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ABSTRACT

Designing effective heuristics for NP-hard combinatorial optimization problems
remains a challenging, expertise-driven task. Recent uses of large language mod-
els (LLMs) primarily rely on one-shot code synthesis, producing fragile, unval-
idated heuristics and under-utilizing LLMs’ capacity for iterative reasoning and
structured reflection. In this paper, we introduce Cognitively Inspired Reflec-
tive Evolution (CIRE), a hybrid framework that embeds LLMs as interactive,
multi-turn reasoners within an evolutionary algorithm (EA). CIRE (i) constructs
performance-profile clusters of candidate heuristics to give the LLM compact,
behaviorally coherent context; (ii) engages the model in multi-turn, feedback-
driven reflection tasks that produce explainable performance analyses and targeted
heuristic refinements to broaden the exploration–exploitation frontier; and (iii) in-
tegrates and selectively validates these proposals via an EA meta-controller that
adaptively balances search. Extensive experiments on benchmark combinatorial
optimization show that CIRE yields heuristics that are both more robust and more
diverse, achieving consistent, statistically significant gains over one-shot LLM
generation, genetic programming baselines, and population-based EAs without
LLM feedback. These findings suggest that interactive, cognitively inspired multi-
turn reasoning is a promising paradigm for automated heuristic design.

1 INTRODUCTION

Combinatorial optimization problems (COPs) such as the Traveling Salesman Problem (TSP), vehi-
cle routing, and task scheduling lie at the heart of logistics, network design, and industrial planning.
These problems are NP-hard, and exact algorithms become impractical as instance size grows. As
a result, practical success relies on heuristics that can produce high-quality approximate solutions
under limited computational budgets Blum & Roli (2003). The ability to design strong heuristics is
therefore a cornerstone of progress in both operations research and artificial intelligence, with direct
implications for real-world decision-making systems.

Despite their importance, heuristics are typically the product of painstaking, expert-driven trial-
and-error Burke et al. (2013). The design process requires deep domain knowledge and extensive
experimentation, often yielding solutions that are brittle or highly problem-specific. Efforts to au-
tomate this process through evolutionary algorithms (EAs) and genetic programming have shown
promise Branke et al. (2016), but these methods frequently generate redundant or fragile rules, and
struggle to capture higher-level insight into why certain heuristics succeed or fail. Thus, existing
approaches can generate candidate heuristics, but they lack systematic mechanisms for critiquing
and refining those heuristics to boost performance.

The emergence of large language models (LLMs) offers a new opportunity to revisit this challenge
Liu et al. (2024). Modern LLMs are not only capable of producing executable code, but also of gen-
erating natural-language explanations, comparative analyses, and step-by-step reasoning Wei et al.
(2022); Ye et al. (2024); Surina et al. (2025). Recent attempts to apply LLMs for heuristic synthesis
generally focus on one-shot code generation, where the model outputs a heuristic implementation
that is then evaluated. While attractive, this paradigm often results in unstable or unvalidated solu-
tions, and underutilizes the LLM’s potential for iterative reflection and improvement. For example,
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AlphaCode uses large-scale sampling and filtering of many candidate programs rather than relying
on a single synthesized solution Li et al. (2022). Treating LLMs as static code generators thus fails to
exploit their deeper cognitive capabilities—namely, the ability to analyze feedback and self-improve
over multiple interactions.

To address this gap, we introduce Cognitively Inspired Reflective Evolution (CIRE), a hybrid
LLM–EA framework that reconceptualizes LLMs as interactive, multi-turn reasoners for automated
heuristic design, rather than passive one-shot coders. Instead of producing heuristics in isolation,
our approach leverages the LLM’s capacity for critique, reflection, and refinement in tandem with
evolutionary search. Concretely, CIRE (i) constructs performance-profile clusters of heuristics,
grouping candidate solutions into behaviorally coherent sets that provide the model with structured
context; (ii) engages the LLM in multi-turn, feedback-driven reflection, where the model analyzes
the strengths and weaknesses of these clusters and proposes targeted refinements that systematically
expand the exploration–exploitation space; and (iii) integrates these refinements into an EA meta-
controller that adaptively balances exploration and exploitation via selective validation and survival.
This synergy between evolutionary search and cognitively inspired reflection transforms heuristic
design into an iterative, guided exploration process.

Our contributions are summarized as follows:

• We propose a cognitively inspired LLM–EA framework that redefines LLMs as interactive,
multi-turn reasoners within evolutionary search, rather than static code generators.

• We develop a clustering-based reflective feedback mechanism that structures the LLM’s
analysis around behaviorally coherent groups of heuristics, enabling more informative and
generalizable refinements.

• We design a feedback-driven, multi-turn prompting strategy that broadens the explo-
ration–exploitation frontier and integrate it into an EA meta-controller for stable, verifiable
search.

• We empirically evaluate our framework on benchmark combinatorial optimization prob-
lem, showing that CIRE yields heuristics that are more robust and diverse, with statistically
significant gains over one-shot LLM generation, classical genetic programming baselines,
and EA search without LLM feedback.

2 RELATED WORKS

Research on designing heuristics for NP-hard combinatorial optimization problems—such as the
Bin Packing Problem (BPP) and the Traveling Salesman Problem (TSP)—has a long and influen-
tial history. Classical heuristics for TSP date back to nearest-neighbor and insertion procedures
analyzed by Rosenkrantz et al. (1977), followed by powerful local-improvement strategies such as
2-opt, 3-opt, and the Lin–Kernighan method. In parallel, the BPP has been shaped by simple greedy
rules, including First Fit and Best Fit Sgall (2014). These manually crafted heuristics are valued
for their efficiency and interpretability, yet they remain brittle, highly problem-specific, and diffi-
cult to generalize across distributions Blum & Roli (2003); Burke et al. (2013). Such limitations
motivated early attempts to automate the discovery of heuristics. A prominent direction was the
development of hyper-heuristics and evolutionary approaches that evolve heuristic rules from prim-
itive components Branke et al. (2016). These methods demonstrated the feasibility of automatic
heuristic construction, often surpassing hand-crafted baselines. However, they frequently converged
to redundant or fragile structures and produced heuristics that were difficult to interpret or refine.
Reinforcement learning and neural combinatorial optimization later extended automated design by
training policies directly on optimization tasks, but typically required extensive training data, heavy
computation, and suffered from poor out-of-distribution generalization.

A significant leap in AI-driven algorithm design was made by DeepMind’s AlphaCode Li et al.
(2022), which demonstrated that large Transformer models, combined with extensive sampling and
filtering, can generate solutions at a competitive programming level. Despite its success, AlphaCode
relied heavily on scale and lacked a mechanism for iterative self-improvement—an ability essential
for heuristic design, where refinement and error correction are crucial. This limitation motivated a
shift toward using LLMs as reasoning agents that iteratively generate, critique, and refine heuristics.
FunSearch Romera-Paredes et al. (2023) first showed that evolving LLM-generated programs can
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surpass classical heuristics for online bin packing. The Evolution of Heuristics (EoH) framework Liu
et al. (2024) extended this idea by co-evolving both code and natural-language “thoughts,” improv-
ing robustness through reasoning-guided evolution. ReEvo Ye et al. (2024) introduced reflective
critique, but its mechanism primarily compared heuristics in pairs, which can limit the richness of
feedback and restrict exploration diversity. HSEvo Dat et al. (2025) further addressed diversity loss,
and Hemberg et al. Hemberg et al. (2024) integrated LLMs directly as mutation operators within
genetic programming pipelines.

A key insight motivating our work arises from recent reinforcement learning studies comparing Di-
rect Preference Optimization (DPO) with Group Relative Policy Optimization (GRPO) Du et al.
(2025); Shao et al. (2024). These studies report that group-based preference signals—where the
model reasons over sets of trajectories rather than isolated pairs—yield more stable learning dy-
namics and stronger performance on tasks involving program synthesis and code optimization. This
trend highlights a broader principle: group-level feedback provides richer comparative structure,
enabling the model to extract more nuanced patterns than pairwise comparisons allow. Inspired
by this, heuristic design should similarly move beyond pairwise reflection. While ReEvo’s pair-
wise critique encourages refinement, it restricts the LLM’s ability to understand broader behavioral
patterns across the population of heuristics. In contrast, group-based reflection enables the LLM
to analyze clusters of heuristics, identifying shared failure modes, contrasting exploration strate-
gies, and synthesizing improvements that leverage strengths from multiple groups. This mirrors
the advantages of GRPO-like group reasoning: better structural feedback, more stable refinement,
and improved coverage of the exploration–exploitation landscape. Overall, the trajectory of prior
work—from expert-crafted heuristics, to evolutionary and learning-based automation, to reflective
LLM-driven synthesis—reveals persistent challenges: one-shot brittleness, limited interpretability,
and insufficient mechanisms for structured improvement. Our framework builds on these insights
by combining multi-turn reflection with cluster-based, group-level comparative feedback, enabling
LLMs not only to generate heuristics but also to reason across populations of candidates and evolve
more generalizable, robust strategies over time.

3 METHODOLOGY

3.1 OVERVIEW

Our proposed method, Cognitively Inspired Reflective Evolution (CIRE), as shown in Figure 1,
is motivated by the way human cognition develops strategies through incremental reasoning and
self-reflection. Humans rarely arrive at effective solutions in a single attempt; instead, they progress
step by step, comparing alternatives, grouping related ideas, reflecting on their strengths and weak-
nesses, and refining them through iterative deliberation. Inspired by this process, CIRE establishes a
multi-turn mechanism that enables large language models (LLMs) to evolve heuristics dynamically,
transcending the limitations of static, one-shot generation.

The framework unfolds through stages:

• Grouping and Behavioral Clustering: The initial pool of heuristics is organized into
groups using two complementary strategies: one ensures the existence of groups with struc-
tural or performance similarity, while the other enforces diversity in semantics and design.
This dual mechanism establishes a rich basis for reflection, ensuring that feedback is con-
textualized both within coherent heuristic families and across contrasting perspectives.

• Reflective Multi-turn Refinement: Within each group, the LLM engages in a structured
multi-turn dialogue. Instead of isolated prompt calls, the model critiques why certain
heuristics succeed or fail, extracts comparative insights, and synthesizes refined or entirely
novel variants. This reflective evolution mirrors human cognitive processes of critique and
incremental improvement, allowing the search to progressively deepen.

3.2 GROUPING AND BEHAVIORAL CLUSTERING

Representation. Each heuristic candidate is evaluated on a benchmark set I = {1, . . . ,m}.
Let ei(h) denote the objective value obtained by heuristic h on instance i. To support more ex-
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Figure 1: Cognitively Inspired Reflective Evolution (CIRE): The framework begins with Pop-
ulation Initialization to create a diverse set of candidate heuristics. Candidates are then organized
in Grouping to ensure both coherence and diversity. Reflective Multi-turn Refinement iteratively
evaluates, diagnoses, and improves heuristics. Finally, Population Management retains candidates
that balance quality and diversity, enabling sustained heuristic evolution.

pressive feedback and nuanced comparison, we encode each heuristic using a normalized perfor-
mance–profile vector:

z(h) =
e(h)− e∗

e∗
, (1)

where
e(h) =

(
e1(h), . . . , em(h)

)⊤
, e∗ =

(
e∗1, . . . , e

∗
m

)⊤
, (2)

and
e∗i = min

h′∈H
ei(h

′), i = 1, . . . ,m. (3)

Here, e∗i denotes the best-known cost on instance i across all heuristics in H. This instance-wise nor-
malization preserves each heuristic’s full performance profile, enabling precise diagnostics, clearer
comparisons, and more informative signals for ranking or refinement.

General idea. Adequate reflection arises only when the LLM interacts with well-structured
heuristic sets. Homogeneous groups support fine-grained, instance-level comparison, whereas het-
erogeneous groups broaden the abstraction space and stimulate creative synthesis. CIRE exploits
both perspectives: it first constructs homogeneous groups using a static clustering method followed
by LLM-based refinement, ensuring internally coherent sets of heuristics. It then forms hetero-
geneous groups by combining heuristics from distinct homogeneous groups, thereby increasing
diversity and expanding the reflective space to elicit more innovative heuristic improvements.
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HOMOGENEOUS GROUPS (SIMILARITY-DRIVEN)

Homogeneous groups comprise heuristics with similar behavior or structural traits. We quantify
similarity between heuristics hi and hj by integrating two complementary signals:

• Performance similarity. Behavioral similarity is measured in the normalized performance
space z(·) via cosine similarity:

simperf(hi, hj) =
z(hi)

⊤z(hj)

∥z(hi)∥2 ∥z(hj)∥2
, (4)

• Semantic similarity. Structural resemblance is assessed with CodeBLEU, which extends
BLEU by incorporating lexical, syntactic, semantic, and data-flow aspects:

simcode(hi, hj) = CodeBLEU(hi, hj) ∈ [0, 1]. (5)

The overall similarity is defined as a weighted combination of the two signals:

sim(hi, hj) = α × simperf(hi, hj) + β × simcode(hi, hj), α, β ≥ 0. (6)

Clustering procedure:

To construct homogeneous groups we represent heuristics as a weighted similarity graph

G = (H,E,W ), Wij = sim(hi, hj) ((hi, hj) ∈ E), (7)

where H is the set of heuristics and W ∈ R|H|×|H| stores pairwise similarities. Normalize W by its
global maximum and form dissimilarities

W̃ =
W

maxp,q Wpq
, dij = 1− W̃ij , D = (dij)i,j . (8)

Clustering is sensitive to granularity: too few groups collapses distinctions, while too many frag-
ments structure. CIRE therefore uses a two-phase routine:

1. Initial over-partitioning. Apply agglomerative clustering with linkage L to obtain a fine
partition

(C1, . . . , Cm) = AgglomerativeL(D; m), m ≫ 1, (9)
chosen so that clusters are tight:

diam(Cℓ) = max
x,y∈Cℓ

d(x, y) ≤ δ, δ ≪ 1. (10)

2. LLM-guided refinement. Provide the full over-partition C0 = {C1, . . . , Cm} to an LLM
which returns a globally restructured partition

Cref = ΦLLM(C0,W ), (11)

subject to the partition constraints⋃
C∈Cref

C = H, Cp ∩ Cq = ∅ (p ̸= q). (12)

HETEROGENEOUS GROUPS (DIVERSITY-DRIVEN)

Diversity via entropy. The diversity of a homogeneous cluster G = {h1, . . . , hm} is quantified
by the entropy of its internal similarity distribution. Since the composite similarity sim is symmetric,
we consider only unordered pairs (i, j) with i < j. Normalized affinities are defined as

pij =
sim(hi, hj)∑

u<v sim(hu, hv)
, i < j, (13)

which form a valid probability distribution. The entropy score of G is then

H(G) = −
∑
i<j

pij log pij , (14)

with larger values indicating higher internal heterogeneity.
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Entropy-weighted sampling. Given k homogeneous clusters {G1, . . . , Gk}, sampling weights
are assigned proportionally to their entropy values:

wi =
H(Gi)∑k
j=1 H(Gj)

, i = 1, . . . , k. (15)

For a target heterogeneous group size L, the contribution of each cluster is

Li = ⌊wi · L⌋, (16)

Li heuristics are drawn uniformly at random from Gi. The final heterogeneous group is the union

Ghet =

k⋃
i=1

Si, Si ⊆ Gi, |Si| = Li. (17)

3.3 REFLECTIVE MULTI-TURN REFINEMENT

CIRE organizes the search as a sequence of iterative turns, each following the loop

observe → reason → act.

This cycle ensures that each LLM invocation contributes to a coherent refinement trajectory rather
than producing isolated trials.

State and reflection. At turn t, the LLM is provided with a compact state representation

St = {(hj , diagj)
m
j=1, history<t, directions} (18)

hj are candidate heuristics in the group and diagj are diagnostic features (cost, delta-improvement
vector). Reflection over St allows the model to identify structural weaknesses, recurring failure
modes, and latent strengths, thereby grounding subsequent reasoning in accumulated knowledge.

Adaptive strategy: exploration vs. exploitation. Conditioned on the reflective analysis, the
model decides between two complementary modes. Exploration is triggered when recent refine-
ments plateau or converge to structurally similar outcomes, signaling entrapment in a local opti-
mum. In this mode, the LLM proposes divergent heuristics, such as new operators or recombinations
across clusters, to enlarge the search horizon. Exploitation is selected when promising candidates
are detected. Here, the model performs targeted refinement, including parameter tuning, incremental
patching, or structural polishing, to systematically transform partial successes into competitive so-
lutions. This dynamic alternation between diversification and intensification is critical for avoiding
stagnation while consolidating gains.

Action and observation. Once a strategy is chosen, the model outputs actionable artifacts—such
as patches, new DSL entries, or modified code—accompanied by a short rationale and confidence
estimate. With probability p, additional performance observations relative to the current best are
injected into St, sharpening the reflective analysis and aligning the strategy with outcome-based ev-
idence. A fixed maximum-turn budget further regulates the trajectory: early turns favor exploratory
breadth, while later turns naturally prioritize exploitative depth.

Resulting workflow. The integration of reflection, adaptive strategy selection, and observation-
driven feedback yields coherent refinement trajectories {h(1), h(2), . . . , h(T )}. This workflow
achieves sample-efficient improvement, systematically escaping local optima while progressively
optimizing promising directions—outcomes unattainable under naive re-prompting.

4 EXPERIMENTAL

4.1 EMPIRICAL EVALUATION

For evaluation, we seek to answer the following question:

6
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RQ1.[Effectiveness] How effectively does CIRE generate higher-quality solver code compared to
baseline approaches and the effect across different LLM types?

RQ2.[Reasoning] How does CIRE behave across successive reasoning iterations, and how do these
iterations influence code correctness and solution quality?

RQ3.[Ablation Study] How critical is each component of our method to overall performance?

Datasets. We evaluate CIRE on two canonical combinatorial optimization tasks: TSP and Online
Bin Packing. The TSP benchmark spans instance sizes from 10 to 200 nodes, while the Bin Packing
benchmark covers capacity settings from 100 to 500.

Models. We employ DeepSeek V3, a state-of-the-art large language model (LLM), as the backbone
for heuristic generation.

Baselines. We benchmark against competitive state-of-the-art methods, including EoH (Liu et al.
(2024)) and Re-evo (Ye et al. (2024)), as well as several classical heuristic approaches.

Metrics. We assess performance using the optimality gap, defined as the relative deviation of a
solution from the corresponding optimal or best-known value.

4.2 RESULTS

RQ1. [Effectiveness] We compare our method with strong baselines on BPP and TSP, and evaluate
its robustness across different LLM backbones.

Table 1: Online bin packing results. Fraction of excess bins to lower bound (lower is better) on
Weibull instances.

Heuristic
Capacity = 100 Capacity = 300 Capacity = 500

1k 5k 10k 1k 5k 10k 1k 5k 10k

First Fit 5.32% 4.40% 4.44% 1.34% 0.93% 0.92% 0.25% 0.50% 0.50%
Best Fit 4.87% 4.08% 4.09% 1.19% 0.84% 0.86% 0.25% 0.50% 0.47%
EoH 3.03% 2.15% 0.33% 0.60% 0.63% 0.58% 0.25% 0.50% 0.47%
ReEvo 3.78% 0.80% 0.33% 1.04% 0.27% 0.19% 0.25% 0.50% 0.47%
CIRE (ours) 2.34% 1.13% 0.59% 0.30% 0.24% 0.16% 0.25% 0.50% 0.45%

Table 2: Baseline OR-Tools Results for the Traveling Salesman Problem.

Heuristic TSP10 (%) TSP20 (%) TSP50 (%) TSP100 (%) TSP200 (%)

EoH 3.52 9.33 10.24 11.39 15.58
ReEvo 4.22 6.74 11.63 11.01 15.58

CIRE(ours) 2.11 6.74 9.20 12.64 11.46

Quantitative Evaluation. Across all bin-packing settings (Table 1), CIRE consistently outper-
forms both classical heuristics and recent adaptive methods. Under tight capacity (C=100), CIRE
reduces the excess fraction to 2–3%, compared to 4–5% for First Fit and Best Fit. At medium
capacity (C=300), CIRE achieves below 0.3% excess on long streams, while adaptive baselines
such as ReEvo fluctuate between 0.2–0.6%. Even at large capacities (C=500), where all methods
converge, CIRE maintains a measurable advantage. A similar trend appears in TSP benchmarks
(Table 2), where CIRE achieves consistently lower optimality gaps than state-of-the-art LLM-based
approaches (EOH, ReEvo) across instance sizes n ∈ [10, 200]. These results highlight CIRE’s abil-
ity to generalize across problem scales and combinatorial structures.

Effect of LLM Backbone. To isolate whether performance stems from the LLM or from the
CIRE workflow itself, we evaluate CIRE with a diverse set of models—deepseek-v3-0324,
kimi-k2-instruct, qwen3-coder, 480b-35a, and glm-4.5 which shown in Table 3.
(These models span instruction-tuned, code-centric, and large general-purpose LLM families, pro-
viding a representative capability spectrum.) Across all backbones, CIRE remains highly sta-
ble: the best average gap is obtained with deepseek-v3-0324 (1.13) and the worst with

7
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Table 3: Online Bin Packing: Method Across Models

Heuristic Model Gap(%)
CIRE deepseek-v3-0324 1.13
CIRE kimi-k2-instruct 1.95
CIRE qwen3-coder-480b-35a 1.41
CIRE glm-4.5 1.20
EOH deepseek-v3-0324 2.15

Table 4: Coefficient Tuning for TSP 50

α Gap(%)
0.2 15.79
0.4 14.06
0.5 9.20
0.6 15.97
0.8 12.5

Table 5: Analysis of Reasoning Categories, their frequency, and examples.

Reasoning Category Description Freq Example
Paradigm shift Completely changes the algo-

rithm family.
16 Given that the highest-

performing known approach
is ”Stabilized Harmonic-
Arctanh” ... I should explore
this proven algorithmic
family rather than tuning the
existing simpler approaches.

Heuristic modification Same algorithm family and
pipeline structure, but deci-
sion/scoring logic is substan-
tially rewritten.

89 ... Given the significant per-
formance gap and clear in-
dication that Worst-Fit works
better, we should focus on re-
fining this approach ...
.

Hyperparameter tuning Only numeric changes
(weights, thresholds,
constants) with formu-
las/pipeline unchanged.

75 ... Given the regression, we
should: 1. Revert to the sim-
pler 0.0386 version 2. Make
minimal adjustments to core
parameters ...
.

kimi-k2-instruct (1.95). The narrow performance band indicates that strong results arise
not from the raw power of the underlying LLM, but from CIRE’s structured reasoning and refine-
ment workflow. This independence from a specific backbone underscores CIRE as a robust and
general optimization framework.

RQ2.[Reasoning] We investigate how CIRE’s multi-turn reasoning shapes code correctness and so-
lution quality. Using LLM-assisted classification, each refinement step is categorized as a paradigm
shift, heuristic modification, or hyperparameter tuning (Table 5). The distribution shows a domi-
nant reliance on heuristic modification (89) and hyperparameter tuning (75), with paradigm shifts
occurring only rarely (16), indicating that CIRE quickly commits to exploitation after brief initial
exploration.

Turn-by-turn analysis (Figure 2) further reveals a consistent pattern: exploration via paradigm
shifts occurs mainly at the first and final iterations. In contrast, the middle iterations concentrate on
fine-grained exploitation. This behavior highlights a key insight: LLM-based optimization naturally
follows an explore-then-exploit reasoning trajectory, with focused mid-stage refinement driving most
of the performance gains.

RQ3.[Ablation Study] To disentangle the contribution of each component in our method, we con-
duct a comprehensive ablation study.

Effect of Multi-turn Refinement and Solution Grouping. Table 6 reports the results on the TSP50
benchmark. The full model achieves a 9.20% optimality gap, while ablating either multi-turn re-
finement or solution grouping degrades performance to 17.18%, the worst gap among all variants.
This consistent degradation highlights that our strong performance cannot be attributed to a single
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Table 6: Ablation study analyzing the impact of multi-turn and grouping mechanisms.

Setting Gap(%)
w/o multi-turn 17.18
w/o grouping (randomly choose group) 15.97
Ours (Full method) 9.20
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Figure 2: Frequency distributions of turns across three different scenarios.

design choice. Instead, it is the joint effect of multi-turn reasoning and grouping—both essential for
stabilizing the LLM’s code generation and guiding it toward higher-quality optimization solutions.

Effect of Similarity Coefficient Tuning. We further investigate the impact of the parameter α,
which balances behavioral similarity and CodeBLEU-based semantic similarity in our hybrid simi-
larity metric. As shown in Table 4, the best performance is achieved at α = 0.5, indicating that both
behavioral and semantic signals are indispensable. This balanced configuration yields the most
reliable similarity estimates, and we adopt α = 0.5 across all experiments.

Summary of Findings. Across all ablations, we observe that removing any component—multi-
turn refinement, grouping, or balanced similarity estimation—leads to consistent and measurable
performance degradation. These results provide strong evidence that our method derives its effec-
tiveness from a carefully designed combination of components, each playing a distinct and comple-
mentary role in enabling LLMs to generate high-quality optimization code.

5 CONCLUSION

CIRE reconceptualizes LLM-based heuristic discovery as a reflective, multi-turn refinement pro-
cess in which each model invocation contributes to a coherent trajectory of reasoning rather than
an isolated trial. By embedding diagnostic feedback into every turn, the framework establishes
a foundation of reflection that allows the model to recognize strengths, diagnose weaknesses, and
build on structural patterns uncovered in earlier attempts. This reflective state underpins a principled
balance between exploration—introducing qualitatively new strategies to escape local optima and
broaden the search space—and exploitation, where targeted tuning systematically enhances promis-
ing heuristics by refining parameters, operators, or structural decisions. The integration of obser-
vation signals further grounds this process in empirical evidence, aligning model reasoning with
measurable progress and preventing divergence into unproductive paths. Through this interplay of
reflection, adaptive decision-making, and performance-driven guidance, CIRE achieves both ro-
bustness and sample efficiency while advancing a general methodology in which LLMs operate as
adaptive problem solvers rather than static generators. This perspective lays a professional foun-
dation for extending multi-turn refinement beyond the studied benchmarks, offering a principled
blueprint for deploying LLMs in a wide range of combinatorial optimization domains where itera-
tive reasoning and adaptive search are indispensable.
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6 APPENDIX

6.1 PROMPT

Online Bin Packing Prompt Formulation

TASK SUMMARY

You are an AI assistant whose job is to iteratively produce and
refine Python heuristic implementations for the Bin Packing
Online Problem.

You will be given an existing heuristic (or helper functions). Use
multi-turn reasoning: at each turn you must reflect, then
either **explore** a new heuristic family or **exploit**
(refine) the last submitted heuristic, and finally receive an
observation/feedback from the environment.

---

### FUNCTION CONTRACT (must be strictly respected)
- Language: Python only. Only standard library and numpy allowed

(if already used by provided code).
- Required signature:

def score(item, bins)
- Input arguments:

- item: int # size of current item
- bins : Numpy arrays # the rest capacities of feasible bins,

which are larger than the item size.
- Return: scores (Numpy array)
- Correctness rules:

- ’item’ is of type int
- ’bins’ and ’scores’ are both Numpy arrays.

Travelling Salesman Problem Prompt Formulation

TASK SUMMARY

You are an AI assistant whose job is to iteratively produce and
refine Python heuristic implementations for the Travelling
salesman problem.

Given a set of nodes with their coordinates, \
you need to find the shortest route that visits each node once and

returns to the starting node. \
The task can be solved step-by-step by starting from the current

node and iteratively choosing the next node. \
You will be given an existing heuristic, Let use multi-turn

reasoning: at each turn you must reflect, then either
**explore** a new heuristic family or **exploit** the last
submitted heuristic, and finally receive an
observation/feedback from the environment.

### FUNCTION CONTRACT (must be strictly respected)
- Language: Python only. Only standard library and numpy allowed

(if already used by provided code).
- Required signature:

def select_next_node(current_node, destination_node,
univisited_nodes, distance_matrix)

- Input arguments: This function should accept 4 inputs:
’current_node’, ’destination_node’, ’univisited_nodes’,
’distance_matrix’

11
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- Output: The function should return 1 output: ’next_node’
- Correctness rules: ’current_node’, ’destination_node’,

’next_node’, and ’unvisited_nodes’ are node IDs.
’distance_matrix’ is the distance matrix of nodes. All are
Numpy arrays.

Do not give additional explanations.

Prompt Template for the THINK Step

ALWAYS REMEMBER THAT, LOWER fitness score = BETTER solution.
First,based on the evalutation result from <observation> or GROUP

REFLECTION,
you should do some critical reasoning about the previous

approach(s) ABOUT:
+ its logical algorithm
+ its heuristic components/hyperparamters/features specifically.

Then, think about the affect of these parameters/hyperparamters
to the fitness score result (in detailed).

Then, you can:

1. Explore a totally new approach, to make some experiments to get
informations.

OR
2. Focus on the behaviour of the heuristic features/components

from the fitness result to tune them and get better result from
the test evaluation.

You are ONLY allowed to do reasoning, NOT to generate code.
Note that, your reasoning should be very BRIEF but STILL critical

and concise, focus on analyzing the heuristic
components/features.

At the last of your response, there must be one of the tags
<explore> or <exploit>, which indicate your decision.

Prompt Template for the Exploration Phase

Now, BASED solely on your REASONING, generate EXACTLY ONE solution
for exploring.

Your output MUST be exactly the SAME as the following format:
<explore>
<algorithm>
# clear and completete algorithm description of the proposed

heuristic.
</algorithm>
<code>
# the completely new Python function implementation for the

algorithm in <algorithm> : ‘score(...)‘ (only code inside
‘<code>‘).

</code>
</explore>
OUTPUT RULE:
Always output exactly one <explore> block containing both

<algorithm> and <code>, nothing else.
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Prompt Template for the Exploitation Phase

Now, BASED solely on your REASONING, generate EXACTLY ONE solution
for exploiting.

Your output MUST be exactly the SAME as the following format:
<exploit>
<algorithm>
# Clear algorithm description of the improvements you’re making to

the selected algorithm
</algorithm>
<code>
# Complete and concise Python function implementation with your

refinements: ‘score(...)‘
</code>
</exploit>
OUTPUT RULE:
Always output exactly one <exploit> block containing both

<algorithm> and <code>, nothing else.

6.2 REASONING BEHAVIOR

As shown in Fig. 3, the cognitively inspired reflective evolution process demonstrates how score
dynamics and strategic adaptation interact to drive progress beyond local optima. At the outset,
when the system observed a fitness of 0.042, considerably worse than the best-known score of 0.031,
it recognized stagnation and initiated an exploratory shift. This led to the generation of Adaptive
Resonance Packing (ARP), a structurally novel heuristic that improved the score to 0.036. Although
this gain was modest, the introduction of ARP provided a fertile ground for subsequent refinements.

Building on this foundation, the process transitioned into targeted exploitation. By tuning ARP
through dynamic bandwidth control, exponential gap weighting, and softmax normalization, the
system sought to consolidate and optimize the idea. While the score did not improve beyond 0.036,
this stage illustrates the reflective nature of the method: rather than abandoning a promising ap-
proach, it strategically invested in fine-tuning, ensuring stability before pursuing further change.

When performance remained unchanged, the system’s observation mechanism signaled diminishing
returns and prompted a more dramatic innovation. This shift produced Quantum Tunneling Bin
Packing (QTBP), a probabilistic mechanism inspired by tunneling to bypass local barriers. Crucially,
this step reduced the score to 0.023, surpassing the best-known baseline of 0.031.

The trajectory of scores and strategies highlights the essence of our approach: exploration introduces
qualitatively new directions, exploitation consolidates promising structures, and reflective reasoning
determines when a radical innovation is necessary. In contrast to naive retries that repeat search
attempts, our method interprets performance signals to decide between exploration and exploitation.
This enables it to escape stagnation and uncover breakthroughs otherwise inaccessible to conven-
tional search.
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Figure 3: Qualitative example of reflective reasoning in CIRE: Observations guide the LLM to
alternate between exploration, exploitation, and innovation, resulting in progressive improvement of
heuristic quality.
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