

000 COGNITIVELY INSPIRED REFLECTIVE EVOLUTION: 001 002 INTERACTIVE MULTI-TURN LLM-EA SYNTHESIS OF 003 HEURISTICS FOR COMBINATORIAL OPTIMIZATION 004 005

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Designing effective heuristics for NP-hard combinatorial optimization problems
 014 remains a challenging, expertise-driven task. Recent uses of large language mod-
 015 els (LLMs) primarily rely on one-shot code synthesis, producing fragile, unval-
 016 idated heuristics and under-utilizing LLMs' capacity for iterative reasoning and
 017 structured reflection. In this paper, we introduce **Cognitively Inspired Reflec-**
 018 **tive Evolution (CIRE)**, a hybrid framework that embeds LLMs as interactive,
 019 multi-turn reasoners within an evolutionary algorithm (EA). CIRE (i) constructs
 020 performance-profile clusters of candidate heuristics to give the LLM compact,
 021 behaviorally coherent context; (ii) engages the model in multi-turn, feedback-
 022 driven reflection tasks that produce explainable performance analyses and targeted
 023 heuristic refinements to broaden the exploration-exploitation frontier; and (iii) in-
 024 tegrates and selectively validates these proposals via an EA meta-controller that
 025 adaptively balances search. Extensive experiments on benchmark combinatorial
 026 optimization show that CIRE yields heuristics that are both more robust and more
 027 diverse, achieving consistent, statistically significant gains over one-shot LLM
 028 generation, genetic programming baselines, and population-based EAs without
 029 LLM feedback. These findings suggest that interactive, cognitively inspired multi-
 030 turn reasoning is a promising paradigm for automated heuristic design.

031 1 INTRODUCTION

033 Combinatorial optimization problems (COPs) such as the Traveling Salesman Problem (TSP), vehi-
 034 cle routing, and task scheduling lie at the heart of logistics, network design, and industrial planning.
 035 These problems are NP-hard, and exact algorithms become impractical as instance size grows. As
 036 a result, practical success relies on heuristics that can produce high-quality approximate solutions
 037 under limited computational budgets Blum & Roli (2003). The ability to design strong heuristics is
 038 therefore a cornerstone of progress in both operations research and artificial intelligence, with direct
 039 implications for real-world decision-making systems.

040 Despite their importance, heuristics are typically the product of painstaking, expert-driven trial-
 041 and-error Burke et al. (2013). The design process requires deep domain knowledge and extensive
 042 experimentation, often yielding solutions that are brittle or highly problem-specific. Efforts to au-
 043 tomate this process through evolutionary algorithms (EAs) and genetic programming have shown
 044 promise Branke et al. (2016), but these methods frequently generate redundant or fragile rules, and
 045 struggle to capture higher-level insight into why certain heuristics succeed or fail. Thus, existing
 046 approaches can generate candidate heuristics, but they lack systematic mechanisms for *critiquing*
 047 and *refining* those heuristics to boost performance.

048 The emergence of large language models (LLMs) offers a new opportunity to revisit this challenge
 049 Liu et al. (2024). Modern LLMs are not only capable of producing executable code, but also of gen-
 050 erating natural-language explanations, comparative analyses, and step-by-step reasoning Wei et al.
 051 (2022); Ye et al. (2024); Surina et al. (2025). Recent attempts to apply LLMs for heuristic synthesis
 052 generally focus on one-shot code generation, where the model outputs a heuristic implementation
 053 that is then evaluated. While attractive, this paradigm often results in unstable or unvalidated solu-
 tions, and underutilizes the LLM's potential for iterative reflection and improvement. For example,

054 AlphaCode uses large-scale sampling and filtering of many candidate programs rather than relying
 055 on a single synthesized solution Li et al. (2022). Treating LLMs as static code generators thus fails to
 056 exploit their deeper cognitive capabilities—namely, the ability to analyze feedback and self-improve
 057 over multiple interactions.

058 To address this gap, we introduce **Cognitively Inspired Reflective Evolution** (CIRE), a hybrid
 059 LLM–EA framework that reconceptualizes LLMs as *interactive, multi-turn reasoners* for automated
 060 heuristic design, rather than passive one-shot coders. Instead of producing heuristics in isolation,
 061 our approach leverages the LLM’s capacity for critique, reflection, and refinement in tandem with
 062 evolutionary search. Concretely, CIRE (i) constructs *performance-profile clusters* of heuristics,
 063 grouping candidate solutions into behaviorally coherent sets that provide the model with structured
 064 context; (ii) engages the LLM in *multi-turn, feedback-driven reflection*, where the model analyzes
 065 the strengths and weaknesses of these clusters and proposes targeted refinements that systematically
 066 expand the exploration–exploitation space; and (iii) integrates these refinements into an EA meta-
 067 controller that adaptively balances exploration and exploitation via selective validation and survival.
 068 This synergy between evolutionary search and cognitively inspired reflection transforms heuristic
 069 design into an iterative, guided exploration process.

070 Our contributions are summarized as follows:

- 072 • We propose a cognitively inspired LLM–EA framework that redefines LLMs as interactive,
 073 multi-turn reasoners within evolutionary search, rather than static code generators.
- 074 • We develop a clustering-based reflective feedback mechanism that structures the LLM’s
 075 analysis around behaviorally coherent groups of heuristics, enabling more informative and
 076 generalizable refinements.
- 077 • We design a feedback-driven, multi-turn prompting strategy that broadens the explo-
 078 ration–exploitation frontier and integrate it into an EA meta-controller for stable, verifiable
 079 search.
- 080 • We empirically evaluate our framework on benchmark combinatorial optimization prob-
 081 lem, showing that CIRE yields heuristics that are more robust and diverse, with statistically
 082 significant gains over one-shot LLM generation, classical genetic programming baselines,
 083 and EA search without LLM feedback.

085 2 RELATED WORKS

086 Research on designing heuristics for NP-hard combinatorial optimization problems—such as the
 087 Bin Packing Problem (BPP) and the Traveling Salesman Problem (TSP)—has a long and influen-
 088 tial history. Classical heuristics for TSP date back to nearest-neighbor and insertion procedures
 089 analyzed by Rosenkrantz et al. (1977), followed by powerful local-improvement strategies such as
 090 2-opt, 3-opt, and the Lin–Kernighan method. In parallel, the BPP has been shaped by simple greedy
 091 rules, including First Fit and Best Fit Sgall (2014). These manually crafted heuristics are valued
 092 for their efficiency and interpretability, yet they remain brittle, highly problem-specific, and diffi-
 093 cult to generalize across distributions Blum & Roli (2003); Burke et al. (2013). Such limitations
 094 motivated early attempts to automate the discovery of heuristics. A prominent direction was the
 095 development of hyper-heuristics and evolutionary approaches that evolve heuristic rules from prim-
 096 itive components Branke et al. (2016). These methods demonstrated the feasibility of automatic
 097 heuristic construction, often surpassing hand-crafted baselines. However, they frequently converged
 098 to redundant or fragile structures and produced heuristics that were difficult to interpret or refine.
 099 Reinforcement learning and neural combinatorial optimization later extended automated design by
 100 training policies directly on optimization tasks, but typically required extensive training data, heavy
 101 computation, and suffered from poor out-of-distribution generalization.

102 A significant leap in AI-driven algorithm design was made by DeepMind’s *AlphaCode* Li et al.
 103 (2022), which demonstrated that large Transformer models, combined with extensive sampling and
 104 filtering, can generate solutions at a competitive programming level. Despite its success, AlphaCode
 105 relied heavily on scale and lacked a mechanism for iterative self-improvement—an ability essential
 106 for heuristic design, where refinement and error correction are crucial. This limitation motivated a
 107 shift toward using LLMs as reasoning agents that iteratively generate, critique, and refine heuristics.
 FunSearch Romera-Paredes et al. (2023) first showed that evolving LLM-generated programs can

108 surpass classical heuristics for online bin packing. The Evolution of Heuristics (EoH) framework Liu
 109 et al. (2024) extended this idea by co-evolving both code and natural-language “thoughts,” improv-
 110 ing robustness through reasoning-guided evolution. ReEvo Ye et al. (2024) introduced reflective
 111 critique, but its mechanism primarily compared heuristics in pairs, which can limit the richness of
 112 feedback and restrict exploration diversity. HSEvo Dat et al. (2025) further addressed diversity loss,
 113 and Hemberg et al. Hemberg et al. (2024) integrated LLMs directly as mutation operators within
 114 genetic programming pipelines.

115 A key insight motivating our work arises from recent reinforcement learning studies comparing Di-
 116 rect Preference Optimization (DPO) with Group Relative Policy Optimization (GRPO) Du et al.
 117 (2025); Shao et al. (2024). These studies report that group-based preference signals—where the
 118 model reasons over sets of trajectories rather than isolated pairs—yield more stable learning dy-
 119 namics and stronger performance on tasks involving program synthesis and code optimization. This
 120 trend highlights a broader principle: group-level feedback provides richer comparative structure,
 121 enabling the model to extract more nuanced patterns than pairwise comparisons allow. Inspired
 122 by this, heuristic design should similarly move beyond pairwise reflection. While ReEvo’s pair-
 123 wise critique encourages refinement, it restricts the LLM’s ability to understand broader behavioral
 124 patterns across the population of heuristics. In contrast, group-based reflection enables the LLM
 125 to analyze clusters of heuristics, identifying shared failure modes, contrasting exploration strate-
 126 gies, and synthesizing improvements that leverage strengths from multiple groups. This mirrors
 127 the advantages of GRPO-like group reasoning: better structural feedback, more stable refinement,
 128 and improved coverage of the exploration–exploitation landscape. Overall, the trajectory of prior
 129 work—from expert-crafted heuristics, to evolutionary and learning-based automation, to reflective
 130 LLM-driven synthesis—reveals persistent challenges: one-shot brittleness, limited interpretability,
 131 and insufficient mechanisms for structured improvement. Our framework builds on these insights
 132 by combining multi-turn reflection with cluster-based, group-level comparative feedback, enabling
 133 LLMs not only to generate heuristics but also to reason across populations of candidates and evolve
 134 more generalizable, robust strategies over time.

135 3 METHODOLOGY

136 3.1 OVERVIEW

137 Our proposed method, **Cognitively Inspired Reflective Evolution (CIRE)**, as shown in **Figure 1**,
 138 is motivated by the way human cognition develops strategies through incremental reasoning and
 139 self-reflection. Humans rarely arrive at effective solutions in a single attempt; instead, they progress
 140 step by step, comparing alternatives, grouping related ideas, reflecting on their strengths and weak-
 141 nesses, and refining them through iterative deliberation. Inspired by this process, CIRE establishes a
 142 multi-turn mechanism that enables large language models (LLMs) to evolve heuristics dynamically,
 143 transcending the limitations of static, one-shot generation.

144 The framework unfolds through stages:

- 145 • **Grouping and Behavioral Clustering:** The initial pool of heuristics is organized into
 146 groups using two complementary strategies: one ensures the existence of groups with struc-
 147 tural or performance similarity, while the other enforces diversity in semantics and design.
 148 This dual mechanism establishes a rich basis for reflection, ensuring that feedback is con-
 149 textualized both within coherent heuristic families and across contrasting perspectives.
- 150 • **Reflective Multi-turn Refinement:** Within each group, the LLM engages in a structured
 151 multi-turn dialogue. Instead of isolated prompt calls, the model critiques why certain
 152 heuristics succeed or fail, extracts comparative insights, and synthesizes refined or entirely
 153 novel variants. This reflective evolution mirrors human cognitive processes of critique and
 154 incremental improvement, allowing the search to progressively deepen.

155 3.2 GROUPING AND BEHAVIORAL CLUSTERING

156 **Representation.** Each heuristic candidate is evaluated on a benchmark set $\mathcal{I} = \{1, \dots, m\}$.
 157 Let $e_i(h)$ denote the objective value obtained by heuristic h on instance i . To support more ex-

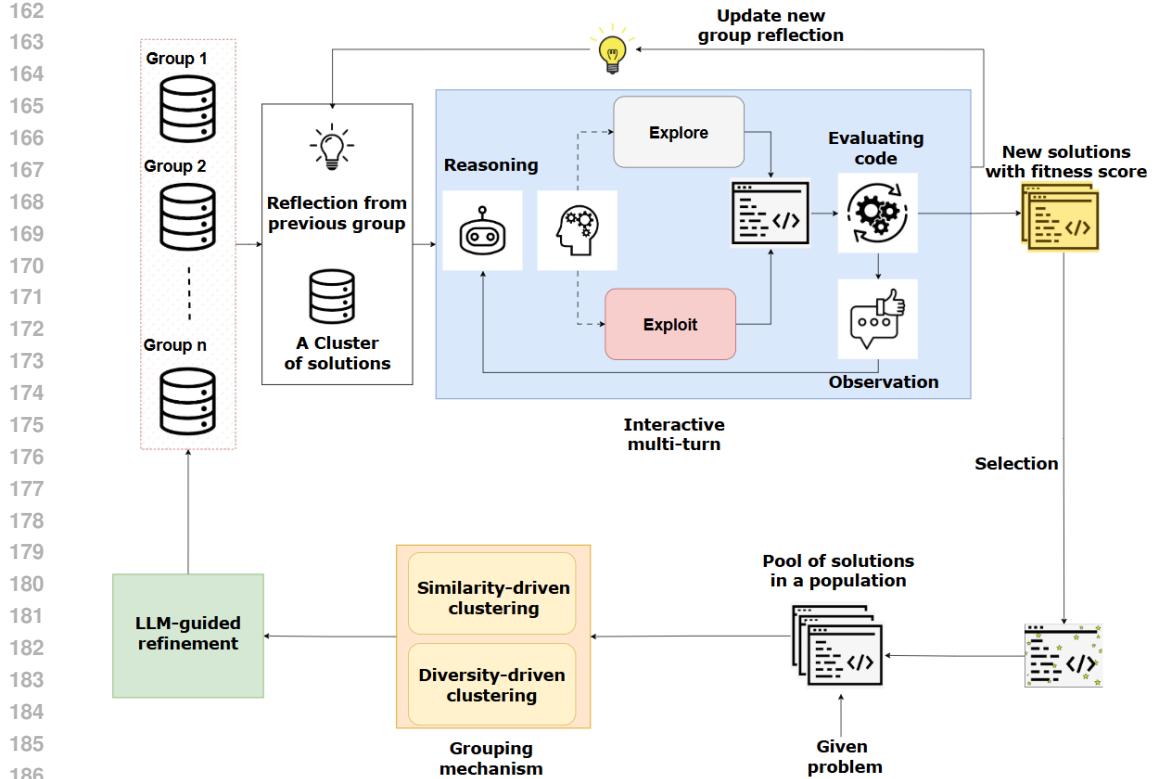


Figure 1: **Cognitively Inspired Reflective Evolution (CIRE):** The framework begins with Population Initialization to create a diverse set of candidate heuristics. Candidates are then organized in Grouping to ensure both coherence and diversity. Reflective Multi-turn Refinement iteratively evaluates, diagnoses, and improves heuristics. Finally, Population Management retains candidates that balance quality and diversity, enabling sustained heuristic evolution.

pressive feedback and nuanced comparison, we encode each heuristic using a normalized performance-profile vector:

$$\mathbf{z}(h) = \frac{\mathbf{e}(h) - \mathbf{e}^*}{\mathbf{e}^*}, \quad (1)$$

where

$$\mathbf{e}(h) = (e_1(h), \dots, e_m(h))^\top, \quad \mathbf{e}^* = (e_1^*, \dots, e_m^*)^\top, \quad (2)$$

and

$$e_i^* = \min_{h' \in \mathcal{H}} e_i(h'), \quad i = 1, \dots, m. \quad (3)$$

Here, e_i^* denotes the best-known cost on instance i across all heuristics in \mathcal{H} . This instance-wise normalization preserves each heuristic's full performance profile, enabling precise diagnostics, clearer comparisons, and more informative signals for ranking or refinement.

General idea. Adequate reflection arises only when the LLM interacts with *well-structured heuristic sets*. Homogeneous groups support fine-grained, instance-level comparison, whereas heterogeneous groups broaden the abstraction space and stimulate creative synthesis. CIRE exploits both perspectives: it first constructs **homogeneous groups** using a static clustering method followed by LLM-based refinement, ensuring internally coherent sets of heuristics. It then forms **heterogeneous groups** by combining heuristics from distinct homogeneous groups, thereby increasing diversity and expanding the reflective space to elicit more innovative heuristic improvements.

216 HOMOGENEOUS GROUPS (SIMILARITY-DRIVEN)
217218 Homogeneous groups comprise heuristics with similar behavior or structural traits. We quantify
219 similarity between heuristics h_i and h_j by integrating two complementary signals:220 • **Performance similarity.** Behavioral similarity is measured in the normalized performance
221 space $\mathbf{z}(\cdot)$ via cosine similarity:
222

223
$$\text{sim}_{\text{perf}}(h_i, h_j) = \frac{\mathbf{z}(h_i)^\top \mathbf{z}(h_j)}{\|\mathbf{z}(h_i)\|_2 \|\mathbf{z}(h_j)\|_2}, \quad (4)$$

224

225 • **Semantic similarity.** Structural resemblance is assessed with CodeBLEU, which extends
226 BLEU by incorporating lexical, syntactic, semantic, and data-flow aspects:
227

228
$$\text{sim}_{\text{code}}(h_i, h_j) = \text{CodeBLEU}(h_i, h_j) \in [0, 1]. \quad (5)$$

229

230 The overall similarity is defined as a weighted combination of the two signals:
231

232
$$\text{sim}(h_i, h_j) = \alpha \times \text{sim}_{\text{perf}}(h_i, h_j) + \beta \times \text{sim}_{\text{code}}(h_i, h_j), \quad \alpha, \beta \geq 0. \quad (6)$$

233

Clustering procedure:234 To construct homogeneous groups we represent heuristics as a weighted similarity graph
235

236
$$G = (H, E, W), \quad W_{ij} = \text{sim}(h_i, h_j) \quad ((h_i, h_j) \in E), \quad (7)$$

237

238 where H is the set of heuristics and $W \in \mathbb{R}^{|H| \times |H|}$ stores pairwise similarities. Normalize W by its
239 global maximum and form dissimilarities
240

241
$$\tilde{W} = \frac{W}{\max_{p,q} W_{pq}}, \quad d_{ij} = 1 - \tilde{W}_{ij}, \quad D = (d_{ij})_{i,j}. \quad (8)$$

242

243 Clustering is sensitive to granularity: too few groups collapses distinctions, while too many frag-
244 ments structure. CIRE therefore uses a two-phase routine:
245246 1. **Initial over-partitioning.** Apply agglomerative clustering with linkage L to obtain a fine
247 partition

248
$$(C_1, \dots, C_m) = \text{Agglomerative}_L(D; m), \quad m \gg 1, \quad (9)$$

249

250 chosen so that clusters are tight:

251
$$\text{diam}(C_\ell) = \max_{x,y \in C_\ell} d(x, y) \leq \delta, \quad \delta \ll 1. \quad (10)$$

252

253 2. **LLM-guided refinement.** Provide the full over-partition $\mathcal{C}_0 = \{C_1, \dots, C_m\}$ to an LLM
254 which returns a globally restructured partition

255
$$\mathcal{C}^{\text{ref}} = \Phi_{\text{LLM}}(\mathcal{C}_0, W), \quad (11)$$

256

257 subject to the partition constraints

258
$$\bigcup_{C \in \mathcal{C}^{\text{ref}}} C = H, \quad C_p \cap C_q = \emptyset \quad (p \neq q). \quad (12)$$

259

HETEROGENEOUS GROUPS (DIVERSITY-DRIVEN)

260 **Diversity via entropy.** The diversity of a homogeneous cluster $G = \{h_1, \dots, h_m\}$ is quantified
261 by the entropy of its internal similarity distribution. Since the composite similarity sim is symmetric,
262 we consider only unordered pairs (i, j) with $i < j$. Normalized affinities are defined as
263

264
$$p_{ij} = \frac{\text{sim}(h_i, h_j)}{\sum_{u < v} \text{sim}(h_u, h_v)}, \quad i < j, \quad (13)$$

265

266 which form a valid probability distribution. The entropy score of G is then
267

268
$$\mathcal{H}(G) = - \sum_{i < j} p_{ij} \log p_{ij}, \quad (14)$$

269

with larger values indicating higher internal heterogeneity.

270 **Entropy-weighted sampling.** Given k homogeneous clusters $\{G_1, \dots, G_k\}$, sampling weights
 271 are assigned proportionally to their entropy values:
 272

$$273 \quad w_i = \frac{\mathcal{H}(G_i)}{\sum_{j=1}^k \mathcal{H}(G_j)}, \quad i = 1, \dots, k. \quad (15)$$

274 For a target heterogeneous group size L , the contribution of each cluster is
 275

$$276 \quad L_i = \lfloor w_i \cdot L \rfloor, \quad (16)$$

277 L_i heuristics are drawn uniformly at random from G_i . The final heterogeneous group is the union
 278

$$279 \quad G^{\text{het}} = \bigcup_{i=1}^k S_i, \quad S_i \subseteq G_i, |S_i| = L_i. \quad (17)$$

280 3.3 REFLECTIVE MULTI-TURN REFINEMENT

281 CIRE organizes the search as a sequence of iterative turns, each following the loop
 282

$$283 \quad \text{observe} \rightarrow \text{reason} \rightarrow \text{act}.$$

284 This cycle ensures that each LLM invocation contributes to a coherent refinement trajectory rather
 285 than producing isolated trials.
 286

287 **State and reflection.** At turn t , the LLM is provided with a compact state representation
 288

$$289 \quad S_t = \{(h_j, \text{diag}_j)_{j=1}^m, \text{history}_{<t}, \text{directions}\} \quad (18)$$

290 h_j are candidate heuristics in the group and diag_j are diagnostic features (cost, delta-improvement
 291 vector). Reflection over S_t allows the model to identify structural weaknesses, recurring failure
 292 modes, and latent strengths, thereby grounding subsequent reasoning in accumulated knowledge.
 293

294 **Adaptive strategy: exploration vs. exploitation.** Conditioned on the reflective analysis, the
 295 model decides between two complementary modes. *Exploration* is triggered when recent refine-
 296 ments plateau or converge to structurally similar outcomes, signaling entrapment in a local opti-
 297 mum. In this mode, the LLM proposes divergent heuristics, such as new operators or recombinations
 298 across clusters, to enlarge the search horizon. *Exploitation* is selected when promising candidates
 299 are detected. Here, the model performs targeted refinement, including parameter tuning, incremental
 300 patching, or structural polishing, to systematically transform partial successes into competitive
 301 solutions. This dynamic alternation between diversification and intensification is critical for avoiding
 302 stagnation while consolidating gains.
 303

304 **Action and observation.** Once a strategy is chosen, the model outputs actionable artifacts—such
 305 as patches, new DSL entries, or modified code—accompanied by a short rationale and confidence
 306 estimate. With probability p , additional performance observations relative to the current best are
 307 injected into S_t , sharpening the reflective analysis and aligning the strategy with outcome-based ev-
 308 idence. A fixed maximum-turn budget further regulates the trajectory: early turns favor exploratory
 309 breadth, while later turns naturally prioritize exploitative depth.
 310

311 **Resulting workflow.** The integration of reflection, adaptive strategy selection, and observation-
 312 driven feedback yields coherent refinement trajectories $\{h^{(1)}, h^{(2)}, \dots, h^{(T)}\}$. This workflow
 313 achieves sample-efficient improvement, systematically escaping local optima while progressively
 314 optimizing promising directions—outcomes unattainable under naive re-prompting.
 315

316 4 EXPERIMENTAL

317 4.1 EMPIRICAL EVALUATION

318 For evaluation, we seek to answer the following question:
 319

324 **RQ1.[Effectiveness]** How effectively does CIRE generate higher-quality solver code compared to
 325 baseline approaches and the effect across different LLM types?

327 **RQ2.[Reasoning]** How does CIRE behave across successive reasoning iterations, and how do these
 328 iterations influence code correctness and solution quality?

329 **RQ3.[Ablation Study]** How critical is each component of our method to overall performance?

330 **Datasets.** We evaluate CIRE on two canonical combinatorial optimization tasks: TSP and Online
 331 Bin Packing. The TSP benchmark spans instance sizes from 10 to 200 nodes, while the Bin Packing
 332 benchmark covers capacity settings from 100 to 500.

333 **Models.** We employ DeepSeek V3, a state-of-the-art large language model (LLM), as the backbone
 334 for heuristic generation.

335 **Baselines.** We benchmark against competitive state-of-the-art methods, including EoH (Liu et al.
 336 (2024)) and Re-evo (Ye et al. (2024)), as well as several classical heuristic approaches.

337 **Metrics.** We assess performance using the *optimality gap*, defined as the relative deviation of a
 339 solution from the corresponding optimal or best-known value.

341 4.2 RESULTS

343 **RQ1. [Effectiveness]** We compare our method with strong baselines on BPP and TSP, and evaluate
 344 its robustness across different LLM backbones.

345 Table 1: Online bin packing results. Fraction of excess bins to lower bound (lower is better) on
 346 Weibull instances.

Heuristic	Capacity = 100			Capacity = 300			Capacity = 500		
	1k	5k	10k	1k	5k	10k	1k	5k	10k
First Fit	5.32%	4.40%	4.44%	1.34%	0.93%	0.92%	0.25%	0.50%	0.50%
Best Fit	4.87%	4.08%	4.09%	1.19%	0.84%	0.86%	0.25%	0.50%	0.47%
EoH	3.03%	2.15%	0.33%	0.60%	0.63%	0.58%	0.25%	0.50%	0.47%
ReEvo	3.78%	0.80%	0.33%	1.04%	0.27%	0.19%	0.25%	0.50%	0.47%
CIRE (ours)	2.34%	1.13%	0.59%	0.30%	0.24%	0.16%	0.25%	0.50%	0.45%

356 Table 2: Baseline OR-Tools Results for the Traveling Salesman Problem.

Heuristic	TSP10 (%)	TSP20 (%)	TSP50 (%)	TSP100 (%)	TSP200 (%)
EoH	3.52	9.33	10.24	11.39	15.58
ReEvo	4.22	6.74	11.63	11.01	15.58
CIRE(ours)	2.11	6.74	9.20	12.64	11.46

364 **Quantitative Evaluation.** Across all bin-packing settings (Table 1), **CIRE** consistently outperforms
 365 both classical heuristics and recent adaptive methods. Under tight capacity ($C=100$), CIRE
 366 reduces the excess fraction to **2–3%**, compared to **4–5%** for First Fit and Best Fit. At medium
 367 capacity ($C=300$), CIRE achieves below **0.3%** excess on long streams, while adaptive baselines
 368 such as ReEvo fluctuate between **0.2–0.6%**. Even at large capacities ($C=500$), where all methods
 369 converge, CIRE maintains a measurable advantage. A similar trend appears in TSP benchmarks
 370 (Table 2), where CIRE achieves consistently lower optimality gaps than state-of-the-art LLM-based
 371 approaches (EOH, ReEvo) across instance sizes $n \in [10, 200]$. These results highlight CIRE’s abil-
 372 ity to generalize across problem scales and combinatorial structures.

373 **Effect of LLM Backbone.** To isolate whether performance stems from the LLM or from the
 374 CIRE workflow itself, we evaluate CIRE with a diverse set of models—deepseek-v3-0324,
 375 kimi-k2-instruct, qwen3-coder, 480b-35a, and glm-4.5 which shown in Table 3.
 376 (These models span instruction-tuned, code-centric, and large general-purpose LLM families, pro-
 377 viding a representative capability spectrum.) Across all backbones, CIRE remains highly sta-
 378 ble: the best average gap is obtained with deepseek-v3-0324 (**1.13**) and the worst with

378 Table 3: Online Bin Packing: Method Across Models
379

380 Heuristic	381 Model	382 Gap(%)
382 CIRE	383 deepseek-v3-0324	384 1.13
383 CIRE	384 kimi-k2-instruct	385 1.95
384 CIRE	385 qwen3-coder-480b-35a	386 1.41
385 CIRE	386 glm-4.5	387 1.20
386 EOH	387 deepseek-v3-0324	388 2.15

387 Table 4: Coefficient Tuning for TSP 50
388

389 α	390 Gap(%)
390 0.2	391 15.79
391 0.4	392 14.06
392 0.5	393 9.20
393 0.6	394 15.97
394 0.8	395 12.5

396 Table 5: Analysis of Reasoning Categories, their frequency, and examples.
397

400 Reasoning Category	401 Description	402 Freq	403 Example
401 Paradigm shift	402 Completely changes the algorithm family.	403 16	404 Given that the highest-performing known approach is "Stabilized Harmonic-Arctanh" ... I should explore this proven algorithmic family rather than tuning the existing simpler approaches.
402 Heuristic modification	403 Same algorithm family and pipeline structure, but decision/scoring logic is substantially rewritten.	404 89	405 ... Given the significant performance gap and clear indication that Worst-Fit works better, we should focus on refining this approach ...
403 Hyperparameter tuning	404 Only numeric changes (weights, thresholds, constants) with formulas/pipeline unchanged.	405 75	406 ... Given the regression, we should: 1. Revert to the simpler 0.0386 version 2. Make minimal adjustments to core parameters ...

411 kimi-k2-instruct (**1.95**). The narrow performance band indicates that strong results arise
412 *not* from the raw power of the underlying LLM, but from CIRE’s structured reasoning and refinement
413 workflow. This independence from a specific backbone underscores CIRE as a robust and
414 general optimization framework.

415 **RQ2.[Reasoning]** We investigate how CIRE’s multi-turn reasoning shapes code correctness and solution quality. Using LLM-assisted classification, each refinement step is categorized as a *paradigm shift*, *heuristic modification*, or *hyperparameter tuning* (Table 5). The distribution shows a dominant reliance on heuristic modification (**89**) and hyperparameter tuning (**75**), with paradigm shifts occurring only rarely (**16**), indicating that CIRE quickly commits to exploitation after brief initial exploration.

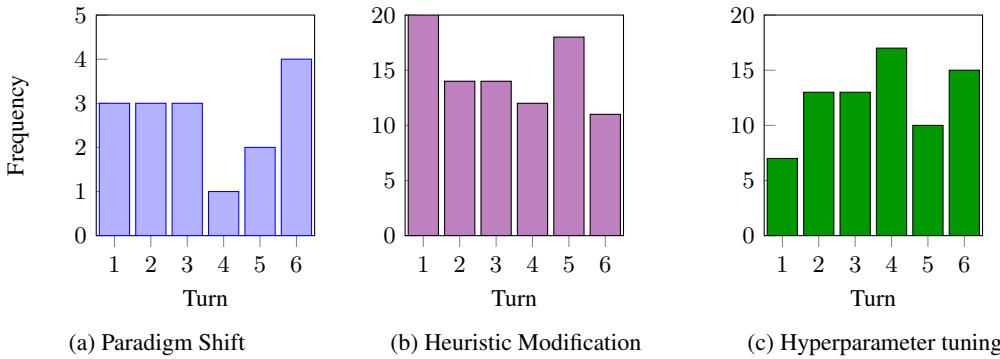
421 **Turn-by-turn analysis** (Figure 2) further reveals a consistent pattern: exploration via paradigm shifts occurs mainly at the first and final iterations. In contrast, the middle iterations concentrate on fine-grained exploitation. This behavior highlights a key insight: LLM-based optimization naturally follows an *explore-then-exploit* reasoning trajectory, with focused mid-stage refinement driving most of the performance gains.

426 **RQ3.[Ablation Study]** To disentangle the contribution of each component in our method, we conduct a comprehensive ablation study.

429 **Effect of Multi-turn Refinement and Solution Grouping.** Table 6 reports the results on the TSP50
430 benchmark. The full model achieves a **9.20%** optimality gap, while ablating *either* multi-turn refinement or solution grouping degrades performance to **17.18%**, the worst gap among all variants.
431 This consistent degradation highlights that our strong performance cannot be attributed to a single

432 Table 6: Ablation study analyzing the impact of multi-turn and grouping mechanisms.
433

434 Setting	435 Gap(%)
436 w/o multi-turn	437 17.18
437 w/o grouping (randomly choose group)	438 15.97
438 Ours (Full method)	9.20

450 Figure 2: Frequency distributions of turns across three different scenarios.
451452 design choice. Instead, it is the *joint effect* of multi-turn reasoning and grouping—both essential for
453 stabilizing the LLM’s code generation and guiding it toward higher-quality optimization solutions.454 **Effect of Similarity Coefficient Tuning.** We further investigate the impact of the parameter α ,
455 which balances behavioral similarity and CodeBLEU-based semantic similarity in our hybrid simi-
456 larity metric. As shown in Table 4, the best performance is achieved at $\alpha = 0.5$, indicating that **both**
457 **behavioral and semantic signals are indispensable**. This balanced configuration yields the most
458 reliable similarity estimates, and we adopt $\alpha = 0.5$ across all experiments.463 **Summary of Findings.** Across all ablations, we observe that removing any component—multi-
464 turn refinement, grouping, or balanced similarity estimation—leads to consistent and measurable
465 performance degradation. These results provide strong evidence that our method derives its effec-
466 tiveness from a carefully designed combination of components, each playing a distinct and comple-
467 mentary role in enabling LLMs to generate high-quality optimization code.469

5 CONCLUSION

472 CIRE reconceptualizes LLM-based heuristic discovery as a reflective, multi-turn refinement pro-
473 cess in which each model invocation contributes to a coherent trajectory of reasoning rather than
474 an isolated trial. By embedding diagnostic feedback into every turn, the framework establishes
475 a foundation of reflection that allows the model to recognize strengths, diagnose weaknesses, and
476 build on structural patterns uncovered in earlier attempts. This reflective state underpins a principled
477 balance between exploration—introducing qualitatively new strategies to escape local optima and
478 broaden the search space—and exploitation, where targeted tuning systematically enhances promis-
479 ing heuristics by refining parameters, operators, or structural decisions. The integration of obser-
480 vation signals further grounds this process in empirical evidence, aligning model reasoning with
481 measurable progress and preventing divergence into unproductive paths. Through this interplay of
482 reflection, adaptive decision-making, and performance-driven guidance, CIRE achieves both ro-
483 bustness and sample efficiency while advancing a general methodology in which LLMs operate as
484 adaptive problem solvers rather than static generators. This perspective lays a professional foun-
485 dation for extending multi-turn refinement beyond the studied benchmarks, offering a principled
486 blueprint for deploying LLMs in a wide range of combinatorial optimization domains where itera-
487 tive reasoning and adaptive search are indispensable.

486 REFERENCES
487

488 Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
489 conceptual comparison. *ACM Computing Surveys*, 35(3):268–308, 2003. doi: 10.1145/937503.
490 937505.

491 Juergen Branke, Torsten Hildebrandt, and Bernd Scholz-Reiter. Automated design of production
492 scheduling heuristics: A review. *IEEE Transactions on Evolutionary Computation*, 20(1):110–
493 124, 2016. doi: 10.1109/TEVC.2015.2429432.

494 Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and John R.
495 Woodward. Hyper-heuristics: A survey of the state of the art. *Journal of the Operational Research
496 Society*, 64(12):1695–1724, 2013. doi: 10.1057/jors.2012.8.

497 498 P. V. T. Dat, B. Q. H. Tan, S. T. Nguyen, T. T. Xuan, T. K. Nguyen, H. N. Nguyen, U. M. O'Reilly,
499 and B. Le. HSEvo: Elevating automatic heuristic design with diversity. In *Proceedings of the
500 AAAI Conference on Artificial Intelligence*, 2025.

501 Mingzhe Du, Luu Anh Tuan, Yue Liu, Yuhao Qing, Dong Huang, Xinyi He, Qian Liu, Zejun Ma,
502 and See-kiong Ng. Afterburner: Reinforcement learning facilitates self-improving code efficiency
503 optimization. *Neurips 2025*, 2025.

504 505 Erik Hemberg, Stephen Moskal, and Una-May O'Reilly. Evolving code with a large language
506 model. *Genetic Programming and Evolvable Machines*, 25(2):21, 2024. doi: 10.1007/
507 s10710-024-09497-7.

508 Yujia Li, David Choi, Junyoung Chung, Matt Kusner, Marc G. Bellemare, Demis Hassabis, et al.
509 Competition-level code generation with AlphaCode. *Science*, 378(6624):1092–1097, 2022. doi:
510 10.1126/science.abq1158.

511 Zhihan Liu, Zipeng Hu, Ziliang Jin, Zitao Wang, Yang Mei, and Hong Zhang. Evolution of heuris-
512 tics: Towards efficient automatic algorithm design using large language models. In *Advances in
513 Neural Information Processing Systems 37*, 2024.

514 515 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
516 M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
517 Omar Fawzi, et al. FunSearch: Large language models as automatic heuristic designers. *arXiv
518 preprint*, 2023.

519 D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. An analysis of several heuristics for the traveling
520 salesman problem. *SIAM Journal on Computing*, 6(3):563–581, 1977. doi: 10.1137/0206051.

521 522 Jiri Sgall. Online bin packing: Old algorithms and new results. *Theory of Computing Systems*, 55
523 (3):498–515, 2014. doi: 10.1007/s00453-013-9799-1.

524 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
525 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
526 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

527 528 Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
529 and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
530 learning. *arXiv preprint arXiv:2504.05108*, 2025.

531 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
532 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
533 models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances
534 in Neural Information Processing Systems 35*, pp. 24824–24837. Curran Associates, Inc., 2022.

535 536 Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
537 and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
538 *Advances in neural information processing systems*, 37:43571–43608, 2024.

539

540 6 APPENDIX
541542 6.1 PROMPT
543544 Online Bin Packing Prompt Formulation
545546 TASK SUMMARY
547

548 You are an AI assistant whose job is to iteratively produce and
549 refine Python heuristic implementations for the Bin Packing
550 Online Problem.

551 You will be given an existing heuristic (or helper functions). Use
552 multi-turn reasoning: at each turn you must reflect, then
553 either **explore** a new heuristic family or **exploit**
554 (refine) the last submitted heuristic, and finally receive an
555 observation/feedback from the environment.

556 ---

557 **### FUNCTION CONTRACT** (must be strictly respected)

- 558 - Language: Python only. Only standard library and numpy allowed
(if already used by provided code).
- 559 - Required signature:
560

```
def score(item, bins)
```
- 561 - Input arguments:
562
 - 563 - item: int # size of current item
 - 564 - bins : Numpy arrays # the rest capacities of feasible bins,
which are larger than the item size.
- 565 - Return: scores (Numpy array)
- 566 - Correctness rules:
567
 - 568 - 'item' is of type int
 - 569 - 'bins' and 'scores' are both Numpy arrays.

570 Travelling Salesman Problem Prompt Formulation
571572 TASK SUMMARY
573

574 You are an AI assistant whose job is to iteratively produce and
575 refine Python heuristic implementations for the Travelling
576 salesman problem.

577 Given a set of nodes with their coordinates, \
578 you need to find the shortest route that visits each node once and
579 returns to the starting node. \
580

581 The task can be solved step-by-step by starting from the current
582 node and iteratively choosing the next node. \
583

584 You will be given an existing heuristic, Let use multi-turn
585 reasoning: at each turn you must reflect, then either
586 **explore** a new heuristic family or **exploit** the last
587 submitted heuristic, and finally receive an
588 observation/feedback from the environment.

589 **### FUNCTION CONTRACT** (must be strictly respected)

- 590 - Language: Python only. Only standard library and numpy allowed
(if already used by provided code).
- 591 - Required signature:
592

```
def select_next_node(current_node, destination_node,  
unvisited_nodes, distance_matrix)
```
- 593 - Input arguments: This function should accept 4 inputs:
'current_node', 'destination_node', 'unvisited_nodes',
'distance_matrix'

```

594
595     - Output: The function should return 1 output: 'next_node'
596     - Correctness rules: 'current_node', 'destination_node',
597       'next_node', and 'unvisited_nodes' are node IDs.
598       'distance_matrix' is the distance matrix of nodes. All are
599       Numpy arrays.
600       Do not give additional explanations.
601
602

```

Prompt Template for the THINK Step

```

603     ALWAYS REMEMBER THAT, LOWER fitness score = BETTER solution.
604     First, based on the evalutation result from <observation> or GROUP
605       REFLECTION,
606     you should do some critical reasoning about the previous
607       approach(s) ABOUT:
608       + its logical algorithm
609       + its heuristic components/hyperparamters/features specifically.
610       Then, think about the affect of these parameters/hyperparamters
611       to the fitness score result (in detailed).
612
613
614     Then, you can:
615
616     1. Explore a totally new approach, to make some experiments to get
       informations.
617     OR
618     2. Focus on the behaviour of the heuristic features/components
       from the fitness result to tune them and get better result from
       the test evaluation.
619
620
621     You are ONLY allowed to do reasoning, NOT to generate code.
622     Note that, your reasoning should be very BRIEF but STILL critical
623       and concise, focus on analyzing the heuristic
624       components/features.
625     At the last of your response, there must be one of the tags
626       <explore> or <exploit>, which indicate your decision.
627
628

```

Prompt Template for the Exploration Phase

```

629
630
631     Now, BASED solely on your REASONING, generate EXACTLY ONE solution
632       for exploring.
633     Your output MUST be exactly the SAME as the following format:
634     <explore>
635     <algorithm>
636     # clear and complete algorithm description of the proposed
       heuristic.
637     </algorithm>
638     <code>
639     # the completely new Python function implementation for the
640       algorithm in <algorithm> : 'score(...)' (only code inside
       '<code>').
641     </code>
642     </explore>
643     OUTPUT RULE:
644     Always output exactly one <explore> block containing both
645       <algorithm> and <code>, nothing else.
646
647

```

648

Prompt Template for the Exploitation Phase

649

650

```

651 Now, BASED solely on your REASONING, generate EXACTLY ONE solution
652 for exploiting.
653 Your output MUST be exactly the SAME as the following format:
654 <exploit>
655 <algorithm>
656 # Clear algorithm description of the improvements you're making to
657 the selected algorithm
658 </algorithm>
659 <code>
660 # Complete and concise Python function implementation with your
661 refinements: 'score(...)'
662 </code>
663 </exploit>
664 OUTPUT RULE:
665 Always output exactly one <exploit> block containing both
666 <algorithm> and <code>, nothing else.
667

```

668

669

670

671

672

673

6.2 REASONING BEHAVIOR

674

675

676

677

678

As shown in Fig. 3, the cognitively inspired reflective evolution process demonstrates how score dynamics and strategic adaptation interact to drive progress beyond local optima. At the outset, when the system observed a fitness of 0.042, considerably worse than the best-known score of 0.031, it recognized stagnation and initiated an exploratory shift. This led to the generation of Adaptive Resonance Packing (ARP), a structurally novel heuristic that improved the score to 0.036. Although this gain was modest, the introduction of ARP provided a fertile ground for subsequent refinements.

679

680

681

682

Building on this foundation, the process transitioned into targeted exploitation. By tuning ARP through dynamic bandwidth control, exponential gap weighting, and softmax normalization, the system sought to consolidate and optimize the idea. While the score did not improve beyond 0.036, this stage illustrates the reflective nature of the method: rather than abandoning a promising approach, it strategically invested in fine-tuning, ensuring stability before pursuing further change.

683

684

685

686

687

When performance remained unchanged, the system’s observation mechanism signaled diminishing returns and prompted a more dramatic innovation. This shift produced Quantum Tunneling Bin Packing (QTBP), a probabilistic mechanism inspired by tunneling to bypass local barriers. Crucially, this step reduced the score to 0.023, surpassing the best-known baseline of 0.031.

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

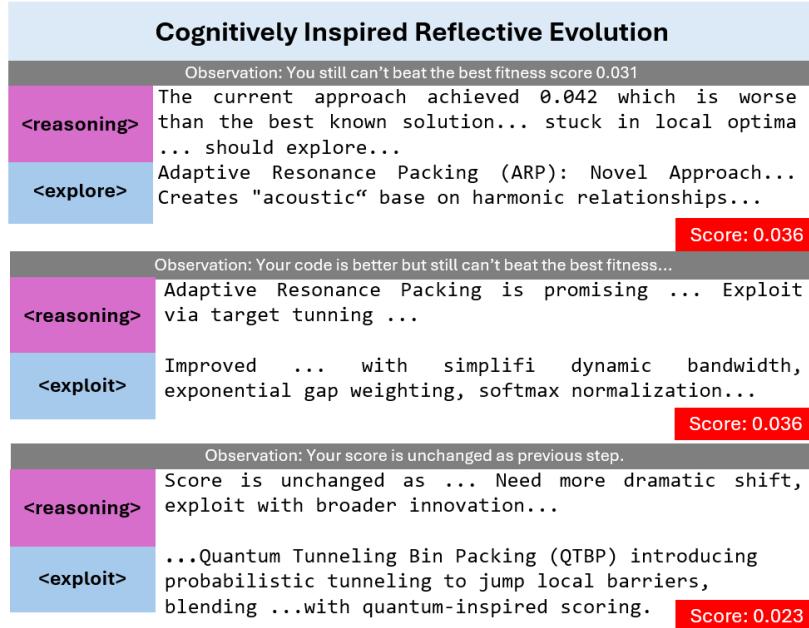


Figure 3: **Qualitative example of reflective reasoning in CIRE:** Observations guide the LLM to alternate between exploration, exploitation, and innovation, resulting in progressive improvement of heuristic quality.

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755