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Abstract

We present the first systematic analysis of at-
tention heads for syntactic relations in decoder-
only Transformer language models. Prior
work has demonstrated that encoder-only and
encoder-decoder architectures contain attention
heads aligned with single-hop syntactic rela-
tions, but the internal mechanisms of decoder-
only models remain underexplored. Focus-
ing on two representative families (GPT-2
and XGLM) across five model sizes (117M,
345M, 774M, 1.5B, 1.7B parameters), we iden-
tify a novel class of attention heads that cap-
ture multi-hop dependency paths (MDPs), e.g.,
“obl+case”. Through controlled head-ablation
on the BLiIMP benchmark, we show that re-
moving 25% MDP heads induces 7.1% drop
in average grammaticality accuracy, compared
to only 1.6% drop when ablating the same
number of conventional, single-hop syntactic
heads. Crucially, this pattern holds consistently
across all five model sizes, demonstrating the
robustness of our findings. Technically, we
(i) extend existing head-identification meth-
ods—previously limited to encoder-only and
encoder-decoder models—to the decoder-only
setting, and (ii) propose a formal definition and
detection algorithm for MDP heads. Our results
reveal that decoder-only Transformers internal-
ize syntactic information in more complex, non-
canonical forms than previously understood,
underscoring the importance of cross-chain in-
teractions for grammatical competence.

1 Introduction

Understanding how large language models (LLMs)
perform syntactic analysis is one of the intrigu-
ing topics for revealing the inner workings of
LLMs (Lopez-Otal et al., 2025). Previous studies
have generally assumed the validity of linguistic
dependencies (LD)—that is, syntactic structures as
defined in theoretical linguistics—when analyzing
LLMs. Some studies have provided several insights
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Figure 1: Comparison of linguistic dependencies and
multi-hop dependency paths (MDPs) in “I eat an ap-
ple.” Canonical linguistic dependency grammar typi-
cally posits relations like “dobj” between (eat, apple)
or “det” between (an, apple). In contrast, LLMs often
place significant attention to a shortcut path, e.g., “dobj”
+ “det” between (eat, an), which we define as MDPs.

into the syntactic capabilities regarding the linguis-
tic dependencies within the attention mechanisms
of LLMs, especially for encoder-based models such
as BERT (Clark et al., 2019; Kovaleva et al., 2019;
Ravishankar et al., 2021), leaving the decoder-only
models underexplored.

This study analyzes linguistic dependencies
for decoder-based models, which are the defact
standard architecture of recent state-of-the-art
LLMs (Grattafiori et al., 2024). Specifically, we fo-
cus on two representative models: GPT-2 (Radford
et al., 2019) and XGLM (Neelakantan et al., 2022)
across five model sizes (117M, 345M, 774M, 1.5B,
1.7B parameters) to identify attention heads that
specialize in syntactic structure recognition.

Throughout the analysis, we have found that
LLMs acquire not only the dependency struc-
tures defined by human linguistic theory, but
also multi-hop dependency paths (MDPs)—model-
internal syntactic multi-hops that do not strictly
follow canonical linguistic dependencies. We de-
fine MDPs as dependency-like connections be-



tween two distant tokens that assigns high attention
weight, bypassing intermediate tokens that would
normally mediate the syntactic relationship. For
instance, in the sentence "I eat an apple,” canonical
linguistic dependency grammar typically posits re-
lations like (eat, apple) and (an, apple). In contrast,
LLMs often place significant attention between
(eat, an)—a pairing not traditionally considered a
direct syntactic dependency—suggesting that such
paths serve as alternative cues for grammatical un-
derstanding (Figure 1). These multi-hop paths en-
able a form of redundant syntactic encoding, which
we find contributes to the robustness of the model’s
grammatical reasoning.

To reveal the existance of MDP heads, we first
constructed a corpus using the Universal Depen-
dencies (UD) framework, with MDP-based de-
pendency relations added. We then identified
attention heads that are particularly sensitive to
MDP-style dependencies by extending the existing
head-identification methods—previously limited
to encoder-based models—to the decoder-only set-
ting. Furthermore, to verify the functional impor-
tance of MDPs for grammatical understanding, we
conducted attention intervention experiments, se-
lectively disrupting attention weights toward MDP
pairs. The results showed that disrupting atten-
tion heads specialized in MDPs led to significantly
larger performance degradation on grammatical
tasks than when intervening on heads associated
with traditional dependencies across all the models.

The findings of this study are an important step
toward clarifying the differences between the way
humans understand language (i.e., linguistics) and
the way LLMs understand the same language. We
hope these findings provide valuable insights into
understanding of the factors behind dramatic per-
formance gains in recent decoder-based LLMs.

2 Background

2.1 Simplicity and Binarity in Syntactic
Theory

Linguistic theories often emphasize non-redundant
representations of grammar, aiming to capture syn-
tactic structure with the smallest possible set of
rules. This principle underlies Chomsky’s Mini-
malist Program, which assumes that language is
optimally designed and that syntactic derivations
should be maximally economical. As Chomsky
notes, “only binary branching is permitted” (Chom-
sky, 1995).

Under this assumption, syntactic trees are strictly
binary, with each phrase dividing into two subcom-
ponents. This binary structure not only enforces
formal simplicity but also supports recursive com-
positionality in a uniform and constrained manner.
The goal is to derive the full complexity of natural
language syntax from a minimal set of generative
principles.

2.2 Redundancy and Multi-Hop Dependency
Paths in LLMs

Does the grammatical competence of large lan-
guage models (LLMs) align with the principles
of Chomsky’s Minimalist Program?

The Minimalist Program postulates that lan-
guage is governed by a minimal set of generative
rules, favoring non-redundant and binary branch-
ing structures (Chomsky, 1995). In contrast, re-
cent mechanistic studies suggest that LLMs may
adopt a fundamentally different strategy. Induc-
tion heads—attention mechanisms responsible for
pattern matching and copying—emerge in Trans-
formers as additive and redundant circuits (Singh
et al., 2024). These heads operate collectively, with
overlapping functionalities, indicating that LLMs
might not rely on minimal rules for syntactic repre-
sentation.

As introduced in Section 1, empirical observa-
tions reveal that certain combinations of depen-
dency relations frequently co-occur in parsed cor-
pora. For example, paths such as obj+nmod+case
or obl+case are highly recurrent and robust across
diverse syntactic contexts. While such composite
paths are not primitive relations in the Minimalist
framework, they may nonetheless be learned by
LLMs alongside linguistically defined dependen-
cies. This suggests that LLMs internalize a hybrid
syntactic representation: one that blends formally
specified dependencies with statistically redundant
co-occurrence patterns.

Example. Consider the sentence:

The teacher placed a book of science on
the shelf.

In the UD parse of this sentence, the following
MDPs are identified as:

e obl+case:

on == shelf obl, placed
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Figure 2: Bar plot of the 50 most frequent dependency paths in the corpus. Each bar’s height shows the absolute
count, and bar colors (Set2 palette) encode hop counts, highlighting which syntactic hop counts occur most often.

This path represents the oblique phrase on the
shelf, where the noun shelf modifies the verb
placed via the preposition on.

e obj+nmod+case:

case . nmod obj
of — science —— book 2, placed

This captures an embedded possessive nomi-
nal phrase within the object of the verb. The
noun science is connected to book through of,
and book serves as the object of placed.

These MDPs reflect compositional structures
that are not explicitly encoded in minimalist syntac-
tic theory but nonetheless emerge as stable patterns
in LLM training data.

3 Method

3.1 Constructing Multi-Hop Dependency
Paths (MDPs)

To capture higher-order syntactic patterns beyond
single-step dependencies, we construct a new set of
compositional relations, which we call Multi-Hop
Dependency Paths (MDPs). These MDPs repre-
sent frequently co-occurring sequences of syntac-
tic relations along parent-child paths in Universal
Dependencies (UD) trees. In this study, we refer
to individual dependency relations as Dependency
Paths (DPs).

We use the English Web Treebank (EWT) (Nivre
et al., 2020) as our UD-parsed corpus. From this

corpus, we extract all DPs, i.e., single-hop labeled
dependency edges. Each sentence in the corpus
consists of a sequence of tokens annotated with
head indices and dependency labels. Based on the
set of observed DPs, we iteratively construct longer
MDPs by connecting multiple relations together.

We denote connecting two consecutive hops of
DPs as 2-hop DPs. To identify frequently occur-
ring 2-hop DPs, we begin by generating candidate
2-hop DP paths by pairing every DP with every
other DP (i.e., DP x DP), and count their frequency
in the corpus. Only those candidate MDPs whose
frequency exceeds a predefined threshold 7 are re-
tained. In the next step, we extend the 2-hop DP
candidates by appending another DP, yielding 3-
hop DP = 2-hop DP x DP. Again, we count occur-
rences and retain only those that pass the threshold.
This procedure is repeated iteratively until no new
MDPs exceed the threshold.

The final set of MDPs are represented as atomic
labels, such as obj+amod+case. Using this final
set of MDPs along with the original English Web
Treebank, we annotate the corpus to construct a
new structured dataset that includes both DPs and
the newly defined MDPs (See Figure 2).

3.2 Identifying Attention Heads Sensitive to
Syntactic Structure

Using the MDP-annotated corpus as well as the DP

corpus as described above, we identify which atten-

tion heads capture syntactic structures effectively.
By applying the approach of Clark et al. (2019),



which was originally proposed for encoder-based
models, to decoder-only model for our experiment,
we analyze attention weights to evaluate if each at-
tention head focuses on syntactically related words.

For each layer [ and head h, and each token z; in
a sentence, we determine the token x; that receives
the highest attention weight from ;. Specifically,
for a sentence with attention matrix A", we de-
fine the predicted syntactic connection as follows:

j’i(l’h) = arg max A(-l.’h),
J

ij Jj <i. (1)

Since the decoder-only model which is our target
in our experiment employs causal masked attention,
token z; can only attend to tokens at or before its
own position (j < 7). This is the modification from
the original method (Clark et al., 2019).

We then check if the predicted pair (x;,x;)
matches a syntactic dependency (either DP or
MDP) annotated in our corpus. Importantly, we do
not consider the directionality of these syntactic de-
pendencies because causal masks in decoder-only
models allow only unidirectional attention to past
tokens; we only measure whether the predicted
pair corresponds to an existing dependency edge,
ignoring head-dependent direction.

Because model tokenization typically differs
from corpus word-level tokenization, we follow
Clark et al. (2019)’s alignment strategy: attention
from a word to another word is computed by sum-
ming attention scores over all subword tokens for
the target word and averaging across subword to-
kens for the source word (Clark et al., 2019).

We perform this matching procedure for every
token in every sentence of the corpus. For each
syntactic dependency type r (DP or MDP), we
count how many times each head (I, h) correctly
identifies a dependency pair:

ct— 3 St =g @

sentenceecorpus (iJ)er

Here, the count is summed across all sentences
in the corpus. We define the correct rate for a given
dependency relation r at attention head (I, h) as:

ngl’h)

CorrectRateg’h) = -
Dy

3)

where C’,gl’h) is the number of correctly identified

dependency pairs at head ([, k), and | D, | is the total
number of occurrences of dependency relation r in
the corpus.

To identify the head which aligns mostly with
a specific dependency relation 7, the unlabeled at-
tachment score (UAS) for relation 7 is defined as
the highest correct rate among all attention heads:

UAS, = max (CorrectRateg’h)> 4)

This methodology closely follows Clark et al.
(2019)’s original interpretability approach, adapted
here without considering dependency directionality
for decoder-only model architecture.

3.3 Intervention by Flattening Selected
Attention Heads

For each selected head (I, h) € H, we replace the
original attention weight matrix A" e RS*S
with a lower-triangular uniform distribution 7', de-

fined as:
Ao i<
T.. = { +1° J= (5)
Y {0, >,

ensuring Z]S:_Ul T;; = 1. Thus, the modified atten-
tion weight is:

A — (6)

This flattening intervention is inspired by prior
work that neutralizes attention distributions to as-
sess head importance (Zhou et al., 2025). Attention
weights in all non-selected heads remain unaltered.

4 Experiments

4.1 Identification of MDPs

We use the English Web Treebank (EWT) (Nivre
et al., 2020), a publicly available UD-annotated
English corpus licensed under CC BY-SA 4.0. The
dataset is anonymized and manually curated; we
found no personally identifiable or offensive con-
tent. It covers a range of syntactic phenomena
in web-based English and follows consistent UD
annotation guidelines. In our experiments, we
used all sentences from the training portion of
the EWT corpus. We identified Multi-Hop De-
pendency Paths (MDPs) using the English Web
Treebank (EWT) (Nivre et al., 2020). Specifically,
applying the method outlined in Section 3.1, we
extracted both single-hop Dependency Paths (DPs)
and MDPs that occurred more than 1,000 times
within the corpus.



‘0bl+case obl case ‘nmod+case nmod

case ‘conj+cc conj

cc ‘0bj+nmod+case obj nmod case

Frequency ‘ 9095 9150 17417 ‘ 6883 6888 17417 ‘ 6413 7523 6757 ‘ 1655 10170 6888 17417
GPT2 0.572  0.158 0.358 0.785 0341 0.358 | 0.448 0.239 0412 0.353 0.804 0.341 0.358
GPT2-Large 0.576  0.285 0.416 0.795 0309 0416 | 0426 0323 0.401 0.630 0.824 0309 0416
GPT2-Medium | 0.673  0.436 0.348 0.743 0329 0.348 | 0427 0273 0.398 0.604 0.831 0.329 0.348
GPT2-XL 0.711  0.405 0.463 0.764 0423 0463 | 0456 0391 0424 0.615 0.831 0423 0.463
XGLM-1.7B 0.606  0.230 0.643 0.806 0353 0.643 | 0513 0.317 0.386 0.485 0.648 0.353 0.643

Table 1: The UAS results for the three most frequent 2-hop MDPs and their corresponding single-hop DP compo-
nents, as well as the most frequent 3-hop MDP and its constituent DPs, across each model.
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Figure 3: Line-histogram of maximum UAS across at-
tention heads for each dependency hop count. Each
subplot corresponds to one model, with colored lines
indicating different hop counts. Only dependency rela-
tions occurring at least 1000 times are included, and the
horizontal axis shows the maximum UAS achieved by
any head, while the vertical axis shows the number of
relations in each UAS bin.

Models used. We analyzed attention heads
across the pretrained GPT model family—GPT-
small, GPT-medium, GPT-large, and GPT-XL
(117M, 345M, 774M, and 1.5B parameters)—as
well as the XGLM-1.7B model (Radford et al.,
2019; Neelakantan et al., 2022).

4.2 UAS Measurement and Analysis

We computed Unlabeled Attachment Scores (UAS)
for the identified DPs and MDPs following the
methodology described in Section 3.2. Table 1 sum-
marizes the UAS results for the three most frequent
2-hop MDPs and their corresponding single-hop
DP components, as well as the most frequent 3-hop
MDP and its constituent DPs, across each model.

From Table 2, we observe that certain frequent
2-hop MDPs exhibit higher UAS compared to their
individual DP components. Figure 3 illustrates
the distribution of UAS values for all DPs and
MDPs, revealing that there is no substantial differ-
ence in UAS distributions between the single-hop
and multi-hop dependency paths.

Correct rate matrices for 'obl' in gpt2
obl UAS=16% (Count=9150)

obl+case UAS=57% (Count=9095)

1 1.0
0.8
0.6

6
0.4
0.2

11
12 0.0

1 6 1112

layer
layer

11
12

1 6 1112

Figure 4: Correct rate matrices for the obl dependency
in GPT-2. Left: DPs; Right: MDPs. Rows correspond
to transformer layers, columns to attention heads, and
the color scale indicates the correct rate per head.

4.3 Comparison of DP and MDP Usage

To determine whether models utilize single-hop
DPs or multi-hop MDPs, we hypothesize that if a
particular dependency is consistently accompanied
by another dependency, the model is likely learning
this combined dependency set. For each single-hop
DP, we assessed whether it occurred predominantly
(more than 50%) as a part of an MDP:

Count(DP as part of MDP)

MDP Usage = = @l Coumt(@P)  ~
(N

We identified nine such DP-MDP pairs (see Ta-
ble 2 for an overview and Appendix D for detailed
definitions). If multiple MDPs surpassed this 50%
threshold for a given DP, we selected the most fre-
quently occurring set. We measured the correct rate
for each head of each model, separately for these
nine DPs and their corresponding MDP sets. Addi-
tionally, we recorded the maximum UAS across all
heads.

Comparing UAS values model-wise, we found
that MDPs consistently outperformed DPs in nearly
all cases. Specifically, for the relation obl+case, all
models except XGLM-1.7B showed higher UAS
for the MDPs. For conj+cc and nmod-+case, MDPs
outperformed DPs across all evaluated models, as
shown in Table 2. Furthermore, qualitative analysis




‘ obl+case  obl case ‘ conj+cc  conj cc ‘ nmod+case nmod  case
Frequency | 9095 9150 17417 | 6413 7523 6757 | 6883 6888 17417
GPT2 0.572 0.158 0358 | 0.448 0.239 0412 0.785 0.341 0.358
GPT2-Medium | 0.673 0436 0.348 | 0.427 0.273 0.398 0.743 0.329 0.348
GPT2-Large 0.576 0285 0416 | 0426 0.323 0.401 0.795 0.309 0.416
GPT2-XL 0.711 0405 0463 | 0456 0.391 0424 0.764 0.423  0.463
XGLM-1.7B 0.606  0.230 0.643 | 0.513 0317 0.386 0.806 0.353  0.643

Table 2: UAS scores for the three most frequent multi-hop dependency path (MDP) sets (ranks 1-3) and their
corresponding single-hop dependency paths (DPs) across all evaluated models.
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Figure 5: Cumulative correct-rate heatmaps used for
head selection, computed by summing correct rate ma-
trices over the nine most frequent single-hop depen-
dency paths (DPs, left) and multi-hop dependency paths
(MDPs, right). Rows correspond to layers and columns
to attention heads.These matrices were used to identify
the top 5-25% of heads for intervention.

of correct rates revealed that the attention heads uti-
lized for DP and MDP recognition differed notably
(Figure 4).

4.4 Intervention Experiments

To empirically verify whether specific attention
heads are actively used for grammatical under-
standing, we conducted intervention experiments
using the Benchmark of Linguistic Minimal Pairs
(BLiMP; (Warstadt et al., 2020)). BLiMP is a
linguistically informed benchmark composed of
minimal-pair sentences designed to assess gram-
matical knowledge across diverse syntactic phe-
nomena.

We applied the intervention method described in
Section 3.3. For selecting intervention heads, we
summed the correct rate matrices across the nine
DPs, then chose the top 5%, 10%, 15%, 20%, and
25% of heads based on the highest cumulative cor-
rect rates. In the case of GPT-2, Figure 5 shows the
cumulative UAS values, while Figure 6 visualizes
the selected heads in a discretized format. Each
figure illustrates the differences in attention head
selection based on the DP and MDP criteria.

GPT2 (DPs) GPT2 (MDPs)

Top 5%
Top 10%
Top 15%
Top 20%
Top 25%
Others

6 1 6 1112
Head Head

11

Layer
Layer

Figure 6: Discrete percentile-based dependency head
activation heatmaps. The top 5%, 10%, 15%, 20%, and
25% of attention heads are highlighted using four dis-
tinct colors. Left: heads selected based on DPs; Right:
heads selected based on MDPs.Rows represent Trans-
former layers and columns represent attention heads
within each layer.

Additionally, we performed control experiments
by randomly selecting an equivalent number of
heads for intervention. Results indicated that,
except for the GPT-2 models, interventions on
MDP-selected heads led to significantly larger ac-
curacy reductions compared to interventions on
DP-selected or randomly selected heads. However,
GPT-2 models exhibited substantial variance, pre-
venting the observation of clear differences.

To assess whether the importance of MDP-
selected heads extends beyond syntactic tasks, we
also evaluated their impact on long-range language
modeling using the LAMBADA benchmark (Pa-
perno et al., 2016). LAMBADA requires models to
predict the final word of a passage based on a broad
context, thus measuring coherence and semantic in-
tegration. Similar to the BLiMP setup, we disabled
attention heads selected by DPs, MDPs, and ran-
dom sampling at varying percentages. We found
that disabling MDP-selected heads led to a much
larger drop in accuracy (A = 38.5%) compared to
DP-selected heads (A = 23.2%), reinforcing the
hypothesis that multi-hop dependency paths corre-
spond to functionally central heads involved in both
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Figure 7: BLiMP grammaticality accuracy as a func-
tion of the number of disabled heads for four GPT-2
variants and XGLM-1.7B. Each subplot corresponds
to a different model.Selected by DPs: heads selected
based on the nine most frequent single-hop dependency
paths.Selected by MDPs: heads selected based on the
nine most frequent multi-hop dependency paths.The
shaded region (min—-max) shows the range and mean
performance drop when ablating the same number of
heads randomly.The horizontal axis indicates the num-
ber of ablated heads, and the vertical axis shows BLiMP
accuracy.Disabling heads selected by MDPs results in
a substantially larger performance drop (A = 7.1%)
compared to DPs (A = 1.6%), confirming the stronger
functional role of multi-hop paths in capturing grammat-
ical constraints.

grammatical reasoning and semantic coherence.

5 Related Work

Attention and Syntactic Dependencies Stud-
ies on the interpretability of Transformer archi-
tectures have suggested that attention heads may
capture syntactic dependencies (Clark et al., 2019;
Lin et al., 2019; Kovaleva et al., 2019; Lin et al.,
2022; Ravishankar et al., 2021). Clark et al. (2019)
demonstrated that certain attention heads in BERT
correspond to syntactic relations such as subject-
verb agreement and coreference resolution. Further,
Ravishankar et al. (2021) analyzed multilingual
BERT and reported that attention heads reflect syn-
tactic dependencies across multiple languages.

Criticism of Attention Interpretability On the
other hand, there have been criticisms regarding
whether attention weights truly reflect the impor-
tance of features in model decisions. Serrano and
Smith (2019) showed that altering attention weights
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Figure 8: LAMBADA accuracy (open-domain consis-
tency) as a function of the number of disabled heads
for four GPT-2 variants and XGLM-1.7B.Setup is iden-
tical to BLiIMP (Figure 7). Disabling heads selected
by MDPs results in a greater accuracy reduction (A =
38.5%) compared to DPs (A = 23.2%), suggesting
that multi-hop dependencies also play a crucial role in
long-range semantic coherence.

does not necessarily lead to significant changes in
model output, raising doubts about attention as
an indicator of interpretability. Similarly, (Hassid
et al., 2022) reevaluated the role of attention mech-
anisms and reported that using averaged attention
weights does not substantially degrade model per-
formance.

Induction Heads and Grammatical Reasoning
There has also been growing interest in the role
of induction heads in Transformer models. Induc-
tion heads are known to detect patterns in the input
sequence and assist in predicting subsequent to-
kens (Singh et al., 2024). Such mechanisms may
play a crucial role in enabling models to learn gram-
matical structures. For instance, certain attention
heads may capture dependencies between multiple
tokens, thereby contributing to grammatical reason-
ing.

Positioning of This Work While prior work has
primarily focused on individual syntactic depen-
dencies and localized grammatical relationships,
our study focuses on multi-hop dependency paths
(MDPs), which consist of sequences of dependency
relations. These MDPs form structures that differ
from traditional linguistic dependencies and may
play an important role in how models internalize
grammatical knowledge. We demonstrate the exis-



‘ obl+case  obl case ‘ conj+cc  conj cc ‘ nmod+case nmod  case ‘ advcl+mark advcl mark
Frequency | 4754 8969 10672 | 3723 7514 3775 | 1022 6829 10672 | 2637 3761 4108
GPT2 0448 0.153 0.182 | 0.189  0.239 0.060 0.328 0.343 0.182 0.222 0.149 0.131
GPT2-Medium | 0.537 0428 0207 | 0295 0273 0.115 0.297 0.331  0.207 0.338 0.118 0.122
GPT2-Large 0498 0279 0.310 | 0320 0.323 0.171 0.349 0311 0.310 0.276 0.164 0.161
XGLM-1.7B 0429  0.231 0.618 | 0.299 0.317 0.276 0.254 0.356 0.618 0.260 0.202  0.276

Table 3: The UAS scores for each of the nine identified single-hop dependency paths (DPs) and their corresponding
multi-hop dependency path (MDP) sets across all evaluated models. For each DP-MDP pair, we report the accuracy
excluding token pairs that are adjacent in the sentence, i.e., direct neighbors are ignored when computing UAS.
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Figure 9: Scatter plot comparing average dependency
path (DP) distances (x-axis) against their corresponding
multi-hop dependency path (MDP) distances (y-axis)
for the nine selected relations. Each point represents
one DP-MDP pair, and the red dashed line indicates the
identity line (y = x), showing whether MDP distances
exceed their DP counterparts.

tence of attention heads that are sensitive to MDPs
and show that they contribute to grammatical infer-
ence. Furthermore, through direct interventions on
attention weights, we reveal that these weights are
indeed utilized by the model during inference.

6 Discussion and Conclusions

Previous research primarily focused on the extent
to which LLMs reflect linguistically defined depen-
dency structures. In contrast, our findings demon-
strate that LLMs also learn dependency structures
not explicitly defined by linguistic theory. Specifi-
cally, we identified attention heads that are more re-
sponsive to Multi-Hop Dependency Paths (MDPs)
compared to single-hop Dependency Paths (DPs).

Particularly notable are DPs that rarely occur
alone but frequently appear in specific sets; in these
cases, we found that models more accurately at-
tend to MDPs containing these DPs than to the
DPs alone. One potential explanation for this phe-
nomenon involves token proximity. As indicated in
Figure 9, the average token distance in frequently
co-occurring DP sets is typically larger than in their
corresponding MDPs. Considering the autoregres-

sive nature of GPT and XGLM models, the shorter
token distances in MDPs could facilitate easier at-
tention.

It is possible that certain attention heads pre-
dominantly attend to adjacent tokens, regardless of
grammatical considerations, thereby driving this
observed pattern. To investigate this hypothesis, we
repeated the UAS analysis while excluding token
pairs immediately adjacent to each other.

Table 3 presents DP-MDP pairs occurring more
than 1,000 times, filtered to exclude adjacent to-
kens, using the same criteria as in Section 4.3. This
analysis confirms that MDPs still achieve higher
accuracy than single-hop DPs, even when adjacent
token pairs are excluded. However, it remains plau-
sible that shorter token distances, even when not
immediately adjacent, might still bias attention to-
ward MDPs.

7 Limitations

This study has several limitations that provide av-
enues for future research. First, the complementary
relationship between DP and MDP remains unclear.
Given that MDPs can often be decomposed into
combinations of multiple DPs, it is not yet fully
understood what motivates the model to learn these
composite structures over individual LDs.

Second, our methodology primarily relies on
attention weights. While attention weights offer
interpretability advantages, they may not capture
all aspects of the underlying syntactic represen-
tations. There may be alternative methods, such
as analyzing the neural circuit level, that provide
deeper insights into how models internally repre-
sent syntactic information.

Finally, we primarily explored medium-sized
models. Understanding how larger-scale models
behave in terms of dependency encoding and gram-
matical reasoning, particularly regarding their uti-
lization of DP and MDP structures, remains a
promising direction for future work.
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A Example Sentences for Each DP-MDP Pair

To better illustrate the linguistic structures represented by the selected multi-hop dependency paths
(MDPs), we provide one example sentence for each of the nine DP-MDP pairs introduced in Section 4.3.
These examples were extracted from the English Web Treebank (EWT) and selected to be relatively
short (13 words or fewer). For each pair, we show the sentence and the syntactic path that connects the
relevant tokens, highlighting how the composed MDPs reflect an interpretable syntactic shortcut such as a
prepositional phrase or relative clause.

* obl+case:
The third was being run by the head of an investment firm .
Path: by — head L un
* conjtcc:
This item is a small one and easily missed .
Path: and <% one <% missed
* nmod+case:
The third was being run by the head of an investment firm .
Path: of o, firm 9, head

* advcl+mark:
If someone committed a crime against humanity , prosecute the person .
Path: If marks committed 22 prosecute
e xcomp+mark:
The situation in Iraq is only going to get better this way .
Path: to 227 get xeom, going
e ccomp+nsubj:
You wonder if he was manipulating the market with his bombing targets .
Path: he Dsubj, manipulating SO, ywonder
e acl:relcl+nsubj:
Now that ’s a post I can relate to .

bj 1:relcl
Path: 1 =22 relate 215 post

e parataxis+nsubj:
Just go here , it ’s simply amazing .
Path: it % amazing parataxis
e acl+mark:

There has been talk that the night curfew might be implemented again .

. 1
Path: that "™, implemented == talk
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Figure 10: Accuracy on the WSC273 benchmark under head ablation. Left: DPs, Right: MDPs. Disabling MDP-
based heads causes a slightly larger drop in accuracy (A = 14.7%) compared to DP-based heads (A = 13.0%).

B Intervention Experiments with Additional Benchmarks

To test whether the effects of dependency-based head interventions generalize beyond BLiMP and LAM-
BADA, we extended our analysis to two additional widely used benchmarks: WSC273 and WikiText.

WSC273. The Winograd Schema Challenge 273 (WSC273; (Kocijan et al., 2019)) is a coreference
resolution benchmark composed of 273 pronoun disambiguation problems. Each item requires reasoning
over semantics and world knowledge to resolve ambiguous pronouns correctly. Performance is measured
by classification accuracy.

WikiText. WikiText (specifically WikiText-103; (Merity et al., 2016)) is a large-scale language modeling
benchmark based on full Wikipedia articles. We evaluate models using perplexity (lower is better) to
quantify their ability to model long-form, naturalistic text.

Intervention Setup. We applied the same intervention method described in Section 3.3, comparing
heads selected by DPs and MDPs against random baselines. Performance differences are calculated
relative to the non-intervened baseline.

C Layer Preferences by Dependency Hop Counts

To investigate whether attention heads that are sensitive to different dependency structures appear at
different layers, we analyze the distribution of heads exceeding a UAS threshold across layers. We group
these heads by dependency hop count, ranging from 1 to 4, and visualize their cumulative layer-wise
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Figure 11: Perplexity on the WikiText benchmark under head ablation. Lower is better. Disabling MDP-based heads
leads to a significantly larger increase in perplexity (A = 659.4) than disabling DP-based heads (A = 108.0).

distribution. This allows us to assess whether higher-hop relations are more likely to be captured in deeper
layers.

Concretely, for each dependency pattern r (either DP or MDP) that appears at least 100 times in the
corpus (i.e., |D,| > 100), we check whether any attention head ([, i) achieves a correct rate above a fixed
threshold 6 = 0.2:

CorrectRateg’h) > 0. ()

If such a head exists for relation r, we count it as captured. We then accumulate these counts by hop
count k (from 1 to 4) and layer index [, resulting in a cumulative count matrix [V, l(k), which represents the
number of distinct DPs or MDPs of hop count & captured up to layer /.

Our findings show that although 4-hop relations tend to be more concentrated in shallower layers,
overall there is no strong or consistent difference in cumulative distributions across hop counts. That
is, syntactic information at varying hop distances does not exhibit a clear tendency to be captured in
systematically deeper or shallower layers(Figurel2).
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hop count (1-4). Each curve shows the cumulative fraction of qualifying heads up to a given layer percentile. The
last subplot (bottom right) shows the legend for hop counts. Results are shown separately for each model.

14



‘advcl+mark advcl  mark ‘ xcomp+mark xcomp mark ‘ ccomp+nsubj ccomp  nsubj

Frequency | 3506 3817 7774 | 1834 3070 7774 | 1925 2327 16270
GPT2 0290  0.149 0.419 0.903 0359 0419 0.524 0.193 0320
GPT2-Medium | 0432 0.121 0.434 0.830 0514 0434 0.665 0304 0307
GPT2-Large 0339  0.163 0457 0.931 0575 0457 0.549 0427 0304
GPT2-XL 0411 0.206 0.461 0.947 0.675 0.461 0.550 0495 0365
XGLM-1.7B 0340 0205 0.395 0.893 0536 0.395 0.486 0376  0.344

Table 4: UAS scores for the moderately frequent multi-hop dependency path (MDP) sets (ranks 4—6) and their
corresponding single-hop dependency paths (DPs) across all evaluated models.

‘ acl:relcl+nsubj acl:relcl  nsubj ‘parataxis+nsubj parataxis  nsubj ‘acl+mark acl  mark

Frequency | 1797 2005 16270 | 985 1562 16270 | 816 1493 7774
GPT2 0.610 0325 0320 0.133 0.156  0.320 | 0.820 0421 0419
GPT2-Medium 0.616 0428  0.307 0.191 0.166 0307 | 0.838  0.628 0434
GPT2-Large 0.631 0464 0.304 0216 0.161 0304 | 0.800 0480 0.457
GPT2-XL 0.610 0463 0.365 0.252 0.174 0365 | 0.820 0425 0.461
XGLM-1.7B 0.538 0420  0.344 0.210 0.178 0344 | 0812 0395 0.395

Table 5: UAS scores for the least frequent multi-hop dependency path (MDP) sets (ranks 7-9) and their corresponding
single-hop dependency paths (DPs) across all evaluated models.

D Detailed Experimental Results
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Correct rate matrices for 'nsubj' in gpt2
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Figure 13: Correct rate matrices for the nsubj dependency in GPT-2. Left: single-hop dependency paths (DPs);
Right: multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads,
and the color scale indicates the correct rate per head.

Correct rate matrices for 'obj' in gpt2
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Figure 14: Correct rate matrices for the obj dependency in GPT-2. Left: single-hop dependency paths (DPs); Right:
multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads, and the

color scale indicates the correct rate per head.

Correct rate matrices for 'obl' in gpt2
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Figure 15: Correct rate matrices for the obl dependency in GPT-2. Left: single-hop dependency paths (DPs); Right:
multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads, and the

color scale indicates the correct rate per head.
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Correct rate matrices for 'conj' in gpt2
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Figure 16: Correct rate matrices for the conj dependency in GPT-2. Left: single-hop dependency paths (DPs); Right:
multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads, and the
color scale indicates the correct rate per head.

Correct rate matrices for 'nmod' in gpt2

nmod-+case UAS=79% (Count=6883) nmod-+det UAS=76% (Count=2256) nmod-+amod UAS=42% (Count=1430) nmod-+compound UAS=27% (Count=1322) 10
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Figure 17: Correct rate matrices for the nmod dependency in GPT-2. Left: single-hop dependency paths (DPs);
Right: multi-hop dependency paths (MDPs). Rows correspond to transformer layers, columns to attention heads,
and the color scale indicates the correct rate per head.
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(a) Cumulative correct-rate heatmap (DPs vs. MDPs). (b) Discrete percentile-based activation.

Figure 18: Head-selection heatmaps for GPT2-Medium (see main text Figure 5). Left: cumulative correct-rate;
right: discrete percentiles.
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Figure 19: Head-selection heatmaps for GPT2-Large (see main text Figure 5).

GPT2-XL (DPs) GPT2-XL (MDPs)
8

4
46 i

1 6 11 16 2125 6 11 16 2125
Head Head

Layer

1

(a) Cumulative correct-rate heatmap (DPs vs. MDPs).

GPT2-XL (DPs)
48 - . II [ ]

GPT2-XL (MDPs)
[] [}

4

3

%)

<

=}

Pl

gm ©
23 4 =
1

0

1 6 11 16 2125
Head

1 6 11 16 2125
Head

(b) Discrete percentile-based activation.

Figure 20: Head-selection heatmaps for GPT2-XL (see main text Figure 5).
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Figure 21: Head-selection heatmaps for XGLM-1.7B (see main text Figure 5).
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Figure 22: BLiMP grammaticality accuracy as a function of the number of disabled heads for GPT-2 XL. Each
subplot shows performance when ablating heads selected by the nine most frequent single-hop dependency paths
(Selected by DPs) and by the nine most frequent multi-hop dependency paths (Selected by MDPs). The shaded
region (min—max) indicates performance when ablating the same number of heads at random. The horizontal axis is
the number of ablated heads, and the vertical axis is BLiIMP accuracy. Ablating heads chosen by MDPs produces a
markedly larger drop in accuracy than ablating heads chosen by DPs, highlighting the stronger role of multi-hop
paths in encoding grammatical constraints.
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Figure 23: BLiMP grammaticality accuracy as a function of the number of disabled heads for XGLM-1.7B (see
previous GPT-2 XL version for reference). Conventions are identical: “Selected by DPs” marks ablations on heads
chosen via single-hop dependency paths, “Selected by MDPs” via multi-hop paths, and the shaded area (min—max)
shows random ablations. The x-axis is disabled-head count and the y-axis is accuracy. Ablating MDP-selected heads
again yields a substantially larger accuracy decline than DPs, reinforcing the importance of multi-hop dependency
structure in model performance.
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