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Abstract

Muon, a recently proposed optimizer that leverages the inherent matrix structure of neural
network parameters, has demonstrated strong empirical performance, indicating its potential
as a successor to standard optimizers such as AdamW. This paper presents theoretical
analysis to support its practical success. We provide convergence proofs for Muon across four
practical settings, systematically examining its behavior with and without the inclusion of
Nesterov momentum and weight decay. Our analysis covers the standard configuration using
both, thereby elucidating its real-world performance. We then demonstrate that the addition
of weight decay yields strictly tighter theoretical bounds and clarify the interplay between
the weight decay coefficient and the learning rate. Finally, we derive the critical batch
size for Muon that minimizes the computational cost of training. Our analysis identifies
the hyperparameters governing this value, and our experiments validate the corresponding
theoretical findings across workloads including image classification and language modeling
task.

1 Introduction

Optimization algorithms are fundamental to the training of deep neural networks (DNNs). Since the in-
troduction of stochastic gradient descent (SGD) (Robbins & Monro, 1951), numerous optimizers have been
proposed to accelerate convergence. Among these, adaptive gradient algorithms such as Adam (Kingma &
Ba, 2015) and its subsequent variant AdamW (Loshchilov & Hutter, 2019) have emerged as the de facto stan-
dard in modern deep learning, valued for their rapid convergence and robust performance across a wide range
of tasks. A common characteristic of these widely used first-order optimizers is that they treat the weight
parameters of neural networks, which are inherently matrices or higher-order tensors, as high-dimensional
vectors. However, this vector-based perspective, while effective, disregards the underlying geometric and
algebraic structure within the parameter matrices.

The recently proposed Muon optimizer (Jordan et al., 2024) introduces a distinct paradigm that departs
from the conventional vector-based viewpoint. The core idea of Muon is to preserve and leverage the intrinsic
matrix structure of the network parameters. Instead of using the gradient vector, Muon computes its search
direction by orthogonalizing the gradient momentum matrix. Specifically, for a given momentum matrix
Ct ∈ Rm×n, the search direction Ot ∈ Rm×n is the orthogonal matrix that is closest in Frobenius norm,
found by solving

Ot := argmin
O∈{O∈Rm×n:O⊤O=In}

∥O − Ct∥F, (1)

where In denotes a n × n identity matrix. As established by classic matrix theory, if the singular value
decomposition (SVD) of Ct is UtStV

⊤
t , the optimal search direction is simply Ot = UtV

⊤
t , where Ut ∈

Rm×r, St ∈ Rr×r, Vt ∈ Rn×r, and r > 0 is the rank of Ct. This process of gradient orthogonalization is
aimed at finding a search direction that is independent of the gradient’s magnitude, potentially leading to
more stable and effective training dynamics. While SVD provides an exact analytical solution, its high
computational cost renders it impractical for the large matrices found in modern DNNs. As detailed by
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Bernstein (2025), the key computational innovation of Muon is the use of the Newton-Schulz iteration
(Bernstein & Newhouse, 2024; Higham, 2008; Björck & Bowie, 1971; Kovarik, 1970), a classic and remarkably
efficient numerical method, to approximate this orthogonalization. This iterative algorithm enables Muon
to compute the search direction without performing an explicit SVD, making it a computationally feasible
optimizer for large-scale applications. This elegant fusion of a novel optimization perspective with a powerful
numerical technique positions Muon as a promising, theoretically grounded alternative to existing optimizers.

Several studies have reported the strong empirical performance of Muon. Jordan et al. (2024) showed that
Muon outperforms Shampoo (Gupta et al., 2018) and SOAP (Vyas et al., 2025), both on a per-step and
wall-clock basis. Liu et al. (2025b) showed that by dividing the parameters and updating them with SOAP
and Muon, optimization performance equivalent to or better than SOAP can be achieved while substantially
reducing memory usage. Liu et al. (2025a) demonstrated that Muon is effective for training large-scale LLMs
and suggested it has the potential to replace AdamW as the standard optimizer. AI et al. (2025) showed that
Muon expands AdamW’s Pareto frontier on the compute-time plane, enlarging the practitioner’s flexibility
in resource allocation. However, the theoretical understanding of Muon’s convergence behavior remains
underdeveloped, and a formal justification for its strong performance over AdamW is still lacking. This work
aims to bridge this gap by providing a rigorous convergence analysis of Muon.

Furthermore, since the batch size is a critical hyperparameter for managing computational costs in large-scale
training, we also consider Muon’s critical batch size. This is defined as the batch size that minimizes the
computational cost of training. In other words, the critical batch size is the point at which further increases
in batch size yield diminishing returns in hardware throughput (i.e., the number of samples processed per
unit time). By understanding and utilizing the critical batch size, one can maximize GPU utilization, thereby
shortening training times and reducing overall computing costs. Therefore, to theoretically understand Muon
and maximize its performance, analyzing its critical batch size is essential. Following previous studies, we
aim to clarify the critical batch size of Muon.

Table 1: Upper bound of 1
T

∑
t∈[T ] E [∥∇f(Wt)∥F]. See Section 2 for notation.

w/o weight decay w/ weight decay

w/o Nesterov O
(

1
T + 1−β

b +
√

1−β
b + n

)
(Theorem 3.1(i))

O
(

1
T +

(
1 − β + λ

2
) 1

b +
√

1−β
b + n

)
(Theorem 3.2(i))

w/ Nesterov O
(

1
T +

(
β + 1

2
)

(1 − β) 1
b + β

√
1−β

b + n

)
(Theorem 3.1(ii))

O
(

1
T +

{(
β + 1

2
)

(1 − β) + λ
2
} 1

b + β
√

1−β
b + n

)
(Theorem 3.2(ii))

Our main contributions are as follows:

• We present a convergence analysis for four variants of Muon—with and without Nesterov momentum
and with and without weight decay (Theorems 3.1 and 3.2). For each variant, we establish an upper
bound on the average expected gradient norm, summarized in Table 1. The variant combining
both Nesterov momentum and weight decay is of particular interest as it mirrors common practical
settings. Our analysis thus offers direct insights into Muon’s real-world behavior.

• We prove that incorporating weight decay yields tighter theoretical bounds on both the parameter
and gradient norms (Propositions 3.1 and 3.2) and present experimental results to support this
finding. We also show that for Muon to converge, the learning rate η and weight decay coefficient λ
must satisfy η ≤ 1

λ , a condition supported by our experimental results (see Figure 1).

• We derive the critical batch size for the four Muon variants (Proposition 4.3). For example, we show
that the critical batch size of Muon with Nesterov momentum and weight decay is given by

b⋆
Muon = {(2β + 1)(1 − β) + λ} σ2

ϵ
,

2



Under review as submission to TMLR

where β ∈ (0, 1] is momentum, λ > 0 is the weight decay coefficient, σ2 > 0 is the variance of the
stochastic gradient, and ϵ > 0 is the threshold or stopping condition. While not fully predictive due
to its reliance on several unknown parameters, our theoretical analysis produces a formula for the
critical batch size that successfully identifies the hyperparameters governing this value, as validated
by our empirical results (see Figure 4).

2 Preliminaries

2.1 Notations and Definition

Let N be the set of nonnegative integers. For p ∈ N\{0}, define [p] := {1, 2, . . . , p}. Let Rd be a d-dimensional
Euclidean space. We use lowercase letters for scalars (e.g., a ∈ R), bold lowercase letters for vectors (e.g.,
a ∈ Rd), and uppercase letters for matrices (e.g., A ∈ Rm×n). a⊤ ∈ R1×d and A⊤ ∈ Rn×m denote the
transposes of a ∈ Rd and A ∈ Rm×n, respectively. For a square matrix A = (aij) ∈ Rn×n, the trace is defined
as tr(A) :=

∑n
i=1 aii. For all vectors x, y ∈ Rd, the Euclidean inner product is defined as ⟨x, y⟩2 := x⊤y

and the Euclidean norm is defined as ∥x∥2 :=
√

⟨x, x⟩2. For all matrices A, B ∈ Rm×n, the Frobenius inner
product is defined as ⟨A, B⟩F := tr(A⊤B), and the Frobenius norm defined as ∥A∥F :=

√
⟨A, A⟩F. The

model is parameterized by a matrix W ∈ Rm×n (m ≥ n), which is optimized by minimizing the empirical
loss function f(W ) := 1

N

∑
i∈[N ] fi(W ), where N ∈ R is the number of training samples and fi(W ) denotes

the loss associated with the i-th training sample zi (i ∈ [N ]). We define W ⋆ := argminW ∈Rm×n f(W ). Let
ξ be a random variable that does not depend on W ∈ Rm×n, and let Eξ[X] denote the expectation with
respect to ξ of a random variable X. ξt,i is a random variable generated from the i-th sampling at time t, and
ξt,i and ξt,j are independent (i ̸= j). ξt := (ξt,1, ξt,2, . . . , ξt,b)⊤ is independent of sequence (Wk)t

k=0 ⊂ Rm×n

generated by Muon (Algorithm 1), where b (≤ N) is the batch size. The independence of ξ0, ξ1, . . . allows
us to define the total expectation E as E = Eξ0Eξ1 · · ·Eξt

. Let Gξ(W ) be the stochastic gradient of f(·) at
W ∈ Rm×n. The mini-batch St consists of b samples at time t, and the mini-batch stochastic gradient of
f(Wt) for St is defined as ∇fSt

(Wt) := 1
b

∑
i∈[b] Gξt,i

(Wt) = 1
b

∑
i∈St

∇fi(Wt).

Algorithm 1 Muon
Require: η, λ > 0, β ∈ [0, 1), M−1 := 0, W0 ∈ Rm×n

for t = 0 to T − 1 do
Mt := βMt−1 + (1 − β)∇fSt

(Wt)
if (Nesterov = True) then

Ct := βMt + (1 − β)∇fSt
(Wt)

else
Ct := Mt

end if
Ot := NewtonSchulz5(Ct)
if (weight decay = True) then

Wt+1 := (1 − ηλ)Wt − ηOt

else
Wt+1 := Wt − ηOt

end if
end for
return WT

Algorithm 1 presents the most common variant of
Muon, which incorporates Nesterov momentum and
weight decay. Our implementation of Nesterov mo-
mentum and decoupled weight decay (Loshchilov
& Hutter, 2019) follows the original formulations
of (Jordan et al., 2024). Muon optimizers with
both Nesterov momentum and weight decay are of-
ten used in practice (e.g., Jordan et al., 2024; AI
et al., 2025). NewtonSchulz5(·) receives Ct, sets
X0 := Ct/∥Ct∥F, performs the following iterations
from k = 0 to 4, and returns X5.

Xk+1 := aXk + b(XkX⊤
k )Xk + c(XkX⊤

k )2Xk,

where a = 3.4445, b = −4.7750, c = 2.0315.
The sequence (Xk)k∈N converges to Ot defined as
Eq. (1) (Bernstein & Newhouse, 2024; Higham,
2008). Our theoretical analysis assumes that Ot :=
NewtonSchulz5(Ct) satisfies Eq. (1). Therefore,
there may be a gap between the Muon we consider theoretically and its practical implementation. On
the other hand, according to Shen et al. (2025), the experimental performance of the SVD-based Muon is
equivalent to that of the Newton-Schulz-based version, with the main difference being the higher computa-
tional cost of the SVD procedure. That is, experimentally, no gap has been demonstrated.

2.2 Assumptions

We make the following standard assumptions:
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Assumption 2.1. The function f : Rm×n → R is L-smooth, i.e., for all A, B ∈ Rm×n,

∥∇f(A) − ∇f(B)∥F ≤ L∥A − B∥F.

Assumption 2.2. (i) For all t and all i,

Eξt,i

[
Gξt,i

(Wt)
]

= ∇f(Wt).

(ii) There exists a nonnegative constant σ2 such that, for all t and all i,

Eξt,i

[
∥Gξt,i

(Wt) − ∇f(Wt)∥2
F
]

≤ σ2.

3 Analysis of Muon’s convergence

3.1 Muon without weight decay

We now present a convergence analysis of Muon (Algorithm 1) without weight decay. The proofs of Theorem
3.1(i) and (ii) are in Appendix B.
Theorem 3.1. Suppose Assumptions 2.1 and 2.2 hold. Then, for all t ∈ N,

(i) for Muon without Nesterov and without Weight Decay,

1
T

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0)
ηT

+ ∆2 + 2
√

2r∆
(1 − β)T + (1 − β)σ2

b
+ ν

√
rσ2

b
+ 2γ(

√
r + γ) + 1 + Lη

2 n

= O

(
1
T

+ 1 − β

b
+
√

1 − β

b
+ n

)
,

(ii) for Muon with Nesterov and without Weight Decay,

1
T

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0)
ηT

+ β(∆2 + 2
√

2r∆)
(1 − β)T + β̄σ2

b
+ (βν + 1 − β)

√
rσ2

b
+ 2γβ(

√
r + γ) + 1 + Lη

2 n

= O

(
1
T

+
{(

β + 1
2

)
(1 − β)

}
1
b

+
√

1 − β

b
+ n

)
,

where ∆ := ∥M0 − ∇f(W0)∥2
F, β̄ := (2β+1)(1−β)

2 , ν :=
√

2(1 − β), γ := Lη
√

n
1−β , and r := max

0≤t≤T −1
rank(Ct −

∇f(Wt)).

Theorem 3.1 show that Muon, both with and without Nesterov momentum, achieves similar upper bounds
on convergence. However, some terms in the upper bound are slightly smaller when Nesterov momentum is
used. Our bounds contain terms independent of T , particularly those involving n, so we cannot guarantee
convergence to stationary point. This is due to ∥Ot∥2

F ≤ n, and cannot be avoided using standard proof
techniques. Since the bounds depend on the parameter dimension n, we cannot explain why Muon performs
well even in large-scale numerical experiments. Resolving this issue is undoubtedly important future work.

3.2 Muon with weight decay

The following proposition establishes a key result for Muon (Algorithm 1) with weight decay. The proofs of
Propositions 3.1 and 3.2 are in Appendix C.
Proposition 3.1. Suppose Assumptions 2.1 and 2.2 hold, and that Muon is run with η ≤ 1

λ . Then, for all
t ∈ N,

∥Wt∥F ≤

{
(1 − ηλ)t∥W0∥F +

√
n

λ if η < 1
λ ,

√
n

λ if η = 1
λ .
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Proposition 3.2. Suppose Assumptions 2.1 and 2.2 hold, and that Muon is run with η ≤ 1
λ . Then, for all

t ∈ N,

∥∇f(Wt)∥F ≤

{
L(1 − ηλ)t∥W0∥F + L

λ + L∥W ⋆∥F if η < 1
λ ,

L
λ + L∥W ⋆∥F if η = 1

λ .

Proposition 3.1 establishes that when η ≤ 1
λ , weight decay ensures the parameter norm remains almost surely

bounded. Furthermore, the upper bound decreases monotonically with t, converging to
√

n
λ as t → ∞. The

bound is minimized uniformly across all t when η = 1
λ . Proposition 3.2 extends the result of Proposition

3.1 to the full gradient norm, which is likewise almost surely bounded. This bound decreases monotonically
with t, converging to L

λ + L∥W ⋆∥F as t → ∞. From these results, Corollary 3.1 establishes an almost surely
bound of Muon. In both cases, the upper bounds are minimized when η = 1

λ .
Corollary 3.1. Suppose Assumptions 2.1 and 2.2 hold and η ≤ 1

λ . Then, for all T ∈ N,

1
T

T −1∑
t=0

∥∇f(Wt)∥F ≤

{
L∥W0∥F

ηλT + L
λ + L∥W ⋆∥F if η < 1

λ ,
L
λ + L∥W ⋆∥F if η = 1

λ .

While these results suggest that a larger weight decay λ yields a tighter bound, the condition η ≤ 1
λ

necessitates a smaller learning rate η. These desirable properties stem from the fact that Muon’s search
direction is inherently bounded. A key advantage of this feature is that our analysis does not rely on the
common-and often restrictive-assumption of bounded gradients.

The following is a convergence analysis of Muon (Algorithm 1) with weight decay (the proofs of Theorems
3.2(i) and (ii) are in Appendix C).
Theorem 3.2. Suppose Assumptions 2.1 and 2.2 hold, and that Muon is run with η ≤ 1

λ . Then, for all
t ∈ N,

(i) for Muon without Nesterov and with Weight Decay,

1
T

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) + ρ∥W0∥2
F

ηT
+ ∆2 + 2

√
2r∆

(1 − β)T +
(

1 − β + λ

2

)
σ2

b

+ ν

√
rσ2

b
+ 2γ(

√
r + γ) + (1 + Lη)n + ρn

λ
+ λD2

0
2

= O

(
1
T

+
(

1 − β + λ

2

)
1
b

+
√

1 − β

b
+ n

)
,

(ii) for Muon with Nesterov and with Weight Decay,

1
T

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) + ρ∥W0∥2
F

ηT
+ β(∆2 + 2

√
2r∆)

(1 − β)T +
(

β̄ + λ

2

)
σ2

b

+ (βν + 1 − β)
√

rσ2

b
+ 2γβ(

√
r + γ) + (1 + Lη)n + ρn

λ
+ λD2

0
2

= O

(
1
T

+
{(

β + 1
2

)
(1 − β) + λ

2

}
1
b

+
√

1 − β

b
+ n

)
,

where ∆ := ∥M0 − ∇f(W0)∥2
F, β̄ := (2β+1)(1−β)

2 , ν :=
√

2(1 − β), γ := Lη
√

n
1−β , ρ := 1+2(1+Lη)λ

2 , D0 :=
L
(

∥W0∥F +
√

n
λ + ∥W ⋆∥F

)
, and r := max

0≤t≤T −1
rank(Ct − ∇f(Wt)).
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Similar conclusions follow from Theorems 3.2, which again demonstrate a modest advantage from incor-
porating Nesterov momentum. These results build on Propositions 3.1 and 3.2 and therefore inherit the
assumption that η ≤ 1

λ . In other words, for Muon with weight decay to attain the stated convergence rate,
it must satisfy η ≤ 1

λ . Practically speaking, since the weight decay coefficient λ is typically less than 1, this
assumption is realistic and does not materially constrain the choice of learning rate.

4 Analysis of Muon’s critical batch size

Our theoretical analysis characterizes the critical batch size as a function of the gradient variance σ2 and
optimization hyperparameters. While explicitly modeling the dependence of σ2 on model width or depth
is beyond the scope of this single-matrix analysis, our results establish the fundamental relationship b⋆ ∝
σ2. This suggests that scaling behaviors observed in larger models are mediated through changes in their
gradient noise properties. Indeed, recent large-scale empirical studies report that Muon remains efficient
at increasingly large batch sizes for large language models (Liu et al., 2025a); our theory supports this
observation, predicting that if larger models entail distinct gradient variance characteristics, the critical
batch size will shift accordingly. With this motivation, we now formalize the notion of the critical batch size
used in our analysis.

We next introduce the concept of the critical batch size, defined as the batch size that minimizes computa-
tional complexity. This complexity is measured in terms of the stochastic first-order oracle (SFO) complexity,
which is the total number of stochastic gradient computations. Since the optimizer computes b stochastic
gradients per step, an optimizer that runs for T steps with batch size b incurs a total of Tb SFO complexity.
Empirically, for batch sizes up to a certain threshold b⋆ (the critical batch size), the number of training steps
T required to train a DNN scales inversely with b (Shallue et al., 2019; Ma et al., 2018; McCandlish et al.,
2018). Beyond b⋆, increasing the batch size yields diminishing returns in reducing T . The critical batch size
is therefore the batch size that minimizes SFO complexity Tb. Prior work has shown that b⋆ depends on
both the optimizer (Zhang et al., 2019) and dataset size (Zhang et al., 2025) and has established a theoretical
framework for proving its existence and estimating its lower bound (Sato & Iiduka, 2023; Imaizumi & Iiduka,
2024). To analyze the critical batch size of Muon, we adopted this framework.

4.1 Relationship between batch size and number of steps needed for training

Suppose Assumptions 2.1 and 2.2 hold. Then, by Theorems 3.1 and 3.2, the following inequality holds:

1
T

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ X

T
+ Y

b
+ Z,

where X, Y, Z > 0 are nonnegative constants. Since Y and Z are constants independent of T , they do not
decrease as the number of steps T increases. Therefore, the upper bound of the gradient norm converges to
Y
b + Z as T → ∞. To clarify the relationship between the batch size and the number of steps required for
training, we exclude the term Z. Let ϵ > 0 be an arbitrarily fixed threshold. When training is sufficiently
complete, we assume that

∃T, ∃b : X

T
+ Y

b
< ϵ, (2)

where ϵ is not the threshold for the mean gradient norm. For details, see Remark 4.1. The relationship
between b and the number of steps Tb satisfying Eq. (2) is as follows:
Proposition 4.1. Suppose Assumptions 2.1 and 2.2 hold and let Muon be the optimizer under consideration.
Then, Tb defined by

Tb := Xb

ϵb − Y
< T for b >

Y

ϵ
, (3)

satisfies Eq. (2). In addition, the function Tb defined by Eq. (3) is monotone decreasing and convex for
b > Y

ϵ .
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Proof. According to Eq. (3), Muon satisfies Eq. (2). For b > Y
ϵ , we have

dTb

db
= −XY

(ϵb − Y )2 ≤ 0,
d2Tb

db2 = 2XY ϵ

(ϵb − Y )3 ≥ 0.

Therefore, Tb is monotone decreasing and convex for b > Y
ϵ . This completes the proof.

4.2 Existence of a critical batch size

The critical batch size minimizes the computational complexity for training. Here, we use SFO complexity
as a measure of computational complexity. Since the stochastic gradient is computed b times per step, SFO
complexity is defined as

Tbb = Xb2

ϵb − Y
. (4)

The following theorem guarantees the existence of critical batch sizes that are global minimizers of Tbb
defined by Eq. (4).
Proposition 4.2. Suppose that Assumptions 2.1 and 2.2 hold and consider Muon. Then, there exists

b⋆
Muon := 2Y

ϵ
(5)

such that b⋆
Muon minimizes the convex function Tbb.

Proof. From Eq. (5), we have that, for b > Y
ϵ ,

dTbb

db
= Xb(ϵb − 2Y )

(ϵb − Y )2 ,
d2Tbb

db2 = 2XY 2

(ϵb − Y )3 ≥ 0.

Hence, Tbb is convex for b > Y
ϵ , and

dTbb

db


< 0 if b < b⋆

Muon,

= 0 if b = b⋆
Muon = 2Y

ϵ ,

> 0 if b > b⋆
Muon.

This completes the proof.

On the basis of Theorems 3.1 and 3.2 and Proposition 4.2, we derive the following proposition, which gives
b⋆

Muon.
Proposition 4.3. Suppose Assumptions 2.1 and 2.2 hold. Then, for a given precision ϵ, the critical batch
size for Muon is as shown in Table 2.

Table 2: Approximate critical batch size b⋆
Muon computed with β = 0.95 and λ = 0.1.

w/o weight decay w/ weight decay

w/o Nesterov 2(1 − β)σ2

ϵ
≈ 0.1 × σ2

ϵ

{2(1 − β) + λ} σ2

ϵ
≈ 0.2 × σ2

ϵ

w/ Nesterov (2β + 1)(1 − β)σ2

ϵ
≈ 0.145 × σ2

ϵ

{(2β + 1)(1 − β) + λ} σ2

ϵ
≈ 0.245 × σ2

ϵ

The results in Table 2 indicate that, for a given precision ϵ, Muon’s critical batch size is slightly larger when
Nesterov momentum and weight decay are used. Furthermore, in all cases, 2Y becomes smaller as β → 1
(e.g., 2Y = (2β + 1)(1 − β) + λ → λ), suggesting that the larger the momentum β, the smaller the critical
batch size b⋆

Muon.
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Remark 4.1. Previous study (Sato & Iiduka, 2023) have considered ∃T, ∃b : X/T + Y/b + Z < etot instead
of Eq. (2), and from similar arguments, b⋆ = 2Y

ϵtot−Z > 2Y
ϵtot

is obtained. We start from Eq. (2) and obtain
b⋆ = 2Y

ϵ . Compared to the former, the relationship between critical batch size b⋆ and the hyperparameters is
clearer. Note that the difference between the two lies in the choice of threshold, i.e., ϵ := ϵtot − Z and both
are theoretically correct.

5 Numerical Experiments

We evaluate Muon on three workloads: (i) ResNet-18 on CIFAR-10, (ii) VGG-16 on CIFAR-100, and (iii) Llama3.1
(160M) on the C4 corpus. We first analyze convergence and critical batch size on CIFAR-10 with ResNet-18, then
report language–modeling results on C4. Results for VGG-16 on CIFAR-100 are summarized in Appendix F, where
we observe the same qualitative trends.

Experimental Setup For CIFAR-10 and CIFAR-100 experiments, unless otherwise stated, we tuned the learning
rate by grid search at a base batch size of 512 and applied square-root scaling for Muon and AdamW; for Momentum
SGD we tried both square-root and linear scaling. Each configuration was run five times with different seeds and we
report mean and standard deviation. For C4 dataset 1 we trained Llama3.1 (160M) with sequence length 2048 and
batch sizes from 64 to 8192. SFO complexity is measured as steps × batch size. Further details of the experimental
protocol are in Appendix D.
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Figure 1: Empirical validation of the stability condition in Proposition 3.2. Final gradient norm (left) and
training loss (right) for ResNet-18 on CIFAR-10 with Muon at λ=0.0625. The dashed line shows η=1/λ. Training
is most stable near this value.

In the vision workloads, we follow common practice and use a hybrid optimizer (Muon on matrix-shaped
parameter blocks and AdamW on the remaining parameters); since our theory analyzes full Muon, we
additionally include a controlled full-Muon MLP diagnostic to validate the theory-aligned stopping proxy
and the critical-batch predictions (Appendix E).

Theory-aligned stopping proxy: gradient-norm threshold. Our theory upper-bounds the average
expected full-gradient norm. To better align experiments with this proxy, we additionally report a gradient-
norm–based stopping metric. For each run, we track the Frobenius norm of the (mini-batch) gradient,
gt := ∥∇fSt(Wt)∥F, and define a smoothed estimate g̃t via an exponential moving average (EMA) over
steps.2 Given a target threshold εtot, we define the stopping time Tε(b) as the first step such that g̃t ≤ εtot,
and report both steps Tε(b) and SFO complexity b · Tε(b). We emphasize that our original loss/accuracy
targets remain useful for practitioner-facing comparisons, while the gradient-norm criterion is introduced
specifically to validate the theory-aligned proxy.

1https://huggingface.co/datasets/allenai/c4
2For large-scale workloads, computing the full gradient is impractical; we therefore use the mini-batch gradient norm as an

unbiased proxy for the full gradient and report EMA-smoothed curves for stability. In a controlled toy setting (Appendix E),
we also compute the full-batch gradient norm to directly match the theoretical quantity.
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Figure 2: Convergence rate comparison for ResNet-18 on CIFAR-10 with batch size 2048. Training loss (left) and
smoothed gradient norm (right) over steps. Muon with Nesterov momentum and weight decay converges the fastest,
consistent with the bounds in Table 1.

Convergence Analysis We empirically validated the stability condition from Proposition 3.2. Figure 1
shows final gradient norm and training loss for ResNet-18 on CIFAR-10 across learning rates η at fixed weight
decay λ=0.0625. The vertical dashed line marks the threshold η=1/λ=16.0. The lowest gradient norm occurs near
this threshold; for larger η training becomes unstable. The same behavior holds for other values of λ (Appendix F).

We next compared the four Muon variants with AdamW and Momentum SGD. Figure 2 shows that Muon
with Nesterov momentum and weight decay attains the fastest decrease in both loss and gradient norm.

Critical Batch Size We measured the number of steps and SFO needed to reach 90% test accuracy and
95% training accuracy. Figure 3 shows that Muon scales better with batch size than the baselines. SFO
is the lowest for Muon over the entire range, and Nesterov shifts the SFO-minimizing batch size to larger
values. Momentum SGD requires more steps within the same schedule but eventually reaches comparable
accuracy (Appendix F).

101 102

Batch Size

104

105

St
ep

s t
o 

Ta
rg

et
 (T

es
t)

Steps to Target vs Batch Size (Test)
AdamW
Muon
Muon + Nesterov
Muon + Nesterov + WD
Muon + WD

101 102

Batch Size

106

4 × 105

6 × 105

2 × 106

SF
O 

Co
m

pl
ex

ity
 (T

es
t)

SFO Complexity (Test) vs Batch Size
AdamW
Muon
Muon w/ Nesterov
Muon w/ Nesterov+WD
Muon w/ WD

Figure 3: Batch-size scaling and SFO on ResNet-18/CIFAR-10. (Left) Steps to reach 90% test accuracy. (Right)
SFO to reach 95% training accuracy. Muon achieves the best efficiency across batch sizes; Nesterov momentum shifts
the critical batch size to the right.

Critical batch size under the gradient-norm stopping proxy (controlled full Muon). To directly
validate the critical-batch phenomenon under the same stopping proxy used in the theory, we run a controlled
experiment where Muon is applied to all parameters (full Muon) on a small MLP task (Appendix E). We
define the empirical SFO as b · Tε(b) where Tε(b) is the first time the EMA-smoothed gradient norm drops

9
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below εtot. We observe a clear U-shaped SFO—batch curve and a well-defined minimizer b⋆ (e.g., b⋆=32 for
εtot=0.08), providing evidence that a critical batch size exists when using the theory-aligned gradient-norm
criterion.

Quantitative validation of the X/T + Y/b + Z proxy and predicted b⋆. We further quantify how
well the theoretical decomposition matches observations by fitting

ḡ(T, b) ≈ X

T
+ Y

b
+ Z

to the measured average gradient norms collected across multiple (T, b) pairs in the controlled full-Muon
MLP setting. A simple linear regression in the features (1/T, 1/b, 1) achieves a high goodness-of-fit (e.g.,
R2=0.962), supporting that the proxy captures the dominant scaling with T and b. From the fitted coeffi-
cients, we obtain Ŷ and Ẑ and compute a predicted critical batch size via the theory:

b⋆
pred = 2Ŷ

εtot − Ẑ
,

which matches the empirically SFO-minimizing batch size in the regime εtot > Ẑ. Moreover, when εtot is
not too close to the floor Ẑ, we observe an approximately linear scaling b⋆ ∝ 1/(εtot − Ẑ), consistent with
the theoretical prediction.

Effect of β on Muon’s Critical Batch Size Theory in Section 4.2 predicts that the critical batch size
decreases as β →1. Figure 4 confirms this trend for ResNet-18/CIFAR-10, regardless of weight decay or Nesterov.
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Figure 4: Dependence of SFO and critical batch size on β for ResNet-18/CIFAR-10. The critical batch size
consistently decreases as β increases, in line with Section 4.2.

Language-Model Workload: C4 on Llama3.1 (160M) We now test whether the findings hold for large-
language-model training. Figure 5 reports final training loss and SFO versus batch size. Muon attains lower
loss and lower SFO than AdamW across all batch sizes, and the gap widens at large batches. In this setting,
adding Nesterov momentum or weight decay does not yield consistent gains.

Momentum Sweeps on C4 We varied β on C4 to examine the critical batch size. Figure 6 shows that a
moderate value, β ≈ 0.95, gives the best loss and SFO. As β decreases, the critical batch size increases; as β increases
toward 1, the critical batch size decreases, but extreme values are suboptimal. These observations are consistent with
Section 4.2 and mirror the vision results.

6 Related Works

Several studies have investigated the theoretical properties and convergence behavior of Muon. Bernstein &
Newhouse (2024) connected Muon to momentum applied in the steepest descent direction under a spectral
norm constraint. Li & Hong (2025) provided a pioneering analysis assuming Frobenius norm Lipschitz
smoothness. Pethick et al. (2025) studied Muon in the context of optimization methods that use linear

10
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Figure 5: Batch-size scaling on C4 with Llama3.1 (160M). Steps to reach the target training loss (left) and SFO
complexity (right) versus batch size. Muon outperforms AdamW in terms of both the number of steps required to
reach the target loss and the SFO complexity in almost all cases. Nesterov momentum and weight decay provide
little additional benefit for this workload.
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Figure 6: Effect of momentum β on C4 with Llama3.1 (160M). Loss and SFO across batch sizes for different β.
The best trade-off occurs near β=0.95. The critical batch size decreases with larger β.

minimization oracles for norm balls, and established a convergence rate. Connections to other optimizers
have also been explored. Shah et al. showed that Shampoo and SOAP reduce to Muon under simplifying
assumptions (AI et al., 2025). Kovalev (2025) proposed and analyzed a stochastic non-Euclidean trust-
region method that includes Muon as a special case. Similarly, An et al. (2025) proposed an adaptive
structured gradient optimization algorithm that matches Muon in its momentum-free variant. Other studies
have explored specific properties and extensions of Muon. Petrov et al. (2025) proposed and analyzed a
zeroth-order version . Chen et al. demonstrated Muon’s compatibility with the Lion-K algorithm (Chen
et al., 2024) and showed that Muon with weight decay implicitly solves an optimization problem with a
spectral norm constraint (Chen et al., 2025). Shen et al. (2025) presented a comprehensive analysis of
Muon’s convergence rate in comparison to gradient descent. Lau et al. (2025) introduced PolarGrad, a
unifying framework for matrix-aware preconditioned methods including Muon, and established convergence
rates. The core concepts of gradient orthogonalization and dualization, which are central to Muon, were
introduced in the foundational works by Carlson et al. (2015) and Flynn (2017). The convergence rates
of major related works are summarized in Table 3. Our novelty lies in analyzing the upper bound on the
gradient norm of Muon with Nesterov momentum and weight decay.

The framework for assumptions and proofs presented by Shen et al. (2025) is the most similar to our own.
The crucial difference between our study and all previous studies, including this one, is that we also consider

11
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most common variant of Muon, which incorporates Nesterov momentum and weight decay. Technically, the
technique of transforming ⟨Ct, Ot⟩F using the dual norm and inverse triangle inequality follows the proof of
Pethick et al. (2025) (see proof of Theorem B.1 in Appendix B).

Table 3: Comparison of convergence rates in related works. ∥ · ∥⋆ denotes an arbitrary norm, and ∥ · ∥∗
denotes the nuclear norm. Each result has been rewritten to conform to our notation. S(Wt) is the KKT
score function defined as S(W ) := ∥∇f(W )∥∗ + λ⟨W, ∇f(W )⟩.

Related work Measure Convergence Rate Nesterov momentum Weight decay
Pethick et al. (2025) E [∥∇f(WT )∥⋆] O

( 1
T + η

)
× ×

Li & Hong (2025) 1
T

∑T −1
t=0 E [∥∇f(Wt)∥F] O

(
1
T + 1√

b
+ n

)
× ×

Kovalev (2025) min0≤t≤T −1 E [∥∇f(Wt)∥∗] O
( 1

T + η +
√

β
)

× ×
Shen et al. (2025) 1

T

∑T −1
t=0 E [∥∇f(Wt)∥∗] O

(
1
T + 1√

b
+ r
)

× ×

Chen et al. (2025) 1
T

∑T −1
t=0 E [S(Wt)] O

(
1
T + 1√

b
+ n

)
✓ ✓

Lau et al. (2025) 1
T min0≤t≤T −1 E [∥∇f(Wt)∥F] O

( 1
T + η +

√
r
)

× ×
Ours (Theorem 3.2(ii)) 1

T

∑T −1
t=0 E [∥∇f(Wt)∥F] O

(
1
T + 1√

b
+ n

)
✓ ✓

7 Conclusion

Through a comprehensive theoretical analysis of the Muon optimizer, we established convergence guarantees
for four practical configurations (with and without Nesterov momentum and with and without weight decay).
Our primary theoretical contribution is demonstrating the crucial role of weight decay. We proved that it
enforces a strict decrease in parameter and gradient norms, a clear advantage over the standard Muon
configuration. This theoretical insight, along with the necessary condition relating the learning rate and
weight decay coefficient, was empirically validated by our experimental results. Additionally, we derived the
critical batch size for Muon, revealing its dependence on fundamental hyperparameters such as momentum
and weight decay. Collectively, our findings provide both a deeper theoretical understanding of Muon and
actionable guidance for practitioners aiming to leverage this promising optimizer in large-scale settings.

Finally, we note a limitation regarding our single-matrix analysis. In deep neural networks, gradient statistics
vary across layers. However, recent work by Gray et al. (2024) shows that gradient noise scales of different
layers are highly correlated. This suggests that while our theory does not predict exact aggregate values, it
captures the fundamental functional dependencies of the critical batch size on hyperparameters.
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A Tools for Proof of All Theorems

The results presented in this section are not new and are given simply for reference and completeness.
Lemma A.1. Suppose Assumption 2.2(ii) hold for all t ∈ N; then,

Eξt

[
∥∇fSt(Wt) − ∇f(Wt)∥2

F
]

≤ C2

b
.

Proof. Assumption 2.2(ii) guarantee that

Eξt

[
∥∇fSt(Wt) − ∇f(Wt)∥2

F
]

= Eξt

∥∥∥∥∥1
b

b∑
i=1

Gξt,i(Wt) − ∇f(Wt)
∥∥∥∥∥

2

F


= Eξt

∥∥∥∥∥1
b

b∑
i=1

Gξt,i(Wt) − 1
b

b∑
i=1

∇f(Wt)
∥∥∥∥∥

2

F


= Eξt

∥∥∥∥∥1
b

b∑
i=1

(
Gξt,i(Wt) − ∇f(Wt)

)∥∥∥∥∥
2

F


= 1

b2Eξt

∥∥∥∥∥
b∑

i=1

(
Gξt,i

(Wt) − ∇f(Wt)
)∥∥∥∥∥

2

F


= 1

b2Eξt

[
b∑

i=1

∥∥Gξt,i
(Wt) − ∇f(Wt)

∥∥2
F

]

≤ σ2

b
.

This completes the proof.

The following lemma was established by (Mokhtari et al., 2020). In their setting, the algorithm without
momentum corresponds to the case in which β1 = 1, whereas in ours it corresponds to β1 = 0. As a result,
the statements may appear slightly different.
Lemma A.2. Suppose Assumptions 2.1 and 2.2 hold. Then for all t ∈ N,

T −1∑
t=0

E
[
∥Mt − ∇f(Wt)∥2

F
]

≤ 2
1 − β

∥M0 − ∇f(W0)∥2
F + 2(1 − β)σ2

b
T + 4L2η2n

(1 − β)2 T,

and
T −1∑
t=0

E [∥Mt − ∇f(Wt)∥F] ≤ 2
√

2
1 − β

∥M0 − ∇f(W0)∥F +
√

2(1 − β)σ2

b
T + 2Lη

√
n

1 − β
T.

Proof. From the definition of Mt,

∥Mt − ∇f(Wt)∥2
F = ∥βMt−1 + (1 − β)∇fSt

(Wt) − ∇f(Wt)∥2
F

= ∥β(Mt−1 − ∇f(Wt−1)) + β(∇f(Wt−1) − ∇f(Wt)) + (1 − β)(∇fSt
(Wt) − ∇f(Wt))∥2

F

= β2∥Mt−1 − ∇f(Wt−1)∥2
F + β2∥∇f(Wt−1) − ∇f(Wt)∥2

F + (1 − β)2∥∇fSt(Wt) − ∇f(Wt)∥2
F

+ 2β2⟨Mt−1 − ∇f(Wt−1), ∇f(Wt−1) − ∇f(Wt)⟩F

+ 2β(1 − β)⟨Mt−1 − ∇f(Wt−1), ∇fSt
(Wt) − ∇f(Wt)⟩F

+ 2β(1 − β)⟨∇f(Wt−1) − ∇f(Wt), ∇fSt
(Wt) − ∇f(Wt)⟩F
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Therefore, by taking the expectation,

E
[
∥Mt − ∇f(Wt)∥2

F
]

= β2E
[
∥Mt−1 − ∇f(Wt−1)∥2

F
]

+ β2E
[
∥∇f(Wt−1) − ∇f(Wt)∥2

F
]

+ (1 − β)2E
[
∥∇fSt(Wt) − ∇f(Wt)∥2

F
]

+ 2β2E [⟨Mt−1 − ∇f(Wt−1), ∇f(Wt−1) − ∇f(Wt)⟩F] .

Here, by the Peter-Paul inequality, for all ϵ > 0, we have

⟨Mt−1 − ∇f(Wt−1), ∇f(Wt−1) − ∇f(Wt)⟩F ≤ ϵ

2∥Mt−1 − ∇f(Wt−1)∥2
F + 1

2ϵ
∥∇f(Wt−1) − ∇f(Wt)∥2

F.

Therefore, we obtain

E
[
∥Mt − ∇f(Wt)∥2

F
]

= β2(1 + ϵ)E
[
∥Mt−1 − ∇f(Wt−1)∥2

F
]

+ β2
(

1 + 1
ϵ

)
E
[
∥∇f(Wt−1) − ∇f(Wt)∥2

F
]

+ (1 − β)2E
[
∥∇fSt(Wt) − ∇f(Wt)∥2

F
]

.

In addition, from Assumption 2.1,

∥∇f(Wt−1) − ∇f(Wt)∥2
F ≤ L2∥Wt−1 − Wt∥2

F = L2η2∥Ot∥2
F ≤ L2η2n.

Hence, from Lemma A.1,

E
[
∥Mt − ∇f(Wt)∥2

F
]

≤ β2(1 + ϵ)E
[
∥Mt−1 − ∇f(Wt−1)∥2

F
]

+ β2
(

1 + 1
ϵ

)
L2η2n + (1 − β)2σ2

b
.

Then, letting ϵ := 1−β
2 , we have

E
[
∥Mt − ∇f(Wt)∥2

F
]

≤ β2(3 − β)
2 E

[
∥Mt−1 − ∇f(Wt−1)∥2

F
]

+ β2(3 − β)
1 − β

L2η2n + (1 − β)2σ2

b

≤ 1 + β

2 E
[
∥Mt−1 − ∇f(Wt−1)∥2

F
]

+ 2
1 − β

L2η2n + (1 − β)2σ2

b

≤
(

1 + β

2

)t

∥M0 − ∇f(W0)∥2
F +

{
2L2η2n

1 − β
+ (1 − β)2σ2

b

} t−1∑
k=0

(
1 + β

2

)k

≤
(

1 + β

2

)t

∥M0 − ∇f(W0)∥2
F +

{
2L2η2n

1 − β
+ (1 − β)2σ2

b

}
2

1 − β

=
(

1 + β

2

)t

∥M0 − ∇f(W0)∥2
F + 4L2η2n

(1 − β)2 + 2(1 − β)σ2

b
.

Therefore, summing over t, we have
T −1∑
t=0

E
[
∥Mt − ∇f(Wt)∥2

F
]

≤ 2
1 − β

∥M0 − ∇f(W0)∥2
F + 2(1 − β)σ2

b
T + 4L2η2n

(1 − β)2 T.

Finally, from the properties of variance and expectation,

E [∥Mt − ∇f(Wt)∥F] ≤
√
E [∥Mt − ∇f(Wt)∥2

F]

≤

√(
1 + β

2

)t

∥M0 − ∇f(W0)∥F +
√

2(1 − β)σ2

b
+ 2Lη

√
n

(1 − β) .

Hence, we have
T −1∑
t=0

E [∥Mt − ∇f(Wt)∥F] ≤
√

2√
2 −

√
1 + β

∥M0 − ∇f(W0)∥F +
√

2(1 − β)σ2

b
T + 2Lη

√
n

1 − β
T

≤ 2
√

2
1 − β

∥M0 − ∇f(W0)∥F +
√

2(1 − β)σ2

b
T + 2Lη

√
n

1 − β
T

This completes the proof.
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B Proof of Theorems for Muon without weight decay

Theorem B.1 (Auxiliary Theorem for Muon without weight decay). Suppose Assumptions 2.1 and 2.2 hold.
Then for all t ∈ N,

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) − f(WT )
η

+ 1
2

T −1∑
t=0

E
[
∥∇f(Wt) − Ct∥2

F
]

+
√

r

T −1∑
t=0

E [∥∇f(Wt) − Ct∥F] + 1 + Lη

2 nT,

where rank(Ct − ∇f(Wt)) =: rt ≤ max
0≤t≤T −1

rt =: r.

Proof. From Assumption 2.1,

f(Wt+1) ≤ f(Wt) + ⟨∇f(Wt), Wt+1 − Wt⟩F + L

2 ∥Wt+1 − Wt∥2
F

= f(Wt) − η⟨∇f(Wt), Ot⟩F + L

2 η2∥Ot∥2
F

≤ (Wt) − η⟨Ct, Ot⟩F − η⟨∇f(Wt) − Ct, Ot⟩F + Lη2n

2 .

Using the definition Ot := argmin
O∈{O∈Rm×n:O⊤O=In}

∥O − Ct∥F, we obtain Ot := argmax
O∈{O∈Rm×n:O⊤O=In}

⟨Ct, O⟩F.

Then,

⟨Ct, Ot⟩F = max
O:O⊤O=In

⟨Ct, O⟩F = max
O:∥O∥2≤1

⟨Ct, O⟩F =: ∥Ct∥∗,

where ∥·∥∗ denotes the dual norm. Applying the reverse triangle inequality and the relation ∥A∥F ≤ ∥A∥∗ ≤√
rank(A)∥A∥F, we have

−⟨Ct, Ot⟩F = −∥Ct∥∗

= −∥Ct − ∇f(Wt) + ∇f(Wt)∥∗

≤ ∥Ct − ∇f(Wt)∥∗ − ∥∇f(Wt)∥∗

≤
√

rank(Ct − ∇f(Wt))∥Ct − ∇f(Wt)∥F − ∥∇f(Wt)∥F

≤
√

r∥Ct − ∇f(Wt)∥F − ∥∇f(Wt)∥F, (6)

where rank(Ct − ∇f(Wt)) =: rt ≤ max
0≤t≤T −1

rt =: r (≤ n). In addition, we have

−⟨∇f(Wt) − Ct, Ot⟩F = 1
2
(
∥∇f(Wt) − Ct∥2

F + ∥Ot∥2
F − ∥∇f(Wt) − Ct + Ot∥2

F
)

≤ 1
2∥∇f(Wt) − Ct∥2

F + n

2 .

Therefore,

f(Wt+1) ≤ f(Wt) + η
√

r∥Ct − ∇f(Wt)∥F − η∥∇f(Wt)∥F + η

2∥∇f(Wt) − Ct∥2
F + 1 + Lη

2 ηn.

By rearranging the terms and taking expectation, we obtain

E [∥∇f(Wt)∥F] ≤ f(Wt) − f(Wt+1)
η

+ 1
2E
[
∥∇f(Wt) − Ct∥2

F
]

+
√

rE [∥∇f(Wt) − Ct∥F] + 1 + Lη

2 n.

This completes the proof.
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B.1 Proof of Theorem 3.1(i)

Proof. From Ct := Mt, together with Lemmas A.1 and A.2 and Theorem B.1, we find that
T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) − f(WT )
η

+ 1
2

T −1∑
t=0

E
[
∥∇f(Wt) − Mt∥2

F
]

+
√

r

T −1∑
t=0

E [∥∇f(Wt) − Mt∥F] + 1 + Lη

2 nT

≤ f(W0) − f(WT )
η

+ 1
2

{
2

1 − β
∥M0 − ∇f(W0)∥2

F + 2(1 − β)σ2

b
T + 4L2η2n

(1 − β)2 T

}
+

√
r

{
2
√

2
1 − β

∥M0 − ∇f(W0)∥F +
√

2(1 − β)σ2

b
T + 2Lη

√
n

1 − β
T

}
+ 1 + Lη

2 nT.

By taking the average over t = 0, . . . , T − 1 and applying expectation, we obtain

1
T

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) − f(WT )
ηT

+ ∥M0 − ∇f(W0)∥2
F

(1 − β)T + 2
√

2r∥M0 − ∇f(W0)∥F

(1 − β)T

+ (1 − β)σ2

b
+
√

2(1 − β)rσ2

b
+ 2L2η2n

(1 − β)2 + 2Lη
√

nr

1 − β
+ 1 + Lη

2 n

= O
(

1
T

+ 1 − β

b
+ n

)
.

This completes the proof.

B.2 Proof of Theorem 3.1(ii)

Proof. From the definition of Ct, we have

∥Ct − ∇f(Wt)∥F = ∥βMt + (1 − β)∇fSt
(Wt) − ∇f(Wt)∥F

= ∥β(Mt − ∇f(Wt)) + (1 − β)(∇fSt
(Wt) − ∇f(Wt))∥F

≤ β∥Mt − ∇f(Wt)∥F + (1 − β)∥∇fSt
(Wt) − ∇f(Wt)∥F, (7)

and

∥Ct − ∇f(Wt)∥2
F ≤ β∥Mt − ∇f(Wt)∥2

F + (1 − β)∥∇fSt
(Wt) − ∇f(Wt)∥2

F. (8)

According to Theorem B.1, we find that
T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) − f(WT )
η

+ β

2

T −1∑
t=0

E
[
∥∇f(Wt) − Mt∥2

F
]

+ 1 − β

2

T −1∑
t=0

E
[
∥∇fSt

(Wt) − ∇f(Wt)∥2
F
]

+ β
√

r

T −1∑
t=0

E [∥∇f(Wt) − Mt∥F] + (1 − β)
√

r

T −1∑
t=0

E [∥∇fSt(Wt) − ∇f(Wt)∥F] + 1 + Lη

2 nT.

From Lemmas A.1 and A.2, we have
T −1∑
t=0

E [∥∇f(Wt)∥F]

≤ f(W0) − f(WT )
η

+ β

2

{
2

1 − β
∥M0 − ∇f(W0)∥2

F + 2(1 − β)σ2

b
T + 4L2η2n

(1 − β)2 T

}
+ 1 − β

2 · σ2

b
T + β

√
r

{
2
√

2
1 − β

∥M0 − ∇f(W0)∥F +
√

2(1 − β)σ2

b
T + 2Lη

√
n

1 − β
T

}

+ (1 − β)
√

r ·
√

σ2

b
T + 1 + Lη

2 nT.
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By taking the average over t = 0, . . . , T − 1 and applying expectation, we obtain

1
T

T −1∑
t=0

E [∥∇f(Wt)∥2] ≤ f(W0) − f(WT )
ηT

+ β∥M0 − ∇f(W0)∥2
F

(1 − β)T + 2β
√

2r∥M0 − ∇f(W0)∥F

(1 − β)T

+ (2β + 1)(1 − β)
2

σ2

b
+ (β

√
2(1 − β) + (1 − β))

√
rσ2

b

+ 2L2η2βn

(1 − β)2 + 2Lη
√

nrβ

1 − β
+ 1 + Lη

2 n

= O
(

1
T

+ (2β + 1)(1 − β)
2 · 1

b
+ n

)
This completes the proof.

C Proof of Theorems for Muon with weight decay

C.1 Proof of Proposition 3.1

Proof. From the definition of Wt and the condition η ≤ 1
λ , we have

∥Wt∥F = ∥(1 − ηλ)Wt−1 − ηOt∥F

≤ (1 − ηλ)∥Wt−1∥F + η
√

n

≤ (1 − ηλ)t∥W0∥F + η
√

n

t−1∑
k=0

(1 − ηλ)k

≤ (1 − ηλ)t∥W0∥F +
√

n

λ

≤ (1 − ηλ)t∥W0∥F +
√

n

λ
.

This completes the proof.

C.2 Proof of Proposition 3.2

Proof. According to Assumption 2.1,

∥∇f(Wt) − ∇f(W ⋆)∥F ≤ L∥Wt − W ⋆∥F.

Therefore, from Proposition 3.1 and the fact that ∇f(W ⋆) = 0, we have

∥∇f(Wt)∥F ≤ L∥Wt − W ⋆∥F

≤ L∥Wt∥F + L∥W ⋆∥F

≤ L(1 − ηλ)t∥W0∥F + L
√

n

λ
+ L∥W ⋆∥F.

This completes the proof.

Lemma C.1. Suppose Assumptions 2.1 and 2.2 hold and η ≤ 1
λ . Then, for all t ∈ N,

T −1∑
t=0

E
[
∥∇fSt(Wt)∥2

F
]

≤
(

σ2

b
+ D2

0

)
T and

T −1∑
t=0

E
[
∥Mt∥2

F
]

≤
(

σ2

b
+ D2

0

)
T,

where D0 := L
(

∥W0∥F +
√

n
λ + ∥W ⋆∥F

)
.
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Proof. According to Assumption 2.2(i),

E
[
∥∇fSt

(Wt) − ∇f(Wt)∥2
F
]

= E
[
∥∇fSt

(Wt)∥2
F
]

− 2E [⟨∇fSt
(Wt), ∇f(Wt)⟩F] + ∥∇f(Wt)∥2

F

= E
[
∥∇fSt

(Wt)∥2
F
]

− ∥∇f(Wt)∥2
F.

Then, from Lemma A.1 and Proposition 3.2, we have

E
[
∥∇fSt(Wt)∥2

F
]

≤ σ2

b
+ ∥∇f(Wt)∥2

2

≤ σ2

b
+ D2

0.

Hence, we have
T −1∑
t=0

E
[
∥∇fSt(Wt)∥2

F
]

≤
(

σ2

b
+ D2

0

)
T.

Next, from the definition of Mt,

E
[
∥Mt∥2

F
]

= E
[
∥βMt−1 + (1 − β)∇fSt(Wt)∥2

F
]

≤ βE
[
∥Mt−1∥2

F
]

+ (1 − β)E
[
∥∇fSt

(Wt)∥2
F
]

≤ βE
[
∥Mt−1∥2

F
]

+ (1 − β)
(

σ2

b
+ D2

t

)
≤ βt+1∥M−1∥2

F + (1 − β)
(

σ2

b
+ D2

0

) t∑
k=0

βk

≤
(

σ2

b
+ D2

0

)
,

where M−1 := 0. Therefore, we have
T −1∑
t=0

E
[
∥Mt∥2

F
]

≤
(

σ2

b
+ D2

0

)
T.

This completes the proof.

Lemma C.2. Suppose Assumptions 2.1 and 2.2 hold and η ≤ 1
λ . Then, for all t ∈ N,

T −1∑
t=0

∥Wt∥2
F ≤ ∥W0∥2

F
ηλ

+ nT

λ2 .

Proof. From the definition of Wt, we have

∥Wt∥2
F =

∥∥∥∥(1 − ηλ)Wt−1 − ηλ · 1
λ

Ot

∥∥∥∥2

F

≤ (1 − ηλ)∥Wt−1∥2
F + ηn

λ

≤ (1 − ηλ)t∥W0∥2
F + ηn

λ

t∑
k=0

(1 − ηλ)k

≤ (1 − ηλ)t∥W0∥2
F + n

λ2 .

Hence,
T −1∑
t=0

∥Wt∥2
F ≤ ∥W0∥2

F
ηλ

+ nT

λ2 .

This completes the proof.
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Theorem C.1 (Auxiliary Theorem for Muon with weight decay). Suppose Assumptions 2.1 and 2.2 hold,
and that Muon is run with η ≤ 1

λ . Then for all t ∈ N,

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) − f(WT )
η

+ 1
2

T −1∑
t=0

E
[
∥∇f(Wt) − Ct∥2

F
]

+
√

r

T −1∑
t=0

E [∥∇f(Wt) − Ct∥F]

+ λ

2

T −1∑
t=0

E
[
∥Ct∥2

F
]

+ λ

{
1 + 2(1 + Lη)λ

2

} T −1∑
t=0

E
[
∥Wt∥2

F
]

+ (1 + Lη)nT,

where rank(Ct − ∇f(Wt)) =: rt ≤ max
0≤t≤T −1

rt =: r.

Proof. According to Assumption 2.1,

f(Wt+1) ≤ f(Wt) + ⟨∇f(Wt), Wt+1 − Wt⟩F + L

2 ∥Wt+1 − Wt∥2
F

= f(Wt) − η⟨∇f(Wt), Ot + λWt⟩F + Lη2

2 ∥Ot + λWt∥2
F

= f(Wt) − η⟨Ct, Ot + λWt⟩F − η⟨∇f(Wt) − Ct, Ot + λWt⟩F + Lη2

2 ∥Ot + λWt∥2
F

= f(Wt) − η⟨Ct, Ot⟩F − ηλ⟨Ct, Wt⟩F − η⟨∇f(Wt) − Ct, Ot + λWt⟩F + Lη2

2 ∥Ot + λWt∥2
F.

From Eq.equation 6, we have

−η⟨Ct, Ot⟩F ≤ η
√

r∥Ct − ∇f(Wt)∥F − η∥∇f(Wt)∥F.

Applying the inequality ∥Ot + λWt∥2
F ≤ 2∥Ot∥2

F + 2λ2∥Wt∥2
F, we obtain

f(Wt+1) ≤ f(Wt) + η
√

r∥Ct − ∇f(Wt)∥F − η∥∇f(Wt)∥F + ηλ

2 ∥Ct∥2
F

+ ηλ

2 ∥Wt∥2
F + η

2∥∇f(Wt) − Ct∥2
F + 1 + Lη

2 η∥Ot + λWt∥2
F

≤ f(Wt) + η
√

r∥Ct − ∇f(Wt)∥F − η∥∇f(Wt)∥F + ηλ

2 ∥Ct∥2
F

+ ηλ

2 ∥Wt∥2
F + η

2∥∇f(Wt) − Ct∥2
F + (1 + Lη)η

(
∥Ot∥2

F + λ2∥Wt∥2
F
)

≤ f(Wt) + η
√

r∥Ct − ∇f(Wt)∥F − η∥∇f(Wt)∥F + ηλ

2 ∥Ct∥2
F

+ ηλ

{
1 + 2(1 + Lη)λ

2

}
∥Wt∥2

F + η

2∥∇f(Wt) − Ct∥2
F + (1 + Lη)ηn.

By rearranging the terms and taking the expectation, we obtain

E [∥∇f(Wt)∥F] ≤ f(Wt) − f(Wt+1)
η

+ 1
2E
[
∥∇f(Wt) − Ct∥2

F
]

+
√

rE [∥∇f(Wt) − Ct∥F]

+ λ

2E
[
∥Ct∥2

F
]

+ λ

{
1 + 2(1 + Lη)λ

2

}
E
[
∥Wt∥2

F
]

+ (1 + Lη)n.

This completes the proof.
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C.3 Proof of Theorem 3.2(i)

Proof. From Ct := Mt and Lemmas A.1, A.2, C.1, C.2 and Theorem C.1, we find that

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(Wt) − f(WT )
η

+ 1
2

T −1∑
t=0

E
[
∥∇f(Wt) − Mt∥2

F
]

+
√

r

T −1∑
t=0

E [∥∇f(Wt) − Mt∥F]

+ λ

2

T −1∑
t=0

E
[
∥Mt∥2

F
]

+ λ

{
1 + 2(1 + Lη)λ

2

} T −1∑
t=0

E
[
∥Wt∥2

F
]

+ (1 + Lη)nT

≤ f(Wt) − f(WT )
η

+ 1
2

{
2

1 − β
∥M0 − ∇f(W0)∥2

F + 2(1 − β)σ2

b
T + 4L2η2n

(1 − β)2 T

}
+

√
r

{
2
√

2
1 − β

∥M0 − ∇f(W0)∥F +
√

2(1 − β)σ2

b
T + 2Lη

√
n

1 − β
T

}

+ λ

2

(
σ2

b
+ D2

0

)
T + λ

{
1 + 2(1 + Lη)λ

2

}(
∥W0∥2

F
ηλ

+ nT

λ2

)
+ (1 + Lη)nT.

By taking the average over t = 0, . . . , T − 1 and applying expectation, we obtain

1
T

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) − f(WT )
ηT

+ ∥M0 − ∇f(W0)∥2
F

(1 − β)T + 2
√

2r∥M0 − ∇f(W0)∥F

(1 − β)T

+
{

1 + 2(1 + Lη)λ
2

}
∥W0∥2

F
ηT

+
(

1 − β + λ

2

)
σ2

b
+
√

2(1 − β)rσ2

b

+ 2L2η2n

(1 − β)2 + 2Lη
√

nr

1 − β
+ (1 + Lη)n +

{
1 + 2(1 + Lη)λ

2

}
n

λ
+ λD2

0
2

= O
(

1
T

+
(

1 − β + λ

2

)
1
b

+ n

)
.

This completes the proof.

C.4 Proof of Theorem 3.2(ii)

Proof. From the definition of Ct, we have Eq.equation 7, Eq.equation 8, and

∥Ct∥2
F = ∥βMt + (1 − β)∇fSt(Wt)∥2

F

≤ β∥Mt∥2
F + (1 − β)∥∇fSt

(Wt)∥2
F.

Therefore, according to Theorem C.1, we find that

T −1∑
t=0

E [∥∇f(Wt)∥F] ≤ f(W0) − f(WT )
η

+ β

2

T −1∑
t=0

E
[
∥∇f(Wt) − Mt∥2

F
]

+ 1 − β

2

T −1∑
t=0

E
[
∥∇fSt(Wt) − ∇f(Wt)∥2

F
]

+ β
√

r

T −1∑
t=0
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Then, from Lemmas A.1, A.2, C.1, and C.2, we obtain
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By taking expectations and averaging over the iterates, we obtain
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This completes the proof.

23



Under review as submission to TMLR

D Experimental Details

This section details the experimental setup for evaluating the optimizers. Our code will be available at
https://anonymous.4open.science/r/critical_batchsize_muon-F0BA/README.md.

Workloads and General Setup (Vision) All CIFAR experiments used ResNet-18 on CIFAR-10 and VGG-
16 on CIFAR-100, trained from scratch. Training was performed for a fixed number of samples corresponding to 100
epochs at a batch size of 512. For any batch size B, the number of epochs was scaled as EB = 100 × (512/B) to keep
the number of seen samples constant. Each configuration was repeated with five random seeds, and we report mean
and standard deviation of test accuracy.

Workload and System Setup (Language Modeling: C4/ Llama3.1 (160M)) For the language–modeling
workload we trained Llama3.1 (160M) on the C4 dataset with sequence length 2048. We used the torchtitan codebase
with PyTorch FSDP (full sharding) and activation checkpointing (mode=full). Gradient clipping with max norm 1.0
was applied. Due to sharding, Muon requires an additional all-gather of gradients before the optimizer step, which
introduces one extra collective communication per step. We therefore report SFO-based metrics (steps × batch size)
in addition to loss to separate algorithmic efficiency from system overhead.

Unless otherwise noted, the training budget was fixed to 3.2B tokens. At a base global batch size (GBS) of 128
this corresponds to 12,208 steps; for other GBS values the number of steps scales inversely to keep the token budget
constant. We ran on up to 8 H100 GPUs with per-GPU micro-batch size 8 and no tensor, pipeline, or context
parallelism (TP=PP=CP=1).

Learning-Rate Schedules Vision workloads used a grid search at base batch size 512 and square-root scaling
to other batch sizes for Muon and AdamW. Momentum SGD was tested with both square-root and linear scaling.
For Llama3 160M, we used linear warmup followed by cosine decay. The base configuration uses 2000 warmup steps;
in sweeps we also parameterized warmup as 10% of total steps to maintain a comparable schedule across different
GBS.

Hyperparameter Tuning Protocol (Vision) We performed an extensive grid search over base learning
rates and weight decay. For B ̸= 512, learning rates were scaled from the base value using ηB = η512

√
B/512

for AdamW and Muon; for Momentum SGD we report both
√

B/512 and B/512 scaling. The shared search
space is summarized in Table 4, and optimizer-specific spaces in Table 5.

Table 4: Shared hyperparameters for vision experiments.
Hyperparameter Value / Search Space
Model Architecture ResNet-18, VGG-16
Dataset CIFAR-10, CIFAR-100
Batch Size (B) {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}
Base Epochs (at B = 512) 100
Random Seeds 5

Optimizer Configuration (Vision) For the hybrid Muon optimizer, we applied the Muon update to all
convolutional layers in ResNet-18 (excluding the input stem). Biases, batch-norm parameters, and the final linear
layer were updated by AdamW. The number of parameters updated by each component is listed in Table 6. For
standard AdamW and Momentum SGD, the respective optimizer was applied to all parameters.

Search Space (Language Modeling) For C4/ Llama3.1 (160M), we performed sweeps using grid search. GBS
took values in {64, 256, 1024, 4096} when resources permitted. We tuned Muon and the AdamW baseline per GBS
without automatic LR scaling.
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Table 5: Optimizer-specific hyperparameter search spaces (vision). The base learning rate (η512) is specified
at a reference batch size of 512.

Hyperparameter AdamW Momentum SGD Muon
Searched Parameters
Base Learning Rate (η512) {0.01, 0.001, 0.0001} {0.001, 0.0005, 0.0001}

- Muon component — — {0.01, 0.005, 0.001}
- AdamW component — — {0.01, 0.001, 0.0001}

Momentum — 0.9 {0.7, 0.8, 0.9, 0.95, 0.99, 0.999}
Weight Decay (λ) {0.1, 0.01, 0.001, 0.0001, 0} {0.1, 0.01, 0.001, 0.0001, 0} {0.1, 0.01, 0.001, 0.0001, 0}
Fixed Parameters

Learning Rate Scaling
√

B/512
√

B/512 (and B/512)
√

B/512
Adam β1, β2 0.9, 0.999 (default) — 0.9, 0.999 (default)
Adam ϵ 1e-8 (default) — 1e-8 (default)

Table 6: Number of parameters updated by each optimizer component in the Muon setup for ResNet-18,
VGG-16 and Llama3.1 (160M).

Model Muon params AdamW params
ResNet-18 11,157,504 16,458
VGG-16 14,712,896 19,302,500
Llama3.1 (160M) 127,401,984 49,180,416

Table 7: Shared configuration for C4/ Llama3.1 (160M).
Item Value
Model Llama3.1 (160M) (dim = 768, nlayers = 18, nheads = 12)
Dataset C4
Sequence length 2048
Global batch size (GBS) {32, 64, 128, 256, 512, 1024, 2048, 4096}
Total tokens 3.2 × 109

Base steps (GBS=128) 12,208
Schedule linear warmup then cosine decay (decay ratio 0.5)
Warmup 2000 steps (base) or 10% of total steps (sweep)
Gradient clipping max-norm = 1.0
Parallelism FSDP; TP=1, PP=1, CP=1
Hardware up to 8 H100 GPUs; local batch size = 8

Table 8: Optimizer search spaces for C4/ Llama3.1 (160M). Component-wise LRs are tuned per GBS.

Hyperparameter Muon AdamW (baseline)
Muon LR {0.005, 0.01, 0.02, 0.04} —
Muon momentum β {0.8, 0.9, 0.95, 0.99} —
Muon Nesterov {True, False} —
Muon weight decay {0, 0.1} —
AdamW LR (component or baseline) {0.001, 0.002, 0.004, 0.008} {0.001, 0.002, 0.004, 0.008}
AdamW weight decay 0.1 0.1
AdamW β1, β2 0.9, 0.999 0.9, 0.999
AdamW ϵ 1×10−8 1×10−8
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Figure 7: Validation of critical batch size theory on a controlled full-Muon task. (Top Left) SFO
vs. batch size b required to reach a target gradient norm ε = 0.08. A clear empirical optimum (critical batch
size) is observed at b⋆ = 32. (Top Right) Goodness-of-fit for the theoretical proxy ḡ(T, b) ≈ X/T +Y/b+Z
against observed gradient norms (R2 ≈ 0.901). (Bottom Left) The empirical critical batch size b⋆ scales
linearly with the inverse target precision 1/ε, consistent with the theoretical prediction b⋆ ∝ 1/ε. (Bottom
Right) Goodness-of-fit for the theoretical proxy ḡ(T, b) ≈ X/T + Y/b against observed gradient norms
(R2 ≈ 0.900).

E Additional Diagnostics: Gradient-norm proxy and full-Muon toy setting

Toy task and full-Muon configuration. To eliminate the gap between the theoretical analysis (which
assumes Muon is applied to all parameters) and the practical hybrid optimizer used in vision experiments
(Muon for Conv2D, AdamW for others), we conduct experiments on a controlled synthetic task. We employ
a Teacher-Student Tanh Regression problem. A fixed teacher matrix W ⋆ ∈ Rm×n and a student
matrix W ∈ Rm×n are initialized with entries drawn from N (0, 1/n). At each step t, we sample inputs
xt ∼ N (0, In) and generate labels yt = tanh(xt(W ⋆)⊤) + ξt, where ξt ∼ N (0, σ2I) represents label noise.
The student minimizes the loss L(W ) = 1

2 ∥ tanh(xtW
⊤) − yt∥2. We set the dimensions to m = 256, n = 128,

and the noise level to σ = 0.1. Unlike the large-scale experiments, here Muon (Algorithm 1) is applied to
the entire matrix W with learning rate η = 0.05, momentum β = 0.95 (Nesterov), and 5 Newton-Schulz
iterations.

Measured quantities and stopping rule. To rigorously validate the theoretical convergence bound
E[∥∇L∥] ≲ X

T + Y
b + Z, we track the cumulative mean of the gradient norm, denoted as ḡt =

1
t

∑t
i=1 ∥∇L(Wi)∥F . We define the convergence step Tε(b) as the first step t where ḡt ≤ ε. The stochastic

first-order oracle (SFO) complexity is computed as SFO = b · Tε(b). We perform a grid search over batch
sizes b ∈ {4, 8, . . . , 512}.
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Results and Validity of Approximations. We confirm three key findings in this controlled setting:
(1) Existence of Critical Batch Size: As shown in Figure 7 (Top Left), the SFO complexity exhibits a
clear convex shape with respect to b, identifying an empirical optimum b⋆. (2) Model Fit: The observed
data fits the theoretical proxy X

T + Y
b + Z with high accuracy (R2 > 0.90), validating our convergence

analysis. (3) Justification for Z ≈ 0: To address the theoretical concern regarding the non-vanishing
term Z, we compared the full fit against a simplified model X

T + Y
b (forcing Z = 0). Figure 7 (Bottom

Right) demonstrates that the simplified model predicts the observed gradient norms with virtually identical
accuracy to the full model in the regime of interest. This empirically justifies our derivation of the critical
batch size b⋆ ∝ 1/ε by treating Z as negligible during the primary optimization phase.
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F Additional Results (Vision)

This section provides supplementary results to support the analysis in the main text.
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Figure 8: Empirical validation of the stability condition derived in Proposition 3.2. The plots show the
final gradient norm (left) and training loss (right) for ResNet-18 on CIFAR-10, trained with Muon using various
learning rates (η) and a fixed weight decay λ = 0.125. The vertical dashed lines mark the theoretical stability
threshold η = 1/λ. Training was most stable and achieved the best performance near this threshold, consistent with
our theoretical analysis.
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Figure 9: Analysis of batch size scaling and SFO complexity for ResNet-18 on CIFAR-10. (Left) Number of
steps required to reach target training accuracy (95%). (Right) SFO complexity to reach the same accuracy. Muon
exhibited superior scaling to large batch sizes, and its critical batch size (which minimizes SFO complexity (training))
was smaller than that of AdamW.

Convergence (Vision) We conducted experiments under various weight decay configurations to examine
whether the upper bound of the learning rate is determined by the weight decay (λ = 0.125), similar to the
analysis presented in Figure 1 of the main text (λ = 0.0625). As shown in Figure 8, the results are consistent
with the earlier findings, confirming that the gradient norm begins to increase once the learning rate exceeds
1/λ.
Figure 10 compares convergence rates for ResNet-18 on CIFAR-10 across three batch sizes. This complements
Figure 2 by providing a more detailed view of the effect of batch size.

Critical Batch Size (Vision) In the main text, we defined the critical batch size as the smallest batch
size that reaches the test target accuracy in the fewest steps. For comparison, we also report results using
the training target accuracy in Figure 9. While the overall trends remain similar, the gap between Adam
and Muon becomes significantly larger in this setting.
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Figure 10: Convergence rate comparison for ResNet-18 on CIFAR-10 across three batch sizes (128, 512, and
2048 from top to bottom). Each row compares training loss (left) and smoothed gradient norm (right) for the Muon
variants and baselines. These results supplement Figure 2 and confirm that the observed performance trends hold
across a range of batch sizes.

In the main text, Figure 3 presents results exclusively for Adam and Muon. For a broader comparison,
results for Momentum SGD are included and shown in Figure 11.

Additional Vision Workload Due to space limits, the main text focuses on ResNet-18/CIFAR-10. Figure 12
reports VGG-16/CIFAR-100, which shows the same qualitative behavior.

29



Under review as submission to TMLR

101 102

Batch Size

106
SF

O 
Co

m
pl

ex
ity

 (T
es

t)

ResNet18 - CIFAR10 / SFO Complexity (Test) vs Batch Size

AdamW
Momentum SGD
Momentum SGD + Nesterov

Muon
Muon + Nesterov

Muon + Nesterov + WD
Muon + WD

Figure 11: Optimizer comparison via analysis of batch size scaling and SFO complexity (test) for ResNet-18
on CIFAR-10.
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Figure 12: Optimizer comparison via analysis of batch size scaling and SFO complexity (test) for VGG-16 on
CIFAR-100.

Ablation Study Finally, we conducted an ablation study to examine the relationship between the weight
decay parameter β and the learning rate across four batch sizes. Figure 13 illustrates how Muon’s weight
decay and learning rate affect the loss for each batch size. For the training loss (top row), lower weight
decay consistently corresponds to reduced loss. Similarly, the smallest learning rates within the explored
range are preferred. For the test loss (bottom row), smaller learning rates yield better results. However, a
clear inflection point emerges in weight decay at around 10−1, or approximately 10−2 for larger batch sizes,
indicating that these weight decay settings minimize the test loss.
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Figure 13: Ablation study on the impact of weight decay and learning rate on loss for Muon across different
batch sizes (8, 16, 32, and 64, from left to right). Each column compares training loss (top) and test loss
(bottom) across various configurations of weight decay and learning rate. The training loss consistently
favors smaller weight decay values and the lowest learning rates within the explored range. For test loss,
optimal performance is achieved at weight decay values around 10−1, shifting toward approximately 10−2 at
larger batch sizes.
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G Additional Results (Language Modeling)

We provide supplemental plots for the LLM experiments discussed in the main text. Figure 14 shows final
loss and SFO complexity versus batch size. Muon is consistently better than AdamW and the gap widens
at large batch sizes. Nesterov momentum and weight decay do not produce systematic gains in this setting.
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Figure 14: C4/ Llama3.1 (160M). Final training loss versus batch size. Muon outperforms AdamW across all batch
sizes, with a larger margin at bigger batches.

To examine the role of momentum, we swept β under two configurations: with and without Nesterov (weight
decay fixed at zero unless indicated). Figure 15 shows that the best trade-off is near β = 0.95. As β increases,
the critical batch size decreases, but very small or very large values of β degrade both loss and SFO.
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Figure 15: Effect of momentum β on C4/ Llama3.1 (160M). SFO for target loss of 10.0 (left) and SFO for target
loss of 7.5 (right) across batch sizes under (WD=0, Nesterov=True). The optimum is near β = 0.95; excessive or too
small momentum harms both metrics.

Training Curves for Muon on Llama3.1 (160M) To further illustrate Muon’s optimization dynamics on
large-language-model workloads, we report full training curves for Llama3.1 (160M) trained on C4 at multiple
batch sizes. Figure 17 plots the training loss against the number of steps for Muon and AdamW. Across all batch
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sizes, Muon exhibits faster loss reduction in early training and consistently reaches lower final loss within the same
token budget. These results complement Figures 5 and 6, demonstrating that the advantages of Muon are visible not
only in SFO complexity but also in the raw optimization trajectory.
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Figure 16: Training loss curves for Muon vs. AdamW on Llama3.1 (160M)/ C4. Each plot corresponds to a
global batch size of 32, to 4096 (top to bottom). Muon variants consistently achieves faster loss reduction and better
final loss across all batch sizes.

33



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Tokens Seen 1e6

101

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s
Training Curves: Batch Size Comparison (AdamW)

BS=32
BS=64
BS=128
BS=256
BS=512
BS=1024
BS=2048
BS=4096

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Tokens Seen 1e6

101

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

Training Curves: Batch Size Comparison (Muon)
BS=32
BS=64
BS=128
BS=256
BS=512
BS=1024
BS=2048
BS=4096

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Tokens Seen 1e6

101

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

Training Curves: Batch Size Comparison (Muon + WD)
BS=128
BS=256
BS=512
BS=1024
BS=2048
BS=4096

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Tokens Seen 1e6

101

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

Training Curves: Batch Size Comparison (Muon + Nesterov)
BS=32
BS=64
BS=128
BS=256
BS=512
BS=1024
BS=2048
BS=4096

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Tokens Seen 1e6

101

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

Training Curves: Batch Size Comparison (Muon + Nesterov + WD)
BS=32
BS=64
BS=128
BS=256
BS=512
BS=1024
BS=2048
BS=4096

Figure 17: Training loss curves for batch size on Llama3.1 (160M)/ C4. Each plot corresponds to a Adam, Muon,
Muon+WD, Muon+Nesterov, Muon+Nesterov+WD (top to bottom). Small batch size consistently achieves better
loss better final loss across optimizers.
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