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Abstract

Large Vision-Language Models (LVLMs) typ-001
ically learn visual capacity through visual in-002
struction tuning, involving updates to both a003
projector and their LLM backbones. Inspired004
by the concept of a visual region in the human005
brain, we investigate the existence of an analo-006
gous visual region within LLMs that functions007
as a cognitive core, and explore the potential008
of efficient training of LVLMs via selective009
layers tuning. Using Bunny-Llama-3-8B-V010
for detailed analysis and other three LVLMs011
for validation across diverse visual and textual012
tasks, we find that selectively updating 25%013
of LLMs layers, when sparsely and uniformly014
distributed, can preserve nearly 99% of visual015
performance and maintain or improve textual016
task results, while effectively reducing training017
time. Based on this targeted training approach,018
we further propose a novel visual region-based019
pruning paradigm, removing non-critical layers020
outside the visual region, which can achieve021
minimal performance loss. This study offers an022
effective and efficient strategy for LVLM train-023
ing and inference by activating a layer-wise024
visual region within LLMs, which proves con-025
sistently effective across different models.026

1 Introduction027

Large Vision-Language Models (LVLMs) (Li et al.,028

2023c; Zhu et al., 2023; Bai et al., 2023; Liu et al.,029

2024) have emerged as an increasing research inter-030

est for interpreting and interacting with the world031

through both visual and linguistic channels. Exist-032

ing LVLMs generally utilize advanced Large Lan-033

guage Models (LLMs), like FlanT5 (Chung et al.,034

2022) and Vicuna (Chiang et al., 2023), as their cog-035

nitive core, and align visual features from visual036

encoders with LLMs’ knowledge and reasoning037

abilities. This alignment has demonstrated remark-038

able performance across diverse visual tasks (Lu039

et al., 2022; Liu et al., 2023b; Fu et al., 2024).040

LVLMs are primarily trained through visual in- 041

struction tuning (Liu et al., 2023a), which involves 042

training both a projector and LLMs on visual in- 043

struction datasets, with optional updates to the vi- 044

sual encoder. Despite its efficacy, fully tuning 045

all LLMs layers remains computationally costly, 046

even when using efficient strategies like Low-Rank 047

Adaptation (LoRA) (Hu et al., 2021) and its quan- 048

tized variant (QLORA) (Dettmers et al., 2024). 049

Additionally, extensive multimodal training risks 050

degrading LLMs’ pre-trained linguistic knowl- 051

edge and reasoning capabilities (Dai et al., 2024; 052

Agrawal et al., 2024), as evidenced by LVLMs’ 053

increased perplexity on textual tasks compared to 054

their LLM backbone in the purple section of Fig. 1. 055

Inspired by specialized visual regions in the hu- 056

man brain (Grill-Spector and Malach, 2004) and 057

LLMs’ brain-like versatility across tasks, we pro- 058

pose an analogous concept of a visual region within 059

LLMs. We hypothesize that visual alignment to 060

LLMs can only activate this specific visual region 061

while preserving LLMs’ core language abilities, 062

potentially manifesting as a layer-wise structure 063

considering layer redundancy in LLMs (Men et al., 064

2024; Gromov et al., 2024). We further detailedly 065

analyze LVLMs’ layer redundancy in Fig. 1 (green 066

part), shows that reverting certain layers of a LVLM 067

to its backbone LLM’ parameters minimally im- 068

pacts downstream visual performance. This sug- 069

gests certain layers within LLMs are non-essential 070

for visual tasks, thereby supporting our hypothesis. 071

Although layer-wise freezing techniques (Zhang 072

et al., 2024b) enable efficient LLM fine-tuning by 073

adapting later layers for specific language tasks, 074

they cannot be directly applied to visual tasks. Be- 075

cause visual alignment requires visual perception 076

capabilities beyond textual understanding and rea- 077

soning. While Zhang et al. (2024a) propose param- 078

eter localization for visual tasks, it remains highly 079

task-specific and data-dependent, limiting its gen- 080

eralizability to versatile multimodal learning and 081
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Model Variants
Visual Textual

OCRVQA DocVQA WikiText Pile-10k

LLaVA 2.43 30.55 11.44 29.58

LLaVAr (layer 0∼7) 1.87 38.49 [↑] 11.37 [↑] 29.19 [↑]
LLaVAr (layer 8∼15) 1.93 32.35 [↑] 11.38 [↑] 29.21 [↑]
LLaVAr (layer 16∼23) 2.18 16.47 11.35 [↑] 29.33 [↑]
LLaVAr (layer 24∼31) 2.11 17.47 11.36 [↑] 29.27 [↑]

Vicuna (all layers) 80.75 175.10 11.32 28.38
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Figure 1: Left: Perplexity of LLaVA with selected layers (in parentheses) reverted to Vicuna parameters on visual
and textual tasks. Arrows indicate perplexity increases relative to LLaVA (visual tasks) and Vicuna (textual tasks).
(1) Perplexity increases in textual tasks after multimodal training compared to the LLM backbone, indicating
multimodal training compromises LLMs’ linguistic abilities. (2) Perplexity decreases in visual tasks reverting
certain layers (e.g., reverting layers 16–23 or 24-31 in LLaVA), suggesting these layers are redundant. Right:
Accuracy of LLaVA-1.5-7B when pruning certain layers based on angular distance scores (Gromov et al., 2024).

neglecting the preservation of linguistic capabil-082

ities. To bridge this gap, we identify a general-083

purpose visual region within LLMs for efficient084

LVLM training across diverse tasks without dimin-085

ishing linguistic performance. Specifically, we aim086

to investigate two key questions: (1) Where is this087

visual region located within LLMs? (2) What is088

the necessary scale of layers in this visual region089

to ensure effective and efficient LVLMs training?090

To this end, we embark on empirical experi-091

ments with Bunny-Llama-3-8B-V (He et al., 2024)092

across diverse visual tasks. Our findings indicate093

that sparsely and uniformly distributed layers094

within LLMs are the optimal position for visual095

learning while simultaneously preserving textual096

performance. This strategic visual region selec-097

tion also outperforms previous layer importance098

strategies. Notably, updating only 25% of lay-099

ers achieves nearly 99% performance on visual100

tasks while effectively saving training time. We101

further validate this conclusion with LLaVA-1.5-102

7B, LLaVA-1.5-13B (Liu et al., 2023a) and Bunny-103

Phi3-mini-4B-V, demonstrating its consistent ap-104

plicability across varying models and parameter105

scales. Specifically, we achieve time reductions106

of nearly 23% for LLaVA-1.5-7B and LLaVA-1.5-107

13B, and 12% for Bunny-Llama-3-8B-V.108

Additionally, as shown in Figure 1 (right), we109

find that commonly used layer-pruning strategies110

are ineffective for LVLMs, with even minimal layer111

removal causing significant performance degrada-112

tion. In response, we propose a visual region-113

based pruning paradigm that selectively prunes less-114

important layers outside the visual region after tar-115

geted training. Specifically, we follow the angular116

distance based layer importance strategy (Gromov 117

et al., 2024) outside the visual region, and exper- 118

imental results demonstrate that our paradigm is 119

effective to minimizes performance decline. Over- 120

all, our work highlights promising potential for 121

more efficient LVLMs training and inference. No- 122

tably, our approach is flexibly complementary to 123

other efficient training techniques, such as LoRA, 124

as demonstrated in our experiments. 125

2 Preliminary of LVLMs 126

2.1 Model Architecture 127

Mainstream LVLMs consist of three components: 128

a LLM, a visual encoder, and a projector or con- 129

nection module, aim to effectively leverage the 130

capabilities of both the pre-trained visual model 131

and LLMs. The visual encoder extracts visual fea- 132

tures from images, commonly utilizing pre-trained 133

models such as CLIP ViT-L/14 (Radford et al., 134

2021). The connection module then projects these 135

extracted features into word embedding space un- 136

derstandable by LLMs, commonly employing tech- 137

niques such as linear projection (Tsimpoukelli 138

et al., 2021), Q-former (Li et al., 2023c), or cross- 139

attention layers (Alayrac et al., 2022). This enables 140

LVLMs based on LLMs cores, like Vicuna (Chi- 141

ang et al., 2023), FlanT5 (Chung et al., 2022), and 142

LLaMA (Touvron et al., 2023) to process visual 143

information in a similar manner as text. 144

2.2 Model Training 145

The training of LVLMs can be broadly divided 146

into two phases: pre-training and supervised fine- 147

tuning. Unlike LLMs, both phases utilize super- 148
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vised image-text pairs for visual instruction tuning.149

Pre-training primarily uses large-scale captioning150

instruction data, guiding the model to briefly de-151

scribe images. This phase enables the model to in-152

terpret image content, usually with LLMs’ weights153

frozen and the visual encoder optionally updated.154

Some works such as Qwen-VL (Bai et al., 2023),155

expand the pre-training to include additional tasks156

like visual question answering, updating the LLM157

component accordingly. Supervised fine-tuning158

employs high-quality instruction data to enhance159

the LVLMs’ ability to following diverse visual in-160

structions and engaging in conversations. The vi-161

sual encoder in this stage is typically kept static162

while the LLMs are tuned. During both stages,163

the projector is consistently updated, ensuring the164

model effectively bridges visual and textual data.165

3 Experimental Setup166

In this study, we conduct empirical experiments167

on Bunny-Llama-3-8B-V to investigate our hypoth-168

esis regarding the existence of a specific visual169

region within LLMs (Sec. 4.1∼ 4.3), and apply170

our findings on LLaVA-1.5-7B, LLaVA-1.5-13B171

and Bunny-Phi3-mini-4B-V to validate its general172

applicability across different models (Sec. 5.1).173

3.1 LVLM Implementation174

We employ Bunny-Llama-3-8B-V for investigation,175

which builds upon the 32-layer Llama3-8B (Tou-176

vron et al., 2023), and LLaVA-1.5-7B/13B, built on177

the 32/40-layer Vicuna-1.5-7B/13B (Chiang et al.,178

2023), Bunny-Phi3-mini-4B-V based on 32-layer179

Phi-3-mini for validation. Since the LLM compo-180

nents remain frozen during pre-training, we focus181

on the supervised fine-tuning stage using 695K182

and 665K language-image instruction-following in-183

stances for Bunny and LLaVA. Considering compu-184

tational constraints, we use LoRA (Hu et al., 2021),185

highlighting that our approach is complementary186

to other efficient training methods. Additional im-187

plementation details are available in the Appendix.188

3.2 Evaluation Tasks189

Our investigation spans 10 visual tasks involving190

both perception and cognition, to comprehensively191

evaluate models and examine our hypothesis.192

Visual perception tasks assess models’ ability193

to interpret and understand surface-level visual fea-194

tures, like object identification and scene recogni-195

tion, mirroring human sensory perception process.196

(1) OCRVQA (Mishra et al., 2019): VQA by read- 197

ing text in images through optical character recog- 198

nition (OCR). We follow(Bai et al., 2023) for accu- 199

racy calculation on the test set, allowing a margin 200

of error. (2) DocVQA (Mathew et al., 2021): VQA 201

by interpreting document images. We use the same 202

evaluation method and metric as OCRVQA on the 203

validation set. (3) RefCOCOg (Yu et al., 2016): A 204

variant of RefCOCO (Kazemzadeh et al., 2014) fea- 205

turing more complex object referring expressions. 206

We assess the reference expression generation on 207

the test set using Intersection over Union metric. 208

(4) TDIUC (Kafle and Kanan, 2017): covering 12 209

categories, primarily perception tasks (e.g., object 210

presence, counting, recognition) with some cogni- 211

tion tasks (e.g., positional reasoning, affordance). 212

Accuracy is measured on the validation set. 213

Visual cognition tasks require deeper reasoning 214

based on visual stimuli, drawing on prior knowl- 215

edge and decision-making abilities learned within 216

LLMs, mirroring human cognitive thinking and 217

manipulation. (5) MMBench (Liu et al., 2023b): 218

focuses on cognition tasks, with some fine-grained 219

perception tasks requiring knowledge and reason- 220

ing. For model variant comparison, we report 221

accuracy on the dev subset instead of submit- 222

ting to the evaluation server. (6) GQA (Hudson 223

and Manning, 2019): real-world visual reasoning 224

and compositional question answering. (7) Sci- 225

enceQA (Lu et al., 2022): sourced from elementary 226

and high school science curricula, requiring exter- 227

nal knowledge and reasoning. We evaluate only 228

image-based questions. (8) TextVQA (Singh et al., 229

2019): requiring reasoning about text in images. 230

(9) MMMU (Yue et al., 2024): covering math, sci- 231

ence, and commonsense reasoning with accuracy 232

calculated. (10) SEED-IMG: The image-based QA 233

from SEED-Bench (Li et al., 2023a). 234

4 Visual Region Investigation 235

We first analyze the position and scale of the 236

layerwise-structure vision region within its LLM 237

core on Bunny-Llama-3-8B-V, to answer the fol- 238

lowing two questions. 239

4.1 Where are visual region layers located 240

within LLMs for effective visual learning? 241

To demonstrate the optimal positioning of the vi- 242

sual region in LLMs for effective and efficient vi- 243

sual learning, we re-train Bunny-Llama-3-8B-V by 244
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Model Version OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA MMMU SEED-IMG Avg

All layers 64.26% 29.45% 50.12% 83.84% 74.74% 64.29% 79.28% 62.11% 40.6% 73.13% 62.18%

Heuristic Selections

Sparse & Uniform 62.65% 29.51% 48.33% 83.68% 73.88% 63.68% 78.78% 62.43% 42.1% 72.61% 61.82%
Consecutive Lower 61.38% 22.47% 46.49% 83.27% 73.63% 62.33% 75.26% 62.26% 42.6% 72.66% 60.24%

Consecutive Lower-middle 62.54% 26.13% 48.17% 83.77% 72.51% 62.81% 77.14% 60.96% 38.8% 72.16% 60.50%
Consecutive Upper-middle 62.32% 28.06% 43.12% 83.40% 70.27% 61.28% 78.83% 59.33% 38.3% 70.45% 59.54%

Consecutive Top 60.48% 26.47% 39.92% 83.22% 67.96% 60.30% 77.54% 58.71% 37.0% 71.00% 57.26%
Hybrid Top-Lower 57.63% 29.76% 41.79% 83.26% 72.25% 62.71% 77.99% 62.74% 40.1% 72.59% 60.09%

Importance-based Selections

Image Attention Score 63.65% 24.53% 43.62% 83.90% 72.59% 62.82% 77.59% 61.99% 39.3% 72.29% 60.23%
Parameter Change Ratio 63.94% 26.94% 47.67% 83.88% 73.54% 63.21% 78.68% 61.73% 42.0% 72.85% 61.45%
Block Influence Score 62.38% 28.45% 46.37% 83.73% 71.13% 61.93% 77.34% 59.93% 38.9% 71.66% 60.18%
Multimodal BI Score 61.48% 28.80% 46.68% 83.74% 73.02% 63.23% 77.24% 62.23% 41.0% 72.25% 60.97%

Angular Distance 60.95% 27.71% 46.74% 83.49% 73.88% 62.11% 77.14% 62.76% 39.9% 73.01% 60.77%

Table 1: Performance comparison of Bunny-LLaMA-3-8B-V tuned with different layer selection methods (8
layers). Bold numbers indicate the best performance in each column (excluding “all layers”).

updating 25% of layers (8 layers) 1 under various245

selection configurations. As pre-training does not246

involve LLM optimization, we focus on supervised247

fine-tuning, starting from the pre-trained check-248

point. We specifically explore different positional249

selection strategies as detailed below.250

• Heuristic Layer Selection (1) We intuitively251

hypothesize that tuning sparsely and uniformly252

distributed layers (0,4,8,12,18,22,26,30) pre-253

serves LLMs’ existing knowledge and reason-254

ing abilities while enabling visual learning. (2)255

We experiment with tuning consecutive 8-layer256

blocks at different positions in LLMs: lower lay-257

ers (0∼7), lower-middle layers (8∼15), upper-258

middle layers (16∼23), and top layers (24∼31),259

with the latter being a common practice of effi-260

cient domain-specific fine-tuning (Liao et al.,261

2024). (3) We test a hybrid of lower and top262

layers (0∼3, 28∼31).263

• Importance-based Layer Selection We com-264

pare layer selection strategies based on vary-265

ing importance metrics. (1) Image Attention266

Score: We compute the average attention score267

on all image tokens at each layer to gauge the268

layer’s affinity for image information. The top269

8 layers with the highest scores are selected270

(1,2,3,4,5,27,29,31). (2) Parameter Change Ra-271

tio (Zhao et al., 2023): 8 layers with the high-272

est relative parameter change ratios (averaged273

all parameters in each layer) in Bunny-Llama-274

3-8B-V compared to its backbone Llama are275

selected (0,2,9,12,23,24,25,26). (3) Block In-276

1We use the 8-layer configuration as a testbed for its bal-
ance of efficiency and effectiveness.

fluence (BI) Score (Men et al., 2024): Using 277

Flickr30k dataset, we calculate hidden state 278

transformations at each layer as the BI score, 279

and select 8 layers with the highest scores 280

(12,15,18,25,27,29,30,31). (4) Multimodal BI 281

Score: We propose a multimodal variant that av- 282

erage hidden state transformations respectively 283

of visual tokens and textual tokens, and select 8 284

layers with highest scores (0,1,2,3,4,5,9,31). (5) 285

Angular Distance Score (Gromov et al., 2024): 286

The top 8 layers with the highest angular dis- 287

tances between consecutive layer inputs are se- 288

lected (0,1,2,3,5,6,7,8). Detailed calculations 289

for these metrics are provided in Appendix A. 290

The results are shown in Table 1. We observe that 291

tuning sparsely and uniformly distributed layers 292

achieves the best overall performance across per- 293

ception and cognition tasks, closely matching the 294

all-layers upper bound. In contrast, consecutive 295

layers generally underperform, likely due to lim- 296

ited diversity in similar representations across adja- 297

cent layers (Kornblith et al., 2019), which hinders 298

adaptability to various tasks. This further under- 299

scores the superiority of sparsely and uniformly 300

distributed layers. Notably, tuning top layers yields 301

the worst performance, deviating from the con- 302

ventional practice in domain-specific fine-tuning, 303

where the last few layers are typically adjusted for 304

downstream tasks (Liao et al., 2024). This high- 305

lights a significant distinction between adapting to 306

new modalities and new downstream domains. 307

While some importance-based selections, such 308

as parameter change ratio, yield close performance, 309

all importance-based methods operate post-hoc 310

that require a fully trained model to compute im- 311
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Model Scale OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA MMMU SEED-IMG Avg

32 layers 64.26% 29.45% 50.12% 83.84% 74.74% 64.29% 79.28% 62.11% 40.6% 73.13% 62.18%
16 layers 62.42% 26.43% 49.15% 84.04% 74.83% 64.10% 78.93% 62.96% 42.6% 72.75% 61.82%(99.42%)
8 layers 62.65% 29.51% 48.33% 83.68% 73.88% 63.68% 78.78% 62.43% 42.1% 72.61% 61.78%(99.36%)
6 layers 62.25% 29.76% 47.71% 84.01% 75.00% 62.93% 77.54% 62.92% 40.6% 72.67% 61.55%(98.99%)
4 layers 62.40% 28.89% 46.00% 83.99% 73.71% 62.66% 77.69% 62.74% 39.2% 72.14% 60.94%(98.01%)
2 layers 57.96% 28.49% 44.67% 83.15% 72.68% 61.00% 78.48% 60.35% 40.8% 72.35% 60.00%(96.49%)
1 layer 53.68% 24.33% 38.47% 82.92% 68.64% 59.19% 77.69% 58.32% 37.4% 70.69% 57.14%(91.89%)

Table 2: Performance comparison of Bunny-Llama-3-8B-V fine-tuned with different numbers of layers. Bold
numbers represent the best performance in each column. Values in parentheses denotes the percentage relative to
the performance achieved by tuning all layers.
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Figure 2: Performance variation of the re-trained Bunny-Llama-3-8B-V model across different training data scales
during the supervised fine-tuning stage, with tuning varying number of layers. Dashed lines indicate 98% of the
performance achieved by tuning all layers with the corresponding training data scale.

portance metrics for layer selection. This makes312

them primarily suitable for inference and applying313

them during LVLM training incurs significantly314

higher computational costs. In contrast, our heuris-315

tic method is training-free, allowing for greater316

flexibility and direct transferability across differ-317

ent models, enhancing its practical applicability.318

We compare importance-based selections to show319

that our sparsely and uniformly distributed layers320

even outperform these post-hoc strategies and also321

simplify the process.322

4.2 What is the necessary scale of layers for323

effective and efficient LVLMs training?324

To investigate the necessary scale of this visual re-325

gion to enable LVLMs to receive visual signals and326

align with linguistic features, we re-train Bunny-327

Llama-3-8B-V by updating varying number of lay-328

ers. We respectively experiment with configura-329

tions of 32, 16, 8, 6, 4, 2 and 1 layers, with all330

selected layers uniformly distributed across all lay-331

ers 2. This selection strategy is based on our finding332

2Specifically, we select all even-numbered layers for the
16-layer configuration; layer 0, 4, 8, 12, 18, 22, 26, 30 for
8-layer; layer 0, 6, 12, 18, 24, 30 for 6-layer; and layer 0, 10,
20, 30 for 4-layer (Experiments show that layer 30 or 31 yields
comparable results, and all odd-numbered selections perform

that sparsely and uniformly distributed layers are 333

the optimal position for effective visual learning. 334

The results of tuning varying scales of layers on 335

visual perception and cognition tasks are summa- 336

rized in Table 2. Tuning 20∼25% of the layers 337

(6 and 8 layers) retains approximately 98% of the 338

performance achieved by tuning all LLMs layers 339

of Bunny-Llama-3-8B-V, with 25% (8 layers) pre- 340

serving up to 99%. However, updating fewer than 341

4 layers leads to a significant performance drop, 342

particularly in perception tasks that heavily relies 343

on visual interpretation, highlighting the necessity 344

of tuning at least 12.5% of the layers (4 layers) for 345

effective visual alignment. 346

4.3 Trend between Data Size and Visual 347

Region Scale 348

We further explore the trend between data size and 349

the optimal layer count for effective visual instruc- 350

tion tuning. Using random subsets of 100%, 25% 351

and 10% from a pool of 695K visual instruction- 352

following instances, we tune Bunny-Llama-3-8B- 353

V with varying numbers of layers following the 354

slightly worse). Since 2-layer and 1-layer selection can not be
uniform, we have tested various configurations and adopted
the best-performing strategy: layer 0 and 31 for 2-layer, and
layer 31 for 1-layer based on highest block influence scores.
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Model Scale OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA MMMU SEED-IMG Avg

LLaVA-1.5-7B

32 layers 61.51% 19.46% 49.01% 83.40% 66.67% 62.98% 68.47% 58.19% 35.3% 67.52% 57.25%
16 layers 64.01% 20.75% 48.02% 83.47% 64.00% 62.43% 67.53% 58.27% 35.4% 67.22% 57.11%(99.76%)
8 layers 62.19% 21.10% 47.71% 83.10% 63.92% 61.60% 68.17% 57.35% 34.6% 67.23% 56.70%(99.04%)
6 layers 61.39% 22.84% 46.54% 83.31% 61.77% 61.08% 68.32% 56.19% 33.2% 65.69% 56.04%(97.87%)
4 layers 63.28% 21.01% 43.47% 83.14% 60.82% 60.48% 67.97% 54.48% 33.8% 64.08% 55.25%(96.51%)
2 layers 54.54% 19.10% 41.90% 81.47% 57.22% 57.38% 65.84% 53.27% 33.7% 63.19% 52.76%(92.16%)
1 layer 53.16% 16.96% 33.29% 81.20% 51.89% 55.83% 64.50% 45.51% 30.1% 57.64% 49.01%(85.61%)

LLaVA-1.5-13B

40 layers 67.60% 25.19% 50.26% 83.61% 68.38% 63.29% 71.64% 60.21% 37.2% 68.70% 59.61%
10 layers 65.17% 23.56% 48.27% 83.57% 66.58% 62.01% 70.75% 59.13% 36.9% 67.39% 58.33%(97.85%)
9 layers 66.47% 23.65% 49.29% 83.74% 65.61% 62.31% 72.14% 59.71% 37.7% 67.29% 58.80%(98.64%)

Bunny-Phi3-mini-4B-V

32 layers 63.62% 29.19% 48.07% 83.69% 72.94% 62.35% 76.75% 60.64% 42.4% 72.09% 61.17%
8 layers 61.96% 27.21% 46.95% 83.11% 71.74% 61.38% 75.71% 59.69% 42.3% 71.53% 60.16%(98.35%)

Table 3: Performance of LVLMs with varying LLM backbones and parameter scales tuned with different numbers
of layers. Values in parentheses denotes the percentage relative to the performance achieved by tuning all layers.

same selection strategy as the full dataset. We re-355

port the performance trends across four datasets,356

OCRVQA, TextVQA, TDIUC and GQA. As shown357

in Figure 2, tuning 25% of the layers consistently358

achieves over 98% of full performance across dif-359

ferent data sizes while reducing training time. This360

approach offers a resource-efficient pathway for361

optimizing hyperparameters and training data se-362

lection by tuning such a visual region before final-363

izing the model with all layers. Moreover, even364

with smaller datasets, tuning fewer than 4 layers365

still results in notable performance declines.366

5 Further Analysis367

5.1 Generalizability Validation368

To validate our findings of the visual region be-369

yond Bunny-Llama-3-8B-V, we take LLaVA-1.5-370

7B, LLaVA-1.5-13B and Bunny-Phi3-mini-4B-V371

as additional testbeds to assess the generalizabil-372

ity across LVLMs with different LLM backbones373

and parameter scales. Following the setup in374

Sec. 4.2, we re-train these models with different375

number of layers that are sparsely and uniformly376

distributed within their respective backbones, in-377

cluding Vicuna-1.5-7B, Vicuna-1.5-13B and Phi-378

3-mini-4B (Abdin et al., 2024). Results presented379

in Table 3 show that under our visual region po-380

sitioning strategy, tuning approximately 25% of381

the layers consistently yield 98% of the full per-382

formance. This demonstrates that our approach383

generalizes effectively across varying LVLMs.384
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Figure 3: Computational costs for tuning LLaVA-1.5-
7B, Bunny-Llama-3-8B-V, and LLaVA-1.5-13B with
different number of layers using LoRA.

5.2 Computational Cost 385

To demonstrate the efficiency of visual region- 386

based tuning, we report the computational costs 387

associated with tuning different numbers of lay- 388

ers across various models using the LoRA strategy. 389

For fair comparison across setups with different 390

numbers of GPUs (specifically A800 GPUs in this 391

analysis), we compute the product of the number 392

of GPUs and running hours as a measure of com- 393

putational cost. From Figure 3, Table 2 and Ta- 394

ble 3, tuning a visual region comprising up to 25% 395

of layers (8 layers for LLaVA-1.5-7B and Bunny- 396

Llama3-8B-V, 10 layers for LLaVA-1.5-13B) can 397

achieve 98% of full performance while achieving 398

substantial reductions in computational overhead. 399

Specifically, we reduce training time by 23% for 400

LLaVA models and 13% for Bunny. These results 401

highlight that the effectiveness of visual region- 402
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based tuning in training LVLMs efficiently with403

minimal performance trade-offs. Moreover, this404

relative reduction in computational cost would be405

more significant as dataset and model sizes scale.406

5.3 Evaluation of Textual Tasks407

As highlighted in (Dai et al., 2024; Agrawal408

et al., 2024) and illustrated in Figure 1, multi-409

modal training risks degradation of LLMs’ pre-410

trained linguistic knowledge and reasoning capa-411

bilities. To verify whether training our sparsely412

and uniformly distributed visual region affects the413

model linguistic capacity, we extend our evalua-414

tion to four text-only question answering datasets,415

MMLU (Hendrycks et al., 2020), C-Eval (Huang416

et al., 2023), CMMLU (Li et al., 2023b), and BIG-417

bench-Hard (Suzgun et al., 2022), covering diverse418

topics and fields. We use “Answer with the op-419

tion’s letter from the given choices directly” as the420

prompts for the first three and “Please answer this421

question in a word or phrase” for BIG-bench-Hard,422

and allow models to provide explanations along-423

side its responses. We adopt a five-shot prompting424

strategy for MMLU, C-Eval and CMMLU, and a425

zero-shot strategy for BIG-bench-Hard.

Model Version MMLU BIG-Bench-H C-Eval CMMLU

Bunny-LLaMA3-8B-V

Fully-trained (32layers) 60.27% 30.93% 45.84% 45.68%
Partial-trained (8layers) 63.36% 31.50% 49.70% 48.39%

LLM-Backbone 66.01% 57.93% 50.52% 50.70%

LLaVA-1.5-7B

Fully-trained (32layers) 50.52% 26.85% 38.34% 37.27%
Partial-trained (8layers) 50.74% 31.64% 39.08% 37.71%

LLM-Backbone 49.78% 29.33% 38.78% 36.60%

Table 4: Performance on text-only tasks. The LLm
backbones of Bunny-LLaMA3-8B-V and LLaVA-1.5-
7B are respectively LLaMA3-8B and Vicuna-1.5-7B.

426
As shown in Table 4, fully-trained LVLMs gen-427

erally exhibit decreased performance on text-only428

tasks compared to their LLM backbones, particu-429

larly with more powerful LLaMA3-8B and on the430

challenging BIG-bench-Hard dataset. In contrast,431

our selectively trained LVLMs minimally compro-432

mise models’ linguistic capacity, which consis-433

tently outperform fully-trained LVLMs, and some-434

times even surpass their LLMs backbones. These435

results support our hypothesis that positioning the436

visual region strategically by tuning sparsely and437

uniformly distributed layers better preserves LLMs’438

linguistic knowledge and reasoning capabilities,439

whereas full training may cause minor disruptions.440

6 Visual Region-Based Layer Pruning 441

Beyond layer selection for efficient LVLMs train- 442

ing, we explore whether the visual region can also 443

benefit LVLM efficient inference. Although layer 444

pruning techniques (Men et al., 2024; Ma et al., 445

2023) have been widely developed for LLM infer- 446

ence, they prove ineffective for LVLMs. As shown 447

in Figure 1 (right), minimal layer removal caus- 448

ing significant performance degradation on visual 449

tasks even using advanced angular distance based 450

pruning strategy (Gromov et al., 2024).
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Figure 4: Results of pruning LLaVA-1.5-7B using
angular distance-based strategy with 0∼4 layers re-
moved. Dashed lines represent pruning applied to the
fully trained model while solid layers denote our visual
region-based pruning within the targeted trained model.

451
Building on our visual region targeted training, 452

we propose a visual region-based pruning paradigm 453

that selectively prunes less-important layers outside 454

the visual region after training. Specifically, we fol- 455

low the angular distance based layer importance 456

metric and select 0∼4 layers with the lowest an- 457

gular distance outside the visual region. We do 458

not evaluate pruning beyond this range as remov- 459

ing additional layers in LVLMs would lead to sig- 460

nificant performance collapse. We evaluate this 461

approach on LLaVA-1.5-7B across four datasets: 462

OCRVQA, TextVQA, DocVQA and SciQA. As 463

shown in Figure 4, our paradigm generally main- 464

tain higher performance, especially when pruning 465

3∼4 layers, even though the visual region targeted 466

trained model performs slightly worse than fully 467

7



trained model without pruning. This result demon-468

strates that our paradigm effectively minimizes per-469

formance degradation compared to pruning in full-470

layer trained LVLMs, serving as an initial explo-471

ration into LVLM-specific pruning strategies.472

7 Related Work473

7.1 Efficient Training and Inference474

Recent research community has witnessed an emer-475

gent interest in LLMs (Touvron et al., 2023; Chiang476

et al., 2023) and LVLMs (Li et al., 2023c; Zhu et al.,477

2023; Bai et al., 2023; Liu et al., 2024) due to their478

remarkable ability to interpret and interact with the479

world via linguistic and visual channels. With the480

sustainably increased scale of LLMs and LVLMs,481

training or inference using all model parameters482

are cost for practical deployment. There are nu-483

merous techniques for efficient model training and484

inference. For instance, quantization reduce the485

memory footprint of models by decreasing the pre-486

cision of model weights (Dettmers et al.; Dettmers487

and Zettlemoyer, 2023; Xiao et al., 2023). Low488

rank adapters enable cost-effective fine-tuning by489

updating only a small subset of the adapter parame-490

ters (Hu et al., 2021; Karimi Mahabadi et al., 2021).491

Moreover, LLMs exhibit significant redundancy492

at the layer level, making training or inference with493

all layers computationally wasteful, and this redun-494

dancy is established for LVLMs as well, where495

LLMs serve as the core cognitive brain for visual496

learning. In responding, layer-wise freezing tech-497

niques (Zhang et al., 2024b; Liang et al., 2023;498

Pan et al., 2024) and layer pruning strategies (Men499

et al., 2024; Ma et al., 2023; Gromov et al., 2024)500

are proposed to enable efficient LLM fine-tuning501

and inference. However, they are designed for502

LLMs and fail to generalize effectively to visual503

learning, often resulting in substantial performance504

degradation. While Zhang et al. (2024a) introduce505

parameter localization for visual tasks, their ap-506

proach is highly task-specific and data-dependent,507

limiting its applicability to versatile visual learn-508

ing and neglecting the preservation of linguistic509

capabilities. In contrast, we propose a more effi-510

cient layer-selected strategy for LVLMs training511

and inference.512

7.2 Functional Regions in LLMs513

The existing literature on cognitive science and514

brain localization indicates that different regions515

among the human brain are dedicated to specific516

functions (Fedorenko and Varley, 2016), such as 517

frontotemporal language processing region local- 518

ized by Scott et al. (2017). Grill-Spector and 519

Malach (2004) highlight the existence of visual re- 520

gions in neuroscience (Grill-Spector and Malach, 521

2004). These insights have inspired an analogy 522

with LLMs, increasingly viewed as cognitive core 523

for remarkable performance across diverse tasks, 524

mirroring the human brain’s functionality in terms 525

of overall planning and processing. For exam- 526

ple, Aw et al. (2023) propose that LLMs can be 527

aligned to the human brain through instruction- 528

tuning. Building upon this parallel, Zhao et al. 529

(2023) unveil a core linguistic region within LLMs, 530

accounting approximately 1% of the model’s pa- 531

rameters. Li and Li (2024) identify a duality be- 532

tween Tulving’s synergistic ecphory model (SEM) 533

of memory and LLMs’ emergent abilities. Draw- 534

ing inspiration from these, our research focuses on 535

defining a vision region within LLMs, suggesting a 536

more effective and efficient pipeline to optimizing 537

LVLMs for visual tasks. 538

8 Conclusion 539

In this study, we introduce an effective and effi- 540

cient training paradigm for LVLMs by activating 541

a specific visual region within LLMs. This offers 542

a new pipeline for advancing LVLMs which first 543

identify such visual region using limited data fol- 544

lowed by efficient continual training. Specifically, 545

we investigating the necessity of tuning all layers 546

within LLM cores, and propose the concept of a 547

specialized visual region within LLMs. We con- 548

duct extensive empirical experiments with Bunny- 549

LLaMA-3-8B-V, covering a range of visual and 550

textual tasks. Our results reveal that selectively 551

updating no more than 25% of sparsely and uni- 552

formly layers, can preserve nearly 99% visual per- 553

formance, while also yielding comparable results 554

in textual tasks. This targeted LVLMs’ training 555

approach is consistently effective for different mod- 556

els and parameter scales, effectively reducing train- 557

ing time by 23% for LLaVA models and 12% for 558

Bunny-LLaMA-3-8B-V. Additionally, we propose 559

a visual region-based layer pruning by strategy re- 560

moving non-critical layers outside the visual region 561

and achieve minimal performance drop. Overall, 562

our work presents a promising pathway for more 563

efficient LVLMs training and inference, while com- 564

plementing existing efficient training methods. 565

8



Limitations566

Experimented Models Our work primarily fo-567

cuses on LLaVA-1.5 family, Bunny-LLama3-8B-V568

and Bunny-Phi3-mini-4B-V to demonstrate the ef-569

fectiveness and efficiency of our proposed training570

and inference paradigms for LVLMs. Future work571

will expand to a broader range of models to fur-572

ther validate the generalizability of our approach.573

Additionally, we will explore extensions to other574

modalities such as speech, and investigate the exis-575

tence of other modality-specific regions to develop576

more versatile and scalable multimodal models.577

Sparse Architectures While our approach ef-578

fectively reduces training and inference costs by579

activating the visual region, it currently operate in580

a layer-wise dense manner. Future efforts will fo-581

cus on integrating our method with sparse model582

architectures to optimize visual region activation.583

For example, explore routing mechanisms target-584

ing modality-specific partitions within models to585

implement sparse mixture-of-expert architectures586

with specialized functional areas, analogous to the587

functional regions of the human brain.588
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A Details of Layer Importance Metrics 840

To demonstrate the effectiveness of our heuristi- 841

cally identified sparsely and uniformly distributed 842

visual region, we conduct a comparative analysis 843

against several other layer importance metrics (orig- 844

inally for layer pruning) by selecting 8 layers and 845

re-training Bunny-Llama-3-8B-V. Below are the 846

details of how these metrics are calculated. 847

• Block Influence (BI) Score (Men et al., 2024): 848

serves as an indicator of layer importance by 849

measuring the transformation of hidden states. 850

We utilize the Flickr30k dataset (Jia et al., 2015) 851

to calculate the BI score for each layer within 852

LVLMs. The BI score of ith layers is calculated 853

as following: 854

BIi = 1− EX,t

XT
i,tXi+1,t

∥Xi∥2∥Xi+1∥2
855

where Xi represents the hidden states of the ith 856

layer and Xi,t denotes the hidden states of the 857

tth token at the ith layer. By calculating the 858

average cosine similarity of token states before 859

and after passing through a layer, we measure 860

the change magnitude across all tokens. 861

• Multimodal BI Score: As the above method 862

treats visual image and text as a single modality, 863

we propose a multimodal variant that separately 864

calculates the hidden state transformations of 865

visual tokens and textual tokens, and take its av- 866

erage as a multimodal BI score. The Multimodal 867

BI score of ith layers is calculated as follows. 868

BI ′i = 1− 1

2
(EX,t

XT
i,tXi+1,t

∥Xi∥2∥Xi+1∥2
869

+EY,l

Y T
i,lYi+1,l

∥Yi∥2∥Yi+1∥2
) 870

Xi,t and Yi,l respectively mean the hidden states 871

of the tth visual token and the lth text token 872

at the ith layer. We calculate the cosine simi- 873

larity of each modality tokens before and after 874

passing through a layer, then average the results. 875

This balances the token quantity across various 876

modalities. 877
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• Parameter Change Ratio (Zhao et al., 2023):878

We calculate the relative change ratio of the pa-879

rameters in LVLM against its backbone LLM880

across each layer (by averaging all parameters881

within each layer). The parameter change ratio882

of ith layers is calculated as follows:883

Ri = Eθ∈Li,j |
θ′j − θj

θj
|884

where θj and θ′j respectively mean the jth pa-885

rameter of layer Li in LLM and LVLM.886

• Angular Distance (Gromov et al., 2024): We887

calculate the Angular Distance of the parameters888

in LVLM against its backbone LLM across each889

layer (by averaging all parameters within each890

layer). The Angular Distance of ith layers is891

calculated as follows:892

Di =
1

π
arccos

(
θ′j · θj

∥θ′j∥∥θj∥

)
893

where θj and θ′j respectively mean the jth pa-894

rameter of layer Li in LLM and LVLM, ∥ · ∥895

denotes the L2-norm and the factor of 1
π is a896

constant.897

• Image Attention Score: We calculate image898

attention score to measure each layer’s affinity899

for image information. We utilize the DocVQA,900

OCRVQA, TDIUC, and RefCOCOg datasets,901

sampling 50 instances from each dataset to cal-902

culate the attention scores of the all image tokens903

for each layer within Bunny-Llama-3-8B-V. The904

heat map of image attention Score of every in-905

stances for each layers in Bunny-Llama-3-8B-V906

is showed in Figure 5. The image attention score907

of one instance in ith layers Ai is calculated as908

follows:909

Ai =

∑k+Nimg−1
t=k

∑H
h=1

∑T
j=1 Attn[i][h, j, t]

NimgH
910

where H represents the number of attention911

heads per layer and T denotes the total num-912

ber of tokens at the ith layer. Nimg is the number913

of image tokens of the instance. The index range914

for the image tokens is from k to k +Nimg − 1.915

While Attn[h, j, t] means the attention score of916

the hth attention head for the jth token to the tth917

token.918
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Figure 5: Visualization of Image Attention Scores for every instances across all layers
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