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Abstract001

We present the first systematic analysis of at-002
tention heads for syntactic relations in decoder-003
only Transformer language models. Prior004
work has demonstrated that encoder-only and005
encoder-decoder architectures contain attention006
heads aligned with single-hop syntactic rela-007
tions, but the internal mechanisms of decoder-008
only models remain underexplored. Focus-009
ing on two representative families (GPT-2010
and XGLM) across five model sizes (117M,011
345M, 774M, 1.5B, 1.7B parameters), we iden-012
tify a novel class of attention heads that cap-013
ture multi-hop dependency paths (MDPs), e.g.,014
“obl+case”. Through controlled head-ablation015
on the BLiMP benchmark, we show that re-016
moving 25% MDP heads induces 7.1% drop017
in average grammaticality accuracy, compared018
to only 1.6% drop when ablating the same019
number of conventional, single-hop syntactic020
heads. Crucially, this pattern holds consistently021
across all five model sizes, demonstrating the022
robustness of our findings. Technically, we023
(i) extend existing head-identification meth-024
ods—previously limited to encoder-only and025
encoder-decoder models—to the decoder-only026
setting, and (ii) propose a formal definition and027
detection algorithm for MDP heads. Our results028
reveal that decoder-only Transformers internal-029
ize syntactic information in more complex, non-030
canonical forms than previously understood,031
underscoring the importance of cross-chain in-032
teractions for grammatical competence.033

1 Introduction034

Understanding how large language models (LLMs)035

perform syntactic analysis is one of the intrigu-036

ing topics for revealing the inner workings of037

LLMs (López-Otal et al., 2025). Previous studies038

have generally assumed the validity of linguistic039

dependencies (LD)—that is, syntactic structures as040

defined in theoretical linguistics—when analyzing041

LLMs. Some studies have provided several insights042

Figure 1: Comparison of linguistic dependencies and
multi-hop dependency paths (MDPs) in “I eat an ap-
ple.” Canonical linguistic dependency grammar typi-
cally posits relations like “dobj” between (eat, apple)
or “det” between (an, apple). In contrast, LLMs often
place significant attention to a shortcut path, e.g., “dobj”
+ “det” between (eat, an), which we define as MDPs.

into the syntactic capabilities regarding the linguis- 043

tic dependencies within the attention mechanisms 044

of LLMs, especially for encoder-based models such 045

as BERT (Clark et al., 2019; Kovaleva et al., 2019; 046

Ravishankar et al., 2021), leaving the decoder-only 047

models underexplored. 048

This study analyzes linguistic dependencies 049

for decoder-based models, which are the defact 050

standard architecture of recent state-of-the-art 051

LLMs (Grattafiori et al., 2024). Specifically, we fo- 052

cus on two representative models: GPT-2 (Radford 053

et al., 2019) and XGLM (Neelakantan et al., 2022) 054

across five model sizes (117M, 345M, 774M, 1.5B, 055

1.7B parameters) to identify attention heads that 056

specialize in syntactic structure recognition. 057

Throughout the analysis, we have found that 058

LLMs acquire not only the dependency struc- 059

tures defined by human linguistic theory, but 060

also multi-hop dependency paths (MDPs)—model- 061

internal syntactic multi-hops that do not strictly 062

follow canonical linguistic dependencies. We de- 063

fine MDPs as dependency-like connections be- 064
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tween two distant tokens that assigns high attention065

weight, bypassing intermediate tokens that would066

normally mediate the syntactic relationship. For067

instance, in the sentence "I eat an apple," canonical068

linguistic dependency grammar typically posits re-069

lations like (eat, apple) and (an, apple). In contrast,070

LLMs often place significant attention between071

(eat, an)—a pairing not traditionally considered a072

direct syntactic dependency—suggesting that such073

paths serve as alternative cues for grammatical un-074

derstanding (Figure 1). These multi-hop paths en-075

able a form of redundant syntactic encoding, which076

we find contributes to the robustness of the model’s077

grammatical reasoning.078

To reveal the existance of MDP heads, we first079

constructed a corpus using the Universal Depen-080

dencies (UD) framework, with MDP-based de-081

pendency relations added. We then identified082

attention heads that are particularly sensitive to083

MDP-style dependencies by extending the existing084

head-identification methods—previously limited085

to encoder-based models—to the decoder-only set-086

ting. Furthermore, to verify the functional impor-087

tance of MDPs for grammatical understanding, we088

conducted attention intervention experiments, se-089

lectively disrupting attention weights toward MDP090

pairs. The results showed that disrupting atten-091

tion heads specialized in MDPs led to significantly092

larger performance degradation on grammatical093

tasks than when intervening on heads associated094

with traditional dependencies across all the models.095

The findings of this study are an important step096

toward clarifying the differences between the way097

humans understand language (i.e., linguistics) and098

the way LLMs understand the same language. We099

hope these findings provide valuable insights into100

understanding of the factors behind dramatic per-101

formance gains in recent decoder-based LLMs.102

2 Background103

2.1 Simplicity and Binarity in Syntactic104

Theory105

Linguistic theories often emphasize non-redundant106

representations of grammar, aiming to capture syn-107

tactic structure with the smallest possible set of108

rules. This principle underlies Chomsky’s Mini-109

malist Program, which assumes that language is110

optimally designed and that syntactic derivations111

should be maximally economical. As Chomsky112

notes, “only binary branching is permitted” (Chom-113

sky, 1995).114

Under this assumption, syntactic trees are strictly 115

binary, with each phrase dividing into two subcom- 116

ponents. This binary structure not only enforces 117

formal simplicity but also supports recursive com- 118

positionality in a uniform and constrained manner. 119

The goal is to derive the full complexity of natural 120

language syntax from a minimal set of generative 121

principles. 122

2.2 Redundancy and Multi-Hop Dependency 123

Paths in LLMs 124

Does the grammatical competence of large lan- 125

guage models (LLMs) align with the principles 126

of Chomsky’s Minimalist Program? 127

The Minimalist Program postulates that lan- 128

guage is governed by a minimal set of generative 129

rules, favoring non-redundant and binary branch- 130

ing structures (Chomsky, 1995). In contrast, re- 131

cent mechanistic studies suggest that LLMs may 132

adopt a fundamentally different strategy. Induc- 133

tion heads—attention mechanisms responsible for 134

pattern matching and copying—emerge in Trans- 135

formers as additive and redundant circuits (Singh 136

et al., 2024). These heads operate collectively, with 137

overlapping functionalities, indicating that LLMs 138

might not rely on minimal rules for syntactic repre- 139

sentation. 140

As introduced in Section 1, empirical observa- 141

tions reveal that certain combinations of depen- 142

dency relations frequently co-occur in parsed cor- 143

pora. For example, paths such as obj+nmod+case 144

or obl+case are highly recurrent and robust across 145

diverse syntactic contexts. While such composite 146

paths are not primitive relations in the Minimalist 147

framework, they may nonetheless be learned by 148

LLMs alongside linguistically defined dependen- 149

cies. This suggests that LLMs internalize a hybrid 150

syntactic representation: one that blends formally 151

specified dependencies with statistically redundant 152

co-occurrence patterns. 153

Example. Consider the sentence: 154

The teacher placed a book of science on 155

the shelf. 156

In the UD parse of this sentence, the following 157

MDPs are identified as: 158

• obl+case: 159

on case−−→ shelf obl−−→ placed 160
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Figure 2: Bar plot of the 50 most frequent dependency paths in the corpus. Each bar’s height shows the absolute
count, and bar colors (Set2 palette) encode hop counts, highlighting which syntactic hop counts occur most often.

This path represents the oblique phrase on the161

shelf, where the noun shelf modifies the verb162

placed via the preposition on.163

• obj+nmod+case:164

of case−−→ science nmod−−→ book
obj−−→ placed165

This captures an embedded possessive nomi-166

nal phrase within the object of the verb. The167

noun science is connected to book through of,168

and book serves as the object of placed.169

These MDPs reflect compositional structures170

that are not explicitly encoded in minimalist syntac-171

tic theory but nonetheless emerge as stable patterns172

in LLM training data.173

3 Method174

3.1 Constructing Multi-Hop Dependency175

Paths (MDPs)176

To capture higher-order syntactic patterns beyond177

single-step dependencies, we construct a new set of178

compositional relations, which we call Multi-Hop179

Dependency Paths (MDPs). These MDPs repre-180

sent frequently co-occurring sequences of syntac-181

tic relations along parent-child paths in Universal182

Dependencies (UD) trees. In this study, we refer183

to individual dependency relations as Dependency184

Paths (DPs).185

We use the English Web Treebank (EWT) (Nivre186

et al., 2020) as our UD-parsed corpus. From this187

corpus, we extract all DPs, i.e., single-hop labeled 188

dependency edges. Each sentence in the corpus 189

consists of a sequence of tokens annotated with 190

head indices and dependency labels. Based on the 191

set of observed DPs, we iteratively construct longer 192

MDPs by connecting multiple relations together. 193

We denote connecting two consecutive hops of 194

DPs as 2-hop DPs. To identify frequently occur- 195

ring 2-hop DPs, we begin by generating candidate 196

2-hop DP paths by pairing every DP with every 197

other DP (i.e., DP × DP), and count their frequency 198

in the corpus. Only those candidate MDPs whose 199

frequency exceeds a predefined threshold τ are re- 200

tained. In the next step, we extend the 2-hop DP 201

candidates by appending another DP, yielding 3- 202

hop DP = 2-hop DP × DP. Again, we count occur- 203

rences and retain only those that pass the threshold. 204

This procedure is repeated iteratively until no new 205

MDPs exceed the threshold. 206

The final set of MDPs are represented as atomic 207

labels, such as obj+amod+case. Using this final 208

set of MDPs along with the original English Web 209

Treebank, we annotate the corpus to construct a 210

new structured dataset that includes both DPs and 211

the newly defined MDPs (See Figure 2). 212

3.2 Identifying Attention Heads Sensitive to 213

Syntactic Structure 214

Using the MDP-annotated corpus as well as the DP 215

corpus as described above, we identify which atten- 216

tion heads capture syntactic structures effectively. 217

By applying the approach of Clark et al. (2019), 218
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which was originally proposed for encoder-based219

models, to decoder-only model for our experiment,220

we analyze attention weights to evaluate if each at-221

tention head focuses on syntactically related words.222

For each layer l and head h, and each token xi in223

a sentence, we determine the token xj that receives224

the highest attention weight from xi. Specifically,225

for a sentence with attention matrix A(l,h), we de-226

fine the predicted syntactic connection as follows:227

ĵ
(l,h)
i = argmax

j
A

(l,h)
ij , j < i. (1)228

Since the decoder-only model which is our target229

in our experiment employs causal masked attention,230

token xi can only attend to tokens at or before its231

own position (j < i). This is the modification from232

the original method (Clark et al., 2019).233

We then check if the predicted pair (xi, xj)234

matches a syntactic dependency (either DP or235

MDP) annotated in our corpus. Importantly, we do236

not consider the directionality of these syntactic de-237

pendencies because causal masks in decoder-only238

models allow only unidirectional attention to past239

tokens; we only measure whether the predicted240

pair corresponds to an existing dependency edge,241

ignoring head-dependent direction.242

Because model tokenization typically differs243

from corpus word-level tokenization, we follow244

Clark et al. (2019)’s alignment strategy: attention245

from a word to another word is computed by sum-246

ming attention scores over all subword tokens for247

the target word and averaging across subword to-248

kens for the source word (Clark et al., 2019).249

We perform this matching procedure for every250

token in every sentence of the corpus. For each251

syntactic dependency type r (DP or MDP), we252

count how many times each head (l, h) correctly253

identifies a dependency pair:254

C(l,h)
r =

∑
sentence∈corpus

∑
(i,j)∈r

I
[
ĵ
(l,h)
i = j

]
(2)255

Here, the count is summed across all sentences256

in the corpus. We define the correct rate for a given257

dependency relation r at attention head (l, h) as:258

CorrectRate(l,h)r =
C

(l,h)
r

|Dr|
(3)259

where C
(l,h)
r is the number of correctly identified260

dependency pairs at head (l, h), and |Dr| is the total261

number of occurrences of dependency relation r in262

the corpus.263

To identify the head which aligns mostly with 264

a specific dependency relation r, the unlabeled at- 265

tachment score (UAS) for relation r is defined as 266

the highest correct rate among all attention heads: 267

UASr = max
l,h

(
CorrectRate(l,h)r

)
(4) 268

This methodology closely follows Clark et al. 269

(2019)’s original interpretability approach, adapted 270

here without considering dependency directionality 271

for decoder-only model architecture. 272

3.3 Intervention by Flattening Selected 273

Attention Heads 274

For each selected head (l, h) ∈ H, we replace the 275

original attention weight matrix A(l,h) ∈ RS×S 276

with a lower-triangular uniform distribution T , de- 277

fined as: 278

Tij =

{
1

i+1 , j ≤ i,

0, j > i,
(5) 279

ensuring
∑S−1

j=0 Tij = 1. Thus, the modified atten- 280

tion weight is: 281

A′(l,h) = T. (6) 282

This flattening intervention is inspired by prior 283

work that neutralizes attention distributions to as- 284

sess head importance (Zhou et al., 2025). Attention 285

weights in all non-selected heads remain unaltered. 286

4 Experiments 287

4.1 Identification of MDPs 288

We use the English Web Treebank (EWT) (Nivre 289

et al., 2020), a publicly available UD-annotated 290

English corpus licensed under CC BY-SA 4.0. The 291

dataset is anonymized and manually curated; we 292

found no personally identifiable or offensive con- 293

tent. It covers a range of syntactic phenomena 294

in web-based English and follows consistent UD 295

annotation guidelines. In our experiments, we 296

used all sentences from the training portion of 297

the EWT corpus. We identified Multi-Hop De- 298

pendency Paths (MDPs) using the English Web 299

Treebank (EWT) (Nivre et al., 2020). Specifically, 300

applying the method outlined in Section 3.1, we 301

extracted both single-hop Dependency Paths (DPs) 302

and MDPs that occurred more than 1,000 times 303

within the corpus. 304
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obl+case obl case nmod+case nmod case conj+cc conj cc obj+nmod+case obj nmod case

Frequency 9095 9150 17417 6883 6888 17417 6413 7523 6757 1655 10170 6888 17417

GPT2 0.572 0.158 0.358 0.785 0.341 0.358 0.448 0.239 0.412 0.353 0.804 0.341 0.358
GPT2-Large 0.576 0.285 0.416 0.795 0.309 0.416 0.426 0.323 0.401 0.630 0.824 0.309 0.416
GPT2-Medium 0.673 0.436 0.348 0.743 0.329 0.348 0.427 0.273 0.398 0.604 0.831 0.329 0.348
GPT2-XL 0.711 0.405 0.463 0.764 0.423 0.463 0.456 0.391 0.424 0.615 0.831 0.423 0.463
XGLM-1.7B 0.606 0.230 0.643 0.806 0.353 0.643 0.513 0.317 0.386 0.485 0.648 0.353 0.643

Table 1: The UAS results for the three most frequent 2-hop MDPs and their corresponding single-hop DP compo-
nents, as well as the most frequent 3-hop MDP and its constituent DPs, across each model.
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Figure 3: Line-histogram of maximum UAS across at-
tention heads for each dependency hop count. Each
subplot corresponds to one model, with colored lines
indicating different hop counts. Only dependency rela-
tions occurring at least 1000 times are included, and the
horizontal axis shows the maximum UAS achieved by
any head, while the vertical axis shows the number of
relations in each UAS bin.

Models used. We analyzed attention heads305

across the pretrained GPT model family—GPT-306

small, GPT-medium, GPT-large, and GPT-XL307

(117M, 345M, 774M, and 1.5B parameters)—as308

well as the XGLM-1.7B model (Radford et al.,309

2019; Neelakantan et al., 2022).310

4.2 UAS Measurement and Analysis311

We computed Unlabeled Attachment Scores (UAS)312

for the identified DPs and MDPs following the313

methodology described in Section 3.2. Table 1 sum-314

marizes the UAS results for the three most frequent315

2-hop MDPs and their corresponding single-hop316

DP components, as well as the most frequent 3-hop317

MDP and its constituent DPs, across each model.318

From Table 2, we observe that certain frequent319

2-hop MDPs exhibit higher UAS compared to their320

individual DP components. Figure 3 illustrates321

the distribution of UAS values for all DPs and322

MDPs, revealing that there is no substantial differ-323

ence in UAS distributions between the single-hop324

and multi-hop dependency paths.325
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Figure 4: Correct rate matrices for the obl dependency
in GPT-2. Left: DPs; Right: MDPs. Rows correspond
to transformer layers, columns to attention heads, and
the color scale indicates the correct rate per head.

4.3 Comparison of DP and MDP Usage 326

To determine whether models utilize single-hop 327

DPs or multi-hop MDPs, we hypothesize that if a 328

particular dependency is consistently accompanied 329

by another dependency, the model is likely learning 330

this combined dependency set. For each single-hop 331

DP, we assessed whether it occurred predominantly 332

(more than 50%) as a part of an MDP: 333

MDP Usage =
Count(DP as part of MDP)

Total Count(DP)
> 0.5

(7) 334

We identified nine such DP-MDP pairs (see Ta- 335

ble 2 for an overview and Appendix D for detailed 336

definitions). If multiple MDPs surpassed this 50% 337

threshold for a given DP, we selected the most fre- 338

quently occurring set. We measured the correct rate 339

for each head of each model, separately for these 340

nine DPs and their corresponding MDP sets. Addi- 341

tionally, we recorded the maximum UAS across all 342

heads. 343

Comparing UAS values model-wise, we found 344

that MDPs consistently outperformed DPs in nearly 345

all cases. Specifically, for the relation obl+case, all 346

models except XGLM-1.7B showed higher UAS 347

for the MDPs. For conj+cc and nmod+case, MDPs 348

outperformed DPs across all evaluated models, as 349

shown in Table 2. Furthermore, qualitative analysis 350
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obl+case obl case conj+cc conj cc nmod+case nmod case

Frequency 9095 9150 17417 6413 7523 6757 6883 6888 17417

GPT2 0.572 0.158 0.358 0.448 0.239 0.412 0.785 0.341 0.358
GPT2-Medium 0.673 0.436 0.348 0.427 0.273 0.398 0.743 0.329 0.348
GPT2-Large 0.576 0.285 0.416 0.426 0.323 0.401 0.795 0.309 0.416
GPT2-XL 0.711 0.405 0.463 0.456 0.391 0.424 0.764 0.423 0.463
XGLM-1.7B 0.606 0.230 0.643 0.513 0.317 0.386 0.806 0.353 0.643

Table 2: UAS scores for the three most frequent multi-hop dependency path (MDP) sets (ranks 1–3) and their
corresponding single-hop dependency paths (DPs) across all evaluated models.
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Figure 5: Cumulative correct-rate heatmaps used for
head selection, computed by summing correct rate ma-
trices over the nine most frequent single-hop depen-
dency paths (DPs, left) and multi-hop dependency paths
(MDPs, right). Rows correspond to layers and columns
to attention heads.These matrices were used to identify
the top 5–25% of heads for intervention.

of correct rates revealed that the attention heads uti-351

lized for DP and MDP recognition differed notably352

(Figure 4).353

4.4 Intervention Experiments354

To empirically verify whether specific attention355

heads are actively used for grammatical under-356

standing, we conducted intervention experiments357

using the Benchmark of Linguistic Minimal Pairs358

(BLiMP; (Warstadt et al., 2020)). BLiMP is a359

linguistically informed benchmark composed of360

minimal-pair sentences designed to assess gram-361

matical knowledge across diverse syntactic phe-362

nomena.363

We applied the intervention method described in364

Section 3.3. For selecting intervention heads, we365

summed the correct rate matrices across the nine366

DPs, then chose the top 5%, 10%, 15%, 20%, and367

25% of heads based on the highest cumulative cor-368

rect rates. In the case of GPT-2, Figure 5 shows the369

cumulative UAS values, while Figure 6 visualizes370

the selected heads in a discretized format. Each371

figure illustrates the differences in attention head372

selection based on the DP and MDP criteria.373
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Figure 6: Discrete percentile-based dependency head
activation heatmaps. The top 5%, 10%, 15%, 20%, and
25% of attention heads are highlighted using four dis-
tinct colors. Left: heads selected based on DPs; Right:
heads selected based on MDPs.Rows represent Trans-
former layers and columns represent attention heads
within each layer.

Additionally, we performed control experiments 374

by randomly selecting an equivalent number of 375

heads for intervention. Results indicated that, 376

except for the GPT-2 models, interventions on 377

MDP-selected heads led to significantly larger ac- 378

curacy reductions compared to interventions on 379

DP-selected or randomly selected heads. However, 380

GPT-2 models exhibited substantial variance, pre- 381

venting the observation of clear differences. 382

To assess whether the importance of MDP- 383

selected heads extends beyond syntactic tasks, we 384

also evaluated their impact on long-range language 385

modeling using the LAMBADA benchmark (Pa- 386

perno et al., 2016). LAMBADA requires models to 387

predict the final word of a passage based on a broad 388

context, thus measuring coherence and semantic in- 389

tegration. Similar to the BLiMP setup, we disabled 390

attention heads selected by DPs, MDPs, and ran- 391

dom sampling at varying percentages. We found 392

that disabling MDP-selected heads led to a much 393

larger drop in accuracy (∆ = 38.5%) compared to 394

DP-selected heads (∆ = 23.2%), reinforcing the 395

hypothesis that multi-hop dependency paths corre- 396

spond to functionally central heads involved in both 397
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Figure 7: BLiMP grammaticality accuracy as a func-
tion of the number of disabled heads for four GPT-2
variants and XGLM-1.7B. Each subplot corresponds
to a different model.Selected by DPs: heads selected
based on the nine most frequent single-hop dependency
paths.Selected by MDPs: heads selected based on the
nine most frequent multi-hop dependency paths.The
shaded region (min–max) shows the range and mean
performance drop when ablating the same number of
heads randomly.The horizontal axis indicates the num-
ber of ablated heads, and the vertical axis shows BLiMP
accuracy.Disabling heads selected by MDPs results in
a substantially larger performance drop (∆ = 7.1%)
compared to DPs (∆ = 1.6%), confirming the stronger
functional role of multi-hop paths in capturing grammat-
ical constraints.

grammatical reasoning and semantic coherence.398

5 Related Work399

Attention and Syntactic Dependencies Stud-400

ies on the interpretability of Transformer archi-401

tectures have suggested that attention heads may402

capture syntactic dependencies (Clark et al., 2019;403

Lin et al., 2019; Kovaleva et al., 2019; Lin et al.,404

2022; Ravishankar et al., 2021). Clark et al. (2019)405

demonstrated that certain attention heads in BERT406

correspond to syntactic relations such as subject-407

verb agreement and coreference resolution. Further,408

Ravishankar et al. (2021) analyzed multilingual409

BERT and reported that attention heads reflect syn-410

tactic dependencies across multiple languages.411

Criticism of Attention Interpretability On the412

other hand, there have been criticisms regarding413

whether attention weights truly reflect the impor-414

tance of features in model decisions. Serrano and415

Smith (2019) showed that altering attention weights416
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Figure 8: LAMBADA accuracy (open-domain consis-
tency) as a function of the number of disabled heads
for four GPT-2 variants and XGLM-1.7B.Setup is iden-
tical to BLiMP (Figure 7). Disabling heads selected
by MDPs results in a greater accuracy reduction (∆ =
38.5%) compared to DPs (∆ = 23.2%), suggesting
that multi-hop dependencies also play a crucial role in
long-range semantic coherence.

does not necessarily lead to significant changes in 417

model output, raising doubts about attention as 418

an indicator of interpretability. Similarly, (Hassid 419

et al., 2022) reevaluated the role of attention mech- 420

anisms and reported that using averaged attention 421

weights does not substantially degrade model per- 422

formance. 423

Induction Heads and Grammatical Reasoning 424

There has also been growing interest in the role 425

of induction heads in Transformer models. Induc- 426

tion heads are known to detect patterns in the input 427

sequence and assist in predicting subsequent to- 428

kens (Singh et al., 2024). Such mechanisms may 429

play a crucial role in enabling models to learn gram- 430

matical structures. For instance, certain attention 431

heads may capture dependencies between multiple 432

tokens, thereby contributing to grammatical reason- 433

ing. 434

Positioning of This Work While prior work has 435

primarily focused on individual syntactic depen- 436

dencies and localized grammatical relationships, 437

our study focuses on multi-hop dependency paths 438

(MDPs), which consist of sequences of dependency 439

relations. These MDPs form structures that differ 440

from traditional linguistic dependencies and may 441

play an important role in how models internalize 442

grammatical knowledge. We demonstrate the exis- 443
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obl+case obl case conj+cc conj cc nmod+case nmod case advcl+mark advcl mark

Frequency 4754 8969 10672 3723 7514 3775 1022 6829 10672 2637 3761 4108

GPT2 0.448 0.153 0.182 0.189 0.239 0.060 0.328 0.343 0.182 0.222 0.149 0.131
GPT2-Medium 0.537 0.428 0.207 0.295 0.273 0.115 0.297 0.331 0.207 0.338 0.118 0.122
GPT2-Large 0.498 0.279 0.310 0.320 0.323 0.171 0.349 0.311 0.310 0.276 0.164 0.161
XGLM-1.7B 0.429 0.231 0.618 0.299 0.317 0.276 0.254 0.356 0.618 0.260 0.202 0.276

Table 3: The UAS scores for each of the nine identified single-hop dependency paths (DPs) and their corresponding
multi-hop dependency path (MDP) sets across all evaluated models. For each DP–MDP pair, we report the accuracy
excluding token pairs that are adjacent in the sentence, i.e., direct neighbors are ignored when computing UAS.
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Figure 9: Scatter plot comparing average dependency
path (DP) distances (x-axis) against their corresponding
multi-hop dependency path (MDP) distances (y-axis)
for the nine selected relations. Each point represents
one DP–MDP pair, and the red dashed line indicates the
identity line (y = x), showing whether MDP distances
exceed their DP counterparts.

tence of attention heads that are sensitive to MDPs444

and show that they contribute to grammatical infer-445

ence. Furthermore, through direct interventions on446

attention weights, we reveal that these weights are447

indeed utilized by the model during inference.448

6 Discussion and Conclusions449

Previous research primarily focused on the extent450

to which LLMs reflect linguistically defined depen-451

dency structures. In contrast, our findings demon-452

strate that LLMs also learn dependency structures453

not explicitly defined by linguistic theory. Specifi-454

cally, we identified attention heads that are more re-455

sponsive to Multi-Hop Dependency Paths (MDPs)456

compared to single-hop Dependency Paths (DPs).457

Particularly notable are DPs that rarely occur458

alone but frequently appear in specific sets; in these459

cases, we found that models more accurately at-460

tend to MDPs containing these DPs than to the461

DPs alone. One potential explanation for this phe-462

nomenon involves token proximity. As indicated in463

Figure 9, the average token distance in frequently464

co-occurring DP sets is typically larger than in their465

corresponding MDPs. Considering the autoregres-466

sive nature of GPT and XGLM models, the shorter 467

token distances in MDPs could facilitate easier at- 468

tention. 469

It is possible that certain attention heads pre- 470

dominantly attend to adjacent tokens, regardless of 471

grammatical considerations, thereby driving this 472

observed pattern. To investigate this hypothesis, we 473

repeated the UAS analysis while excluding token 474

pairs immediately adjacent to each other. 475

Table 3 presents DP-MDP pairs occurring more 476

than 1,000 times, filtered to exclude adjacent to- 477

kens, using the same criteria as in Section 4.3. This 478

analysis confirms that MDPs still achieve higher 479

accuracy than single-hop DPs, even when adjacent 480

token pairs are excluded. However, it remains plau- 481

sible that shorter token distances, even when not 482

immediately adjacent, might still bias attention to- 483

ward MDPs. 484

7 Limitations 485

This study has several limitations that provide av- 486

enues for future research. First, the complementary 487

relationship between DP and MDP remains unclear. 488

Given that MDPs can often be decomposed into 489

combinations of multiple DPs, it is not yet fully 490

understood what motivates the model to learn these 491

composite structures over individual LDs. 492

Second, our methodology primarily relies on 493

attention weights. While attention weights offer 494

interpretability advantages, they may not capture 495

all aspects of the underlying syntactic represen- 496

tations. There may be alternative methods, such 497

as analyzing the neural circuit level, that provide 498

deeper insights into how models internally repre- 499

sent syntactic information. 500

Finally, we primarily explored medium-sized 501

models. Understanding how larger-scale models 502

behave in terms of dependency encoding and gram- 503

matical reasoning, particularly regarding their uti- 504

lization of DP and MDP structures, remains a 505

promising direction for future work. 506
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A Example Sentences for Each DP–MDP Pair 629

To better illustrate the linguistic structures represented by the selected multi-hop dependency paths 630

(MDPs), we provide one example sentence for each of the nine DP–MDP pairs introduced in Section 4.3. 631

These examples were extracted from the English Web Treebank (EWT) and selected to be relatively 632

short (13 words or fewer). For each pair, we show the sentence and the syntactic path that connects the 633

relevant tokens, highlighting how the composed MDPs reflect an interpretable syntactic shortcut such as a 634

prepositional phrase or relative clause. 635

• obl+case: 636

The third was being run by the head of an investment firm . 637

Path: by case−−→ head obl−−→ run 638

• conj+cc: 639

This item is a small one and easily missed . 640

Path: and cc−→ one
conj−−→ missed 641

• nmod+case: 642

The third was being run by the head of an investment firm . 643

Path: of case−−→ firm nmod−−→ head 644

• advcl+mark: 645

If someone committed a crime against humanity , prosecute the person . 646

Path: If mark−−→ committed advcl−−−→ prosecute 647

• xcomp+mark: 648

The situation in Iraq is only going to get better this way . 649

Path: to mark−−→ get
xcomp−−−→ going 650

• ccomp+nsubj: 651

You wonder if he was manipulating the market with his bombing targets . 652

Path: he
nsubj−−−→ manipulating

ccomp−−−→ wonder 653

• acl:relcl+nsubj: 654

Now that ’s a post I can relate to . 655

Path: I
nsubj−−−→ relate acl:relcl−−−−−−→ post 656

• parataxis+nsubj: 657

Just go here , it ’s simply amazing . 658

Path: it
nsubj−−−→ amazing

parataxis−−−−−−→ go 659

• acl+mark: 660

There has been talk that the night curfew might be implemented again . 661

Path: that mark−−→ implemented acl−−→ talk 662
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Figure 10: Accuracy on the WSC273 benchmark under head ablation. Left: DPs, Right: MDPs. Disabling MDP-
based heads causes a slightly larger drop in accuracy (∆ = 14.7%) compared to DP-based heads (∆ = 13.0%).

B Intervention Experiments with Additional Benchmarks663

To test whether the effects of dependency-based head interventions generalize beyond BLiMP and LAM-664

BADA, we extended our analysis to two additional widely used benchmarks: WSC273 and WikiText.665

WSC273. The Winograd Schema Challenge 273 (WSC273; (Kocijan et al., 2019)) is a coreference666

resolution benchmark composed of 273 pronoun disambiguation problems. Each item requires reasoning667

over semantics and world knowledge to resolve ambiguous pronouns correctly. Performance is measured668

by classification accuracy.669

WikiText. WikiText (specifically WikiText-103; (Merity et al., 2016)) is a large-scale language modeling670

benchmark based on full Wikipedia articles. We evaluate models using perplexity (lower is better) to671

quantify their ability to model long-form, naturalistic text.672

Intervention Setup. We applied the same intervention method described in Section 3.3, comparing673

heads selected by DPs and MDPs against random baselines. Performance differences are calculated674

relative to the non-intervened baseline.675

C Layer Preferences by Dependency Hop Counts676

To investigate whether attention heads that are sensitive to different dependency structures appear at677

different layers, we analyze the distribution of heads exceeding a UAS threshold across layers. We group678

these heads by dependency hop count, ranging from 1 to 4, and visualize their cumulative layer-wise679
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Figure 11: Perplexity on the WikiText benchmark under head ablation. Lower is better. Disabling MDP-based heads
leads to a significantly larger increase in perplexity (∆ = 659.4) than disabling DP-based heads (∆ = 108.0).

distribution. This allows us to assess whether higher-hop relations are more likely to be captured in deeper 680

layers. 681

Concretely, for each dependency pattern r (either DP or MDP) that appears at least 100 times in the 682

corpus (i.e., |Dr| ≥ 100), we check whether any attention head (l, h) achieves a correct rate above a fixed 683

threshold θ = 0.2: 684

CorrectRate(l,h)r > θ. (8) 685

If such a head exists for relation r, we count it as captured. We then accumulate these counts by hop 686

count k (from 1 to 4) and layer index l, resulting in a cumulative count matrix N
(k)
l , which represents the 687

number of distinct DPs or MDPs of hop count k captured up to layer l. 688

Our findings show that although 4-hop relations tend to be more concentrated in shallower layers, 689

overall there is no strong or consistent difference in cumulative distributions across hop counts. That 690

is, syntactic information at varying hop distances does not exhibit a clear tendency to be captured in 691

systematically deeper or shallower layers(Figure12). 692
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Figure 12: Cumulative distribution of attention heads exceeding a given UAS threshold, grouped by dependency
hop count (1–4). Each curve shows the cumulative fraction of qualifying heads up to a given layer percentile. The
last subplot (bottom right) shows the legend for hop counts. Results are shown separately for each model.
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advcl+mark advcl mark xcomp+mark xcomp mark ccomp+nsubj ccomp nsubj

Frequency 3506 3817 7774 1834 3070 7774 1925 2327 16270

GPT2 0.290 0.149 0.419 0.903 0.359 0.419 0.524 0.193 0.320
GPT2-Medium 0.432 0.121 0.434 0.830 0.514 0.434 0.665 0.304 0.307
GPT2-Large 0.339 0.163 0.457 0.931 0.575 0.457 0.549 0.427 0.304
GPT2-XL 0.411 0.206 0.461 0.947 0.675 0.461 0.550 0.495 0.365
XGLM-1.7B 0.340 0.205 0.395 0.893 0.536 0.395 0.486 0.376 0.344

Table 4: UAS scores for the moderately frequent multi-hop dependency path (MDP) sets (ranks 4–6) and their
corresponding single-hop dependency paths (DPs) across all evaluated models.

acl:relcl+nsubj acl:relcl nsubj parataxis+nsubj parataxis nsubj acl+mark acl mark

Frequency 1797 2005 16270 985 1562 16270 816 1493 7774

GPT2 0.610 0.325 0.320 0.133 0.156 0.320 0.820 0.421 0.419
GPT2-Medium 0.616 0.428 0.307 0.191 0.166 0.307 0.838 0.628 0.434
GPT2-Large 0.631 0.464 0.304 0.216 0.161 0.304 0.800 0.480 0.457
GPT2-XL 0.610 0.463 0.365 0.252 0.174 0.365 0.820 0.425 0.461
XGLM-1.7B 0.538 0.420 0.344 0.210 0.178 0.344 0.812 0.395 0.395

Table 5: UAS scores for the least frequent multi-hop dependency path (MDP) sets (ranks 7–9) and their corresponding
single-hop dependency paths (DPs) across all evaluated models.

D Detailed Experimental Results 693
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Figure 13: Correct rate matrices for the nsubj dependency in GPT-2. Left: single-hop dependency paths (DPs);
Right: multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads,
and the color scale indicates the correct rate per head.
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Correct rate matrices for 'obj' in gpt2

Figure 14: Correct rate matrices for the obj dependency in GPT-2. Left: single-hop dependency paths (DPs); Right:
multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads, and the
color scale indicates the correct rate per head.
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Figure 15: Correct rate matrices for the obl dependency in GPT-2. Left: single-hop dependency paths (DPs); Right:
multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads, and the
color scale indicates the correct rate per head.
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Figure 16: Correct rate matrices for the conj dependency in GPT-2. Left: single-hop dependency paths (DPs); Right:
multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads, and the
color scale indicates the correct rate per head.
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Figure 17: Correct rate matrices for the nmod dependency in GPT-2. Left: single-hop dependency paths (DPs);
Right: multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads,
and the color scale indicates the correct rate per head.
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(a) Cumulative correct-rate heatmap (DPs vs. MDPs).
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Figure 18: Head-selection heatmaps for GPT2-Medium (see main text Figure 5). Left: cumulative correct-rate;
right: discrete percentiles.
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(a) Cumulative correct-rate heatmap (DPs vs. MDPs).
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Figure 19: Head-selection heatmaps for GPT2-Large (see main text Figure 5).
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Figure 20: Head-selection heatmaps for GPT2-XL (see main text Figure 5).
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Figure 21: Head-selection heatmaps for XGLM-1.7B (see main text Figure 5).
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Figure 22: BLiMP grammaticality accuracy as a function of the number of disabled heads for GPT-2 XL. Each
subplot shows performance when ablating heads selected by the nine most frequent single-hop dependency paths
(Selected by DPs) and by the nine most frequent multi-hop dependency paths (Selected by MDPs). The shaded
region (min–max) indicates performance when ablating the same number of heads at random. The horizontal axis is
the number of ablated heads, and the vertical axis is BLiMP accuracy. Ablating heads chosen by MDPs produces a
markedly larger drop in accuracy than ablating heads chosen by DPs, highlighting the stronger role of multi-hop
paths in encoding grammatical constraints.
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Figure 23: BLiMP grammaticality accuracy as a function of the number of disabled heads for XGLM-1.7B (see
previous GPT-2 XL version for reference). Conventions are identical: “Selected by DPs” marks ablations on heads
chosen via single-hop dependency paths, “Selected by MDPs” via multi-hop paths, and the shaded area (min–max)
shows random ablations. The x-axis is disabled-head count and the y-axis is accuracy. Ablating MDP-selected heads
again yields a substantially larger accuracy decline than DPs, reinforcing the importance of multi-hop dependency
structure in model performance.
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