing (QTBP), a probabilistic mechanism inspired by tunneling to bypass local barriers. Crucially,
this step reduced the score to 0.023, surpassing the best-known baseline of 0.031.

The trajectory of scores and strategies highlights the essence of our approach: exploration introduces
qualitatively new directions, exploitation consolidates promising structures, and reflective reasoning
determines when a radical innovation is necessary. In contrast to naive retries that repeat search
attempts, our method interprets performance signals to decide between exploration and exploitation.
This enables it to escape stagnation and uncover breakthroughs otherwise inaccessible to conven-
tional search.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: Qualitative example of reflective reasoning in CIRE: Observations guide the LLM to
alternate between exploration, exploitation, and innovation, resulting in progressive improvement of
heuristic quality.

14


	Introduction
	Related Works
	Methodology
	Overview
	Grouping and Behavioral Clustering
	Reflective Multi-turn Refinement

	Experimental
	Empirical Evaluation
	Results

	Conclusion
	Appendix
	Prompt
	Reasoning Behavior


