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ABSTRACT

Humans develop world models that capture the underlying generation process of
data. Whether neural networks can learn similar world models remains an open
problem. In this work, we provide the first theoretical results for this problem,
showing that in a multi-task setting, models with a low-degree bias provably re-
cover latent data-generating variables under mild assumptions—even if proxy tasks
involve complex, non-linear functions of the latents. However, such recovery is
also sensitive to model architecture. Our analysis leverages Boolean models of
task solutions via the Fourier-Walsh transform and introduces new techniques for
analyzing invertible Boolean transforms, which may be of independent interest. We
illustrate the algorithmic implications of our results and connect them to related re-
search areas, including self-supervised learning, out-of-distribution generalization,
and the linear representation hypothesis in large language models.

1 INTRODUCTION

Humans develop internal models of the world, extracting core concepts that generate perceptual
data (Ha & Schmidhuber, 2018). Can neural networks do the same? With recent advances in
large language models (LLMs), this question has garnered increasing attention (Bender et al., 2021;
Mitchell, 2023). Understanding if and how neural networks learn human-like world models is crucial
for building AI systems that are robust, fair, and aligned with human values (Hendrycks et al., 2023).

Empirical findings on world model learning have been mixed. Some studies suggest that medium-
sized neural networks (Mikolov et al., 2013) and LLMs (Li et al., 2023; Bricken et al., 2023; Gurnee &
Tegmark, 2024) learn abstract and interpretable features, indicating a non-trivial representation of data
generation. Others, however, report a marked decline in LLM performance on novel tasks (Wu et al.,
2023; Berglund et al., 2024; Mirzadeh et al., 2024), implying a lack of genuine world representations
that enable human-level generalization in out-of-distribution settings.

Despite ongoing research, the theoretical foundations of learning world models remain unclear.
Notably, even the term “world model” lacks a precise definition. This gives rise to several fundamental
questions: what does it mean for neural networks to learn world models? When and why can they do
so? More fundamentally, what constitutes a bona fide world model?

The goal of this work is to address these problems by introducing a formal framework for world
model learning and presenting the first theoretical results in this area. Following the spirit of prior
work (Ha & Schmidhuber, 2018; Li et al., 2023; Gurnee & Tegmark, 2024), we first show that latent
variable models (Everett, 2013) provide a natural scaffold for formulating world model learning.
Specifically, learning world models can be framed as achieving a non-trivial recovery of latent
data-generating variables. However, a core challenge in this formulation arises from a well-known
negative result showing that recovering true latents is generally impossible due to a fundamental issue
of non-identifiability (Hyvärinen & Pajunen, 1999). That is, multiple solutions can fit the observed
variables equally well, making true latent variables non-identifiable from observed data alone.

At first glance, the non-identifiability of latent variables may suggest a pessimistic outlook on learning
world models. However, existing results overlook an important point: solutions that equally fit the
data are not necessarily equivalent as functions. Thus, algorithms with implicit bias in function space,
such as those employed in deep learning (Kalimeris et al., 2019; Goyal & Bengio, 2020), would favor
certain solutions over others. In particular, we focus on a bias towards low-complexity functions, a
phenomenon widely observed in neural networks and believed to be a key factor in the success of
deep learning (Pérez et al., 2019; Huh et al., 2024; Goldblum et al., 2024). Yet, due to the lack of a
well-established complexity measure for continuous functions, formalizing such complexity bias and
analyzing its impact remains a challenging problem on its own (see Section A for related work).
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Figure 1: A graphical summary of our results.

In this work, we circumvent this challenge by
leveraging a simple yet important fact: while
real-world data and latent variables may be con-
tinuous, all variables processed by neural net-
works are ultimately encoded as bit strings due
to finite precision of computers. This allows
us to model all variables as Boolean without
loss of generality. While this may seem a sub-
tle difference (since we only lose the informa-
tion that goes beyond machine precision), as
we demonstrate in later sections, it turns out
to provide surprisingly powerful machinery for
defining and analyzing the complexity of solutions via the Fourier-Walsh transform of Boolean
functions (O’Donnell, 2014). Building on this foundation, we present, for the first time, a nuanced
perspective on learning world models that reveals an interplay between the low-complexity bias,
proxy tasks, and model architecture. Our main contributions are:

1. In Section 2, we lay down general definitions of learning world models and discuss its core
challenge posed by the non-identifiability of latent data-generating variables. This provides a
foundation for future work to formally reason about learning world models and offers theoretical
rigor to the recent scientific debate on this topic (Bender et al., 2021; Mitchell, 2023).

2. In Section 3, we introduce complexity measures based on a notion of realization degree, offering
an approach for analyzing the impact of low-complexity bias on world model learning.

3. In Section 4, we present the first theoretial results on learning world models in the context of
training on proxy tasks using observed data. We identify two critical factors for world model
learning: (i) a multi-task setting; (ii) the low-complexity bias, instantiated by a low-degree bias
of the model and a low-degree task distribution. Together, these factors ensure the identifiability
of latent data-generating variables. Moreover, we show the provable benefits of learning world
models in an out-of-distribution generalization setting (Abbe et al., 2023) and study the impact of
model architecture under a notion of basis compatibility (see Figure 1 for a graphical summary
of our results). Technically, our analysis relies on analyzing the degree properties of Boolean
functions composed with invertible transforms, which may be of independent interest.

4. In Section 5, we illustrate the algorithmic implications of our results on two representative tasks:
polynomial extrapolation (Xu et al., 2021) and learning physical laws (Kang et al., 2024). We
show that architectures inspired by our analysis outperform conventional architectures such as
ReLU MLPs and transformers (Vaswani et al., 2017) in these tasks.

2 FORMULATION OF LEARNING WORLD MODELS

How to define the world model and the problem of learning world models remains debatable to date.
Yet, the term “world models” has been widely referred to in the literature as models that uncover the
underlying generation process of data and maintain a representation of it (Ha & Schmidhuber, 2018;
Gurnee & Tegmark, 2024; Richens & Everitt, 2024). For example, pioneering works by Li et al.
(2023) and Nanda et al. (2023) define “world models” in board games as the board state that generates
move sequences. This motivates a formulation of world model learning under the framework of latent
variable models (Everett, 2013). To this end, we first define a general data generation process.

Definition 2.1 (Data generation process). Let x ∈ X be the observed data variables and let z ∈ Z
be the latent variables for some data space X and latent space Z . The observed data are sampled as
follows: (i) sample z ∼ p(z) for some probability distribution p over Z; (ii) generate x through an
invertible and non-linear function x = ψ(z).

This definition resembles the data generation process used in many latent variable models such as
non-linear ICA (Hyvärinen & Pajunen, 1999), invariant feature learning (Arjovsky et al., 2019),
and causal representation learning (Schölkopf et al., 2021). The main difference is that unlike
these models, we do not assume p(z) to be any structured distribution. Intuitively, a natural way to
formalize “understanding” this generation process is to approximately invert it, i.e., recover the latent
variables z from the observed data x. This gives our basic formulation of learning world models.
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Definition 2.2 (Learning world models). Let T be a set of transforms T : Z → Z . We say
a representation Φ : X → Z learns the world model up to T if there exists T ∈ T such that
Φ(x) = T (z) for every z ∈ supp(p) and x = ψ(z).

For instance, if T only contains the identity transform, then Φ(x) recovers z exactly. In general, we
require T to contain only simple transform classes (e.g., linear transforms) for a meaningful recovery.

The main difficulty of this latent variable recovery problem is that z is, by definition, unobservable.
To address this, we leverage the fact that models in practice are trained on some proxy tasks (e.g.,
next-token prediction) to learn representations of x implicitly. We formulate this as follows.
Definition 2.3 (Task and realization). A task is defined as a function h : X → R. For a task h, let

H(h) := {f : X → R | f(x) = h(x),∀z ∈ supp(p),x = ψ(z)}. (1)

If a function composition f(1) ◦ · · · ◦ f(q) belongs to H(h), then we say it is a realization of h.

Flat and hierarchical realizations. With definitions above, our main hope is that by training on
some proper tasks h, the model can learn a hierarchical realization g ◦ Φ ∈ H(h) with a function
g : Z → R and a representation Φ that learns the world model in the sense of Def. 2.2. However,
a key challenge arises: by definition, all realizations have zero training error on supp(p) and are
thus indistinguishable by their task performance. For example, every function h∗ ∈ H(h) is itself
a flat realization of h, i.e., without any explicit representation learning. Thus, by looking at the
observable data alone, we have no reason to expect that g ◦ Φ will be favored over h∗. Likewise,
it is also unreasonable to expect that g ◦ Φ should be favored over another hierarchical realization
g′ ◦Φ′ ∈ H(h) with Φ′ not learning world models. Indeed, a well-known impossibility result in latent
variable modeling shows that the true latent variables are non-identifiable when ψ is a sufficiently
flexible non-linear function of the latents (Hyvärinen & Pajunen, 1999; Khemakhem et al., 2020).
Lemma 2.4 (Non-identifiability (Khemakhem et al., 2020)). Let Z = Rd and z ∈ Z be a random
vector of any distribution. Then, there exists an invertible transform T : Z → Z such that the
components of z′ = T (z) are independent, standard Gaussian variables.

Lemma 2.4 indicates that we can construct new random variables Φ(x) = z′ that have the same
distribution p as true latent variables ψ−1(x) = z (thus fitting the observed variables x equally
well) by first transforming z to standard Gaussian variables, applying any orthogonal transform, and
then inverting the transform (note that standard Gaussian distributions are invariant to orthogonal
transforms). Applying this result to our context, we conclude that without additional assumptions,
learning world models in the sense of Def. 2.2 is not possible with a simple T by looking at x alone.

Given this result, one may naturally be pessimistic about the outlook on learning world models.
However, recent studies on LLMs seem to suggest otherwise: instead of learning arbitrary non-linear
representations of the observed data as Lemma 2.4 implies, LLMs turn out to often learn semantically
meaningful, human-interpretable representations (Li et al., 2021; Bricken et al., 2023; Marks &
Tegmark, 2023; Gurnee & Tegmark, 2024). This suggests that despite having a vast number of
parameters and being capable of learning different task realizations (Reizinger et al., 2024), LLMs
can still learn representations that are reasonably aligned with humans.

To address this puzzle, in this work we propose to incorporate the implicit bias of neural networks
instead of using task performance as the only identifiability criterion. Specifically, we explore if the
bias towards low-complexity realizations, a trait of both human reasoning and deep learning, could be
used to steer the realization towards non-trivial recovery of the true latents. Yet, the main challenge is
that for continuous functions with inputs in Rd, we lack a well-established complexity measure that is
amenable to analysis. For example, Kolmogorov complexity (Li et al., 2008) in algorithmic learning
theory offers a unified framework for defining the complexity of any object, yet it is uncomputable.
Fortunately, we will next show that this problem could be circumvented by using Boolean models.

3 COMPLEXITY MEASURES

Computers encode every object, including the observed data and variables learned by neural networks,
in bit strings. Leveraging this fact, we can assume without loss of generality that both x and z in
Def. 2.1 are Boolean (after some proper encoding). Formally, in the remainder of the paper we will
let X ⊆ {−1, 1}m and Z = {−1, 1}d. Since ψ is invertible, we have m ≥ d. In practice, we expect
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m≫ d for complex and high-dimensional data. Unless otherwise mentioned, we will also assume
supp(p) = Z to ensure that all elements in Z can be sampled with positive probabilities.

A direct consequence of the Boolean modeling of variables is that all functions involved are Boolean
functions (see Section B for a basic introduction). Notably, this itself does not resolve the non-
identifiability issue present in the continuous case, as functions with Boolean inputs and outputs can
still exhibit arbitrary nonlinearity. Instead, the primary advantage of this approach lies in the useful
machinery it offers for defining functional complexity through the Fourier-Walsh transform:
Definition 3.1 (Fourier-Walsh transform (O’Donnell, 2014)). Every function f : {±1}n → R can
be uniquely expressed as a multilinear polynomial

f(x) =
∑

S⊆[n]
f̂(S)χS(x), (2)

where x = (x1, . . . , xn), χS(x) =
∏
i∈S xi are parity functions, and f̂(S) ∈ R are the coefficients.

The Fourier-Walsh transform shows that every Boolean function can be represented as a linear
combination of parity functions χS that capture all non-linear relationship between inputs and outputs.
In fact, it can be shown that parity functions are a basis of the vector space Fn := {f : {±1}n → R}
of n-dimensional Boolean functions (see Section B for more details). By contrast, the space of
arbitrary continuous functions does not have a similar, theory-friendly basis. See Section C for more
discussion on the use of Boolean functions and Boolean complexity measures.

Given the Fourier-Walsh transform of a function, a natural measure of its complexity is its degree:
Definition 3.2 (Degree). For every function f : {±1}n → R, its degree is defined by

deg(f) = max{|S| : f̂(S) ̸= 0}. (3)
For a Boolean function with multiple output dimensions, we define its degree by the sum of degrees
of the Boolean functions mapping the input to each output coordinate.
Remark 3.3. Note that the degree of f equals to the maximum degree of the basis functions it uses:
deg(f) = max{deg(χS) : f̂(S) ̸= 0}. This interpretation will be useful in Section 4.4.

Intuitively, the degree of a Boolean function measures how non-linear it is. It can also be viewed as
an approximation of Kolmogorov complexity if we treat parity functions χS as “function codes” with
length |S|. Prior work has shown that many classes of neural networks indeed have a bias towards
low-degree solutions for Boolean inputs (Abbe et al., 2023; Bhattamishra et al., 2023); in comparison,
here we study whether a relevant low-complexity bias could implicitly lead to world model learning.

Complexity measures for realizations. Based on the notion of degree, we next introduce complexity
measures to quantify the complexity of realizations. First, note that while degree can characterize
function complexity, it fails to distinguish between different realizations, as they all behave identically
when considered as a whole function. To overcome this limitation, we introduce realization degree.
Definition 3.4 (Realization degree). For a realization f(1) ◦ · · · ◦ f(q) of a task h, its realization
degree is

d̂eg(f(1) ◦ · · · ◦ f(q)) =
∑

i∈[q]
deg(f(i)). (4)

For example, the realization degree of a flat realization h∗ ∈ H(h) coincides with its degree; the
realization degree of a hierarchical realization h = g◦Φ is d̂eg(g◦Φ) = deg(g)+deg(Φ). Compared
to degree, realization degree better reflects the cost of implementing each function in hierarchical
realizations as in practice. Throughout this work, we say a model exhibits a low-degree bias if it
minimizes the realization degree. We conclude this section by two definitions that will be useful in
characterizing the impact of the low-degree bias on flat and hierarchical realizations.
Definition 3.5 (Min-degree solutions). For a task h, we define its min-degree solutions Hmin(h) as
the set of functions in H(h) and that minimize the degree. We denote their degree by deg(Hmin(h)).
Definition 3.6 (Conditional degree). For a task h and representation Φ : X → Z , let h∗ ∈ Hmin(h),
and the conditional degree of h on the representation Φ is defined as

deg(h | Φ) = deg(h∗)−max{deg(g) : g ◦ Φ ∈ H(h)}. (5)

By definition, flat realizations with the low-degree bias satisfy h∗ ∈ Hmin(h). Analyzing the impact
of representations is more involved; Def. 3.6 suggests that a representation Φ only makes a task h
“simpler” if deg(h | Φ) > 0, i.e., solving the task on top of Φ has a smaller degree compared to
low-degree flat realizations. We will explore this notion further in the next section.
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4 THEORETICAL ANALYSIS

This section presents our main theoretical results. All proofs are deferred to Section D.

4.1 LOW-DEGREE BIAS DRIVES REPRESENTATION LEARNING

As a warm-up, we first consider a basic question: why should neural networks, such as LLMs, learn
any representation of data-generating variables when trained on proxy tasks? Indeed, modern neural
networks can often memorize the entire dataset (Zhang et al., 2017) or rely on superficial statistical
patterns to solve tasks (Geirhos et al., 2019). This raises concerns about whether they truly understand
the data despite generating plausible outputs (Bender et al., 2021).

Formally, this question can be modeled as a competition between flat realizations h∗ ∈ Hmin(h) and
hierarchical realizations g ◦ Φ ∈ H(h) in our formulation. Specifically, we seek to determine which
realization minimizes the realization degree and is thus favored by the low-degree bias. Our first
result shows that for any single task h, the flat realization is preferred.
Theorem 4.1 (Single-task learning). Let h be a task. Then, for every h∗ ∈ Hmin(h), representation
Φ : X → Z , and g : Z → R such that g ◦ Φ ∈ H(h), the following holds:

d̂eg(h∗) ≤ d̂eg(g ◦ Φ). (6)

Remark 4.2. Intuitively, this result is a consequence of learning “redundant” representations: for any
h, it suffices to learn every parity function χS with ĥ(S) ̸= 0 in its Fourier-Walsh transform. Even if
there is a good universal data representation, explicitly learning it is often not the best choice since it
may involve irrelevant parity functions with ĥ(S) = 0, resulting in a larger realization degree.

However, the situation changes in the multi-task setting. Suppose there are n distinct tasks h1, . . . , hn.
A flat realization solves each task independently by learning solutions h∗i ∈ Hmin(hi) for each
i ∈ [n], whereas a hierarchical realization can leverage the shared representation Φ across tasks,
requiring only task-specific functions gi for i ∈ [n]. Our next theorem shows that in this setting, the
hierarchical realization is favored if a sufficient number of tasks have a positive conditional degree.
Theorem 4.3 (Multi-task learning). Let h1, . . . , hn be n distinct tasks and let h∗i ∈ Hmin(hi), ∀i ∈
[n]. Let Φ : X → Z and g1, . . . , gn satisfy that gi ◦ Φ is an realization of hi, ∀i ∈ [n]. Then, the
following holds for every h∗ = (h∗1, . . . , h

∗
n), g = (g1, . . . , gn), and Φ∗ ∈ Hmin(Φ):

d̂eg(h∗)− d̂eg(g ◦ Φ∗) ≥
∑

i∈[n]
deg(hi | Φ∗)− d2. (7)

Thus, if a sufficient number of tasks satisfy deg(hi |Φ) > 0 and
∑
i∈[n] deg(hi |Φ) > d2, then

d̂eg(h∗) > d̂eg(g ◦ Φ), contrary to Theorem 4.1. We discuss two implications of these results:

• The contrast between the single-task and multi-task settings justifies the importance of multi-
tasking in learning general-purpose representations, which has been conjectured by prior
work (Radford et al., 2019; Huh et al., 2024). Indeed, modern pre-training objectives such
as next-token prediction and contrastive learning can be interpreted as solving a large number of
prediction tasks simultaneously (Radford et al., 2019; Arora et al., 2019; Brown et al., 2020).

• Theorem 4.3 suggests that to facilitate the learning of a representation Φ, proxy tasks should
be chosen such that conditioning on Φ makes them less “complex”. This provides a framework
to reason about whether certain objectives in self-supervised learning (Liu et al., 2021) induce
better representations than others. For instance, input reconstruction is often suboptimal as it
permits a low-degree solution h∗(x) = x without requiring any representation learning; masked
image modeling (He et al., 2022) is likely more effective, as a representation that captures image
semantics could significantly reduce solution complexity by filtering out pixel-to-pixel details.

4.2 CONDITIONS FOR LEARNING WORLD MODELS

We now move on to investigate whether the low-degree bias facilitates world model learning. While
Theorem 4.3 shows that training on properly defined proxy tasks drives representation learning in the
presence of the low-degree bias, it does not specify which representation is ultimately learned. In this
section, we further explore the multi-task setting to address the key question: can we construct proxy
tasks h1, . . . , hn to induce a representation Φ that learns the world models in the sense of Def. 2.2?
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We begin by characterizing the space of all possible tasks. Given that the observed data is generated
by x = f(z) with an invertible f , every task h : X → R can be equivalently defined via a function
h′ : Z → R as h = h′ ◦ ψ−1. Thus, the space of all possible tasks on X is represented as

Fd ◦ ψ−1 =
{
h′ ◦ ψ−1 | h′ ∈ Fd

}
, (8)

where Fd := {h : {±1}d → R} denotes the set of Boolean functions on Z = {±1}d. Our next
theorem shows that if proxy tasks are constructed by uniformly sampling from Fd ◦ ψ−1, then as
n→ ∞, all viable representations yield the same task-averaged realization complexity.
Theorem 4.4 (Representational no free lunch). Let h1, . . . , hn be n tasks that are independently and
uniformly sampled from Fd ◦ ψ−1. Then as n → ∞, for any two representations Φ,Φ′ satisfying
that there exists a bijective transform T : Z → Z such that Φ(x) = T (z) for every z ∈ supp(p)
and x = ψ(z), the following holds:

lim
n→∞

1

n

(
d̂eg(g ◦ Φ)− d̂eg(g′ ◦ Φ′)

)
= 0, (9)

where g, g′ ∈ (Fd)n satisfy that gi ◦ Φ and g′i ◦ Φ′ are both realizations of hi for every i ∈ [n].
Remark 4.5. Note that the condition of the existence of a bijective transform T is a minimal
requirement for Φ(x) containing enough information for solving all tasks. The fact that all such
representations have the same realization complexity suggests that the representation Φ induced by
uniformly sampling from Fd ◦ ψ−1 only learns the world model up to arbitrary bijective transforms.

Theorem 4.4 can be viewed as a “no free lunch”-like theorem for representation learning. The
original no free lunch theorem (Wolpert, 1996) states that every learner’s performance is equally good
when averaged over a uniform distribution on learning problems; here we show that every viable
representation is equally complex when averaged over a uniform distribution on tasks. As we will
show in Section D.4, the technical intuition of this result is that every representation renders some
tasks in the task space “simple” and others “complex”, with the overall task-averaged complexity
independent of the particular choice of the representation.

To overcome this result, we then move on to the non-uniform case where proxy tasks are still drawn
from Fd, but with different weights assigned to different functions. This setting is of more practical
interest: prior work has reported various evidence suggesting that realistic tasks are often much more
structured than being purely random (Whitley & Watson, 2005; Zhang et al., 2017). In particular,
real-world data tend to be highly compressible, implying that low-complexity input-output maps
occur more frequently than high-complexity ones (Dingle et al., 2018; Zhou et al., 2019; Goldblum
et al., 2024). To formalize this, we define k-degree tasks.
Definition 4.6 (k-degree tasks). Let Fd

k := {h : {±1}d → R | deg(h) ≤ k}. We say a task h is a
k-degree task if h ∈ Fd

k ◦ ψ−1 = {h′ ◦ ψ−1 | h′ ∈ Fd
k}.

In other words, k-degree tasks can be solved by a function with degree not greater than k on top
of true latents. One can easily verify that Fd

k ⊆ Fd
k+1 for every k ∈ [d − 1] and Fd

d = Fd. Thus,
uniform sampling from all possible tasks amounts to uniform sampling from Fd

d ◦ ψ−1. k-degree
tasks are also related to tasks with positive conditional degree, as shown by the following corollary.
Corollary 4.7. For every task h satisfying deg(h | ψ−1) > 0, we have h ∈ Fd

d−1 ◦ ψ−1.

To capture the low-complexity bias in task sampling, we assign more weights to Fd
k ◦ ψ−1(k < d).

Perhaps surprisingly, our next theorem shows that even a slight such preference on low-complexity
tasks in the task distribution can induce world model learning up to simple transforms.
Theorem 4.8 (World model learning). Let p1, . . . , pd ∈ (0, 1) such that

∑
i∈[d] pi = 1. Let

h1, . . . , hn be n tasks that are independently sampled as follows: (i) sample a degree k ∈ [d]
according to probabilities Pr[k = i] = pi; (ii) uniformly sample a k-degree task. Let (Φ∗, g∗) be the
minimizer of the following optimization problem:

min
Φ:X→Z,g∈Fd

1

n
d̂eg(g ◦ Φ)

s.t. gi ◦ Φ ∈ H(hi), ∀i ∈ [n].

(10)

Then as n → ∞, Φ∗ learns the world model up to negations and permutations, i.e., there exists a
permutation i1, . . . , id of 1, . . . , d such that Φ∗

j (x) ∈ {±zij} for every j ∈ [d], with z = ψ−1(x).
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We make two remarks on this result:

• The reason why k-degree tasks facilitate world model learning is that, in effect, they induce a task
distribution in which lower-degree tasks on true latents are drawn with larger probabilities than in
the uniform setting. This overcomes the result in Theorem 4.4 by breaking the degree balance
between different representations when averaged over the task distribution: representations capable
of solving these lower-degree tasks in “cheaper” ways would now be favored.

• A limitation of Theorem 4.8 is that we requires a non-zero probability of explicitly sampling
degree-1 tasks, in which latent variables are also task outputs. However, we emphasize that this
probability is exponentially small as d becomes large, and we conjecture that it can be completely
removed in many settings. See Section D.6 for more discussion.

Connection to the linear representation hypothesis. A number of recent mechanistic interpretation
studies show that LLMs often represent abstract, interpretable features as directions in their interme-
diate representation space (Nanda et al., 2023; Marks & Tegmark, 2023; Gurnee & Tegmark, 2024).
Theorem 4.8 can be viewed as a provable, Boolean version of the emergence of such linear representa-
tions: permutations and negations are precisely all degree-1 Boolean functions, a natural counterpart
of degree-1 real polynomials (i.e., linear functions) in the real domain. The main significance of this
result is that even when proxy tasks involve complex, non-linear functions over true latent variables
z, we can still recover z up to very simple transforms despite the presence of such nonlinearity.

4.3 BENEFITS OF LEARNING WORLD MODELS

Up to now, we have presented sufficient conditions for learning world models. As a complement of
these results, this section demonstrates provable benefits of learning world models in the context of
an out-of-distribution generalization setting introduced by Abbe et al. (2023).

Theorem 4.9 (Benefits of learning world models). Let the latent variables during training be
uniformly sampled from the Hamming ball Br := {z ∈ {±1}d | #−1(z) ≤ r} with r < d, and let
those during testing be uniformly sampled from Z . Let h : {±1}m → {±1} be a downstream task
such that h ◦ ψ is a parity function with degree q ≥ k = ⌈log2

∑r
i=0

(
d
i

)
⌉. Then, if deg(h | ψ−1) ≥

q − r, the following hold: (i) the test mean square error (MSE) of any h∗ ∈ Hmin(h) is larger than
1; (ii) let Φ∗ be a representation that learns the world model up to negations and permutations as in
Theorem 4.8 and let g∗ be a function such that g∗ ◦ Φ∗ ∈ H(h), then the test MSE of g∗ ◦ Φ∗ is 0.

Remark 4.10. As also noted by Abbe et al. (2023), a practical scenario reflected by sampling from
Br is length generalization of transformers (Anil et al., 2022; Press et al., 2022). Here we show that
in this setting, a hierarchical realization with the world model is provably more generalizable than
any flat realization, despite that both of them achieve zero i.i.d. test error.

It has been widely believed that learning world models leads to better generalization (Li et al., 2023;
Richens & Everitt, 2024; Yildirim & Paul, 2024). In comparison, Theorem 4.9 indicates that such
benefits typically manifest when the conditional degree deg(h | ψ−1) of the downstream task h
is large enough. Technically, this is because for tasks with small deg(h | ψ−1), solutions using
world models still involve high-degree parity functions, whose learning is hampered by the restricted
sampling from Br. As a practical example, semantical representations of images can make it easier to
answer questions about high-level concepts (tasks with large deg(h | ψ−1)), yet may make it harder
to predict the intensity of a certain pixel (tasks with small or negative deg(h | ψ−1)). Together with
Theorems 4.4 and 4.8, this result suggests that a low-degree task distribution is essential for both
learning world models and exploiting its advantage.

4.4 IMPACT OF MODEL ARCHITECTURE

In the above analysis, we study the role of the low-degree bias with the assumption that the task
solutions perfectly adhere to it in the function space. Yet, practical training of neural networks is
often more involved than this abstraction. Although neural networks are known as universal function
approximators (Hornik et al., 1989; Funahashi, 1989), prior work has shown that models with
different architectures may represent the same function differently (Raghu et al., 2021). In particular,
embedded nonlinearities such as activation functions can steer how functions are represented by
neural networks (Xu et al., 2020; Ziyin et al., 2020; Teney et al., 2024).
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Motivated by this, in the following we analyze how different choices of basis in the Boolean
function space can impact world model learning. Informally, one may also view neural networks
as implementing functional bases through layer-by-layer function composition, and different neural
network architectures may induce different bases in the function space (Teney et al., 2024).

Notably, for a given input dimension n, the Fourier-Walsh transform uses parity functions χS as
a basis of the 2n-dimensional vector space Fn = {f : {±1} → R} (see Def. 3.1). To obtain a
different basis, we define a basis transform U , i.e., an invertible linear transform on Fn such that
{U(χS) | S ⊆ [n]} is a basis of Fn. The degree of a function f : {±1}n → R under the new basis
is then given by

degU (f) := max{deg(U−1(χS)) : f̂(S) ̸= 0}, (11)
where U−1 reflects the cost of using the new basis to represent the original one. As a result, the
low-degree bias under degU (·) may deviate from that under deg(·). To capture the effect of this, we
introduce the notion of basis compatibility.
Definition 4.11 (Compatibility). We say a basis transform U is compatible if deg(U(χS)) =
deg(χS), ∀S ⊆ [n],∀n.

In other words, a basis transform is compatible if it preserves the degrees of all basis functions. Our
next result shows the impact of basis compatibility on world model learning.
Theorem 4.12. Consider the same setting as in Theorem 4.8 with n→ ∞. Let U be a basis transform
and let the degrees of Φ and g be measured under the new basis {U(χS)}. Then, (i) if U is compatible,
Φ∗ learns the world model up to negations and permutations; (ii) there exists incompatible U such
that Φ∗ = T ◦ ψ−1, where T is an invertible transform on Z satisfying maxi∈[d] deg(T

−1
i ) ≥ k.

Theorem 4.12 implies that to facilitate world model learning, the model architecture should induce a
basis that preserves the degree of the “natural” basis under which low-degree proxy tasks are drawn.
Thus, we can also interpret basis compatibility as the compatibility between the model and the tasks.
This explains why neural networks with different activation functions can exhibit different complexity
biases (Abbe et al., 2023; Teney et al., 2024). Basis compatibility is also related to algorithmic
alignment (Xu et al., 2020), which suggests that tasks with algorithmic structures aligned with the
computational structures of neural networks could be learned more sample-efficiently. In comparison,
we focus on the identifiability of world models instead of sample efficiency, and we provide a unified
framework for analyzing similar concepts via the lens of the low-degree bias.

5 ALGORITHMIC IMPLICATIONS

In this section, we illustrate the algorithmic implications of basis compatibility through two represen-
tative tasks: polynomial extrapolation (Xu et al., 2021) and learning physical laws (Kang et al., 2024;
Motamed et al., 2025). The first task provides an illustrative example of our results in Section 4.4,
while the second is of greater practical interest for learning real-world models and is related to recent
efforts in developing video prediction models as world simulators (Brooks et al., 2024). While our
experiments are currently limited in scale and mainly serve as proof-of-concept demonstrations, we
view extending the ideas discussed in this section to broader contexts as an exciting future direction.

5.1 POLYNOMIAL EXTRAPOLATION

We begin by a synthetic task in which we train multilayer perceptrons (MLPs) to fit real polynomials
Pn(x) =

∑n
i=0 aix

n (see Section E.1 for details). The space of polynomials has a standard basis
{1, x, x2, . . .}, making it a natural counterpart of the Boolean function space with the parity basis.
Recovering all basis functions used by Pn could generate any polynomial by linearly combining
these basis functions, which enables extrapolation.

As shown by prior work (Xu et al., 2021) (see also Figure 2a), common ReLU MLPs cannot
extrapolate degree-k polynomials with k > 1 beyond the training region. Our framework explains
why this happens via the incompatibility between ReLU and the polynomial basis: ReLU MLPs can
learn a basis function f̂ that approximates f(x) = xk arbitrarily well in any finite training region, but
the simplest f̂ that fits the data is not f itself, which is expensive to represent using the composition
of ReLU. As a result, the actually learned f̂ differs from f and hence does not extrapolate well.

8



Published as a conference paper at ICLR 2025 Workshop World Models

Ground Truth
ReLU MLP
Ours

(a)
ReLU MLP Ours0.0

0.2

0.4

0.6

0.8

Te
st

 M
SE

ReLU MLP Ours0.0
0.6
1.2
1.8
2.4
3.0

Te
st

 M
SE

(b)
Parabolic Collision

0.16

0.29

0.07
0.13

Transformer
Ours

(c)

Figure 2: Empirical results. (a) An example of extrapolating a degree-3 polynomial. Shaded region
indicates the training region. (b) Violin plots of the test mean square error (MSE) of ReLU MLPs and
our models in extrapolating degree-2 (left) and degree-3 (right) polynomials. (c) Results for learning
physical laws. Each column indicates the task and out-of-distribution test MSE averaged over 5 runs.

Motivated by this explanation, here we provide a simple fix: replacing a portion of the ReLU
activation functions with functions that are more compatible with the polynomial basis. In practice,
we replace half of ReLU functions in each MLP layer by one of the two functions including the
identity function σ(x) = x and the quadratic function σ(x) = x2. Representing f(x) = xk would be
much easiler using these functions, and we thus expect that a neural network with the low-complexity
bias would then use them instead of the remaining ReLU despite the same expressive ability they
have, resulting in f̂ ≈ f . As shown in Figure 2b, this simple method indeed leads to significant
improvement in extrapolation. Please see Section F.1 for more results and discussion.

One may wonder that in this task, we still need to know the basis of the task a priori to achieve
basis compatibility. However, we emphasize that even without prior knowledge, we can still use
different activation functions simultaneously and rely on the low-complexity bias of neural networks
to self-adaptively select functions that are the most compatible with the task, as empirically shown in
our experiments. We thus conjecture that this approach could be quite universal. Indeed, in the next
section we show that exactly the same approach can also bring benefits in a distinct scenario.

5.2 LEARNING PHYSICAL LAWS

We now show that the approach in Section 5.1 also benefits a sequence prediction task aiming at
learning physical laws. Correctly abstracting fundamental physical laws is essential for any model
to be a real “world model” for the physical world (Motamed et al., 2025). Notably, a model that
“understands” the physical laws is expected to generalize these laws to unseen distributions rather than
fit them only in the training domain. Following Kang et al. (2024), we generate two types of object
motion sequences reflecting basic physical laws: (i) single-object parabolic motion, and (ii) two-object
elastic collision motion (see Section E.2 for more details). We train a transformer (Vaswani et al.,
2017) to predict the motion of objects conditional on the first few frames in the motion sequence. The
model is then evaluated in an out-of-distribution generalization setup with objects having different
initial velocities and sizes. To apply our method, we simply replace every MLP in the transformer
with our modified MLP in Section 5.1 (we also replace the remaining ReLUs with GELUs).

As shown in Figure 2c, our model achieves lower prediction error than transformer in both settings.
Note that both models achieve near zero training error. Thus, the fact that our model generalizes better
out-of-distribution is not because it fits the data better, but due to it better capturing the underlying
laws in object movements. See Section F.2 for the predicted motions from both models.

6 LIMITATIONS AND FUTURE WORK

This work is an initial step towards formally understanding world model learning, and we can see many
exciting future directions. (i) Neural networks in practice learn hierarchical representations (Bengio
et al., 2013), which may require a more structured modeling of the representation Φ. (ii) We do
not assume the latent variables to have any specific structure (e.g., causality between variables);
combining our analysis and the results in causal reasoning (Schölkopf et al., 2021; Richens & Everitt,
2024) would be interesting. (iii) We primarily focus on the low-complexity bias of neural networks;
considering other implicit bias (Allen-Zhu & Li, 2023; Zhang et al., 2024) and more fine-grained
complexity measures are also important directions for future work.
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A RELATED WORK

World models. The term “world model” in the machine learning context originates from Ha &
Schmidhuber (2018), who describe it as a human-like “mental model of the world” that learns an
abstract representation of information flow and can be used to predict future events. This definition
closely aligns with the concept of a “mental model” in cognitive science, i.e., an internal representation
of external reality (Craik, 1967), making it naturally connected to the field of representation learning
in machine learning (Bengio et al., 2013).

Recently, the remarkable capabilities of large language models (LLMs) have sparked a scientific
debate on whether these models merely exploit superficial statistical patterns to generate predictions
without genuine “understanding” of natural language (Bender et al., 2021; Mitchell, 2023), or whether
they develop models that serve as compact and interpretable representations of the underlying data
generation process. A series of studies have demonstrated the presence of internal representations
in language models trained on synthetic tasks (Li et al., 2023; Nanda et al., 2023; Jin & Rinard,
2024). For real-world LLMs, research in mechanistic interpretability suggests that these models learn
compact, interpretable, and causal features within their intermediate layers (Li et al., 2021; Bricken
et al., 2023; Marks & Tegmark, 2023; Gurnee & Tegmark, 2024). At the same time, many studies
report a significant decline in LLM performance on tasks that are assumed to be underrepresented in
their pre-training distribution (Wu et al., 2023; Berglund et al., 2024; Mirzadeh et al., 2024).

Beyond sequence models, world models have also gained attention in reinforcement learning (Ha &
Schmidhuber, 2018; LeCun, 2022; Xie et al., 2024), probabilistic learning (Friston et al., 2021; Wong
et al., 2023), and causal discovery (Richens & Everitt, 2024). However, despite the growing number
of empirical studies, the theoretical foundations of world model learning remain largely unexplored.

Latent variable recovery. Our definition of world models falls within a broad class of latent
variable recovery problems (Everett, 2013), where observable data is generated by latent variables
through an unknown generation function. It is well established that, without additional assumptions,
recovering the true latent variables from observed data is generally impossible if the generation
function is nonlinear (Hyvärinen & Pajunen, 1999; Khemakhem et al., 2020), a fundamental result in
non-linear independent component analysis (non-linear ICA).

To address this impossibility, subsequent research has explored various structural assumptions on
latent variables, such as conditional independence between the latent variables and an observable
auxiliary variable (Hyvarinen et al., 2019; Khemakhem et al., 2020; Lee et al., 2021), distributional
constraints (Zimmermann et al., 2021; Wei et al., 2021), and causal interventions (Von Kügelgen
et al., 2021; Ahuja et al., 2023; von Kügelgen et al., 2023). Some studies have also linked these
assumptions to contrastive learning (Hyvarinen et al., 2019; Tosh et al., 2021; Zimmermann et al.,
2021). However, incorporating such structural assumptions often leads to complex and less scalable
training paradigms compared to the pre-training framework of modern LLMs (i.e., next-token
prediction). As a result, these studies do not directly address the central question of our work: Can
the ongoing paradigm of LLMs learn world models? Meanwhile, the fact that LLMs already acquire
non-trivial representations (Li et al., 2021; Bricken et al., 2023; Marks & Tegmark, 2023; Gurnee
& Tegmark, 2024) suggests that they must leverage some form of implicit bias rather than explicit
structural assumptions on input data, which motivates our study.

Implicit bias of neural networks. Overparameterized neural networks have been shown to possess
the capacity to memorize entire training datasets (Zhang et al., 2017). However, their ability to
generalize well in many settings suggests that they exhibit implicit preferences for certain solu-
tions—commonly referred to as implicit bias. In simple models, such as linear models, random
feature models, and two-layer neural networks, a body of theoretical work demonstrates that (stochas-
tic) gradient descent imposes specific forms of implicit regularization on the learned solutions (Soudry
et al., 2018; Gunasekar et al., 2018a;b; Bartlett et al., 2020; Chizat et al., 2020; Lyu et al., 2021;
Allen-Zhu & Li, 2023; Andriushchenko et al., 2023; Abbe et al., 2023; Zhang et al., 2024).

Empirical studies further suggest that practical neural networks extend many of these implicit
regularization effects through a form of simplicity bias, favoring ”simpler” solutions over more
complex ones (Pérez et al., 2019; Kalimeris et al., 2019; Xu et al., 2019; Bhattamishra et al., 2023;
Huh et al., 2023; Zhao et al., 2024). However, the notion of ”simplicity” is often defined empirically
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and varies across studies. In this work, we formalize the concept of simplicity within our theoretical
framework and analyze its relationship to learning world models.

Complexity measures. Kolmogorov complexity (Li et al., 2008) in algorithmic learning theory
provides a unified framework for quantifying the complexity of any object, including functions.
However, it is not computable in general. In machine learning, conventional statistical learning
theory typically employs the VC dimension as a complexity measure to bound the generalization
error of models (Vapnik, 1999). More recent complexity measures include Rademacher and Gaussian
complexities (Bartlett & Mendelson, 2002). However, these measures primarily assess the complexity
of function classes rather than individual functions.

A growing body of research introduces complexity measures tailored for neural networks trained via
(stochastic) gradient descent (Bartlett et al., 2017; Jacot et al., 2018; Zhou et al., 2019; Lotfi et al.,
2022; Chatterjee & Sudijono, 2024), often leveraging them for generalization analysis. However,
these measures inherently depend on the neural network parameterization, rather than capturing
function complexity independently of specific parameterizations. Some studies propose alternative
complexity metrics inspired by Kolmogorov complexity in the machine learning context (Xu et al.,
2020; Liu et al., 2023), but these metrics are typically problem-specific and do not enable a direct
complexity analysis in the function space, unlike the approach we take in this work. See Section C
for more discussion on some common complexity measures.

B PRELIMINARIES ON BOOLEAN FUNCTION ANALYSIS

This section introduces basic definitions and properties of Boolean functions for readers who are not
familiar with Boolean function analysis. For a more detailed introduction, we recommend the first
few chapters of the book by O’Donnell (2014).

Following the convention in Boolean function analysis, throughout this work we use the term Boolean
functions to refer to functions with the form

f : {−1, 1}n → Y, (12)
where Y could be any subspace of Rd for an arbitrary integer d, such as R, {−1, 1}d, etc.

There are different ways to represent the input bits in the above definiton. A natural way is to
use 0 and 1 as elements of the field F2. In this way, a (single-output) Boolean function f with n
input coordinates (bits) is represented by f : {0, 1}n → {0, 1}. It is also convenient to use −1
and 1, thought as real numbers, and define f as a function from {−1, 1}n to {−1, 1}. The latter
representation can be easily transformed from the former one by the mapping b 7→ (−1)b over
{0, 1}. In our analysis, we will mostly use the latter representation as it is more compatible with the
Fourier-Walsh transform of Boolean functions.

Fourier-Walsh transform. As in Def. 3.1, every function {−1, 1}n → R can be expressed as a
multilinear polynomial, i.e., we have

f(x) =
∑
S⊆[n]

f̂(S)χS(x), (13)

where f̂(S) are Fourier-Walsh coefficients and χS(x) =
∏
i∈S xi are monomials, also called parity

functions. The name parity function is due to the fact that it computes the logical parity or XOR of the
bits. As an example, consider f = max2, i.e., the maximum function on 2 bits, and its Fourier-Walsh
transform is f(x1, x2) = 1

2 + 1
2x1 +

1
2x2 −

1
2x1x2.

The existence of Fourier-Walsh transform can be proved by construction, using an interpolation
method similar to constructing Lagrange polynomials. For each point a = (a1, . . . , an) ∈ {−1, 1}n,
define

1a(x) =
∏
i∈[n]

1 + aixi
2

. (14)

It is easy to verify that 1a(x) takes value 1 when x = a and 0 otherwise. We then have

f(x) =
∑

a∈{−1,1}n

f(a)1a(x) (15)
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and arrive at a polynomial representation of f . Since any factors of x2i ,∀i ∈ [n] can be replaced by 1,
we further know that this polynomial must be multilinear.

For functions f : Fn2 → R, we can also define their Fourier-Walsh transforms by extending the χS
notation using the mapping b 7→ (−1)b:

χS(x) = (−1)
∑

i∈S xi , (16)

where x ∈ Fn2 . We can thus write the Fourier-Walsh transform of f : Fn2 → R in the same form as
equation (13).

Parity functions, orthogonality, and Parseval’s Theorem. We define the inner product ⟨·, ·⟩ of
functions f : {−1, 1}n → R and g : {−1, 1}n → R by

⟨f, g⟩ = Ex∼U({−1,1}n)[f(x)g(x)]. (17)

A key fact about parity functions is that they are orthogonal under the above definition: for every
S, S′ ⊆ [n], we have

⟨χS , χS′⟩ =
{
1, S = S′

0, otherwise
. (18)

Consequently, if we consider the vector space V containing all functions f : {−1, 1}n → R, then
parity functions form an orthonormal basis of V . It can be verified that the Fourier-Walsh coefficients
in equation (13) satisfy

f̂(S) = ⟨f, χS⟩ (19)
for every S ⊆ [n].

Parseval’s Theorem shows that for every f : {−1, 1}n → R,

⟨f, f⟩ =
∑
S⊆[n]

f̂(S)2. (20)

In particular, if f is Boolean-valued, then ⟨f, f⟩ = 1. The uniqueness of the Fourier-Walsh transform
of Boolean functions can also be proved using the Parseval’s Theorem (O’Donnell, 2014).

C DISCUSSION ON BOOLEAN COMPLEXITY MEASURES

Besides the Boolean complexity measures considered by this work, there are also continuous approxi-
mations of Kolmogorov complexity, e.g., continuous complexity measures based on standard Fourier
transform, the order of approximation polynomials, or compression (Xu et al., 2019; Pérez et al.,
2019; Jiang et al., 2023; Teney et al., 2024). However, an important downside of these continuous
complexity measures is that they do not apply to arbitrary continuous functions, neither constituting
a basis of the continuous function space, which makes them less amenable to theoretical analysis.

For example, the linear function f(x) = ax+ b, x ∈ R does not have a standard Fourier transform
since it is not absolutely integrable. Even if we constrain it to some finite interval [−L,L] and
periodically extend it across the real axis, the resulting Fourier transform would involve frequencies
up to infinity, suggesting infinite complexity if we use the highest frequency as the complexity measure.
This is in contrast to the empirically observed simplicity bias of gradient descent, where linear models
are often learned first (see e.g., Kalimeris et al. (2019)). The measure of polynomial order has a
similar problem since not all continuous functions can be linearly represented by a set of polynomials.
In fact, the degree of Boolean functions could be viewed as a “discrete” version of polynomial order,
but it is more principled since the Boolean function space indeed has a polynomial basis given by the
Fourier-Walsh transform. Finally, we found other compression-based approximations of Kolmogorov
complexity hard to analyze theoretically since they rely on specific compression algorithms.

D PROOFS

This section provides complete proofs of all theorems in the main text, organized as follows.

• In Section D.1, we introduce some definitions and technical lemmas.
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• In Section D.2, we provide the proof of Theorem 4.1.

• In Section D.3, we provide the proof of Theorem 4.3.

• In Section D.4, we provide the proof of Theorem 4.4.

• In Section D.5, we provide the proof of Corollary 4.7.

• In Section D.6, we provide the proof of Theorem 4.8.

• In Section D.7, we provide the proof of Theorem 4.9.

• In Section D.8, we provide the proof of Theorem 4.12.

Notation and conventions. We use [n] to denote the set {1, . . . , n} for positive integers n. For
a set S, we denote its cardinality by |S|. For a probability distribution p over some set S, we
denote by supp(p) := {s ∈ S | p(s) > 0} its support. For n functions f1, . . . , fn, we use
f = (f1, . . . , fn) to denote the multi-output function satisfying that f(x) = (f1(x), . . . , fn(x));
conversely, for a function f with n output dimensions, we use fi to denote the function mapping
the inputs of f to its i-th output dimension for i ∈ [n]. As defined in the main text, we use the
notation Fn = {f : {±1}d → R} and Fn

k = {f : {±1}d → R | deg(f) ≤ k} for positive integers
n. Note that although both Fn and Fn

k are infinite, only finite functions in them are implementable
by computers due to bounded precision. Therefore, in our proofs we will treat them as finite yet
exponentially large sets. This enables us to use, e.g., |Fn| and

∑
h′∈Fn deg(h′) in our proofs and

helps avoid non-essential technical nuances.

D.1 TECHNICAL LEMMAS

This section presents additional definitions and technical lemmas that may come in handy in our
proofs. We begin by introducing a lemma that upper-bounds the degree of min-degree solutions for
every task with d-dimensional latent variables.

Lemma D.1. Suppose that the input data variable x ∈ X ⊆ {−1, 1}m is generated as in Def. 2.1 by
a d-dimensional lantent variable z ∈ Z = {−1, 1}d, d ≤ m. Then, for every task h : X → {−1, 1},
we have

deg(Hmin(h)) ≤ d. (21)

Proof. The case of d = m is trivial, so in what follows we consider the case of d > m. We first
prove the following lemma:

Lemma D.2. For every S = {i1, . . . , id+1} ⊆ [m] with |S| = d+ 1, there exist b1, . . . , bd+1 with
bi ∈ {−1, 1},∀i ∈ [d+ 1] such that

∏
j∈[d+1](xij + bj) = 0 holds for every x ∈ X .

Proof of Lemma D.2. We can prove Lemma D.2 by contradiction: assume that it does not hold,
i.e., for some S, there exists x ∈ X such that

∏
j∈[d+1](xij + bj) ̸= 0, then we must have xij =

bj ,∀j ∈ [d+1]. Since b1, . . . , bd+1 are arbitrary, by applying this argument to every (b1, . . . , bd+1) ∈
{−1, 1}d+1 we can find 2d+1 elements in X that differ in at least one coordinate in S, which yields
|X | ≥ 2d+1. On the other hand, recall that we assume supp(z) = Z . Due to the invertibility of f ,
we have |X | = |Z| = 2d, which contradicts |X | ≥ 2d+1. Hence, the initial assumption is false and
Lemma D.2 holds.

Applying Lemma D.2, we have that for every degree-d+ 1 subset S = {i1, . . . , id+1} ⊆ [m],∏
j∈[d+1]

(xij + bj) =
∏
j∈S

xj +
∑

S′⊂S,|S′|≤d

bS′

∏
k∈S′

xk = 0, ∀x ∈ X (22)

holds for some b1, . . . , bd+1, where bS′ ∈ {−1, 1} for every S′ ⊂ S. This means that we
can thus replace every degree-d + 1 monomial χS(x) =

∏
j∈S xj by a degree-d polynomial

−
∑
S′∈2S ,|S′|≤d bS′

∏
k∈S′ xk. By iteratively using this replacement in the Fourier-Walsh transform

of h (Def. 3.1), one can eventually obtain a polynomial with degree d or less without changing the
value of the function on every x ∈ X . This completes the proof.
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Remark D.3. Without the latent structure, a trivial upper bound of the min-degree solution of any
task h is deg(Hmin(h)) ≤ m. Hence, Lemma D.1 is an example of how the min-degree bias can
exploit the latent structure of data by favoring low-degree solutions with degree independent of the
data dimension m.

Before presenting our next lemma, we first introduce the concept of influence for Boolean functions.
Definition D.4 (Influence). Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then, the influence
of coordinate i, i ∈ [n] on f is defined as

Infi(f) = Prx∼U({−1,1}n)[f(x) ̸= f(x⊕i)], (23)

where x⊕i = (x1, . . . , xi−1,−xi, xi+1, . . . , xn).

By Parseval’s Theorem, we have a formula between influence and the Fourier-Walsh coeffi-
cients (O’Donnell, 2014).
Lemma D.5. For f : {−1, 1}n → {−1, 1} and every i ∈ [n], the following holds:

Infi(f) =
∑

S∈{S′⊆[n] | i∈S′}

f̂(S)2, (24)

where f̂(S) is the Fourier-Walsh coefficients of f as in Def. 3.1.

With the above definitions, our next lemma introduces a necessary and sufficient condition of bijective
Boolean functions being degree-1, based on the restricted influence of all input coordinates.
Lemma D.6. Let f : {−1, 1}n → {−1, 1}n be a bijective function and let 1 ≤ k ≤ n − 1 be an
integer. Then, we have deg(fi) = 1,∀i ∈ [n] if and only if for every S ⊂ [n] with |S| = k, there
exists T ⊂ [n] with |T | = k such that:

• for every j ∈ T , Infi(fj) > 0 for at least one i ∈ S;

• for every j ∈ [n] \ T , Infi(fj) = 0 for every i ∈ S.

Proof. Note that deg(fi) = 1,∀i ∈ [n] together with the fact that f is bijective indicates the existence
of a permutation i1, . . . , in of 1, . . . , n such that fj(x) = xij or fj(x) = −xij for every j ∈ [n],
which trivially gives the result. In the following we prove the other direction. Note that the case of
k = 1 is trivial. Hence, to prove that deg(fi) = 1, it suffices to prove (*): for every i ∈ [n], there
exists j ∈ [n] such that Infi(fj) > 0 and Infi(fm) = 0,∀m ̸= j,m ∈ [n], for every 2 ≤ k ≤ n− 1.

We first prove that for every S, T is unique, by contradiction. Suppose that for some S, T is not
unique, i.e., there exists T ′ ̸= T ⊂ [n] such that T ′ satisfies the condition. Then, by Def. D.4,
changing the values of the coordinates xi, i ∈ S can change only the values of fj(x), j ∈ T ∩ T ′ but
not the values of other fj(x), j ∈ [n]\(T∪T ′). This results in |{f(x),x ∈ X}| ≤ 2n−|S| ·2|T∩T ′| =

2n−k+|T∩T ′| < 2n, contradicting the bijectivity of f . Therefore, the assumption is false and T is
unique. This allows us to define a mapping ϕ : S 7→ T .

Let Sk = {S ⊂ [n] | |S| = k} be the set of all subsets of [n] with cardinality k. We then prove that
ϕ : S 7→ T is bijective on Sk. To this end, it suffices to show that every S ̸= S′ ∈ Sk are mapped to
different T . This can be similarly proved by contradiction as in proving the uniqueness of T : if it is
false, then there exists a subset S′′ = S ∪ S′ and T such that Infi(fj) = 0, ∀i ∈ S′′, j ∈ [n] \ T .
Then, by Def. D.4, changing the values of the coordinates xi, i ∈ S′′ can change only the values
of fj(x), j ∈ T but not the values of other fj(x), j /∈ T . This results in |{f(x),x ∈ X}| ≤
2|T | · 2n−|S′′| = 2n+k−|S′′| < 2n, contradicting the bijectivity of f . Therefore, the assumption is
false and every S ̸= S′ ∈ Sk are mapped to different T .

Given that ϕ : S 7→ T is bijective, we know that for every subset S ⊆ Sk, there exists a unique
subset T = {T = ϕ(S) | S ∈ S} ⊆ Sk such that |S| = |T |. We then move on to prove the
proposition (*) by contradiction: suppose it is false, i.e., for some i ∈ [n], there exists U ⊂ [n]
with |U | ≥ 2 such that Infi(fj) > 0 for every j ∈ U and Infi(fj) = 0 for every j ∈ [n] \ U . If
|U | > k, then for any S such that i ∈ S, there does not exist a feasible T , which is a contradiction. If
2 ≤ |U | ≤ k, consider S = {S ⊂ Sk | i ∈ S} with |S| = Ck−1

n−1. By the definition of ϕ, we know
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that T ⊆ {T ⊂ Sk | U ⊆ T}, which gives |T | ≤ C
k−|U |
n−|U | < Ck−1

n−1 = |S|. Thus, the assumption is
false and proposition (*) is true. This completes the proof.

Our next lemma shows that any bijective transform on {−1, 1}d can induce a bijective transform on
Fd.
Lemma D.7. Let T : {−1, 1}d → {−1, 1}d be a bijective transform. Then, Fd ◦ T = Fd.

Proof. It suffices to show that the mapping h′ 7→ h′ ◦ T for h′ ∈ Fd is bijective. On one hand, it
is obvious that h′ ◦ T ∈ Fd for every h′ ∈ Fd. On the other hand, for each h′ ∈ Fd, there exists
h′′ = h′ ◦ T−1 such that h′′ ◦ T = h′. This completes the proof.

We then present a lemma from Abbe et al. (2023) that guarantees the uniqueness of low-degree
solutions when the training data is sampled from a Hamming ball.
Lemma D.8 (Abbe et al. (2023), Theorem 5.1). Consider a Boolean function f : {±1}d → R.
Then, there exists a unique function fr : {±1}d → R such that for every z ∈ Br := {z ∈ {±1}d |
#−1(z) ≤ r}, we have fr(z) = f(z) and deg(fr) ≤ r.

Our next lemma shows that a bijection on Fn that preserves the degree of all parity functions
preserves the degree of all functions.
Lemma D.9. Let U : Fn → Fn be an invertible linear transform. If deg(U(χS)) = deg(χS) for
every S ⊆ [n], then we have

deg(U(f)) = deg(f), ∀f ∈ Fn. (25)

Proof. By the linearity of U , we have

U(f) = U

( ∑
S⊆[n]

f̂(S)χS

)
=

∑
S⊆[n]

f̂(S)U(χS). (26)

It then follows from Def. 3.2 that

deg(U(f)) = max
{
deg(U(χS)) : f̂(S) ̸= 0

}
= max

{
deg(χS) : f̂(S) ̸= 0

}
= deg(f). (27)

This completes the proof.

D.2 PROOF OF THEOREM 4.1

Proof. Since g ◦ Φ is an realization of h, we have g ◦ Φ ∈ H(h). This gives

d̂eg(h∗) = deg(h∗) = deg(Hmin(h)) ≤ deg(g ◦ Φ). (28)

Thus, it suffices to prove that deg(g ◦ Φ) ≤ d̂eg(g ◦ Φ) for every g : Z → R and Φ : X → Z . Let
the Fourier-Walsh transform of g and Φi, i ∈ [d] be

g(z) =
∑
G⊆[d]

ĝ(G)
∏
i∈G

zi (29)

and
Φi(x) =

∑
S⊆[m]

Φ̂i(S)
∏
j∈S

xj , (30)

respectively. Plugging (30) into (29) with zi = Φi(x) gives

(g ◦ Φ)(x) =
∑
G⊆[d]

ĝ(G)
∏
i∈G

 ∑
S⊆[m]

Φ̂i(S)
∏
k∈S

xk

 (31)

=
∑

G∈{G′⊆[d],ĝ(G′ )̸=0}

ĝ(G)
∏
i∈G

 ∑
S∈{S′⊆[m],Φ̂i(S′ )̸=0}

Φ̂i(S)
∏
k∈S

xk

 . (32)
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We thus have

deg(g ◦ Φ) ≤ max
G∈{G′⊆[d],ĝ(G′ )̸=0}

∑
i∈G

max
S∈{S′⊆[m],Φ̂i(S′) ̸=0}

|S| (33)

≤ max
G⊆[d]

∑
i∈G

max
S∈{S′⊆[m],Φ̂i(S′ )̸=0}

|S| (34)

≤
∑
i∈[d]

max
S∈{S′⊆[m],Φ̂i(S′ )̸=0}

|S| (35)

=
∑
i∈[d]

deg(Φi). (36)

Meanwhile, Def. 3.4 gives

d̂eg(g ◦ Φ) = deg(g) + deg(Φ) = deg(g) +
∑
i∈[d]

deg(Φi) (37)

≥
∑
i∈[d]

deg(Φi). (38)

Therefore, we have deg(g ◦ Φ) ≤ d̂eg(g ◦ Φ). This completes the proof.

D.3 PROOF OF THEOREM 4.3

Proof. By Lemma D.1, we can upper-bound the degree of each Φ∗
j , j ∈ [d] by

deg(Φ∗
j ) ≤ d. (39)

Expanding the LHS of (7) then gives

d̂eg(h∗)− d̂eg(g ◦ Φ∗) =
∑
i∈[n]

deg(h∗i )−
∑
i∈[n]

deg(gi)−
∑
j∈[d]

deg(Φ∗
j ) (40)

≥
∑
i∈[n]

deg(h∗i )−
∑
i∈[n]

deg(gi)− d2. (41)

Note that h∗i ∈ Hmin(h) and gi ◦ Φ is an realization of hi for every i ∈ [n]. By Def. 3.6, we have

deg(hi | Φ∗) = deg(h∗i )− deg(gi),∀i ∈ [n]. (42)

Plugging equation (42) into (41) completes the proof.

D.4 PROOF OF THEOREM 4.4

Proof. Note that for every task h ∈ Fd ◦ ψ−1, we can write h = h′ ◦ ψ−1 for some h′ ∈ Fd. Thus,
for every g : Z → R and Φ : X → Z such that g ◦ Φ ∈ H(h), we have (g ◦ Φ)(x) = h(x) =
(h′ ◦ ψ−1)(x),∀x ∈ X , which amounts to g(z) = (h′ ◦ T−1)(z),∀z ∈ {−1, 1}d.

For every h1, . . . , hn, g : Z → {−1, 1}n, and Φ : X → Z such that gi ◦ Φ ∈ H(hi) for every
i ∈ [n], we have

lim
n→∞

1

n
d̂eg(g ◦ Φ) = lim

n→∞

 1

n

∑
j∈[d]

deg(Φj) +
1

n

∑
i∈[n]

deg(gi)

 . (43)

Applying Lemma D.1, we have deg(Φ)j ≤ d,∀j ∈ [d]. This gives

lim
n→∞

1

n

∑
j∈[d]

deg(Φj) = 0. (44)
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Meanwhile, since hi : X → R, i ∈ [n] are independently and uniformly sampled from Fd ◦ ψ−1, we
have

lim
n→∞

1

n

∑
i∈[n]

deg(gi) = Eh∼U(Fd◦ψ−1)deg(h ◦ f ◦ T−1) (45)

= Eh′∼U(Fd)deg(h
′ ◦ T−1) (46)

=
1

|Fd|
∑
h′∈Fd

deg(h′ ◦ T−1). (47)

By Lemma D.7, we have Fd ◦ T−1 = Fd. This gives∑
h′∈Fd

deg(h′ ◦ T−1) =
∑
h′∈Fd

deg(h′). (48)

Plugging equations (44), (47), and (48) into equation (43) gives

lim
n→∞

1

n
d̂eg(g ◦ Φ) = 1

|Fd|
∑
h′∈Fd

deg(h′), (49)

which is a constant independent of T (and thus independent of Φ). Therefore, for any two vi-
able representations Φ,Φ′ and g, g′ ∈ (Fd)n with gi ◦ Φ and g′i ◦ Φ′,∀i ∈ [n], we must have

limn→∞
1
n

(
d̂eg(g ◦ Φ)− d̂eg(g′ ◦ Φ′)

)
= 0. This completes the proof.

D.5 PROOF OF COROLLARY 4.7

Proof. By Def. 3.6, we have
deg(h | ψ−1) > 0 ⇐⇒ deg(Hmin(h)) > deg(g) (50)

for g ◦ ψ−1 ∈ H(h). By Lemma D.1, we have deg(Hmin(h)) ≤ d for every h : X → R. Thus, for
deg(Hmin(h)) > deg(g) to hold, we must have deg(h ◦ ψ) = deg(g) ≤ d − 1. By Def. 4.6, this
gives h ∈ Fd

d−1 ◦ ψ−1, completing the proof.

D.6 PROOF OF THEOREM 4.8

Proof. We first prove the following lemma that characterizes the averaged degree change for Boolean
function in Fd

k when composed with invertible transforms.

Lemma D.10. For every integer 1 ≤ k ≤ d and every bijection T : {−1, 1}d → {−1, 1}d, we have∑
h′∈Fd

k

deg(h′ ◦ T ) ≥
∑
h′∈Fd

k

deg(h′). (51)

In particular, when k = 1, the equality holds if and only if deg(Ti) = 1 for every i ∈ [d].

Proof of Lemma D.10. For every G ⊆ Fd, let G ◦ T = {h′ ◦ T | h′ ∈ G}. By Lemma D.7, we know
that the mapping h′ 7→ h′ ◦ T is bijective on Fd. We thus have |Fd

k ◦ T | = |Fd
k | for every k. For

Fd
k ◦ T , there are two possibilities:

1. Fd
k ◦ T = Fd

k . This immediately gives∑
h′∈Fd

k

deg(h′ ◦ T ) =
∑

h′∈Fd
k◦T

deg(h′) =
∑
h′∈Fd

k

deg(h′). (52)

2. Fd
k ◦ T ̸= Fd

k . We can then decompose
∑
h′∈Fd

k
deg(h′ ◦ T ) as follows:∑

h′∈Fd
k

deg(h′ ◦ T ) =
∑

h′∈(Fd
k◦T )∩Fd

k

deg(h′) +
∑

h′∈(Fd
k◦T )∩(Fd\Fd

k )

deg(h′) (53)

=
∑
h′∈Fd

k

deg(h′) +
∑

h′∈(Fd
k◦T )∩(Fd\Fd

k )

deg(h′)−
∑

h′∈Fd
k\(F

d
k◦T )

deg(h′)

(54)
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Note that |Fd
k ◦T | = |Fd

k | gives |(Fd
k ◦T )∩ (Fd \Fd

k )| = |Fd
k \ (Fd

k ◦T )|. Meanwhile, by
Def. 4.6, we have deg(h′) ≤ k for every h′ ∈ Fd

k and deg(h′) > k for every h′ ∈ Fd \ Fd
k .

Taking these two facts together, we have∑
h′∈(Fd

k◦T )∩(Fd\Fd
k )

deg(h′)−
∑

h′∈Fd
k\(F

d
k◦T )

deg(h′) > 0. (55)

Plugging equation (55) into equation (54) then gives
∑
h′∈Fd

k
deg(h′ ◦ T ) >∑

h′∈Fd
k
deg(h′).

Combining the above two cases, we conclude that
∑
h′∈Fd

k
deg(h′ ◦T ) ≥

∑
h′∈Fd

k
deg(h′) for every

1 ≤ k ≤ d. Note that the above analysis also gives a necessary and sufficient condition for the
equality to hold: Fd

k ◦ T = Fd
k .

In particular, when k = 1,
∑
h′∈Fd

k
deg(h′ ◦ T ) =

∑
h′∈Fd

k
deg(h′) holds only for T satisfying that

Fd
1 ◦ T = Fd

1 . Note that for every non-constant function h′ ∈ Fd
1 , there exists i ∈ [d] such that

(h′ ◦ T )(z) ∈ {Ti(z),−Ti(z)} for every z ∈ {−1, 1}d. Due to the arbitrariness of h′, we must have
deg(Ti) = 1 for every i ∈ [d].

We now move on to prove Theorem 4.8. Our aim is to prove that the minimizer (Φ∗, g∗) of the
optimization problem (10) learns the world model by negations and permutations when the number
of tasks n→ ∞. Due to equations (43) and (44), the original problem equals to

min
Φ:X→Z,g∈Fd

lim
n→∞

1

n

∑
i∈[n]

deg(gi)

s.t. gi ◦ Φ ∈ H(hi), ∀i ∈ [n].

(56)

Due to the constraint gi ◦Φ ∈ H(hi),∀i ∈ [n], we know that there must exist a bijection T : Z → Z
such that for every x ∈ X , Φ(x) = T (z), with z = ψ−1(x) being the true latent variable. Therefore,
it remains to prove the existence of a bijection T : Z → Z with deg(Ti) = 1,∀i ∈ [d] such that for
every x ∈ X , Φ∗(x) = T (z).

For every gi ◦ Φ ∈ H(hi), we have hi = gi ◦ Φ = gi ◦ T ◦ ψ−1. We then have

lim
n→∞

1

n

∑
i∈[n]

deg(gi) = Ek∼Discrete(p1,...,pd)Eh∼U(Fd
k◦ψ−1)deg(h ◦ f ◦ T−1) (57)

= Ek∼Discrete(p1,...,pd)Eh′∼U(Fd
k )
deg(h′ ◦ T−1) (58)

=
∑
k∈[d]

pk ·
1

|Fd
k |

∑
h′∈Fd

k

deg(h′ ◦ T−1). (59)

By Lemma D.10, we have ∑
h′∈Fd

k

deg(h′ ◦ T−1) ≥
∑
h′∈Fd

k

deg(h′) (60)

for every k ∈ [d]. Plugging (60) into equation (59) gives

lim
n→∞

1

n

∑
i∈[n]

deg(gi) ≥
∑
k∈[d]

pk ·
1

|Fd
k |

∑
h′∈Fd

k

deg(h′), (61)

where the equality holds only if deg(Ti) = 1 for every i ∈ [d]. This completes the proof.

Remark D.11. A limitation of Theorem 4.8 is that we requires a non-zero probability of explicitly
sampling degree-1 tasks (i.e., p1 > 0), in which latent variables are essentially observed as task
outputs. If p1 = 0, we can still prove equation (61) by applying Lemma D.10; in other words, we can
still prove that every representation Φ∗ that learns the world model up to negations and permutations
is a minimizer of the optimization problem (10). However, such minimizers may not be unique,
because Lemma D.10 only proves the equivalence between the equality and deg(Ti) = 1,∀i ∈ [d]
when k = 1 but not 1 < k ≤ d− 1. In fact, we can construct hard examples showing that in some
cases, there indeed exists other Φ that minimizes

∑
h′∈Fd

k
deg(h′ ◦ T ) for every k ∈ [d] \ {1}.
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Example D.12. Let d = 3 and let T : {−1, 1}3 → {−1, 1}3 be a bijective transform defined as

T1(z) = z1, T2(z) = z1z2, T3(z) = z1z3. (62)

One can easily verify that for every k ∈ {2, 3}, every parity function χS(T (z)) =
∏
i∈S Ti(z) with

|S| ≤ k satisfy deg(χS(T (z))) ≤ k. By the Fourier-Walsh transform, this amounts to F3
k ◦ T = F3

k
for k = {2, 3}, which gives

∑
h′∈F3

k
deg(h′ ◦ T ) =

∑
h′∈F3

k
deg(h′) by the proof of Lemma D.10.

Thus, in this case we require p1 > 0 to ensure that the representation Φ satisfying Φ(x) = T−1(z)
for every x ∈ X and z = ψ−1(x) is not a minimizer of (10).

Nevertheless, we do believe that cases like Example D.12 are rare. This is because by the proof
of Lemma D.10, such examples must construct a bijection T such that Fd

k ◦ T = Fd
k for every

k ∈ [d] \ {1}, which is increasingly difficult when d becomes large. For example, if we increase the
dimension of Z from 3 to 4 in Example D.12 and keep T1, T2 and T3 as is, it could be verified that
there does not exist a T4 : {1, 1}3 → {−1, 1} satisfying that F4

k ◦ T = F4
k for every k ∈ {2, 3}. We

believe that this intuition could be rigorously proved using e.g., Lemma D.6 or other techniques and
leave it as future work.

D.7 PROOF OF THEOREM 4.9

Proof. We first prove the following lemma:

Lemma D.13. Assume that the latent variables are uniformly sampled from the Hamming ball
Br = {z ∈ {±1}d | #−1(z) ≤ r} with r < d. Then, for every task h, we have

deg(Hmin(h)) ≤
⌈
log2

r∑
i=0

(
d

r

)⌉
. (63)

Proof of Lemma D.13. The main idea of the proof is similar to that of Lemma D.1 and Lemma D.2.

Let k = ⌈log2
∑r
i=0

(
d
r

)
⌉. Due to the invertibility of ψ, we know that |{x | p(ψ−1(x)) > 0}| =

|Br| =
∑r
i=0

(
d
r

)
. Therefore, for any S = {i1, . . . , ik′} ⊆ [d] such that k′ > k, there must exist

b1, . . . , bk′ ∈ {−1, 1}k′ such that∏
j∈[k′]

(xij + bj) =
∏
j∈S

xj +
∑

S′⊂S,|S′|≤k′−1

bS′

∏
k∈S′

xk = 0 (64)

for every x ∈ X ′ := {x | p(ψ−1(x)) > 0}, where bS′ ∈ {−1, 1} for every S′ ⊂ S—if this does
not hold, then we have |X ′| ≥ 2k

′
> 2k ≥

∑r
i=0

(
d
r

)
, which contradicts |X ′| =

∑r
i=0

(
d
r

)
. By

equation (64), we can replace every degree-k′ monomial χS(x) =
∏
j∈S xj by a degree-k′ − 1

polynomial −
∑
S′⊂S,|S′|≤k′−1 bS′

∏
k∈S′ xk. Iteratively using this replacement in the Fourier-Walsh

transform of h gives the desired result.

We can now prove Theorem 4.9.

Proof of (i). By Lemma D.13, for every h∗ ∈ Hmin(h), we have deg(h∗) ≤ k = ⌈log2
∑r
i=0

(
d
r

)
⌉.

The test MSE of any h∗ thus satisfies

err(h∗) = Ez∼U({−1,1}d)[(h
∗(x)− h(x))2] = Ez∼U({−1,1}d)[h

∗(x)2 + h(x)2 − 2h∗(x)h(x)]
(65)

= 1 + Ez∼U({−1,1}d)h
∗(x)2 − 2Ez∼U({−1,1}d)h

∗(ψ(z))h(ψ(z)) (66)

> 1− 2⟨h∗ ◦ ψ, h ◦ ψ⟩ (67)

We then prove that k ≥ r + 1. To see this, recall that d > r and one can directly verify

k =

⌈
log2

r∑
i=0

(
d

r

)⌉
≥

⌈
log2

r∑
i=0

(
r + 1

r

)⌉
=

⌈
log2

(
2r+1 − 1

)⌉
= r + 1. (68)
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Recall that h ◦ ψ is a parity function χS with deg(χS) = |S| = q ≥ k. Meanwhile, since deg(h |
ψ−1) ≥ q− r, by Def. 3.6 we have deg(h∗)− deg(g) ≥ q− r, i.e., deg(g) ≤ deg(h∗)− q+ r ≤ r,
for every g satisfying g ◦ ψ−1 = h∗. This gives deg(h∗ ◦ ψ) ≤ r. Recall equation (19), we have

⟨h∗ ◦ ψ, h ◦ ψ⟩ = ĥ∗ ◦ ψ(S) = 0. (69)

Plugging equation (69) into (67) completes the proof.

Proof of (ii). Since deg(h | ψ−1) ≥ q − r and Φ∗ learns the world model up to negations and
permutations, we have deg(h | Φ∗) = deg(h | ψ−1) ≥ q − r and hence deg(g∗) ≤ r. By
Lemma D.8, g∗ is unique. We thus have h = g∗ ◦ Φ∗, which gives the desired result.

D.8 PROOF OF THEOREM 4.12

Proof. We first prove the following lemma:

Lemma D.14. If U is compatible, then degU (f) = deg(f) holds for every f ∈ Fn.

Proof of Lemma D.14. By Defintion 4.11, we have deg(U(χS)) = deg(χS) for every compatible U .
Applying Lemma D.9, we further have deg(U(χS)) = deg(χS) = deg(U−1(χS)). This gives

degU (f) = max
{
deg(U−1(χS)) : f̂(S) ̸= 0

}
= max

{
deg(χS) : f̂(S) ̸= 0

}
= deg(f), (70)

which completes the proof.

We are now ready to prove Theorem 4.12. Note that under the new basis {U(χS)}, the original
optimization problem (10) becomes (also applying the equivalence between (10) and (56)):

min
Φ:X→Z,g∈Fd

lim
n→∞

1

n

∑
i∈[n]

degU (gi)

s.t. gi ◦ Φ ∈ H(hi), ∀i ∈ [n].

(71)

Proof of (i). If U is compatible, then by Lemma D.14 we have degU (f) = deg(f) for any Boolean
function f . This immediately gives the equivalence between (71) and (56) and hence their minimizers.
We thus have that Φ∗ learns the world model up to negations and permutations as in Theorem 4.8.

Proof of (ii). If U is not compatible, then due to the invertibility of U , there exists at least one h′′ ∈ Fd
k

such that degU (h
′′ ◦ T−1) > deg(h′′) for some k < d. Since composing Boolean functions with

degree-1 transforms does not change the degree of functions, we have degU (h
′′ ◦ T−1) > deg(h′′)

and hence
∑
h′∈Fd

k
degU (h

′ ◦ T−1) >
∑
h′∈Fd

k
deg(h′).

In particular, let {χ1, . . . , χ2d} be the set of all parity functions with d-dimensional inputs. For every
k ∈ [d], we can construct U such that:

1. U(χ1), . . . , U(χ2d) is a permutation of χ1, . . . , χ2d ;

2. For every i ∈ [d], we have U(χ{i}) = χS for some S ⊆ [d] with |S| = k and U(χS) =
χ{i}.

Recall that degU (h
′ ◦ T−1) = deg(U−1(h′ ◦ T−1)). Therefore, to ensure that

∑
h′∈Fd

k
degU (h

′ ◦
T−1) =

∑
h′∈Fd

k
deg(h′) for k = 1, we thus must have T−1

j = χS for some S ⊆ [d] and j ∈ [d],
with |S| = k. This means

max
i∈[d]

deg
(
T−1
i

)
≥ deg

(
T−1
j

)
= k, (72)

which gives the desired result.

E EXPERIMENT DETAILS

This section presents additional experiment details. All of our experiments were conducted using
PyTorch (Paszke et al., 2019) and on NVIDIA V100, NVIDIA A100, and NVIDIA H100 GPUs.
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(a) An example from the training distribution (sampled 5 frames with uniform spacing).

(b) An example from the test distribution with a larger radius and a larger initial velocity (sampled 5 frames with
uniform spacing).

Figure 3: Two visualized examples of the parabolic motion.

E.1 POLYNOMIAL EXTRAPOLATION

Dataset. We consider fitting and extrapolating degree-n polynomials with the form Pn(x) =∑n
i=0 aix

n. Given an input x ∈ R, the label is given by y = Pn(x). In our experiments, we
consider three families of polynomials with degree 1, 2, and 3. In each family, every coefficient
ai, i ∈ {0, 1, . . . , n} is uniformly sampled from [0, 1). In our experiments, we sample 50 polynomials
in each family for the violin plots. Other data parameters are as follows:

• Training, validation, and test data are uniformly sampled from [−1, 1), [−1, 1), and [−2, 2),
respectively.

• For each polynomial instance, we sample 50, 000 training data, 1, 000 validation data, and
10, 000 test data.

Model and hyperparameters. We consider MLPs with the following architecture:

MLP(x) = W (d)σ
(
W (d−1)σ

(
. . . σ

(
W (1)x+ b(1)

))
+ b(d−1)

)
+ b(d), (73)

where σ is the activation function and for every i ∈ [d], W (i) and b(i) are weights and bias of the i-th
layer, respectively. For ReLU MLPs, all activation functions are set to ReLU; for our architecture, we
replace half of ReLUs in every layer by the identity function σ(x) = x and the quadratic function
σ(x) = x2, with the number of identity functions and quadratic functions being the same (i.e., both
functions constitute 25% activation functions, while the remaining 50% are still ReLUs). We search
the following hyperparameters for MLPs:

• Number of layers d is set to 4.

• Width of each W (i) from {128, 256, 512}.

We train all MLPs with the mean square error (MSE) loss with the AdamW optimizer (Loshchilov &
Hutter, 2019). Training hyperparameters are as follows:

• Initial learning rate from {1e− 3, 1e− 4, 1e− 5}. We use a cosine learning rate scheduler.
• Weight decay is set to 0.1.
• Batch size is set to 512.
• Number of epochs is set to 400.

Evaluation metric. We evaluate all models using MSE on test data.

E.2 LEARNING PHYSICAL LAWS

Dataset. Inspired by Kang et al. (2024), we create training and test sequences representing ball-
shaped object movements that adhere to two basic physical laws: (i) single-object parabolic motion
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(a) An example from the training distribution (sampled 5 frames with uniform spacing).

(b) An example from the test distribution with larger initial velocities (sampled 5 frames with uniform spacing).

Figure 4: Two visualized examples of the collision motion.

(reflecting Newton’s second law of motion), and (ii) two-object elastic collision (reflecting the
convervation of energy and momentum). In both settings, we consider a 2-dimensional environment
in which each object is encoded by a three-dimensional tuple (rt, xt, yt) at every time step t, where
rt represents the radius of the ball and (xt, yt) stands for the 2-dimensional coordinates of the ball.
To encode the timestamp information, we also include a dimension for the current timestamp t. This
results in 4-dimensional inputs (i.e., (rt, xt, yt, t)) in the parabolic motion setting and 7-dimensional
inputs (i.e., (r1t , x

1
t , y

1
t , r

2
t , x

2
t , y

2
t , t) in the collision motion setting. Each motion sequence consists

of 32 frames with a timestep of 0.1. Details of both settings are as follows.

1. Parabolic motion. This motion describes the process where a ball with an initial horizontal
(i.e., along the x axis) velocity falls due to a fixed gravity g = 9.8 (along the y axis). We
use the following training and test parameters:

• Radius is uniformly sampled from [0.7, 1.5] in training and from [1.5, 2.0] in test.
• Initial velocity is uniformly sampled from [1, 4] in training and from [4.5, 6.0] in test.

2. Collision motion. This motion describes the process where two balls with different sizes
and different initial velocities move horizontally towards each other and collide. We assume
that the collision is perfectly elastic and all balls are with the same density, so the velocities
of both balls can be inferred from their radii and initial velocities. We use the following
training and test parameters:

• Radius of each object is uniformly sampled from [0.7, 1.5] in training and from
[1.5, 2.0] in test.

• Initial velocity is uniformly sampled from [2, 4] in training and from [4.5, 6.0] in test.
• The horizontal distance between two objects is uniformly sampled from [5, 15] in both

training and test.

See Figure 3 and Figure 4 for visualized examples of the parabolic motion and examples of the
collision motion.

For both settings, we sample 1M training sequence and 50, 000 test sequence.

Model and hyperparameters. We train a decoder-only transformer (Vaswani et al., 2017) condi-
tioned on the first 3 frames to predict the remaining frames (expect for the timestamp dimension).
For our method, we simply replace every MLP in the original transformer with our modified MLP
as in Section E.1 (replacing ReLU by GELU). We use teacher-forcing in training that is similar to
next-token prediction, i.e., the model only needs to predict the next frame (starting from the 4-th
frame to the last 32-th frame) given all ground-truth frames prior to it. We use the following model
hyperparameters:

• Number of layers of transformer is set to 4.

• Number of heads of transformer is set to 4.

• Width of transformer is set to 512.
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Figure 5: Violin plots of the test MSE of the ReLU MLP and our model in extrapolating degree-1
polynomials.

We train all models using the MSE loss with the AdamW optimizer. Training hyperparameters are as
follows:

• Initial learning rate is randomly sampled from [1e− 6, 1e− 3]. We use a cosine learning
rate scheduler.

• Weight decay is set to 1e− 4.
• Batch size is set to 1024.
• Number of epochs is set to 300.

Evaluation metric. For test, we iteratively use the trained model to predict all missing frames given
the first 3 frames. The predicted frames will be used together with the given frames for the model to
predict the next frame. We evaluate all models using MSE on test data, averaged over all predicted
29 frames for each sequence.

F ADDITIONAL RESULTS AND DISCUSSION

This section presents additional empirical results and discussion.

F.1 POLYNOMIAL EXTRAPOLATION

In the main text, we report extrapolation results on degree-2 and degree-3 polynomials in Figure 2b;
for completeness, here we also report extrapolation results on degree-1 polynomials, i.e., linear
functions. As shown by (Xu et al., 2021), ReLU MLPs can also extrapolate well in this setting. The
violin plots of the test MSE of both the ReLU MLP and our model are in Figure 5. We can see that
while both models achieve a much smaller extrapolation error compared to those in extrapolating
higher degree polynomials, our model still outperforms the ReLU MLP. We also provide more
examples for extrapolating degree-1, degree-2, and degree-3 polynomials in Figure 6, Figure 7, and
Figure 8, respectively.

Comparison with Xu et al. (2021). While Xu et al. (2021) also show that 2-layer MLPs with
quadratic activation functions can extrapolate quadratic functions better than ReLU MLPs, we
emphasize that there are two key differences between our results and theirs:

1. Xu et al. (2021) replaces all ReLU functions with quadratic activation functions, while
we only replace half of ReLU functions with quadratic activation functions and identity
activation functions. This difference is important in scenarios where we do not know
the exact structural form of target functions—note that our method can be viewed as an
“ensemble” of different activation functions, which enables the neural network to adaptively
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select activation functions that are the most compatible with the task as shown by our
empirical results.

2. Xu et al. (2021) only considers 2-layer MLPs for learning quadratic functions, while
we consider using 4-layer MLPs for learning degree-2 and degree-3 polynomials. This
difference enables us to verify that neural networks can learn bases that require function
compositions. For example, degree-3 polynomials need a basis function y = x3, which
cannot be composed using a 2-layer MLP but is composable using MLPs with more than two
layers and with quadratic and identity activation functions. We also note that the inclusion of
identity functions is important since MLPs with only quadratic activations can only represent
basis functions y = xk with even degrees k.

F.2 LEARNING PHYSICAL LAWS

We present visualization results of the transformer baseline and our model in Figure 9 in a test
collision motion example. We can see that while both models yield accurate predictions before the
collision, our model outperforms the baseline on the predictions of the object velocities after the
collision.
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Figure 6: Selected examples for degree-1 polynomial extrapolation. Shaded regions indicate training
regions.
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Figure 7: Selected examples for degree-2 polynomial extrapolation. Shaded regions indicate training
regions.
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Figure 8: Selected examples for degree-3 polynomial extrapolation. Shaded regions indicate training
regions.

(a) Ground truth.

(b) Prediction results of our model (MSE = 0.0039).

(c) Prediction results of the transformer baseline (MSE = 0.5090).

Figure 9: Visualization results in a test collision motion example. All three rows select the same
frames with uniform spacing.
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