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ABSTRACT

Large Multimodal Models have achieved remarkable progress in integrating vi-
sion and language, enabling strong performance across perception, reasoning, and
domain-specific tasks. However, their capacity to reason over multiple, visually
similar inputs remains insufficiently explored. Such fine-grained comparative rea-
soning is central to real-world tasks, especially in mathematics and education,
where learners must often distinguish between nearly identical diagrams to iden-
tify correct solutions. To address this gap, we present VisioMath, a curated bench-
mark of 1,800 high-quality K—12 mathematics problems in which all candidate
answers are diagrams with subtle visual similarities. A comprehensive evalua-
tion of state-of-the-art LMMs, covering both leading closed-source systems and
widely adopted open-source models, reveals a consistent decline in accuracy as
inter-image similarity increases. Analysis indicates that the dominant failure mode
stems from image—text misalignment: rather than grounding reasoning in textual
cues, models often resort to shallow positional heuristics, resulting in systematic
errors. We further explore three alignment-oriented strategies, spanning training-
free approaches and finetuning, and achieve substantial accuracy gains. We hope
that VisioMath will serve as a rigorous benchmark and catalyst for developing
LMMs toward deeper diagram understanding, precise comparative reasoning, and
grounded multi-image—text integration.

1 INTRODUCTION

In recent years, Large Multimodal Models (LMMs) (Chen et al., 2025 |OpenAll 2024} Team, 2024a;
Wang et al., [2024¢c} [Wu et al.} | 2024b) have achieved remarkable success across various multimodal
tasks. This surge in capabilities is largely attributed to the availability of massive, high-quality
vision-and-language datasets (Chen et al., [2023; [He et al., 2023} |Kuznetsova et al., [2020; [Singla
et al., 2024), which enable the training of increasingly capable models. By jointly modeling image
and text modalities, LMMs enable seamless cross-modal reasoning, allowing for the interpretation of
complex visual scenes in natural language and vice versa. This integration not only enhances basic
perceptual capabilities but also supports high-level cognitive tasks such as visual recognition (Chen
et al.| 2024b; Huang et al., 2024; Wang et al., |2024d), logical reasoning (Wang et al., 2024e; Wu
et al.| 20244a; Xiao et al., 2024), and context understanding (Zhang et al., 2024a)).

With the rapid development of LMMs, designing holistic benchmarks is essential for systematically
investigating the capabilities and limitations of these models. Numerous evaluation benchmarks
have been proposed, targeting different aspects of LMM performance, including perception, rea-
soning, domain-specific tasks, hallucination, and multimodal integration (Huang & Zhang, 2024;
Li et al| 2024c). Among these, multimodal reasoning ability, particularly mathematical reason-
ing that requires integrating visual and textual information, has always been a central focus. This
form of reasoning presents distinct challenges, requiring not only the understanding of mathematical
semantics in text but also the accurate interpretation and synthesis of visual representations.

To evaluate multimodal reasoning capabilities, various multimodal mathematical reasoning bench-
marks have been introduced (Lu et al., 2024; |Zhang et al.| [2024b; [Wang et al., |2024b). These
benchmarks can be broadly divided into two categories. The first involves single-image scenario,
where each problem is paired with a single diagram that supplements the text. While effective for
assessing basic multimodal understanding, these setups are limited in capturing the complexity of
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Figure 1: Illustrating examples in our VisioMath dataset, in which data samples consist of visual
answer options exhibiting high visual similarity, and the stem may appear with or without images.

real-world visual reasoning, as a single image often lacks the richness and inter-image dependencies
needed for higher-order comprehension. In response, recent studies have shifted toward the second
category: multi-image scenario. These tasks require reasoning across problems with multiple visual
inputs. This paper also investigates on multi-image scenario with a particular emphasis on a specific
and underexplored setting: reasoning over multiple highly similar images.

In this paper, we examine a distinct class of multimodal benchmarks in which all answer choices are
presented as images. Our motivation arises from the observation that many real-world mathematical
problems, especially in educational settings, present options as diagrams (e.g. geometric figures).
Addressing such problems involves more than visual recognition; it necessitates comparison of vi-
sually similar structures and reasoning about subtle symbolic differences. While recent benchmarks
such as CMM-Math-test (Liu et al.| 2024b)), MathVerse-mv (Li et al.,|2024b), and MV-Math (Wang
et al.l 2025b) have advanced the evaluation of multimodal reasoning by introducing multi-image
questions, they often overlook a crucial aspect where reasoning must be grounded in perceptually
similar visual features. Our work aims to address this gap and thereby provide an evaluation per-
spective that specifically targets LMMSs’ reasoning across closely resembling images.

To achieve that, we introduce VisioMath, a novel benchmark comprising 1,800 meticulously cu-
rated, high-quality mathematics problems. The dataset spans a broad spectrum of K—12 mathematics
topics, including geometry, algebraic visualizations, numerical comparisons, and functional pattern
recognition, thereby capturing the diversity of real-world curricula. The focus on K—12 mathemat-
ics is deliberate: fine-grained comparative reasoning is prevalent in this domain, where students
must distinguish nearly identical diagrams to identify correct solutions. This makes VisioMath not
only an ideal benchmark for evaluating LMMs’ visual-textual grounding capabilities but also di-
rectly relevant for improving their potential to support K—12 tutoring and educational applications.
Specifically, each problem features diagrammatic answer options, with approximately 50% also in-
corporating at least one image in the question stem to provide essential visual context. To ensure
accuracy and reliability, each question has been independently annotated and cross-validated by at
least two expert annotators. To reduce answer-choice bias in LMMs, we enforce a uniform distribu-
tion across the four multiple-choice options (A, B, C, D). As shown in Figure|l} each answer option
is a distinct diagram differing subtly from the others, requiring fine-grained visual discrimination.

We conduct a comprehensive evaluation on the VisioMath benchmark. Our study encompassed a
diverse set of LMMs across various model families and scales, including state-of-the-art closed-
source models such as GPT-4.1 (OpenAl, 2025 and Gemini2.5 Pro (Comanici et al., [2025)), as well
as prominent open-source models like Qwen2.5-VL (Bai et al., |2025)). These models span differ-
ent input paradigms, with some restricted to single-image inputs and others capable of processing
multiple images simultaneously. We perform a detailed error analysis and find that image—text mis-
alignment accounts for the largest proportion. This highlight a fundamental overlooked limitation
in current LMMs: their inability to reliably establish fine-grained correspondences between multi-
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Figure 2: Data processing pipeline of VISIOMATH, including text extraction and verification, image
cropping, and integration of visual similarity information to construct the final dataset.

ple images and distinct textual inputs. In tasks such as image—option problems, where each figure
must be uniquely paired with a specific textual option, LMMs often fail to preserve these one-to-
one mappings. This weakness indicates that, although LMMs excel in single-image reasoning and
holistic multimodal understanding, they remain inadequate when tasks demand precise cross-modal
alignment across multiple visual—text pairs.

We further explore three complementary strategies aimed at mitigating image—text misalignment and
enhancing multi-image reasoning: consolidating multiple images into a single layout, establishing
explicit visual-textual anchors, and fine-tuning with an alignment-oriented multi-image chain-of-
thought dataset. Notably, such limited Chain-of-Thought(CoT) fine-tuning data yields a substantial
accuracy gain (+12.6%), illustrating the critical role of explicit visual-textual alignment in enabling
effective multi-image reasoning. We hope our work will motivate more systematic exploration of
methods for enhancing multi-image—text alignment in complex reasoning tasks.

In summary, our key contributions are:

* VisioMath Benchmark. We introduce VisioMath, the first benchmark specifically de-
signed for image-option mathematical reasoning. It bridges the gap between traditional
multimodal visual question-answering benchmarks, providing a rigorous testbed for evalu-
ating LMMs’ diagram understanding and fine-grained visual reasoning.

* Comprehensive Evaluation. We systematically evaluate a wide range of state-of-the-art
LMMs, including GPT-4.1 and Gemini2.5 pro, and reveal that even top-performing models
struggle with reasoning over visually similar answer options, highlighting a critical limita-
tion when dealing with complex reasoning requiring multi-image-text alignment.

* Analytical Strategies. We perform detailed error analyses to identify key failure modes,
design controlled experiments to validate the critical limitation, and introduce alignment-
focused strategies that substantially improve figure-based reasoning performance.

2  VISIOMATH

Motivation. In mathematics education, multiple-choice questions with diagrammatic answer op-
tions are pervasive. These diagrams often exhibit high visual similarity, differing only in subtle ge-
ometric structures or functional curves. Humans can reliably leverage such fine-grained differences
through prior knowledge and structured reasoning. In contrast, LMMs typically rely on superficial
embedding similarity, making it difficult to discriminate between nearly identical options.

Routine for students, this setting remains unexpectedly challenging for LMMs. As illustrated in
Figure [1] the four candidate diagrams share almost identical visual styles, yet solving the problem
requires aligning the textual description with precise visual interpretation. To capture this ubiquitous
but underexplored scenario, we introduce VisioMath, a benchmark explicitly designed to evaluate
LMMs’ reasoning ability over multiple highly similar image options in mathematics.
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Figure 3: Detailed statistics of the VisioMath dataset. The figure shows distributions of (a) subject,
(b) question text length and (c) visual similarity, highlighting both textual and visual characteristics.

2.1 BENCHMARK CONSTRUCTION

Building on the motivation introduced above, VisioMath is constructed to faithfully reproduce exam-
like scenarios where reasoning hinges on subtle visual distinctions. To this end, during construction
we follow three design principles, representativity, reliability, and high visual similarity. The overall
construction pipeline is illustrated in Figure 2]

Representativity. VisioMath contains 1,800 multiple-choice questions with 8,070 diagrammatic
options, collected from Chinese high school and college entrance examinations administered be-
tween 2002 and 2023. Using real exam items ensures external validity: the benchmark directly
reflects the types of problems students actually face, and its results can generalize to real educa-
tional scenarios. Each problem is paired with option diagrams as well as stem diagrams (average
4.48), and we intentionally balanced the correct answer distribution across A-D (24-26% each) to
eliminate positional bias. The question text length average 61.5 tokens, reflecting moderate linguis-
tic complexity as shown in Figure 3] (b). We also present the distribution of subject areas across the
dataset in Figure 3] (a), offering an integrated overview of the benchmark’s coverage.

Reliability. To ensure that evaluation results reflect genuine reasoning ability rather than spurious
cues, we standardize and curate all samples. Question texts were digitized into a consistent JSON
format, where mathematical expressions were transcribed into LaTeX to guarantee uniform parsing.
Answer diagrams were carefully cropped from PDFs to enforce a strict one image per option rule,
preventing layout or formatting artifacts from providing shortcuts. Finally, all items underwent man-
ual review to eliminate duplicates, low-quality images, and conceptually flawed questions. These
steps establish a dataset that is reliable to faithfully evaluate the visual reasoning ability of LMMs.

High Visual Similarity. A distinctive property of VisioMath lies in its systematic quantification of
visual similarity among answer options. For each question (), option images z; are encoded using
the Qwen multimodal-embedding-v1 model, and the question-level visual similarity is then defined
as the minimum pairwise cosine similarity across all encoded images:

Sim(Q) = mjn cos (f (i), f(z5)), (1)

where f(-) denotes the image embedding encoder.

As illustrated in Figure 3] (c), a large proportion of VisioMath problems contain highly similar op-
tions, creating fine-grained distinctions that are especially challenging for LMMs. Importantly, we
preserve the full spectrum of similarity levels rather than filtering out low-similarity cases, so that
performance can be systematically compared under different similarity regimes.

2.2 BENCHMARK ANALYSIS

Unique Challenges. VisioMath introduces a set of unique challenges that distinguish it from ex-
isting multimodal benchmarks. Unlike conventional tasks that pair a single image with text, Vi-
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Table 1: Comparison between VisioMath and existing evaluation datasets. Here, EN and CN denote
English and Chinese, respectively; FO refers to figure-based options; and Avglmg indicates the
average number of images for each problem.

Datasets Multi-image problem Language #Problems (FO) #Problems #Images Avglmg
We-Math (Qiao et al.[[2024) X EN - 6500 6500 1
MMMU-Math (Yue et al.[[2024) X EN - 540 540 1
Math-Vista (Lu et al.| [2024) X EN - 6141 6141 1
Math-Verse (Zhang et al.|[2024b) X EN - 2612 2612 1
Math-Vision (Wang et al.l[2024b) X EN - 3040 3040 1
MM-Math (Sun et al.; [2024) X EN - 5,929 5,929 1
CMMU-MATH (He et al., 2024) X CN - 778 778 1
MathExplain (Park et al.||[2025) X EN - 997 997 1
MathGlance (Sun et al.| 2025) X EN - 1,609 1,609 1
Gaokao-MM-Math (Zong & Qiu, [2024) v CN 17 80 142 1.78
CMM-Math-test (Liu et al.||2024b) v CN 245 5821 3794 2.26
MathVerse-mv (Li et al.||2024b) (%4 EN 0 788 6304 8
MV-Math (Wang et al.|[2025b) (4 CN,EN 595 2009 6061 3.02
VisioMath (Ours) v CN.EN 1800 1800 8070 4.48

sioMath requires reasoning across multiple diagrammatic options simultaneously, transforming the
problem into one of comparative visual reasoning that mirrors authentic exam scenarios. Moreover,
the benchmark faithfully preserves the presence of highly similar distractors, where candidate dia-
grams differ only in subtle geometric or symbolic details, thereby testing models’ capacity for fine-
grained perceptual discrimination. Finally, effective problem solving in VisioMath demands precise
text—visual alignment, as models must ground linguistic conditions such as symmetry, monotonicity,
or functional transformations in the correct image choice. Collectively, these characteristics elevate
VisioMath from simple image recognition to a rigorous evaluation of figure-based visual reasoning.

Benchmark Comparison. We compare VisioMath with prior multimodal math benchmarks in
Table Most existing datasets adopt a single-image setting with textual answer options (e.g.,
We-Math, MMMU, Math-Vista, Math-Verse, Math-Vision). Multi-image formats are rare, and
when present, image-based options are either absent or inconsistently represented. For instance,
MathVerse-mv includes multiple images but no image in options. CMM-Math-test and MV-Math
contain some image-based options, yet many are embedded in composite layouts rather than pro-
vided as independent visual elements. VisioMath, in contrast, explicitly structures answer options
as collections of distinct and semantically meaningful images, thereby supporting a more nuanced
evaluation of fine-grained visual mathematical reasoning.

3 EXPERIMENT

Setup. To comprehensively evaluate the performance of LMMs in handling complex visual in-
puts, we select a diverse set of models across different accessibility types and input configurations.
Specifically, we include closed-source LMMs representing the current state-of-the-art in commer-
cial multimodal systems. In addition, we conduct experiments on open-source LMMs that explicitly
support multi-image inputs with various model sizes. This broad coverage ensures a representative
analysis across model capacities and architectures. Moreover, we evaluate the adaptability of models
not originally designed for multi-image processing. For these models, we implement a composite
image concatenation strategy, in which all images associated with a given question were merged into
a single composite one. Finally, we include LMMs that have been specifically trained on mathemat-
ical corpora and optimized for mathematical QA tasks. All LMMs are evaluated under zero-shot
setting to ensure a fair and consistent comparison of their generalization capabilities. More details
are provided in Appendix A.

3.1 RESULTS

Table 2] reports the comparative performance of various LMMs on VisioMath benchmark, with re-
sults disaggregated by the ground-truth (GT) answer position (A-D). The evaluation considers two
distinct conditions: (i) question stems presented without images and (ii) question stems accompa-
nied by images. For each condition, we provide both average accuracy and per-option performance.
Table 3] further details the accuracy of LMM:s on subsets of the dataset stratified by image similarity
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Table 2: Performance comparison on VisioMath with results categorized based on GT position.

Models \GT position Avg Question stem w/o images Question stem with images
Avg A B C D Avg A B C D
Human 913 923 925 956 938 885 897 944 876 875 88.0
Random 256 254 240 256 230 28,6 260 228 276 284 256
Closed-source LMMs
QwenVL-max (Bai et al[[2023) 441 534 352 626 625 502 341 31.1 341 328 386
GPT4.1 (OpenAlL|2025) 526 61.6 724 599 602 56.1 428 548 393 437 319
Seed1.6-Thinking (ByteDance}[2024) 723 857 903 872 824 839 580 71.8 537 446 594
Gemini 2.5 Pro (Comanici et al.;[2025) 809 862 892 846 852 863 752 788 776 750 68.6
) Open-source LMMs (multi-image input)
InternVL.2.5-2B (Chen et al.][2024a) 246 27.1 128 255 363 302 219 103 262 382 150
Qwen2.5-VL-3B-instruct (Bai et al.|[2025) 254 261 510 405 145 59 247 183 701 54 43
R1-Onevison-7B (Yang et al.,[2025) 296 350 388 374 348 302 237 220 322 289 116
Qwen2.5-VL-7B-instruct (Bai et al.|[2025) 327 395 301 581 398 298 253 87 285 324 343
Gemma3-27B (Teaml 2025b) 353 437 679 401 33.6 384 262 402 248 123 251
Vision-R1-7B (Huang et al.||2025) 367 437 474 573 387 337 292 245 523 294 10.6
Qwen2.5-VL-72B-instruct (Bai et al.;2025) 437 53,5 362 639 613 498 330 299 378 299 352
GLM-4.5V (Team et al.}|2025) 537 691 719 758 684 612 372 46,5 425 314 266
) Open-source LMMs (single-image input)

MiniCPM-v2.5 (Abdin et al.||2024) 21.0 21.7 281 132 121 341 202 282 154 64 295
GLM4V-9B (GLM2024) 239 256 194 317 316 188 222 103 332 26.0 208

LLaVA-v1.6-vicuna-13B (Liu et al.,2024a) 244 23.0 505 2.2 51 384 260 664 0.0 29 285
Open-Source LMMs (math-oriented)

MM-PRM-8B (Du et al.[[2025) 317 384 281 432 449 357 244 108 416 353 11.6
MM-Eureka-7B (Meng et al.}|2025) 379 509 36.2 621 527 50.1 240 211 224 274 25.6
MM-Eureka-7B-CPGD (Liu et al.}|2025) 393 510 332 542 613 514 269 162 299 397 237

levels. The dataset is divided into quartiles based on the degree of visual similarity between images
within each question, and model performance is reported separately for each quartile. This analysis
aims to evaluate models’ fine-grained reasoning capabilities under varying visual similarities.

Based on these results, we have following observations.

Observation 1 (Limited performance of single-image LMMs in multi-image reasoning tasks). To
evaluate the capability of single-image LMMs in multi-image reasoning tasks, we employ a simple
strategy: concatenating multiple images into a single composite and applying single-image LMMs
for reasoning. Despite its straightforwardness, this approach exposes critical limitations. Among
the models evaluated, the best performer, LLaVA-v1.6-vicuna-13B achieves only 24.4% accuracy,
on par with the naive baseline, namely random guessing. These results underscore a fundamental
limitation of single-image LMMs in multi-image contexts:they fail to effectively model relational
information across distinct visual inputs. This highlights the need for architectures that explicitly
support cross-image representation learning and comparative reasoning.

Observation 2 (Question stems containing images pose greater challenges for LMMs). As shown
in Table [2| most LMMSs demonstrate noticeably lower performance on questions whose stems in-
clude images compared to those with text-only stems, which is a trend consistent across nearly all
positions. This observation suggests that the inclusion of images in the question stem significantly
increases the complexity of the visual reasoning task. Specifically, when both the stem and the op-
tions involve visual content, LMMs are required to process and integrate multiple sources of visual
information, which likely imposes a higher cognitive load on the model. This indicates that current
LMMs still struggle with multi-image reasoning scenarios and highlights a potential bottleneck in
their capacity for holistic visual understanding.

Observation 3 (Performance degrades under high visual similarity). LMMs exhibit performance
degradation on tasks involving high inter-image similarity, as shown in Table For instance,
Doubao-1.5-Vision-Pro achieves 74.9% accuracy in the quartile with the lowest similarity, but this
drops to 62.0% in the highest-similarity quartile, a 12.9% decline. This performance gap stems from
the increased demands for fine-grained cross-image associative reasoning, which current LMMs in-
sufficiently support due to limited visual granularity and reasoning capabilities. Notably, LMMs
exhibit strong performance correlations across similarity quartiles: models performing well in low-
similarity scenarios tend to retain relative strength under high similarity.

Observation 4 (Distinct failure modes in Human and LMMs). As shown in Table [3| human perfor-
mance moderately decreases as visual similarity among candidate diagrams increases, confirming
that higher similarity introduces additional perceptual challenges. Second, beyond a certain similar-
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Table 3: Performance comparison on VisioMath with results categorized based on image similarity.

Models \Image similarity Avg [0.16,0.68] (0.68,0.87] (0.87,0.96] (0.96,1]
Human 91.3 95.7 91.2 87.6 89.0
Random 25.6 23.6 244 27.8 27.1
Closed-source LMMs
QwenVL-max (Bai et al.}[2023) 44.1 473 50.2 41.3 37.6
GPT-4.1 (OpenAl} [2025) 52.6 65.8 56.4 429 45.1
Seed1.6-Thinking (ByteDance} [2024) 72.3 824 74.2 66.2 66.4
Gemini 2.5 Pro (Comanici et al.}[2025) 80.9 86.2 83.8 76.7 76.9
Open-source LMMs (multi-image input)
InternVL2.5-2B (Chen et al.[[20244) 24.6 242 28.9 22.7 22.7
Qwen2.5-VL-3B-instruct (Bai et al.,[2025) 254 26.7 27.6 24.4 229
R1-Onevison-7B (Yang et al.||2025) 29.6 21.9 322 289 11.6
Qwen2.5-VL-7B-instruct (Bai et al.;[2025) 32.7 33.6 37.8 29.8 29.6
Gemma3-27B (Team, [2025b) 353 433 41.2 29.6 26.4
Vision-R1-7B (Huang et al.|[2025) 36.7 46.7 38.9 304 30.9
Qwen2.5-VL-72B-instruct (Bai et al.}|2025) 437 47.1 50.8 38.0 38.7
GLM-4.5V (Team et al.|[2025) 53.7 68.7 59.3 44.2 44.7
) Open-source LMMs (single-image input)
MiniCPM-v2.5 (Abdin et al.[[2024) 21.0 21.7 21.3 20.6 20.2
GLM4V-9B (GLM, 2024) 239 26.7 23.5 23.3 22.0
LLaVA-v1.6-vicuna-13B (Liu et al.,|[2024a) 24.4 24.0 26.0 26.0 21.8
- Open-source LMMSs (math-oriented)
MM-PRM-8B (Du et al.}|2025) 31.7 37.6 37.1 26.9 25.1
MM-Eureka-7B (Meng et al.|[2025) 37.9 45.6 44.0 29.1 33.1
MM-Eureka-7B-CPGD (Liu et al.}[2025) 394 47.8 46.0 30.9 329

ity threshold, the accuracy plateaus, suggesting that errors at this stage are driven more by concep-
tual understanding than by perceptual similarity. This suggests that while high similarity increases
perceptual load, humans can still reliably distinguish fine-grained differences through careful ob-
servation. In contrast, LMMs frequently fail on perceptually trivial distinctions that humans rarely
confuse, as illustrated in the error analysis Figure [I0] This disparity indicates that current model
failures stem largely from inadequate visual-textual alignment rather than a lack of reasoning depth.

3.2 ANALYSIS

Error Categorization. We conduct a systematic error analysis of GLM4.5V to better understand
the limitations of LMMs on VisioMath. From the model outputs, we randomly sample 50 erro-
neous cases and manually inspect their characteristics, and we categorize the errors into four types,
with their proportions illustrated in Figure [4] (a) (mode details in Appendix D). Among the iden-
tified categories, image—text misalignment account for the largest shares, representing 36% of the
errors. Compared to single-image datasets such as MATH-Vision, these proportions are significantly
higher. This finding highlights that reasoning over multiple visual contexts introduces substantial
challenges, particularly in maintaining consistent semantic alignment across both images and text.

Effect of Option Shuffling. The image—text misalignment errors suggest that current LMMs rely
heavily on heuristic positional correspondences between options and images. To investigate this, we
conducted a controlled shuffling experiment: the image order was kept unchanged, while the textual
references to the options were permuted. For example, the original prompt “The last four pictures
are respectively the pictures for options A, B, C, and D” was modified to “The last four pictures are
respectively the pictures for options B, C, D, and A,” with the ground-truth answers adjusted accord-
ingly. By keeping the image order constant, we isolate the effect of image order on performance.
Results shown in Figure [ (b) suggest a consistent and clear decline under this manipulation. For
instance, Gemini 2.5 Pro’s accuracy dropped from 80.9% to 72.2% (-8.7%). These findings indicate
that existing LMMs struggle to robustly capture and align semantic correspondences between textual
options and visual content, highlighting the need for improved cross-modal alignment mechanisms
in multi-image reasoning tasks.

3.3 STRATEGIES FOR PERFORMANCE ENHANCEMENT

Building on the above analysis of LMM limitations, we explore practical strategies to improve multi-
image reasoning performance on VisioMath. These strategies fall into two categories: training-free
techniques that leverage structural or labeling cues, and a training-based approach that incorporates
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Figure 4: Illustrating error type distribution and the impact of input data structure on performance.

specialized multi-image reasoning data. Collectively, they demonstrate the potential to mitigate
vision—text misalignment and enhance cross-figure reasoning.

Strategy 1 (Consolidated single image layout). We first examine whether providing all visual infor-
mation in a single spatial layout improves reasoning. Specifically, option images and stem images
are concatenated into a composite image. As shown in Figure [4] (b), this structural simplification
consistently improves performance, suggesting that LMMs struggle to distribute attention effec-
tively across multiple independent images. For instance, Seed1.6-Thinking achieves an accuracy
increase from 72.3% to 78.7% (+6.4%) under this setup. The results indicate that co-locating visual
information helps LMMs reason more effectively over multiple images.

Strategy 2 (Explicit visual-textual anchors). In this strategy, each image is directly associated with
its corresponding textual label, either through overlaid or embedded annotations. This experimental
setting is designed to evaluate whether establishing explicit visual-textual correspondences can en-
hance disambiguation and support more accurate decision-making. Empirical results shown in Fig-
ure [4] (b) demonstrate that this approach yields notable performance gains: for instance, QwenVL-
plus improves from 32.9% to 42.7% (+9.8%), whereas Gemini 2.5 Pro shows a smaller but mea-
surable gain of +0.9%. These results indicate that current LMMs continue to struggle with robustly
binding textual content to the corresponding visual elements. Importantly, the findings highlight
that carefully designed visual-textual anchors can effectively mitigate misalignment errors, offering
a practical pathway to improve multimodal reasoning performance.

Strategy 3 (Alignment-oriented multi-image chain-of-thought training). To further enhance reason-
ing performance, we develop a specialized multi-image CoT dataset explicitly aimed at improv-
ing visual-textual alignment across multiple diagrams. Starting from 1,072 multi-image problems
collected online, we first employ QwenVL-Max with an image-caption—style prompt to generate
preliminary reasoning paths that describe each diagram individually, ensuring localized alignment
between visual elements and textual explanations. These initial outputs are then refined by DeepSeek
V3.1 through a CoT Data Generation Prompt, which enforces step-by-step integration of per-image
descriptions into a globally coherent reasoning trajectory, tightly binding visual observations to tex-
tual inferences. To guarantee reliability, only samples yielding correct final answers are retained,
resulting in 500 high-quality multi-image CoT exemplars with explicit visual-textual anchors. We
fine-tuning Qwen2.5-VL with various model sizes and InternVL2.5-2B, and the results in Table [4]
show that accuracy increases for all models, despite using only a small set of CoT data. Notably,
Qwen2.5-VL-3B increases from 25.4% to 38.0% (+12.6%), surpassing R1-OneVision-7B (29.5%)
and Vision-R1 (36.7%). These results highlight that current models are severely constrained by the
scarcity of alignment-oriented multi-image CoT training data, and that targeted augmentation with
explicit alignment signals can substantially boost figure-based reasoning.

4 RELATED WORK

Multimodal Understanding Benchmarks. Numerous benchmarks have been introduced to eval-
uate the capabilities of LMMs. While several multi-image benchmarks, such as Blink (Fu et al.,
2024), MUIR (Wang et al., 2024a), and MMIU (Meng et al., 2024), have emerged, they primarily
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Table 4: The effect of strategy 3, using alignment-oriented multi-image chain-of-thought fine-tuning.

Model Original Shuffling Strategy 1 Strategy 2  Strategy 3

Qwen2.5-VL-3B-instruct (Bai et al.; 2025) 254 234(20) 309 (+5.5) 28.8(+3.4) 38.0(+12.6)
Qwen2.5-VL-7B-instruct (Bai et al, 2025) 327 26.1(66) 38.1(+54) 42.5(+9.8) 43.3(+10.6)
Qwen2.5-VL-72B-instruct (Bai et al.,2025)  43.7  356(%.1) 47.6(+3.9) 50.1(+6.4) 51.4(+7.7)
InternVL2.5-2B (Chen et al.|,[2024a) 246  23.1(15) 263(+1.7) 272(+2.6) 32.2(+7.6)

assess basic perceptual abilities—Ilike caption recognition and object counting—falling short in mea-
suring deep reasoning. Simultaneously, evaluating the genuine dependency on visual information
remains a critical challenge. Recent studies have moved beyond simple natural image QA to multi-
modal science problems requiring deeper reasoning capabilities: MMSciBench (Ye et al.,2025) and
SeePhys (Xiang et al.| 2025) introduce the concept of “Vision-Essential” problems to reveal models’
reliance on textual shortcuts, while VisAidMath (Ma et al., 2025)) explores active visual reasoning
through auxiliary line generation. Unlike prior works that mostly focus on interpreting a single stem
or generating aids, VisioMath introduces a challenging benchmark centered on comparative visual
discrimination via option-containing images, enabling a more comprehensive assessment of models’
fine-grained, multi-image comparative reasoning over visually similar diagrams.

Mathematical Reasoning Benchmarks. Various datasets have been proposed to evaluate the
mathematical capabilities. Text-based benchmarks such as GSM8SK (Cobbe et al.| 2021) and
MATH (Hendrycks et al.,|[2021) are widely used. To evaluate mathematical reasoning requiring vi-
sual understanding, such as geometry and function graph analysis, several multimodal datasets have
recently emerged, for example, Math-Verse (Zhang et al., 2024c)), Math-Vista (Lu et al.,[2024), and
Math-Vision (Wang et al.,|2024b). Nonetheless, as LMMs advance in multi-image reasoning, these
single-image-focused benchmarks are increasingly inadequate for evaluating their full capabilities.
In response, recent research efforts have begun to explore more complex multi-image reasoning sce-
narios that better reflect the real-world demands of mathematical problem-solving. Despite recent
advances, a key limitation persists: existing multi-image benchmarks such as MathVerse-mv (Li
et al.} [2024b) and MV-Math (Wang et al.,|2025b) often neglect figure-based answer options, which
are common in mathematics domain (e.g., geometry problems with diagrammatic options). This gap
underscores the need for new benchmarks that support figure-based multi-image reasoning.

5 CONCLUSION AND LIMITATION

We introduce VisioMath, a benchmark designed to evaluate multimodal reasoning in contexts where
answer options consist of multiple, highly similar diagrams. This benchmark fills a critical gap
in existing evaluation frameworks, which rarely consider the challenges of comparative reasoning
across visually confusable candidates. Our experiments reveal that current LMMs perform poorly
under these conditions: accuracy declines sharply with increasing inter-image similarity, and fre-
quent errors stem from multi-image—text misalignment. Controlled shuffling experiments further
show that many models rely on positional heuristics, exposing fundamental weaknesses in their
reasoning mechanisms. We further explore alignment-oriented data augmentation and multi-image
CoT finetuning. Results demonstrate that these strategies yield substantial gains, even under limited
data regimes, indicating that relatively lightweight interventions can enhance LMMSs’ capacity for
robust visual-textual binding.

While VisioMath provides a rigorous evaluation of multi-image, diagram-based reasoning in mathe-
matics, our current benchmark is limited to K—12 math topics. Extending this benchmark to other do-
mains, such as physics, engineering diagrams, or chemistry molecular structures, would test LMMs’
ability to generalize multi-image reasoning across diverse visual-semantic contexts.

6 BROADER IMPACT

VisioMath highlights critical limitations in current LMMs, particularly in fine-grained visual—text
alignment and figure-based visual reasoning. By providing a targeted evaluation platform, it can
guide the development of more accurate multimodal models, benefiting educational applications,
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intelligent tutoring systems, and diagram understanding in STEM disciplines. However, as with
any benchmark, there is a risk of overfitting models to its specific structures; care must be taken to
ensure that improvements reflect genuine reasoning capabilities rather than dataset-specific heuris-
tics. Overall, we envision VisioMath supporting both model development and pedagogical research,
fostering Al systems that can more effectively interpret and reason over complex visual information.

ETHICS STATEMENT

This research is based on a dataset compiled from publicly available papers from Chinese high
school and college entrance examinations administered between 2002 and 2023. All data were
sourced and processed in compliance with applicable laws and institutional regulations. During
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A EXPERIMENT DETAILS

A.1 EXPERIMENT SETTING

All experiments were conducted on a Linux server equipped with two NVIDIA H800 GPUs (each
with 80GB of memory). The Python version used in the experiments was 3.9.20, while the version
of vllm library was 0.8.1, respectively. Each model evaluation was performed in a zero-shot setting
with deterministic decoding (temperature=0). Due to frequent updates and improvements, closed-
source models often undergo version changes that can significantly impact evaluation results. Even
subtle updates may alter model behavior, performance, or prompt adherence. As such, the results
reported in this benchmark are tied to the specific versions used during our evaluation. To ensure
transparency and reproducibility, Table [5] lists the exact release dates or version identifiers of all
closed-source models evaluated in VisioMath. Readers should be aware that performance discrep-
ancies may arise when using newer or older versions of the same models.

Specifically, we employ the same prompt template across all models to eliminate prompt-induced
variance, and fix the decoding temperature to 0 to promote deterministic outputs. Accuracy serves
as the primary evaluation metric, measuring the proportion of correctly answered instances. We
utilize GLM4-Flash (GLM, [2024) to extract the options from the responses generated by LMMs.
In scenarios where the model fails to produce a valid answer, i.e., none of the standard options (A,
B, C, or D) can be reliably identified, its response is classified as invalid. Such cases are treated as
incorrect predictions in the final accuracy computation.

To ensure a fair comparison, we adopted consistent prompting strategies across the three input types:
Original, Strategy 1, and Strategy 2. For Strategy 1, we horizontally concatenated all images with
zero-padding. For Strategy 2, we extend each option image by adding a 50-pixel-high strip at the
bottom, matching the width of the image, and insert the corresponding option letter (A, B, C, or
D) within the strip. Examples of these configurations are illustrated in Figure 5] In Strategy 3,
we adopted the Supervised Fine-Tuning (SFT) training strategy on QwenVL2.5-3B. Using a single
H800 GPU and the ms-swift framework (Zhao et al.l [2024)), we set the batch size to 2, the learning
rate to le-4, and the gradient accumulation steps to 4. The training was conducted over 336 steps.

Table 5: Version information or release dates of evaluated closed-source models.

Model Version (release date)
GPT-40 (OpenAll 2024) 2024-11-20
GPT-4.1 (OpenAl,|2025) 2025-04-14
Gemini2-flash (DeepMind} 2025a) 2024-12-11
Gemini2-flash-thinking (DeepMind, 2025b) 2025-01-21
Gemini 2.5 Pro (Comanici et al., [2025) 2025-06-17
QwenVL-max (Teaml |2025c) 2025-04-08
QwenVL-plus (Team) 2025c¢) 2025-01-25
Doubao-1.5-Vision-pro (Team,2025a) 2025-03-28
Seed1.6 (ByteDance, [2024)) 2025-08-15
GLM4V-plus (GLM, 2024) 2025-01-11

A.2 FULL EXPERIMENTAL RESULTS

Due to space limitations in the main text, here we report the full evaluation results of various LMMs
on the VisioMath benchmark in Table [7]and Table[8]

B MULTI-IMAGE COT FINE-TUNING

This section explains how CoT reasoning data was constructed, including description generation
by QwenVL-Max, refinement by DeepSeek3.1, and filtering strategies. We construct a specialized
multi-image chain-of-thought (CoT) dataset through a structured three-stage pipeline to enhance
model performance.

16



Under review as a conference paper at ICLR 2026

I‘ 3

[ 1

Strategy 1 : £<> i
Consolidated single image layout | @ :

AR Sy
R AN AR DI S
- YT R

4 R ) R R

i ] o \
i | £<> b |
L [ [ M -
Strategy 2 : = ! i
Explicit visual-textual anchors 1 = & -
Add [ - P -

i : iy i

:'

Figure 5: Illustrating the image format of original, strategy 1, and strategy 2 in our experiments.

Stage 1 (Problem collection). We crawled 1,072 mathematical single-choice questions that contain
more than four pictures from the internet to serve as the raw problem pool.

Stage 2 (CoT Sample Generation). Initial reasoning paths and descriptive captions are produced for
each problem using QwenVL-Max with an Image-Caption—Style Prompt. These outputs, together
with the original questions, are then fed into DeepSeek V3.1 via a CoT Data Generation Prompt
to generate refined reasoning trajectories and corresponding answers. Samples are subsequently
filtered based on answer correctness, resulting in 500 high-quality multi-image CoT examples.

Stage 3 (Dataset Expansion). To increase both the scale and diversity of the dataset, a Option
Shuffling Prompt strategy is applied, expanding the dataset from 0.5k to 1.3k samples.

This three-stage pipeline ensures that the final dataset contains both high-quality reasoning examples
and sufficient data scale, providing a robust foundation for effective model training.

C PROMPT TEMPLATES

We employ the same prompt template across all models to eliminate prompt-induced variance.
Specifically, we use five types of system prompts in our paper:

* Original Answer Prompt: The baseline system instruction that is uniformly appended to
all models prior to evaluation, serving to standardize response format and output scope.

* Option Shuffling Prompt: A variant of the Option Shuffling Prompt in which the cor-
respondence between options and images is completely deranged, designed to test and
mitigate the model’s reliance on positional priors, and used for synthetic data generation.

» Answer Extraction Prompt: A prompt used to guide the LLM in extracting and normal-
izing the final answer from the model’s output (e.g., mapping free-form text or reasoning
steps to discrete options such as A/B/C/D).

» Image-Caption-Style Prompt: A prompt that instructs the MLLM to generate concise,
comparable textual descriptions and preliminary analyses for each image, serving as a
cross-modal representation bridge.

* CoT Data Generation Prompt: A prompt that integrates the question, image captions, and
MLLM-provided reasoning trajectories to produce high-quality chain-of-thought rationales
and final answers, which can be leveraged for data augmentation and fine-tuning.

The detailed prompt texts are shown in Table 9]
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D ERROR ANALYSIS

This section presents a detailed analysis of errors, categorizing them into four types, reporting their
distributions, and providing representative examples.

Image-Text Misalignment (36%). These errors occur when GLM-4.5V fails to correctly capture
the semantic correspondence between textual options and visual content. For example, in Figure|[]
the model misinterprets the relationship between the image and the answer options, incorrectly
treating the reference image as Option A.

Vision Recognition Error (34%). Vision recognition errors reflect the model’s difficulty in accu-
rately perceiving visual information. As shown in Figure [0] GLM-4.5V fails to correctly interpret
the shapes of the unfolded cubes corresponding to Options B and C.

Reasoning Error (20%). Reasoning errors arise when GLM-4.5V does not correctly follow logical
steps or underlying problem constraints. For instance, in Figure [0] the model incorrectly assumes
that the depicted line graph necessarily satisfies the definition of a function.

Knowledge Error (10%). Knowledge errors occur when GLM-4.5V lacks relevant domain knowl-
edge or produces outdated/inaccurate information. For example, in Figure[§] the model erroneously
interprets the top view of a sphere as a circle with a visible center point.

D.1 VISION RECOGNITION ERROR ANALYSIS

We further conduct a detailed analysis of vision recognition errors, report their distributions, and
provide representative examples.

Fine-Grained Geometric Perception Error (18%). Fine-grained geometric perception errors oc-
cur when GLM-4.5V struggles to distinguish subtle quantitative differences between highly similar
options. For instance, in Figure the model incorrectly distinguishes between Option B and Op-
tion C based on the presence of hollow points.

Spatial Topology & Transformation Error (24%). These errors occur when GLM-4.5V fails to
comprehend the mapping between 2D shapes and 3D objects or understand spatial connectivity. A
representative example is shown in Figure[I0} where GLM-4.5V fails to correctly interpret the left
view of the given solid.

Spatial Positional Relation Error (22%). Spatial positional relation errors occur when GLM-4.5V
misjudges the relative position of geometric elements within a coordinate system. For example, as
shown in Figure[I 1] the model erroneously assumes that the graph of the function lies entirely above
the x-axis.

Abstract Global Pattern Recognition Error (36%). Abstract global pattern recognition errors
arise when GLM-4.5V identifies local features but fails to integrate them into a coherent global
geometric pattern or structural layout. As shown in Figure[IT| GLM-4.5V fails to determine whether
the figure exhibits axial symmetry.

E RATIONALE FOR VISUAL SIMILARITY METRIC

In VisioMath, we define the visual similarity of a question, Sim(Q), using the minimum pairwise
cosine similarity computed by Qwen multimodal-embedding-v1. This section provides a compre-
hensive justification for these design choices, demonstrating both the statistical robustness of the
aggregation strategy and the semantic suitability of the chosen encoder.

E.1 THE AGGREGATION STRATEGY

We chose the minimum pairwise similarity (.S,,;,) as our primary metric to establish a strict lower
bound for visual discrimination difficulty. Our choice is motivated by the need to capture the strictest
comparative difficulty of a problem: the minimum similarity ensures that every diagram pair in a
question is at least as similar as this threshold, thereby reflecting the lower bound of inter-option
confusability.
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Figure 6: The score distribution of three alternative metrics, minimum, mean, and median similarity,
across all problems.

We conducted an additional analysis using three alternative metrics—minimum, mean, and median
pairwise similarity—across all problems. As shown in Figure[6] the distributions of these three met-
rics exhibit highly aligned quartile boundaries, indicating that the dataset’s grouping under different
similarity definitions is structurally consistent rather than sensitive to a single metric.

To empirically verify this robustness, we evaluated model performance across quartiles (Q1-Q4)
defined effectively by Sinin, Smean, and Siedian- As presented in Table@ the performance trends
remain stable regardless of the aggregation method used. The drop in accuracy in the highest simi-
larity quartile (Q4) is consistent.

Our analysis confirms that this choice is statistically robust and consistent with other aggregation
methods (mean and median).

E.2 THE VISUAL ENCODERS

Our choice of Qwen multimodal-embedding-v1 is primarily justified by its training regime: unlike
CLIP, which is optimized for natural image—text pairs, and BLIP, which focuses on general QA tasks,
Qwen has been trained on diverse multimodal datasets that include diagrammatic reasoning and
text—diagram QA pairs. This background makes its embeddings particularly suitable for capturing
subtle, semantics-oriented similarities in mathematical diagrams.

To further validate this choice, we conduct a Nearest Neighbor Retrieval experiment using different
models including two additional candidates (BLIP and CLIP) to calculate the similarity. We show
qualitative examples in Figure[7] illustrating the top-5 retrieved images:

* Qwen (Ours): The retrieved images maintained strict geometric consistency. All results
were linear or near-linear decreasing function graphs in the first quadrant. This confirms
that Qwen is sensitive to topology (slope, intercept, coordinate system).

* BLIP (v2): While the top result was accurate, subsequent retrievals exhibited geometric
drift. For example, it retrieved a triangle and a trapezoid as highly similar to the func-
tion graph. This suggests BLIP may confuse “function graphs” with generic ’geometric
shapes,” introducing noise into the difficulty assessment.

» CLIP: The results showed significant semantic divergence. CLIP retrieved visually distinct
items such as a parallelogram with vectors and a Gaussian distribution curve, assigning
them high similarity scores (> 0.86). This indicates CLIP prioritizes high-level semantics
(e.g., “this is a math problem™) over specific visual topology, making it unsuitable for
distinguishing fine-grained diagrammatic differences.
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Figure 7: Illustrating the Top-5 nearest neighbor retrieval results using three different visual encoders
(Qwen multimodal-embedding-v1, BLIPv2, CLIP) to compute visual similarity.

F USE oF LLMS

In this work, large language models (LLMs) were utilized as supporting tools to aid in the revision
and polishing of certain text segments during manuscript preparation. All model-generated content
was thoroughly examined, revised, and refined by the authors to guarantee accuracy and compliance
with academic writing standards. Notably, the study’s conceptual framework, methodological de-
sign, data analysis, and interpretation of findings were conducted entirely by the authors, without
dependence on automated systems. The authors bear full responsibility for the originality, validity,
and integrity of the research presented in this paper.

Image-Text Mi

Knowledge Error

Question: As shown in the figure, the front view of the
cone is ()

A

A B C D
Standard answer: C

Model response

The front view of a cone is the shape obtained by observing the cone from the front,
which is an isosceles triangle. Analysis of the options:

Option A (corresponding to the first figure): shows the three-dimensional solid figure of
the cone, not the front view;

Option B (corresponding to the second figure): presents the outline of an isosceles
triangle, consistent with the characteristics of the front view;

Option C (corresponding to the third figure): is an ellipse, possibly the top view of the
cone or a projection from another angle, not the front view;

Option D (corresponding to the fourth figure): is a triangle but lacks the arc feature of
the base, closer to a regular triangle rather than the isosceles triangle of the cone’s
front view.

Therefore, the correct answer is B.

The answer to this question is <|beginofbox|>B<|endofbox|>

Question: As shown in the figure, the top view corresponds to

which of the following shapes ()

O
A

ol D

>
w
a

Standard answer: D

Model response

To determine the top view of the given figure, we need to analyze the top-view
characteristics of each option:

Option A (sphere): The top view of a sphere is a circle (with a center), which completely
matches the circle in the problem figure.

Option B (hemisphere): The top view of a hemisphere is a semicircle (with a diameter line),
which does not match the problem figure.

Option C (cylinder): The top view of a cylinder is a circle (without a center), but since the
problem figure includes a center, it does not match.

Option D (cone): The top view of a cone is a circle (with a center) and includes the projection
of the apex, but the problem figure is only a simple circle without the apex, so it does not
match.

In conclusion, the one that fits is option A.

The answer to this question is

<|begin_of_box|>A<|end_of_box|>

Figure 8: Example error cases for image-text misalignment and knowledge error.
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Reasoning Error

Vision Recognition Error

Question: Among the following curves, which represents y as a function of x ()

.

@]

Standard answer: D

Model response

According to the definition of a function, for every value of x in the domain, there must be a uniquely
determined y corresponding to it. To judge whether a curve represents a function, one can use the "vertical line
the curve at most once, then the curve represents y as a

test": if any line per to the x-axis i

function of x.

Option A: In the case of a straight line, each x corresponds to a unique vy, satisfying the definition of a function.
) that correspond to two different y

Option B: In the case of a circle, there exist certain values of x (e.g.,
values (y=1 and y=-1), which does not satisfy the definition of a function.

Option C: In the case of a hyperbola, similarly, there exist x values corresponding to multiple y values (e.g., x=1

corresponds to y=1 and y=-1), which does not satisfy the definition of a function.

Option D: Although the curve shows an overall increasing trend, it is necessary to check whether there are
intervals where one x corresponds to multiple y values. If the curve “turns back” in some interval (i.e., the same
x corresponds to multiple y values), it would not satisfy the definition of a function. Based on common problem
types, such curves are usually not considered to represent functions (for example, a cubic function may have

local regions with multiple values).
In conclusion, only option A satisfies the definition of a function.
The answer to this question is <|begin_of_box|>A<|end_of_box|>

Question: Which of the following figures cannot be folded into a cube ()

(;;,, P O
A C

Standard answer: B

Model response

To determine which figure cannot be folded into a cube, rely on the
features of cube nets:

Option A: Belongs to the “1-4-1” type; it is a valid cube net.

Option B: Also a “1-4-1" type (four faces in the middle with one above and
one below), which can be folded into a cube.

Option C: Contains a “field” grid structure (four small squares forming a
larger square), which is forbidden for cube nets and cannot be folded into
a cube.

Option D: Belongs to the “1-3-2” type and can be folded into a cube.
Therefore, the one that cannot be folded into a cube is option C.

The answer to this question is <|begin_of_box|>C<|end_of_box|>

Figure 9: Example error cases for reasoning error and vision recognition error.

Fine-Grained Geometric Perception Error

Spatial Topology & Transformation Error

Question Point P(x, y) lies in the first quadrant, and x +y = 6. The coordinates of point A are 0 . Let S be
the area of triangle OPA. Among the following graphs, which one correctly represents the functional
relationship between the area S and x?

Standard answer: C

Model response
First, determine that point \( P(x, y) \) satisfies \( x+y = 6 \) and lies in the first quadrant. Thus, \(x >0\) and
\(y=6-x>0\), which means \( 0 <x <6 \). The vertices of triangle \( \triangle OPA\) are \( 0(0,0) \), \( P(x, 6-x)
\), and \(A(0,12)\) (it is assumed that "the coordinates of point \( A \) are \((0)\)" in the problem should be
\((0,12)\); otherwise, a reasonable figure cannot be formed). The length of the base \( A \)is 12, and the
height is the abscissa \(x \) of point \( P \). Therefore, the area is: \[ S = \frac{1}{2} \times 12 \times x = 6x \]
However, combined with image analysis, if point \( A \} is actually \((0, 6)\) or another coordinate, recalculation
is required. A more reasonable derivation is: when point \( A \) is \((0, 6)\), the base \( OA = 6 \) and the height
is still \(x \), 50 \( S = \frac{1}{2} \times 6 \times x = 3x \), but this is inconsistent with the image.
By observing the option images, the correct image should satisfy that when \(x \in (0, 6) \), \(S \) decreases
linearly as \(x\) increases, and the endpoints do not include \( x=0\) and \( x=6 \) (represented by open circles),
which conforms to the decreasing characteristic of a linear function.
Finally, the correct image is determined to be option **B**.
The answer to this question is \(<| begin_of_box| >B<|end_of_box|>\)

Question The following geometric solid is constructed from 4 identical small cubes. Which one has the same
left view and top view? ()

do il

Standard answer: C
Model response

To solve the problem of “a geometric solid whose left view is the same as its top view", we need to analyze the
left view and top view of each option separately:

Option A: The left view has 2 layers (1 on the left, 1 on the right), and the top view has 3 columns (1 in the first
column, 1 each in the second and third columns) — they are different.

Option B: The left view has 2 layers (1 on the left, 1 on the right), and the top view is a 2-row by 2-column grid
(2in the front row, 1in the back row) — they are different.

Option C: The left view has 2 layers (1 on the left, 1 on the right), and the top view is a 2-row by 2-column grid
(2in the front row, 1in the back row) — they are different.

Option D: The left view has 2 layers (1 on the left, 1 on the right), and the top view is a 2-row by 2-column grid
(2in the front row, 1in the back row). Their shapes are consistent (both have 2 columns, with 1 in each column).
Therefore, the geometric solid whose left view is the same as its top view is Option D.The answer to this
question is \(<| begin_of_box|>D<|end_of_box|>\)

Figure 10: Example error cases for Fine-Grained Geometric Perception Error and Spatial Topology

& Transformation Error.

Abstract Global Pattern Error

Spatial Positional Relation Error

Question: The graph of the function y = = is roughly as follows:

{~ ]

Standard answer: D

Model response
First, analyze the properties of the function \(y = \frac{x"3}{3Ax - 1}\):

#iti 1. Domain The denominator \( 3%x - 1\neq 0\), so \(x \neq 0\\)
#### 2. Parity Calculate \( f(-x) = \frac{-x"3}{37{x} - 1} = \frac{x3 \cdot 3Ax}{3" - 1} \), which is not equal to
\(f(x) \). Thus, the function is neither odd nor even.

## 3. Values at Special Points - When \(x > 0\), \( 34 > 1\) makes the denominator positive, and the
numerator \(x"3>0\), 50 \(y>0\); - When \(x<0\), let \( t = x>0\), then \( f(-t) = \frac{-tA3}{37{-t} - 1} =
\frac{t*3 \cdot 3At}{34t - 1} >0\), s0 \(y >0\) for \(x<0\).

#it# 4. Limit Behavior - As \(x \to 0\), using the equivalent infinitesimal \( 3/x - 1\sim x \In 3\), we get \(y
\sim \frac{x"3}{x \In 3} = \frac{xA2}{\In 3} \to 0\); - As \( x \to +\infty \), the exponential function \( 3x \) grows
much faster than the polynomial \(xA3 1), 50 \(y \to 0%+ ); - As \( x \to -\infty \), \( 3% \to 0 \) makes the
denominator approach \(-1\), and the numerator \( xA3 \to -\infty \), s0 \(y \to +\infty \).

##4 Combined with Graph Features - The function s always greater than \( 0\) for \( x \neq 0\), excluding the
negative value region; - For \(x >0\, it first increases, then decreases, and approaches \(0\); for \(x<0\), it
decreases and approaches \( +\infty \).

Comparing with the options, only Option B satisfies all the above properties (positive value region, trend, and
shape).

The answer to this question is \(<| begin_of_box|>B<|end_of_box|>\)

Question: Among the following figures, which one is an axisymmetric figure? ()

-
-~
A B © D

Standard answer: B

Model response

Option A letter "e"): It cannot coincide when folded left-right or up-down, s it is not an axisymmetric figure.
Option B (arrows surrounding "X"): The figure has an asymmetric structure and no axis of symmetry, so it is not
an axisymmetric figure.

Option C (complex geometric pattern): Although it seems regular, careful observation shows that each part is
unevenly distributed with no obvious axis of symmetry, so it is not an axisymmetric figure.

Option D (arrow shape): When folded along the vertical midline, the left and right parts completely coincide,
and there is an axis of symmetry, so it is an axisymmetric figure.

<|begin_of_box|>D<|end_of_box|>

Figure 11: Example error cases for Spatial Positional Relation Error and Abstract Global Pattern
Recognition Error.
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Table 6: Performance comparison on VisioMath with results categorized based on image similarity
quartiles (Q1-Q4) defined by Minimum (min), Mean (mean), and Median (med) aggregation.

Models \ Image similarity Ql Q@ Q3 Q

min mean med min mean med min mean med min mean med
QwenVL-plus (Bai et al}[2023) 333 356 351 37.8 351 358 324 329 320 282 282 289
GPT-40 (OpenAl}[2024) 53.8 56.0 558 50.9 49.5 50.0 40.0 40.0 40.0 39.1 39.1 40.0

Gemini2-flash-thinking (DeepMind
Gemini2-flash llWl

Doubao-1.5-Vision-pro l
Seed1.6-Thinking (ByteDancel

Gemini 2.5 Pro (Comanici et al. @

Gemma3-27B (Team|[2025b)
Qwen2.5-VL-72B-instruct |
GLM-4.5V (Team et al. )

63.6 662 662 589 573 567 482 469 469 422 426 416
66.7 69.1 704 598 56.8 55.1 49.3 49.1 49.5 462 455 455
749 758 77.1 682 682 657 604 61.1 61.1 620 604 61.5
824 840 829 742 T24 742 662 676 664 67.6 664 662
86.2 893 88.6 838 82.6 840 767 767 767 769 769 769
433 440 455 412 415 400 296 304 304 264 262 262

2025) 471 502 493 508 469 484 380 39.1 382 387 387 389

682 68.0 593 542 549 442 467 451 395 447 40.6

Table 7: Performance comparison on VisioMath with results categorized based on GT position.

Models \GT position Avg Question stem w/o images Question stem with images

Avg A B C D Avg A B C D
Human 91.3 923 92.5 95.6 93.8 88.5 89.7 94.4 87.6 87.5 88.0
Random 25.6 254 24.0 25.6 23.0 28.6 26.0 22.8 27.6 28.4 25.6

Closed-source LMMs
279 30.2 28.1 335 31.6 27.5 254 39.4 229 26.0 11.1
329 39.1 27.0 59.9 434 255 26.3 75 262 34.8 40.1

GLM4V-plus (GLM,2024)

QwenVL-max (Bai et al. 441 534 352 626 625 502 341 3Ll 341 328 386
GPT-40 (OpenA 459 547 556 564 547 525 365 473 304 363 304
GPT4.1 (OpenAl 2025 526 616 724 599 602 561 428 548 393 437 319
Gemini2-flash-thinking (DeepMind [2025b) 532 612 806 599 586 503 446 573 430 431 329

555 65.1 78.1 59.9 65.2 59.6 452 577 345 38.7 47.8
66.3 75.6 78.6 78.0 76.6 70.2 56.4 734 55.6 48.0 45.4

uw

Seed1,6-Thinkin ( 723 85.7 90.3 87.2 82.4 83.9 58.0 71.8 537 44.6 59.4
Gemini 2.5 Pro (Comanici et a 80.9 86.2 89.2 84.6 85.2 86.3 75.2 78.8 77.6 75.0 68.6
Or ce LMMs (multi-i) input)
deepseekvI2-tiny (Wu et al.}[2024b. 235 21.6 45.9 29.1 15.2 2.7 25.6 58.5 27.1 6.9 43
InternVL2.5-2B- en et al. 239 249 153 26.9 332 224 229 13.7 28.5 36.3 14.5
InternVL2.5-2B (Chen et al. a 24.6 27.1 12.8 255 36.3 30.2 219 10.3 26.2 382 15.0
Llama3.2-11B-Vison (Dubey et al. 253 26.2 30.6 24.7 39.8 10.6 242 30.2 234 36.3 6.3
Idefics3-8B-1lama (Laurencon et al. 254 26.1 20.9 55.9 19.1 10.6 24.6 39.8 327 113 11.6
Qwen2.5-VL-3B-instruct (Bai et al.| 254 26.1 51.0 40.5 145 59 24.7 18.3 70.1 54 43
Phi3.5-vision (Abdin et al. ) 25.7 253 73.5 220 14.1 24 262 78.8 13.6 34 0.5
deepseekvl2-small (Wu et al. 4b 26.6 320 428 28.6 30.4 282 20.8 38.6 12.6 123 16.9
Mantis-8B-Idefics2 (Jiang et al. 279 30.8 24.0 17.6 42.1 36.5 24.8 220 7.0 324 39.1
InternVL2.5-4B (Chen et al. a 282 30.4 235 37.0 34.0 26.3 25.8 22.0 36.0 34.8 10.6
InternVL2.5-4B- en et al.||2024a) 28.4 309 12.8 33.0 31.6 424 25.6 9.5 27.1 47.1 21.7
MiniCPM-0-2.6 (Abdin et al. 4 293 34.6 40.8 36.1 31.3 31.8 23.6 36.5 23.8 15.7 15.9
R1-Onevison-7B (Yang et al.}|[2025; 29.6 35.0 38.8 374 34.8 30.2 23.7 22.0 322 289 11.6
MiniCPM-V-2.6 (Abdin et al.| 2024 29.7 33.0 31.6 304 30.9 38.4 26.1 30.0 26.2 16.7 309
InternVL2.5-8B (Chen et al.|[2024a 29.9 33.1 26.4 31.7 50.4 22.0 26.6 30.7 16.4 40.7 18.4
InternVL2.5-8B- en et al.[[2024a 30.9 359 25.0 485 39.5 29.4 255 23.7 252 343 19.3
QvQ-72B-Preview (Team 30.9 36.2 454 36.1 44.0 314 253 315 28.0 26.0 14.5
Qwen2-VL-72B-instruct (Wang et al.}2024c 31.7 382 15.8 29.5 78.1 23.1 245 2.5 9.8 83.8 6.8
Qwen2.5-VL-7B-instruct (Bai et al. 327 39.5 30.1 58.1 39.8 29.8 253 8.7 28.5 324 343
Gemma3-27B (Team, 2025 353 437 67.9 40.1 33.6 384 26.2 40.2 24.8 12.3 25.1
Vision-R1-7B (Huang et al.}[2025 36.7 437 474 573 38.7 337 29.2 245 523 29.4 10.6
Qwen2.5-VL-32B-instruct (Bai et al.|2025) 41.8 51.2 68.3 532 47.7 39.6 31.8 65.1 229 16.2 174
Qwen2.5-VL-72B-i inslrucl ai et al.} 2025) 43.7 535 36.2 63.9 61.3 49.8 33.0 29.9 37.8 29.9 352
GLM-4.5V (T )20 537 691 719 758 684 612 372 465 425 314 266
Llama4-Maveric -]7B 128E-FP8 Metal 2025 66.9 70.1 64.8 71.8 71.1 71.8 63.4 61.4 61.7 77.0 54.1
Oy ce LMMs (single-i) input)

LLaVA-v1.6-vicuna- 7B (Liu et al.,[2024a) 20.7 22.6 214 8.4 324 26.3 18.7 29.5 2.8 23.0 18.4

21.0 21.7 28.1 132 12.1 34.1 20.2 282 15.4 6.4 29.5

22.7 19.8 79.1 7.0 3.9 1.6 26.0 70.1 20.6 34 2.4

23.0 19.9 735 3.1 12.9 0.8 26.3 78.4 2.3 16.7 0.0
23.7 23.6 235 19.4 12,5 384 23.8 33.6 17.3 14.2 28.5
239 25.6 19.4 31.7 31.6 18.8 22.2 10.3 33.2 26.0 20.8
24.4 23.0 50.5 2.2 5.1 38.4 26.0 66.4 0.0 2.9 28.5
Open-Source LMMs (math-oriented)
27.4 28.9 31.6 30.2 32.0 229 26.0 383 30.1 21.5 12.3
22.8 23.8 55.1 14.5 6.3 255 21.8 444 26.2 1.5 11.1
379 50.9 36.2 62.1 527 50.1 24.0 21.1 224 274 25.6
39.3 51.0 332 542 61.3 514 26.9 16.2 29.9 39.7 23.7
31.7 38.4 28.1 432 44.9 357 244 10.8 41.6 353 11.6

24.5 259 19.4 233 42.6 152 233 16.6 13.6 50.5 14.5
MathCoderVL- SB ang eta 31.5 33.8 24.0 443 34.0 314 29.0 27.0 35.0 31.9 222
PUMAT7B (Zhuang et al.}|202 24.6 24.0 19.9 2.6 38.7 313 25.2 11.6 0.4 74.5 17.9
VLM-R1-Mat en et al.}|2025 27.4 29.3 32.1 30.8 32.0 23.1 252 39.0 31.3 19.1 9.2
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Table 8: Performance comparison on VisioMath with results categorized based on image similarity.

Models \Image similarity Avg [0.16,0.68] (0.68,0.87] (0.87,0.96] (0.96,1]
Human 91.3 95.7 912 87.6 89.0
Random 25.6 23.6 24.4 27.8 27.1
Closed-source LMMs
GLM4V-plus (GLM| 2024) 279 29.6 329 233 25.8
QwenVL-plus (Bai et al.| 329 333 37.8 324 28.2
QwenVL-max (Bai et al | 44.1 473 50.2 413 37.6
GPT-4o ( 459 538 509 40.0 39.1
GPT-4.1 (O 0 526 65.8 56.4 429 45.1
Gemini2-fl g 532 63.6 589 482 422
Gemini2- ﬁash IWD 55.5 66.7 59.8 49.3 46.2
Doubao-1.5-Vision-pro \ 66.3 74.9 68.2 60.2 62.0
Seed1.6-Thinking ( 723 82.4 742 66.2 66.4
Gemini 2.5 Pro (Comanici et al. 80.9 86.2 83.8 76.7 76.9
0); ce LMMs (multi-i) input)
DeepSeekVL2-tiny (Wu et al.}[2024b) 235 233 24.0 244 224
InternVL2.5-2B-MPO 239 24.0 27.6 24.0 20.2
InternVL2.5-2B ( 0242 24.6 242 28.9 22.7 22.7
Llama3.2-11B-Vison ( 253 233 27.8 26.4 23.6
Idefics3-8B-1lama Lduren on et al. 254 26.9 26.0 22.7 26.0
Qwen2.5-VL-3B in%lruct (Bai et al.| 254 26.7 27.6 24.4 229
Phi3.5-vision ( ) 25.7 23.6 28.7 27.8 229
DeepSeekVL2-smal 26.6 30.7 29.6 249 21.3
Mantis-8B-Idefics2 ( 27.9 322 289 24.7 26.0
InternVL2.5-4B ( 282 289 31.8 273 24.7
InternVL2.5-4B-M 28.4 282 34.0 262 25.1
MiniCPM-0-2.6 293 349 353 24.4 224
R1-Onevison- 7B 29.6s 21.9 322 28.9 11.6
MiniCPM-V-2.6 29.7 30.7 349 28.4 24.7
InternVL2.5-8B ( 2 29.9 324 31.8 29.6 26.0
InternVL2.5-8B-MP a 30.9 35.6 37.1 25.8 25.1
QvQ-72B-Preview ( 309 373 38.0 253 23.1
Qwen2-VL-72B-instruct (Wang et al| 31.7 355 37.8 26.0 27.1
Qwen2.5-VL-7B-instruct (B 0 327 33.6 37.8 29.8 29.6
Gemma3-27B 353 433 41.2 29.6 264
Vision-R1-7B (H 36.7 46.7 389 304 30.9
Qwen2.5-VL- 41.8 50.0 46.2 384 32.7
Qwen2.5—VL—72B—mstmct (B 43.7 47.1 50.8 38.0 38.7
GLM-4.5V 2025) 53.7 68.7 59.3 442 447
Llama4-Maverick-17B-128E-Instruct-FP8 dMetal 2025Ib 66.9 63.6 70.0 65.8 68.2
e LMMs (single-ij input)
20.7 222 24.4 17.8 18.4
21.0 21.7 213 20.6 20.2
22.7 222 224 25.6 20.9
23.0 21.8 26.0 23.6 20.5
23.7 233 253 249 21.1
239 26.7 235 233 22.0
24.4 24.0 26.0 26.0 21.8
Open-source LMMs (math-oriented)
USRA-PS-RPO 22.8 26.7 22.0 24.0 18.7
MathCoderVL-2 245 24.7 25.1 26.0 222
PUMA7TB ‘m 024 24.6 26.2 25.8 23.8 224
USRA (Luo et al | 274 26.0 314 263 26.1
VLM-RI-Ma 274 253 32.0 25.8 264
MathCoderVL- 8B (W 31.5 33.8 37.1 284 26.7
MM-PRM-8B mgl ) 31.7 37.6 37.1 26.9 25.1
MM-Eureka-7B \Mi 379 45.6 44.0 29.1 331
MM-Eureka-7B- D (Liu et al [[2025) 394 47.8 46.0 30.9 329
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Table 9: This table presents the prompts used for process evaluation and answer generation by
various LMMs in the VisioMath benchmark.

Phase Input Prompt
You are an Al assistant that helps me extract the answers to single-choice questions. You will be
provided with an answer. Your task is to find the final option of the model. If the model’s answer is
meaningless, output Z. You should output a single uppercase letter, such as A, B, C, D (if they are
valid options), or Z.
Example 1:
Answer: According to the question description and all related pictures, option A is the correct
Answer answer. Option A is a centrally symmetric figure because its four vertices are all symmetric, while
Extraction Model’s response the vertices of options B, C, and D are not symmetric.
(GLM4-Flash) Output: A
Example 2:
Answer: A. Sphere B. Circle C. Disc D. Circle
Output: Z
Example 3:
Answer: {model answer }
Output:
Answer Question Please solve a single-choice math question. The last four pictures are respectively the pictures for
Generation Dia ;ram% options A, B, C, and D. Select the correct answer from A, B, C, and D based on the question
(LMMs) Srams description and all relevant pictures.
Option Shuffling Question Please solve a single-choice math question. The last four pictures are respectively the pictures
Generation Dia Arams for options B, C, Dand A. Select the correct answer from A, B, C, and D based on the question
(LMMs) Srams description and all relevant pictures.
T have multiple images and a question that I want you to answer. I need you to strictly follow the
format with three specific sections: SUMMARY, CAPTION and REASONING. To explain further:
In SUMMARY, briefly explain what steps you’ll take to solve the problem. In CAPTION,
describe the contents of all the images, wrapping each image description inside tags like
<imagel></imagel>, <image2></image2>, etc. In REASONING, outline a step-by-step
thought process you would use to solve the problem based on the images.
Image Caption i <SUMMARY>
Generation Q.uesnon [Summarize how you will approach the problem...]
(LMMs) Diagrams </SUMMARY>
<CAPTION>
<imagel>... </imagel>
<image2>... </image2>
</CAPTION>
<REASONING>
[Provide a chain-of-thought, logical explanation of the problem.
This should outline step-by-step reasoning based on all the
images.]
</REASONING>
CoT Data . Please solve this multiple-choice math question and answer in English. The last four images cor-
. Question d to options A, B, C, and D respectively. Based on the question description and all relevant
Generation Caption respond to options A, B, C, and D respectively. Based on the question description and all relevan

(DeepSeek-V3.1)

images, select the correct answer from A, B, C, and D.
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