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ABSTRACT

Large Language Models (LLMs) have shown exceptional proficiency in natural
language processing tasks. More recently, their potential is being explored in
vision-centric applications. Current multimodal large language models (MLLMs)
incorporate general-purpose LLMs through multimodal instruction tuning. These
LLMs, however, lack prior vision centric text based training, potentially lim-
iting their effectiveness. In this work, we propose a novel approach to en-
hance vision-related capabilities of general-purpose LLMs through instruction
fine-tuning with vision-centric text data. Specifically, we curate a diverse dataset,
BRAILLEVISION-360K, to teach skills such as visual perception, abstraction,
and spatio-temporal reasoning without the use of visual data, analogous to how
Braille codes are used by the visually impaired. The dataset is constructed in an
automated manner by utilizing LLMs, bootstrapping from existing datasets, and
employing VLMs to improve quality. Next, to fine-tune an LLM with this dataset,
we introduce Fine-SFT, a novel fine-tuning approach that improves upon stan-
dard supervised fine-tuning and preference optimization techniques. Our vision-
specialized LLM shows significant performance gains in tasks such as visual clas-
sification and open vocabulary detection. Furthermore, when used as the ‘back-
bone’ for an MLLM, our model outperforms existing LLMs on standard visual QA
benchmarks while reducing hallucinations, highlighting the importance of vision-
centric pretraining of LLMs in multimodal tasks.

1 INTRODUCTION

Large Language Models (LLMs) exhibit remarkable proficiency across diverse language understand-
ing and generation tasks Minaee et al. (2024). This broad generalization has increasingly motivated
their adoption in computer vision. Two high-level approaches have emerged for utilizing LLMs in
vision tasks: first is extending LLMs to understand visual inputs and/or generate visual outputs. An
example of this approach is multi-modal LLMs (MLLMs), like LLaVA Liu et al. (2024), BLIP-2 Li
et al. (2023a), etc., which incorporates both text and visual input into its instruction-tuning dataset.
In this setup, a general-purpose LLM is trained with multi-modal data to equip it with vision capa-
bilities. The second approach combines an LLM with a Vision-Language Model (VLM) Radford
et al. (2021); Jia et al. (2021); Zhai et al. (2023b). This approach relies on the LLM for its world
knowledge and reasoning capabilities and VLM for its visual recognition capabilities. This approach
has been utilized in tasks like visual classification Menon & Vondrick (2023), open vocabulary ob-
ject detection Kaul et al. (2023), and Auto-Vocabulary segmentation Ülger et al. (2024). A key
characteristic shared by both approaches is their use of LLMs trained on text data from generalized
domains covering various topics. However, these LLMs lack specific prior adaptation for vision
tasks, potentially limiting their effectiveness.

LLM training typically involves two key stages: large-scale pre-training (PT) and supervised fine-
tuning with instruction following data (IFT). This dual-stage process allows LLMs to acquire vast
general knowledge and unlock their capabilities for specific tasks through targeted instruction tun-
ing Chung et al. (2024); Ouyang et al. (2022); Wang et al. (2023b). Instruction tuning, particu-
larly with machine-generated instruction-following data, has significantly enhanced the zero-shot
capabilities of LLMs on new tasks,showcasing a form of generalized intelligence. Another notable
advantage of instruction tuning is its ability to allow large models to quickly adapt to specific do-
mains or acquire specialized knowledge without requiring extensive computational resources or ma-
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Figure 1: Although LLMs are general purpose models, different classes of LLMs specialized in dif-
ferent capabilites. Base LLMs are pre-trained on large-scale web corpora and possess a vast amount
of world knowledge as a result. However, their ability to follow instructions must be unlocked
through instruction fine-tuning. Domain specific LLMs are instruction tuned to answer prompts
from a specific domain, e.g. math. Multimodal LLMs have an aligned input visual encoder to
accept image/video inputs. This work focuses on vision-related skills such as visual perception,
abstraction, and reasoning. While general-purpose LLMs exhibit some degree of visual reasoning,
these abilities remain limited; in Multi-Modal LLMs these skills are partially learned during visual
alignment and multi-modal fine-tuning. We propose BrailleVision, a text instruction tuning dataset
designed to unlock these vision relevant skills in LLMs. Additionally, we also align a visual encoder
with our LLM to produce BrailleVision-V, a MLLM with enhanced vision relevant skills.
Legend: ✖→ missing; ✓→ present; ▲! → limited; ?→ partially learned

jor architectural changes. This adaptability is crucial for applications that require domain-specific
expertise, as it facilitates rapid and efficient model customization. Furthermore, domain-specific
instruction-tuned LLMs demonstrate improved alignment abilities to the target task, often outper-
forming proprietary LLMs in instruction adherence and output relevance.These domain specialized
LLMs Ling et al. (2023) have achieved promising results in fields as diverse as Math Liu & Low
(2023); Yue et al. (2023b); Roziere et al. (2023); Luo et al. (2023b), Medicine Li et al. (2023c),
Legal Chalkidis et al. (2020) and Finance Wu et al. (2023). However, such an approach remains
largely unexplored in vision-related applications. Current applications of LLMs in vision domain
are limited to utilizing general-purpose LLMs without specific text adaptation for visual tasks.

To address these challenges, we propose a novel approach to improve the vision-relevant abilities of
text-based LLMs. We are motivated by the use of Braille codes by visually impaired readers, which
allows them to understand the world despite not having access to optical system based perception.
Our approach spans a variety of relevant skills, covering visual perception (classification), abstrac-
tion (summarizing), and reasoning capabilities (Q&A). Particularly, to improve perception related
abilities of LLMs, we design a process for generating instruction-tuning data. This process utilizes
large visual classification datasets and LLM generated class descriptors, which are then filtered for
discriminative ability through feedback from a VLM. The filtered descriptors are used to fine-tune
the LLM, improving its semantic knowledge for visual perception. To improve visual abstraction
capabilities, we obtain supervision by pairing together detailed and short captions for images and
videos. The LLM is trained to generate a short caption from the detailed one, which improves the
LLM’s ability to identify and focus on the most salient visual elements (hence, visual abstraction).
For reasoning, we build our supervision using visual question answering datasets, however, as our
goal is to train in the text domain, instead of visual input, information about the image or video is
provided in the form of captions. The LLM is then trained to answer reasoning-based questions
using the descriptions. The combination of all these three skills - perception, abstraction, and rea-
soning - together makes up our comprehensive IFT dataset, BRAILLEVISION-360K, designed to
significantly enhance the vision-relevant capabilities of general-purpose LLMs.

We utilize BRAILLEVISION-360K to train a vision-specialized LLM, and experiment with differ-
ent fine-tuning methods, including Supervised Fine-Tuning (SFT), Direct Preference Optimization
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(DPO). We also propose a novel Fine-Grained SFT method, which assigns task-specific importance
weights to tokens during the fine-tuning process and it outperforms SFT and DPO in this setting.
This vision-specialized LLM outperforms generalized LLMs when utilized in a variety of vision
tasks, such as assisting with visual classification and question answering using captions. We fur-
ther train our instruction-tuned LLM in a LLaVA-like setting and observe superior performance on
multi-modal benchmarks such as VQAv2, VizWiz, TallyQA etc.

In summary, our main contributions include:

• A method for automatically generating a diverse text-based instruction fine-tuning dataset,
BRAILLEVISION-360K, capturing vision-centric skills for LLMs.

• An LLM, BRAILLEVISION-T, with specialized vision-related skills, which in collaboration with
task specific modules like CLIP or a class agnostic detector, demonstrates improvement over off-
the-shelf LLMs on tasks like image or video classification and open vocabulary object detection.

• A multi-modal LLM, BRAILLEVISION-V, demonstrating significant improvements in multi-
modal QA tasks over standard MLLMs by leveraging our vision-specialized LLM as ‘backbone’.

2 RELATED WORK

Instruction finetuning emerged as a response to large language models producing outputs that fail
to align with user intentions, even when scaled to significant sizes. This misalignment often results
in outputs that are not beneficial to users. Researchers have explored various approaches to train
models to follow instructions more effectively. One notable direction is linked to the concept of
cross-task generalization in language models. This approach involves fine-tuning language models
on a diverse set of publicly available natural language processing (NLP) datasets, typically prefaced
with suitable instructions. The models are then evaluated on a separate group of NLP tasks that
were not part of the training process. Sanh et. al Sanh et al. (2021) first applied this approach
to LLM instruction tuning with 62 training datasets across 12 tasks, the concurrent Flan-V1 Wei
et al. (2021) consists of 53 tasks, whereas Flan-v2 Chung et al. (2024) scales this paradigm up to
1836 tasks. The second popular source of instruction fine-tuning data is human feedback editing
or ranking LLM responses. Another source of instruction tuning data is high-quality texts such
as portions of academic textbooks Gunasekar et al. (2023) or specialized QA websites Yue et al.
(2023b; 2024) consisting of text in a question/answer format. This technique has been successful in
domain-specific LLMs targeted at math and science problems. Finally, for smaller and medium scale
LLMs (e.g. 7B scale), larger teacher models like GPT-4 have also been used to create instruction
tuning data Wang et al. (2023c); Geng et al. (2023); Chiang et al. (2023a); Taori et al. (2023a).

Instruction tuning aims to enhance LLMs’ capacity to handle natural language questions. The un-
derlying concept is that by employing supervised learning to teach a language model how to execute
tasks outlined in instructions, it will develop the ability to follow directives, even for previously un-
seen tasks. General instruction tuning datasets such as FLAN Wei et al. (2021) and Vicuna Chiang
et al. (2023a) focus on improving this instruction following capability broadly. It has been ob-
served that such instruction tuning is not necessarily adequate for specialized domains, e.g. Vicuna
finetuned models perform worse than base LLaMA models when used to create LLaVA-like multi-
modal LLMs Karamcheti et al. (2024). Some other specialized domains such as code generation
and math solving have created specialized IFT datasets. In order to build our IFT dataset which is
specialized towards improving performance on vision tasks, we first explore which capabilities are
necessary and then select datasets to use to learn those capabilities.

Domain specific LLMs are most commonly seen in the Code and Math domains. Code-specific
LLMs specialize at both the pre-training and instruction tuning stages. As large amounts of code
are available from public open-source repositories on GitHub etc, pre-training specialized on code
data is feasible. At the instruction tuning stage, code models are also trained to recover from errors,
fix bugs, understand commit diffs, etc. Some popular code LLMs include WizardCoder Luo et al.
(2023b), Code-LLaMA Roziere et al. (2023), Code-Qwen, CodeStral Mistral (2024) etc. Math is
another domain where the weakness of generic LLMs has led to domain-specific instruction tuning.
Approaches based on textbook data, procedural generation, and mining data from educational web-
sites have found success at math tasks. WizardMath Luo et al. (2023a) and MaMMoTH Yue et al.
(2023b) are some LLMs used for Math.
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Dataset Size
Skill Task Image Video Image Video

Perception Classification by description ImageNet21k Kinetics400 112,210 4,000
Abstraction Summarization FuseCap (COCO) Ego4D 113,287 44,000
Reasoning QA using descriptions VQAv2 ActivityNet (VCG) 80,000 10,009

Table 1: Choice of tasks and corresponding datasets for each visual skill in BrailleVision-360k.

LLMs have been increasingly applied to vision tasks, particularly through integration with VLMs
and multi-modal training. LLMs are combined with VLMs, in the zero-shot scenario, to understand
and interpret visual inputs without requiring explicit training on the task. The VLM extracts mean-
ingful features from the image, which are then translated into textual descriptions for the LLM
to process, allowing to solve tasks such as image classification Menon & Vondrick (2023); Roth
et al. (2023); Pratt et al. (2023), action recognition Lin et al. (2023), multi-modal open vocabu-
lary detection Kaul et al. (2023), combining text captions across visual and audio modalities Chen
et al. (2024), rewriting video subtitles Shvetsova et al. (2023), Visual anomaly detection Zhu et al.
(2024), Hand-Object Interaction detection Lei et al. (2024) etc. This class of approach leverages the
language model’s extensive knowledge base to provide coherent responses, despite the absence of
specific training data for that task. Furthermore, LLMs can be fine-tuned with visual tokens to build
multi-modal LLMs, enabling them to process and understand visual inputs directly. This involves
appending visual embeddings to the text input Liu et al. (2024), allowing the LLM to learn from
both language and visual data simultaneously. By doing so, multi-modal LLMs can perform a wide
range of vision tasks, such as image classification, object detection, and visual question answering.

However, all these approaches rely on generic LLMs which are not trained with any pre-training or
instruction tuning data, specific to vision. In this work, we build a domain-specific instruction tuning
dataset and use it to fine-tune LLMs to assist with vision tasks. Our model is a drop-in replacement
for off-the-shelf LLMs utilized in prior works and provides a significant improvement due to its
domain-specific vision centric fine-tuning.

3 CONSTRUCTING THE BRAILLEVISION-360K DATASET

In this section we discuss the creation of our IFT dataset, BRAILLEVISION-360K, focusing on the
purpose of each component skill, the chosen task and the source datasets. In order to unlock the
vision relevant capabilities of LLMs, we first discuss which capabilities and datasets to use to build
our IFT training mix. We decide to focus on vision capabilities in three broad areas: perception,
abstraction, and reasoning. These skills together cover the vast majority of computer vision tasks
of interest. In perception, we focus on the simplest semantic level: classification, the ability to
identify specific objects and actions and semantically describe and relate them to other concepts.
With regards to abstraction, we focus on the capability of summarization: the ability to distill down
a long visual description of an image or video into a short sentence containing the most salient
details. Finally, with reasoning, we focus on question answering based on visual inputs, which
tests the ability to utilize perceived information to draw logical conclusions, make inferences, and
generate accurate responses grounded in the visual context provided. We carefully create instruction
fine-tuning data for each of our vision-relevant skills. For each skill, we have a separate source
of data for image and video tasks. We provide dataset overview and stats in Table 1 while a few
samples of each component of our dataset are provided in Figure 5 of our Appendix.

3.1 PERCEPTION

Perception is how an agent acquires information about the current state of the world to update its
world model. In the mammalian visual system, perception relies on the optic nerve to gather input
and the visual cortex to interpret it. The feature-integration Treisman & Gelade (1980) theory of
attention proposes that when multiple distinct features are required to identify or differentiate objects
in a display, attention must be focused on each stimulus individually in a sequential manner. The
goal of the perception component of our skills training is to enhance the LLM’s ability to generate
concept attributes or class descriptors sequentially.
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:
- Typically used for cleaning floors
- Usually made of metal and plastic

Figure 2: Creating IFT dataset for learning perception skills using CLIP Feedback. Each class
descriptor generated by the LLM is scored by CLIP for its effectiveness in visually distinguishing
the target class from a random sample of other classes.

Classification: For images, we probe the perception abilities of the LLM by prompting it to generate
class descriptors for different classes and then employ these descriptors for zero-shot classification
of images using CLIP. This approach is broadly similar to the one proposed in Classification-by-
Description Menon & Vondrick (2023). However, unlike that work, we also investigate the utility
of each individual descriptor generated by the LLM, filtering out less useful ones to ensure the
downstream LLM trained on this dataset generates only useful visual descriptions. For videos, we
follow a framework similar to that of the images. We utilize Kinetics-400 Kay et al. (2017) for
videos and ImageNet-21K Deng et al. (2009); Ridnik et al. (2021) for images. Next, we elaborate
on our visual descriptor filtering strategy utilizing CLIP feedback.

Scoring Class Descriptors using CLIP Feedback: The process of creating an Instruction Fol-
lowing Tuning (IFT) dataset for teaching a language model to generate visually discriminative
class attributes involves several steps. Consider a large labeled dataset of images/videos, such
as ImageNet21k. Images in the dataset belong to a set of image classes C = {C0, C1, . . . , Cn}
and the assignment of labels to samples is represented by D = {(x1, l1), (x2, l2), . . . , (xm, lm)},
where each pair (xi, li) represents an image and its corresponding label, with li ∈ C. The pro-
cess begins by randomly selecting a class Ck and sampling two sets of images: Xneg = {xj |
(xj , lj) ∈ D, lj ̸= Ck, |Xneg| = N}, containing N negative samples from classes other than
Ck, and Xpos = {xp | (xp, lp) ∈ D, lp = Ck, |Xpos| = N}, comprising N positive samples
from class Ck. Next, a Large Language Model L is utilized to generate a set of class descriptors
{dk,0, dk,1, . . . , dk,q} = L(Ck, prompt) based on the class Ck and a prompt template. Once gen-
erated, these descriptors need to be scored for their usefulness for the classification task. Hence,
each descriptor along with the class name, are then passed through a CLIP text encoder TCLIP, re-
sulting in encoded representations tk,j = TCLIP(Ck ⊕ dk,j), where ⊕ operator represents a rule
based operation for combining descriptor and class name. Pseudo-code for this operation is pro-
vided in the Appendix (Algorithm 1). Simultaneously, the sampled images (both the negatives,
and positives) are processed through a CLIP image encoder VCLIP, producing visual embeddings
vx = VCLIP(x) for each image x. Finally, for each descriptor dk,j , an F1 classification score is
calculated: f(Ck, dk,j) = F1 score({sim(vx, tk,j) | x ∈ Xneg ∪Xpos}), based on the cosine simi-
larity (denoted as sim(.)) of the descriptors which measures the effectiveness of each descriptor in
classifying the images. Figure 2 illustrates this process.

3.2 ABSTRACTION

Abstraction is the cognitive process of simplifying complex information by distilling it into its most
essential, general, or fundamental elements. It involves focusing on the relevant or important fea-
tures of an object, idea, or concept while ignoring the less significant details. This streamlined or-
ganization helps prevent memory overload and expand processing capabilities, thus improving both
retention and problem-solving abilities Rogers (2024). Many theories of human visual recognition,
such as, recognition by components Biederman (1987) posit that the human visual system involves
a significant degree of abstraction, i.e. visual scenes are recognized by ‘summarizing’ them into a
set of components. It has also been suggested that understanding human text involves the implicit
construction of summaries Graesser et al. (1994). Prior work in education research has demonstrated
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that students can be taught essential skills through learning to summarizing Boujaoude (1992); Wit-
trock & Alesandrini (1990). In addition to educational applications, these principles are also relevant
in fields like natural language processing (NLP) and computer vision. In the NLP domain, Google’s
Muffin Wei et al. (2022) and Flan Chung et al. (2024) instruction tuning datasets include text sum-
marization tasks, focusing on news, dialogue, and documents. While summarization is commonly
associated with text, similar principles can be applied in visual tasks to condense information. Prior
works have demonstrated that visual abstraction is useful in tasks like Image Segmentation Shimoda
& Yanai (2016), Video event detection Gan et al. (2015), and Video Question Answering Yu et al.
(2024); Zhang et al. (2023).

Summarization: We pick the task of visual description summarization to teach the model abstrac-
tion skills most relevant to computer vision. Specifically, the model is provided with a highly de-
tailed description of an image or video and has to generate a short description that still describes the
sample adequately. This task requires the model to focus on the key salient details while discarding
irrelevant ones. In particular, for images, we use image captions for the COCO dataset Lin et al.
(2014) for this part of our dataset. The detailed captions that need to be summarized are obtained
from the FUSECAP Rotstein et al. (2024) paper, whereas the short captions are obtained from the
original COCO dataset. As both FUSECAP and COCO provide multiple captions per image, we
choose the best one on the basis of its BLIPScore, choosing the caption with the highest similarity
to the image. For video, we use the narrations from the Ego-4D Grauman et al. (2022) dataset,
which are typically provided every for second as input. The output summaries cover each 5-minute
chunk of video with a single short caption.

3.3 REASONING

Reasoning plays a crucial role in intelligence by connecting perception and abstraction to actionable
insights and decisions. Simply building a maximally accurate (perfect perception) and parsimonious
(perfect abstraction) representation of input information is insufficient to achieve true cognition. For
a system to achieve cognition requires reasoning, the ability to process information and modify its
behavior in response Milkowski (2013). Reasoning encompasses a broad range of abilities such
as reasoning by analogy to generalize to novel situations Gentner & Hoyos (2017), recovering the
physical state of the world (e.g. a 3D model) from limited information (e.g. a 2d image) Wu et al.
(2017), inferring causal relationships from sparse data Gopnik et al. (2004), etc. Visual reason-
ing tasks, in particular, require the system to examine complex visual stimuli, encompassing both
foreground subjects, contextual background information, etc. and answer questions based on them.

Question Answering: We design a text-based version of the Visual Question Answering (VQA)
task, where a large language model (LLM) answers questions about images and videos based on
detailed textual descriptions instead of the visual content itself. For the image-based tasks, we use
the VQAv2 dataset Antol et al. (2015), which contains images from the COCO (Common Objects
in Context) dataset. However, instead of relying on COCO’s original captions, we use captions
generated by the FUSECAP model, which provides more detailed and informative descriptions.
These captions help the LLM understand the image content to answer the questions.

For video-based tasks, we use the ActivityNet dataset Caba Heilbron et al. (2015), which includes
videos depicting various human activities, accompanied by captions. The questions for the videos
are taken from the VideoChatGPT Maaz et al. (2024) dataset, which consists of more complex and
challenging questions requiring an understanding of temporal dynamics. Unlike static images, an-
swering video questions involves grasping the sequence and flow of events over time, making the
task more challenging. The model must understand not only individual frames but also the rela-
tionship between events over time. In both cases, the LLM is trained to interpret these detailed text
descriptions to answer questions typically posed in visual tasks. However, for videos, the challenge
lies in understanding the temporal structure and dynamics, which adds another layer of complexity
compared to image-based tasks.

4 TRAINING VISION SPECIALIZED LLMS

After building the dataset, we focus on fine-tuning the base LLM to develop BRAILLEVISION-T, our
vision specialized text LLM. We experiment with SFT and DPO, existing methods for LLM training,
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and also test our proposed Fine-Grained (Fine SFT) method. Finally, we fine-tune a LLaVA-Like
model (named BRAILLEVISION-V) with our specialized LLM as the ‘backbone’ to solve various
multi-modal tasks.

4.1 TRAINING BRAILLEVISION-T

Once the dataset is created, our next step is to use it to train the LLM. Following the literature,
we evaluated Supervised Fine-Tuning (SFT, also known as behavior cloning in the Reinforcement
Learning literature) and Direct Preference Optimization (DPO) and also proposed our own Fine-
Grained SFT (FineSFT) method for training the LLM.

In supervised fine-tuning, the model is simply trained using the language-modeling loss (i.e. next
token prediction) over the target dataset. Every single token in the SFT has the same weight, which
can sometimes lead to undesirable overfitting and hurt generalization.

If πθ represents the model, the SFT loss over a set of prompts x and expected outputs y is given by:

LSFT(πθ,x,y) = −Ex∼q(·),y∼pdata(·|x) [log πθ(y|x)] .

Direct Preference Optimization, on the other hand, is a method for sequence-level supervision,
where the product of the relative log probabilities (relative to the reference model) of a desired
or chosen output is raised compared to the product of the relative log probabilities of an undesired
(rejected) output. DPO has been utilized in state-of-the-art open-source LLMs and outperforms SFT.
If yw and yl represent the chosen and rejected responses, the DPO loss is given by:

LDPO(πθ;πref;x,y) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
.

.

However, DPO is more complex than SFT and requires keeping both the reference model and the
model undergoing finetuning in memory. DPO can also result in the LLM unlearning base knowl-
edge Yan et al. (2024) due to excessive lowering of probability for rejected response. Hence, we
introduce a fine-grained SFT approach where we weigh the loss at each token. The weights can be
task-specific; for instance, for the classification task, the F1 score for the corresponding descriptor
from CLIP can be used, while for summarization, BLIPScore can be used as the token weights. This
provides us with more fine-grained supervision than SFT while avoiding the problems associated
with DPO. Our loss requires the token loss weights as an additional input, w. Fine-SFT is illustrated
in Figure 3 and its loss equation is given by:

Lweighted
SFT (πθ;x,y,w) = −Ex∼q(·),y∼pdata(·|x)

[
n∑

i=1

wi log πθ(yi|x)

]
.

4.2 TRAINING MULTI-MODAL BRAILLEVISION-V

The logical progression for our experimental framework is to integrate our LLM into a compre-
hensive multi-modal LLM training architecture. Specifically, we have chosen to utilize the LLaVA
(Large Language and Vision Assistant) architecture Liu et al. (2024). In our experiments, we closely
adhere to the one stage training methodology outlined by Prismatic-VLMs Karamcheti et al. (2024).
This involves the alignment of a SigLIP Zhai et al. (2023a) vision encoder with a 7 billion parameter
LLM, by training on the LLaVA-Instruct-v1.5 dataset.

Our goal with this experiment is to assess the impact of our text-based instruction tuning on sub-
sequent performance across various multi-modal benchmarks. The critical distinction between our
Multi-modal Large Language Model (MLLM) and the established baseline lies in the text instruction
tuning phase of the process. For comparison, the baseline methodology presents results from two
scenarios: one without any text instruction tuning, and another utilizing the Vicuna text instruction
tuning approach. Our experimental design aims to evaluate and contrast the effectiveness of these
two baseline approaches against our novel text instruction tuning method.
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Fine-Grained Supervised Fine Tuning (Fine-SFT)
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Figure 3: Finetuning an LLM can be performed through simple Supervised Fine Tuning (SFT) where
each token gets equal weight. Our proposed FineSFT method on the other hand weights tokens
during training based on the discriminativeness score of their corresponding visual descriptors

.

Method Image Classification Video Classification
CalTech Pets Cars Food SUN UCF-101 HMDB-51

(a) CLIP (C) 93.3 88.2 65.6 85.3 62.6 64.5 37.5
(b) C + M-7B-Instruct 94.5 89.6 75.5 87.5 69.4 68.6 46.1

Ours (Visual class descriptor instruction tuned)
(c) C+M-7B (SFT) 94.9 92.5 78.3 88.2 72.3 75.8 49.5
(d) C+M-7B (DPO) 95.3 92.7 78.7 88.8 73.5 77.2 51.7
(e) C+M-7B (Fine-SFT) 95.7 93.1 79.1 90.4 73.9 78.1 52.6

Our Gains ((e) - (b)) → ↑ 1.2 ↑ 3.5 ↑ 3.6 ↑ 2.9 ↑ 4.5 ↑ 9.5 ↑ 6.5

Table 2: LLM assisted CLIP zero-shot image and video classification (following Menon & Vondrick
(2023)). Our visual classification instruction-tuned LLM beat the off-the-shelf LLM by 3% (image)
and 8% (video) on average. M-7B → Mistral-7B.

5 EXPERIMENTS AND RESULTS

In this section, we present our experimental results. First, we focus on evaluating the ability of our
approach to improve the ability of LLM to assist classification tasks. Next, we evaluate the Image-
QA skills of a LLaVA-like model trained using our LLM. The corresponding ability for Video-QA
tasks utilizes the LLM as both summarizer and reasoner, demonstrating its impact on both skills.
Finally, we carry out ablations to assess the impact of each set of skills in our IFT dataset.

5.1 LLM ASSISTING VISION MODELS

Classification by Description: Our initial experiments focus on the task of classification by de-
scription using our finetuned LLMs to assist a CLIP model. Our models are finetuned using supervi-
sion from the ImageNet-21k (image) and Kinetics-400 (video) datasets, and tested on a benchmark
of Image and Video Classification datasets including CalTech-101, Oxford-IIIT Pets-37, Stanford
Cars-196, Food-101 (image) and UCF-101 & HMDB-51. The detailed results are presented in Ta-
ble 2. These results demonstrate that finetuning the LLM on vision specific text data can improve
its zero-shot classification abilities, by 3% (image classification) and 8% (video classification) on
average. We also ablate three different methods of instruction tuning the LLM: SFT (row-c), DPO
(row-d) and our proposed Fine-SFT (row-e). Fine-SFT outperforms the others, due to providing
fine-grained token level weighted supervision.

Zero-Shot Cross-Task Transfer: We further test our LLM on a perception task not seen during
training to evaluate if our IFT transfers across tasks. For this we pick the task of few shot open vo-
cabulary object detection, following the scheme from prior work MMC-OVOD Kaul et al. (2023).
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Method LVIS-Base → LVIS LVIS-Base + IN-L → LVIS
APr (%) mAP (%) APr (%) mAP (%)

DETIC - - 24.6 32.4
MMC-OVOD 19.3 30.6 27.3 33.1
MMC-OVOD (with our LLM) 21.5 ↑ 2.2 31.7 ↑ 1.1 29.4 ↑ 2.1 34.7 ↑ 1.6

Table 3: Open Vocabulary Object Detection results. APr → AP for Rare classes.

In this approach an LLM is prompted to provide visual descriptions of the category of interest, for
which embeddings are generated using CLIP text encoder, and fused with CLIP image embeddings
for the few shot exemplars to create a classifier. Outputs from a class agnostic object detector (Cen-
terNet2 Zhou et al. (2021) with ResNet50 He et al. (2016) backbone) can then be classified among
any given vocabulary of classes using the aforementioned classifier. We replace the LLM component
of the system with our BrailleVision finetuned LLM and observe gains in object detection perfor-
mance on LVIS dataset, both with or without using ImageNet21K-LVIS overlap set as additional
image level data (Fig. 3). Performance on rare classes in particular rose by more than 2%, which
is a significant improvement on this hard task. These results establish that our vision-centric IFT
improves the perception ability of LLMs in general, even beyond tasks it is trained on.

LLM EgoSchema-Val NeXT-QA ActivityNet-QA
Summarizer Q/A Top-1 Acc.

LLaMA2 LLaMA2 34.0 50.1 50.8
Vicuna Vicuna 34.4 50.7 51.3
Ours Ours 41.7 ↑ 7.3 58.2 ↑ 7.5 55.6 ↑ 4.3

Table 4: Video-Question Answering following the LLoVI framework.

Video QA: We follow LLoVI Zhang et al. (2024) framework to evaluate our model on Video Ques-
tion Answering. This framework typically consists of three stages: captioning, caption summariza-
tion and question answering. Captions are generated using either an expert captioner (LaViLa for
EgoSchema) or an MLLM (LLaVA-1.5 for NeXT-QA and ActivityNet), which is common across
methods, Summarization and QA are done by a standard LLM. Results in Table 4 show that our LLM
outperforms generic baselines in both the Summarization as well as QA part of the benchmark.

In-Domain Zero-Shot
Model Text IFT VQAv2 GQA VSR VizWiz TallyQA

Prismatic None 77.08 62.44 63.67 55.98 59.22
LLaVA-1.5 Vicuna 77.09 ↑ 0.0 62.57 ↑ 0.1 51.47 ↓ 12.2 54.33 ↓ 1.7 61.63 ↑ 2.4
Ours BrailleVision 78.32 ↑ 1.2 63.49 ↑ 0.9 63.91 ↑ 0.2 57.15 ↑ 1.2 61.75 ↑ 2.5

Table 5: Benchmark evaluation of MLLM trained using our BrailleVision-360k instruction tuned
LLM as ‘backbone’ outperforms Vicuna (LLaVA) and Base LLaMA2 (Prismatic VLM) LLMs.

5.2 MULTI-MODAL LLM

The next direction we investigate is using our vision specialized LLM for MLLM training utilizing
a LLaVA-1.5-like framework, specifically, the Prismatic VLLM Karamcheti et al. (2024) setting.
Prior work had demonstrated that general text instruction tuning as done in Vicuna does not improve
MLLM’s performance on mutlti-modal tasks. We test our MLLM on a variety of Image QA tasks
and then on specific benchmarks that focus on hallucinations.

Image QA: The results in Table 5 show that using our LLM to train an MLLM outperforms both us-
ing a base LLaMA-2 model and a Vicuna instruction finetuned model. As previous research Karam-
cheti et al. (2024) has indicated that general instruction tuning does not significantly benefit the
adaptation of Large Language Models (LLMs) to multi-modal contexts, our finding demonstrates
that text instruction tuning can be useful, but only if its focused on vision relevant skills.

Effect on Hallucinations: A key limitation of multi-modal LLMs is their propensity to halluci-
nate which they inherit from their pre-trained LLM ‘backbone’. We evaluate our MLLM for object
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hallucination using POPE Li et al. (2023b). HallusionBench Guan et al. (2024) on the other
hand tries to detect when conclusions are made by the model ignoring visual input due to strong
language prior and when visual inputs are misinterpreted, resulting in overly confident but incor-
rect statements by the model. Our IFT results in fewer hallucinations (See Tab. 6), particularly
HallusionBench, which is focused on hallucinations caused by an incorrect language prior.

Model Text IFT POPE-Overall POPE-Adversarial HallusionBench

Random Baseline - 50.0 50.0 45.96

Prismatic None 86.74 84.5 46.06
LLaVA-1.5 Vicuna 86.57 ↓ 0.2 84.0 ↓ 0.5 46.06
Ours BrailleVision 87.21 ↑ 0.5 86.1 ↑ 1.6 48.71 ↑ 2.6

Table 6: Effect of our Text IFT on propensity to hallucinate.

IFT Training Split Classification VQA
Classification Summarization Reasoning Image Video Image Video

✔ ✔ ✔ 86.4 78.1 78.3 41.7
✔ ✔ - 86.1 78.0 76.5 34.8
✔ - ✔ 85.4 78.3 78.1 39.5
- ✔ ✔ 80.7 65.6 77.0 41.5

Table 7: Skills Dataset Ablations for BRAILLEVISION-360K.
5.3 ABLATIONS

Dataset Ablation: We ablate different components of our instruction tuning dataset in Table 7. Par-
ticularly, from 2nd and 3rd rows, we observe VQA performance degrades if we remove summariza-
tion and reasoning related data from BRAILLEVISION-360K. Similarly, removing visual perception
related classification data significantly drops image and video classification performance. Overall,
these results show that each component of our dataset is necessary for all around improvement.

Vision Feedback Model Ablation: We also ablate the vision-language feedback model, replac-
ing CLIP successively with MAWS Singh et al. (2023), which is a MAE-like model later aligned
with language modality and Visually Enriched-CLIP Lai et al. (2024), which is trained with longer,
detailed synthetic captions. We find that MAWS underperforms CLIP while VE-CLIP performs
similarly. Detailed results are presented in Table 8.

LLM Ablation: We experiment with different base LLMs for finetuning with BRAILLEVISION-
360K. We find that Mistral Jiang et al. (2023) and LLaMA2 Touvron et al. (2023) both perform
similarly (Table 9), with LLaMA outperforming at VQA slightly, and Mistral better at classification.

Vision Classification VQA
Feedback Image Video Image Video

CLIP 86.4 78.1 78.3 41.7
MAWS 85.8 76.5 77.4 41.0

VE-CLIP 86.5 78.0 78.1 41.7

Table 8: Vision Feedback Ablation.

LLM Classification VQA
Image Video Image Video

Mistral-7B 86.4 78.1 78.3 41.7
LLaMA2-7B 86.3 77.4 78.5 42.8

Table 9: Base LLM Ablation.

6 CONCLUSION

In this paper, we introduced BRAILLEVISION, a novel approach to enhance the visual capabilities of
Large Language Models through vision-specific instruction fine-tuning. By focusing on key vision-
related skills—perception, abstraction, and reasoning—we demonstrated how targeted text-based
training can significantly improve an LLM’s performance across a range of visual tasks. Our results
showed that this specialized instruction tuning, leads to better performance in visual classification,
and zero shot task transfer to other perception tasks such as open vocabulary detection. Additionally,
by integrating our fine-tuned LLM into a multimodal large language model, we observed notable
improvements in multi-modal tasks, such as image and video question answering, and reduced hal-
lucinations. This work underscores the importance of aligning LLM training with domain-specific
tasks, showing that specialized fine-tuning can significantly boost multimodal intelligence.
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APPENDIX

A SENTENCIFY ALGORITHM

The algorithm used for converting descriptors generated by the LLM into sentences used for prompt-
ing CLIP is explained in Alg. 1. This follows the approach from Menon & Vondrick (2023) and
handles common cases to ensure meaningful sentences are generated.

Algorithm 1 Function to sentencify a descriptor to prompt CLIP

1: function SENTENCIFY DESCRIPTOR(descriptor, classname)
2: if descriptor starts with “a” OR descriptor starts with “an” then ▷ Handles descriptors

introducing a noun or noun phrase
3: return “a photo of a ” + classname + “ which is ” + descriptor
4: else if descriptor starts with “has” OR “often” OR “typically” OR “may” OR “can” then ▷

Handles verb phrases describing characteristics or abilities
5: return “a photo of a ” + classname + “ which ” + descriptor
6: else if descriptor starts with “used” then ▷ Handles descriptors describing purpose or

function
7: return “a photo of a ” + classname + “ which is ” + descriptor
8: else ▷ Handles features or qualities that something has
9: return “a photo of a ” + classname + “ which has ” + descriptor

10: end if
11: end function

B CREATION OF IFT DATASET FOR SUMMARIZATION

The process as discussed in Section 3.2 is illustrated in Fig. 4.

C COMPARISON TO OTHER TEXT IFT DATASETS

In Table 10 we compare our IFT dataset against prior works, our dataset is comparable in scale to
the largest IFT datasets, while covering unique capabilities and created through a novel process (use
of CLIP feedback).
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D SAMPLES FROM BRAILLEVISION-360K

We provide samples from each task in our dataset in Fig. 5.

A barefoot young boy, holding a vibrant
umbrella, walks toward a cow on a blue
leash. Dressed in a plaid shirt over a blue
and gray outfit, he reaches out to touch the
cow's horn. The cow has a brown and gray
head, one gray ear, and a black leg.


A young boy barefoot holding
an umbrella touching the horn of a cow


Detailed Captions Short Captions
Summarization

A barefoot boy with a vibrant
umbrella approaches a cow on a
blue leash, touching its horn

BLIP

Scoring 

&


 Ranking

Detailed Captions from FUSECAP: 


A young boy,  barefoot and holding a
colorful  umbrella, walks towards a cow
on a  blue leash. He touches the horn
of the cow with his hand while wearing a
plaid shirt and blue and gray shirt.  The
cow has a brown and gray head, a gray
ear, and a black leg.

Short Captions from COCO: 


A young boy, barefoot and holding a colorful umbrella, walks
towards a cow on a  blue leash. He touches the horn of  the
cow with his hand while wearing  a plaid shirt and blue and
gray shirt. The cow has a brown and gray head, a gray ear,
and a black leg.

A young boy barefoot holding
an  umbrella touching the  horn of a
cow

Detailed Caption Short Caption

Figure 4: Creation of IFT dataset for Summarization Task

Dataset Domain Size Generation Process

SuperNI Wang et al. (2022b) Generic 96.9K NLP Datasets +
Hand Written Prompts

Flan V2 Longpre et al. (2023) Generic 100K NLP Datasets +
Hand Written Prompts

Dolly Conover et al. (2023) Generic 15.1K Hand Written
Open Assistant 1 Köpf et al. (2024) Generic 34.7K Hand Written
Self Instruct Wang et al. (2022a) Generic 82.4K GPT-3
Unnatural Instructions Honovich et al. (2022) Generic 68.4K GPT3 (davinci-002)
Alpaca Taori et al. (2023b) Generic 52K GPT3 (davinci-003)
GPT4-Alpaca Peng et al. (2023) Generic 52K GPT-4
Baize Xu et al. (2023) Generic 210K ChatGPT
ShareGPT Chiang et al. (2023b) Generic 168.8K ChatGPT

Code-Alpaca Chaudhary (2023) Coding 20K GPT3 (davinci-003)
CodeContest Coding 13.6K Programming Contests
CommitPackFT Muennighoff et al. (2023) Coding 702K GitHub Commits

ChatDoctor Li et al. (2023c) Medical 115K -
DISC-Med-SFT Bao et al. (2023) Medical 464K -

DISC-Law-SFT Yue et al. (2023a) Law 403K -
Lawyer LLaMA SFT Huang et al. (2023) Law 21K -

Lila Mishra et al. (2022) Math 272K -
MathInstruct Yue et al. (2023b) Math 262K GPT-4
MetaMathQA Yu et al. (2023) Math 395K GPT-3.5
MathCodeInstruct Wang et al. (2023a) Math 80K GPT-4
WizardMath Luo et al. (2023a) Math 96K GPT-3.5
ToRA Gou et al. (2023) Math 16K GPT-4
OpenMathInstruct-1 Toshniwal et al. (2024) Math 1.8M Mixtral

Ours Vision 360K Vision Datasets +
Mixtral + CLIP Feedback

Table 10: Comparison of text instruction tuning datasets with their size and generation process.
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Video Classification 

Output Stand in a stable position

Aim at the target Release the bowstring Follow through with the shot

Retrieve the arrow from the target


Input  Class Label: Archery

Nock the arrow to the bowstring Draw the bowstring back

Prompt Return a numbered list of just the verb phrase for the specific action steps a person would perform while
doing <class label>

Tasks

A kitchen with a white cabinet, silver stain-less steel sink, counter top, brown floor and closed white
doors. The ceiling is ...... black oven, silver  pot, and a white microwave are visible. 

Image Summarization

Output Galley kitchen with cabinets and appliances on the sides.

Prompt Below is a detailed description of an image. Summarize the main points of this text.

Input 

Output #Summary C was in the room and played cards with person A

Reasoning - Image
Prompt Please provide a single-letter answer (A, B, C, D, E) to the following multiple-choice question. Your

answer must be one of the letters (A, B, C, D, or E) and no other response or explanation is allowed. You
are given some language descriptions of an image. Here are the descriptions: <Narration>. You are going
to answer a multiple-choice question based on the descriptions, and your answer should be a single letter
chosen from the choices. Here is the question: <Question>. Here are the choices: A: <A> B: <B>.

Input  Narration: Crispy, chewy crust with rich tomato sauce. Gooey melted mozzarella cheese. Thin slices of
spiced salami (pepperoni). Crispy edges on the pepperoni when baked. Savory and slightly spicy flavor
profile.

Question: Is this a vegetarian pizza?

<A>: Yes <B>: No


Output <B>


Video Summarization

Prompt Below are the detailed captions of the frames from a video. Summarize the main points of this text.
Input  Person A sits in the room. Person B sits in the room. Person C hands playing cards to B. 


Reasoning - Video

Prompt Please provide a single-letter answer (A, B, C, D, E) to the following multiple-choice question. Your
answer must be one of the letters (A, B, C, D, or E) and no other response or explanation is allowed. You
are given some language descriptions of a  first-person view video. Here are the descriptions:
<Narration>. You are going to answer a multiple-choice question based on the descriptions, and your
answer should be a single letter chosen from the choices. Here is the question: <Question>. Here are the
choices: A: <A> B: <B> C: <C> D: <D>.


Input  Narration: Approach the runway. Run down the runway. Plant the pole in the box. Jump off the ground ...

Question: What happened before Pole Vault?

<A>: Running <B>: Jumping <C>: Falling <D>: Celebrating


Output <A>


Image Classification

Input  Class Label: Volcano
A crater at the top of the mountain
A plume of smoke and ash rising


Prompt What are the visual features that distinguish a <class label> in a photo?

Output A large cone shaped mountain
Lava and Ash flowing from the crater

Figure 5: Samples from our text instruction fine-tuning dataset for unlocking perception, summa-
rization, and reasoning capabilities, with a video and image counterpart respectively.
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