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Abstract

Adjustable hyperparameters of machine learning models typically impact various key
trade-offs such as accuracy, fairness, robustness, or inference cost. Our goal in this paper
is to find a configuration that adheres to user-specified limits on certain risks while being
useful with respect to other conflicting metrics. We solve this by combining Bayesian
Optimization (BO) with rigorous risk-controlling procedures, where our core idea is to steer
BO towards an efficient testing strategy. Our BO method identifies a set of Pareto optimal
configurations residing in a designated region of interest. The resulting candidates are
statistically verified and the best-performing configuration is selected with guaranteed risk
levels. We demonstrate the effectiveness of our approach on a range of tasks with multiple
desiderata, including low error rates, equitable predictions, handling spurious correlations,
managing rate and distortion in generative models, and reducing computational costs.

1 Introduction
Deploying machine learning models in the real-world requires balancing different performance aspects such
as low error rate, equality in predictive decisions (Hardt et al., 2016; Pessach & Shmueli, 2022), robustness
to spurious correlations (Sagawa et al., 2019; Yang et al., 2023), and model efficiency (Laskaridis et al., 2021;
Menghani, 2023). In many cases, we can influence the model’s behavior favorably via hyperparameters that
determine the model configuration. However, selecting a configuration that precisely meets user-defined
requirements on test data is often challenging, especially when dealing with a large number of objectives and
configurations that are costly to assess (e.g., that require retraining large neural networks for new settings).

Bayesian Optimization (BO) is widely used for efficiently selecting configurations of functions that require
expensive evaluation, such as hyperparameters that govern the model architecture or influence the training
procedure (Shahriari et al., 2015; Wang et al., 2022; Bischl et al., 2023). The basic concept behind BO is
to substitute the costly function of interest with a cheap, easily optimized probabilistic surrogate model.
This surrogate is then used to select promising candidate configurations while balancing exploration and
exploitation. Beyond single-function optimization, BO has been extended to handle multiple objectives.
In this context, the goal is to find a set of Pareto optimal configurations that represent the best possible
trade-offs for the given objectives (Karl et al., 2022). Additionally, BO can accommodate multiple inequality
constraints (Gardner et al., 2014). Nevertheless, none of these mechanisms provide formal guarantees
on model behavior at test time, and can suffer from unexpected fluctuations from the desired final
performance (Letham et al., 2019; Feurer et al., 2023).

Addressing configuration selection from a different prospective, the Learn then Test (LTT) framework (An-
gelopoulos et al., 2021) is a rigorous statistical testing approach for controlling multiple risk functions with
distribution-free, finite-sample validity in a model-agnostic manner. While LTT provides exact theoretical
verification, its practical application becomes challenging when dealing with large configuration spaces. The
increased computational costs and potential loss of statistical power hinder the identification of useful con-
figurations. To mitigate these challenges, the recently proposed Pareto Testing method (Laufer-Goldshtein
et al., 2023) combines the strengths of multi-objective optimization and statistical testing. The core idea is
to leverage multi-objective optimization to significantly reduce the space of configurations to consider, recov-
ering Pareto optimal hyperparameter combinations that are promising candidates for testing. Although this
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Figure 1: Demonstration of GuideBO for algorithmic fairness with gender as a sensitive attribute (left).
We would like to set the model configuration λ = [λ1, λ2] to minimize the difference in demographic parity,
while bounding the overall prediction error by α. Our method (right): (i) defines a region of interest in the
objective space, (ii) identifies Pareto optimal solutions in this region, (iii) statistically validates the chosen
solutions, and (iv) sets λ to the best-performing verified configuration.

approach improves computational and statistical efficiency, the recovered subspace may still contain irrele-
vant configurations—either valid but inefficient or highly unlikely to satisfy the constraints. Therefore, when
considering expansive configuration spaces, this strategy can again become costly and statistically loose.

In this work, we introduce GuideBO, a new synergistic approach to combine optimization and testing to
achieve efficient model selection under multiple risk constraints. Our approach centers around the concept
of the “region of interest” in the objective space, which aligns with the goal of achieving testing efficiency
while operating within a limited compute budget. To define the region of interest, we consider factors
such as data sample sizes, user-specified limits, and required certainty levels. Consequently, we propose an
adjusted BO procedure, recovering the part of the Pareto front that intersects with the defined region of
interest. The resulting focused optimization procedure recovers a dense set of configurations, representing
candidates that are both effective and likely to pass the test. In the final step, we apply statistical testing
to filter this chosen set and identify highly-preforming configurations that exhibit verified control.

We demonstrate that GuideBO is a flexible approach applicable across diverse contexts for both predictive
and generative models. It effectively tunes various types of hyperparameters that impact the model—whether
prior to training or post-training. Specifically, we show its applicability in the domains of algorithmic fairness,
robustness to spurious correlations, rate and distortion in Variational Autoencoders (VAEs), accuracy-cost
trade-offs for pruning computations of large-scale Transformer models, and early-time classification in large
language models (LLMs). See Fig. 1 for an example and a high-level illustration of GuideBO.

Contribution. Our main ideas and results can be summarized as follows:

1. We introduce the region of interest in the objective space, which significantly reduces the search space for
candidate configurations, thereby leading to more efficient statistical testing with fewer computations.

2. We define a new BO procedure to identify configurations that are Pareto optimal and lie in the defined
region of interest. These configurations are subsequently validated through statistical testing.

3. Our approach facilitates risk-controlled model selection in complex and costly settings that necessitate
model retraining or involve extensive configuration spaces. We present a broad range of problems, where
our approach can be valuable for valid control and effective optimization of diverse performance aspects,
including classification fairness, predictive robustness, generation capabilities, model compression and
runtime reduction.

4. Through empirical experiments, we demonstrate that GuideBO selects highly efficient and verified
configurations under practical budget constraints, outperforming baselines.
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2 Related work
Conformal prediction and risk control. Conformal prediction is a popular model-agnostic and
distribution-free uncertainty estimation framework that returns prediction sets or intervals containing the
true value with high probability (Vovk, 2002; Vovk et al., 2015; 2017; Lei et al., 2013; 2018; Gupta et al.,
2020; Barber et al., 2021). Coverage validity, provided by standard conformal prediction, has recently been
extended to controlling general statistical losses, allowing guarantees in expectation (Angelopoulos et al.,
2022) or with user-defined probability (Bates et al., 2021). Our contribution builds on the foundational
work by Angelopoulos et al. (2021) addressing the broader scenario of multiple risk control by selecting a
proper low-dimensional hyperparameter configuration via multiple hypothesis testing (MHT). Additionally,
we draw upon the recently introduced Pareto Testing method (Laufer-Goldshtein et al., 2023) that further
improves computational and statistical efficiency by solving a multi-objective optimization (MOO) problem
and focusing the testing procedure over the approximated Pareto optimal set. In this paper, we point out
that recovering the entire Pareto front is redundant and costly and suggest instead to recover a focused
part of the front that is aligned with the purpose of efficient testing. This enables highly-expensive
hyperparameter tuning that involves retraining of large models with a limited compute budget.

Bayesian Optimization (BO). BO is a commonly used sequential model-based optimization technique
to efficiently find an optimal configuration for a given black-box objective function (Shahriari et al., 2015;
Frazier, 2018; Wang et al., 2022). It can be applied to constrained optimization problems (Gardner et al.,
2014) or multi-objective scenarios involving several conflicting objectives (Karl et al., 2022). However,
when used in model hyperparamaeter tuning, the objective functions can only be approximated through
validation data, resulting in no guarantees on test time performance. To account for that we resort to
statistical testing, and utilize the effectiveness of BO to efficiently explore the configuration space and identify
promising candidates for testing. Closely related to our work are (Stanton et al., 2023; Salinas et al., 2023)
proposing to integrate conformal prediction into BO in order to improve the optimization process under model
misspecification and in the presence of observation noise. These works go in a different direction from our
approach, guaranteeing coverage over the approximation of the surrogate model, while ours provides validity
on configuration selection. Another recent work (Zhang et al., 2023) utilizes online conformal prediction for
maintaining a safety violation rate (limiting the fraction of unsafe configurations found during BO), which
differs from our provided guarantees and works under the assumption of a Gaussian observation noise.

Multi-Objective Optimization (MOO). Simultaneously optimizing multiple black-box objective
functions was traditionally performed with evolutionary algorithms, such as NSGA-II (Deb et al., 2002),
SMS-EMOA (Emmerich et al., 2005) and MOEA/D (Zhang & Li, 2007). Due to the need for numerous eval-
uations, evolutionary methods can be costly. Alternatively, BO methods are more sample efficient and can
be combined with evolutionary algorithms. Various methods were proposed exploiting different acquisition
functions (Knowles, 2006; Belakaria et al., 2019; Paria et al., 2020) and selection mechanisms, encouraging
diversity in the objective space (Belakaria et al., 2020) or in the design space (Konakovic Lukovic et al.,
2020). The central idea behind our approach is to design a Multi-Objective BO (MOBO) procedure that
recovers a small set of valid and efficient configurations. Subsequently, we calibrate this chosen set using
MHT (Angelopoulos et al., 2021).

Additional related work is given in Appendix A.

3 Problem formulation
Consider an input X ∈ X and an associated label Y ∈ Y drawn from a joint distribution pXY ∈ PXY .
We learn a model fλ : X → Y, where λ ∈ Λ ⊆ Rn is an n-dimensional hyperparameter that determines
the model configuration. The model weights are optimized over a training set Dtrain by minimizing a given
loss function, while the hyperparmeter λ determines different aspects of the training procedure or the final
setting of the model. For example, λ can weigh the different components of the training loss function, affect
the data on which the model is trained, or specify the final mode of operation in a post-processing procedure.

We wish to select a model configuration λ according to different, often conflicting performance aspects, such
as low error rate, fairness across different subpopulations and low computational costs. In many practical
scenarios, we would like to constrain several of these aspects with pre-specified limits to guarantee a desirable
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performance in test time. Specifically, we consider a set of objective functions of the form ℓ : PXY ×Λ→ R.
We assume that there are c constrained objective functions ℓ1, ...., ℓc, where ℓi(λ) = EpXY

[Li(fλ(X), Y ; λ)]
and Li : Y×Y×Λ→ R is a loss function. In addition, there is a free objective function ℓfree defining a single
degree of freedom for minimization. The selection of λ is carried out based on two disjoint data subsets: (i)
a validation set Dval = {Xi, Yi}k

i=1 and (ii) a calibration set Dcal = {Xi, Yi}k+m
i=k+1. We will use the validation

data to identify a set of candidate configurations, and the calibration data to calibrate the identified set.
The constraints are specified by the user and have the following form:

PDcal (ℓi(λ) ≤ αi) ≥ 1− δ, ∀i ∈ {1, . . . , c}, (1)

where αi is the upper bound of the i-th objective function, and δ is the desired confidence level. Note that
the probability in (1) is defined over the randomness of the calibration data Dcal, namely if δ = 0.1, then the
selected configuration will satisfy the constraints at least 90% of the time across different calibration datasets.

We provide here a brief example of our setup in the context of algorithmic fairness and derive additional
applications in §6. In many cases, we wish to increase the fairness of the model without significantly
sacrificing performance. For example, we would like to encourage similar true positive rates across
different subpopulations, while constraining the expected error. One approach to enhance fairness involves
introducing fairness-promoting terms in addition to the standard cross-entropy loss (Lohaus et al., 2020;
Padh et al., 2021; Chuang & Mroueh, 2020). In this case, λ contains the weights assigned to each term to
determine the overall training loss. Different weights would lead to various accuracy-fairness trade-offs of
the resulting model. Our goal is to select a configuration λ that optimizes fairness, while guaranteeing that
the overall error would not exceed a certain limit with high probability.

4 Background
In our method, two critical components play a central role: optimization of multiple objectives and
statistical testing for configuration selection. We hereby provide a short overview on these topics.

Multi-Objective Optimization (MOO). Consider an optimization problem over a vector-valued func-
tion ℓ(λ) = (ℓ1(λ), . . . , ℓd(λ)) consisting of d objectives. When dealing with conflicting objectives, there is no
single optimal solution that simultaneously minimizes all objectives. Instead, there is a set of optimal configu-
rations representing different trade-offs among the given objectives. This is the Pareto optimal set, defined by:

Λp = {λ ∈ Λ : {λ′ ∈ Λ : λ′ ≺ λ, λ′ ̸= λ } = ∅}, (2)

where λ′ ≺ λ denotes that λ′ dominates λ if for every i ∈ {1, . . . d}, ℓi(λ′) ≤ ℓi(λ), and for some
i ∈ {1, . . . d}, ℓi(λ′) < ℓi(λ). Accordingly, the Pareto optimal set consists of all points that are not
dominated by any point within Λ. Given an approximated Pareto front P̂, a common quality measure is
the hypervolume indicator (Zitzler & Thiele, 1998) defined with respect to a reference point r ∈ Rd:

HV (P̂; r) =
∫
Rd

1H(P̂,r)dz, (3)

where H(P̂; r) = {z ∈ Rd : ∃ p ∈ P̂ : p ≺ z ≺ r} and 1H(P̂,r) is the Dirac delta function that equals 1
if z ∈ H(P̂; r) and 0 otherwise. An illustration is provided in Fig. B.1. The reference point defines the
boundaries for the hypervolume computation. It is usually set to the nadir point that is defined by the worst
objective values, so that all Pareto optimal solutions have positive hypervolume contributions (Ishibuchi
et al., 2018). For example, in model compression with error and cost as objectives, the reference point can
be set to (1.0, 1.0), since the maximum error and the maximum normalized cost equal 1.0. The hypervolume
indicator measures both the individual contribution of each solution to the overall volume, and the global
diversity, reflecting how well the solutions are distributed. It can be used to evaluate the contribution of a
new point to the current Pareto front approximation, defined as the Hypervolume Improvement (HVI):

HV I(ℓ(λ), P̂; r) = HV (ℓ(λ) ∪ P̂; r)−HV (P̂; r). (4)

The hypervolume indicator serves both as a performance measure for comparing different algorithms and
as a score for maximization in various MOO methods (Emmerich et al., 2005; 2006; Bader & Zitzler, 2011;
Daulton et al., 2021).
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BO. BO is a powerful tool for optimizing black-box objective functions that are expensive to evalu-
ate. It uses a surrogate model to approximate the expensive objective function, and iteratively selects
new points for evaluation based on an acquisition function that balances exploration and exploitation.
Formally, we start with an initial pool of random configurations C0 = {λ0, . . . , λN0} and their associ-
ated objective values L0 = {ℓ(λ1), . . . , ℓ(λN0)}. Commonly, a Gaussian Process (GP) (Williams & Ras-
mussen, 2006) serves as a surrogate model, providing an estimate with uncertainty given by the Gaussian
posterior. We assume a zero-mean GP prior g(λ) ∼ N (0, k(λ, λ)), characterized by a kernel function
κ : Λ × Λ → R. The posterior distribution of the GP is given by p(g|λ, Cn,Ln) = N (µ(λ), Σ(λ, λ)), with
µ(λ) = k(K + σ2I)−1l and Σ(λ, λ) = k(λ, λ) − kT

(
K + σ2I

)−1 k, where ki = κ(λ, λi), Kij = κ(λi, λj)
and li = ℓ(λi), i, j ∈ {1, . . . , |Cn|}. Here σ2 is the observation noise variance, i.e. ℓ(λi) ∼ N (g(λi), σ2).
For selecting the next configuration for evaluation, we optimize an acquisition function defined on top of
the surrogate model. Common acquisition functions are: probability of improvement (PI) (Kushner, 1964),
expected improvement (EI) (Močkus, 1975), and lower confidence bound (LCB) (Auer, 2002). For MOO, a
GP is fitted to each objective. Then, one approach is to perform scalarization (Knowles, 2006), converting the
problem back to single-objective optimization and applying one of the aforementioned acquisition functions.
Another option is to use a modified acquisition function that is specified for the multi-objective case, such as
expected hypervolume improvement (EHVI) (Emmerich et al., 2006) and predictive entropy search for multi-
objective optimization (PESMO) (Hernández-Lobato et al., 2016). After a new configuration is selected, it is
evaluated and added to the pull. This process is repeated until the maximum number of iterations is reached.

Learn then Test (LTT) & Pareto Testing. Angelopoulos et al. (2021) have introduced LTT, which is
a statistical framework for configuration selection based on multiple hypothesis testing (MHT). Given a set
of constraints of the form of Eq. (1), a null hypothesis is defined as Hλ : ∃ i where ℓi(λ) > αi i.e., that at
least one of the constraints is not satisfied. For a given configuration, we can compute the p-value under the
null-hypothesis based on the calibration data. If the p-value is lower than the significance level δ, the null hy-
pothesis is rejected and the configuration is declared to be valid. When testing multiple model configurations
simultaneously, this becomes an MHT problem. In this case, it is necessary to apply a correction procedure
to control the family-wise error rate (FWER), i.e. to ensure that the probability of one or more wrong
rejections is bounded by δ. In large configuration spaces, this can be computationally demanding and result
in inefficient testing. In order to mitigate these challenges, Pareto Testing was proposed (Laufer-Goldshtein
et al., 2023), where the testing is focused on the most promising configurations identified using MOO.
Accordingly, only Pareto optimal configurations are considered and are ranked by their approximated
p-values from low to high risk. Then, Fixed Sequence Testing (FST) (Holm, 1979) is applied over the
ordered set, sequentially testing the configurations with a fixed threshold δ until failing to reject for the first
time. Although Pareto Testing demonstrates enhanced testing efficiency, it recovers the entire Pareto front,
albeit focusing only on a small portion of it during testing. Consequently, the optimization budget is not
directly utilized in a way that enhances testing efficiency, putting an emphasis on irrelevant configurations
on one side and facing an excessive sparsity within the relevant area on the other, as illustrated in Fig. 2.

5 Method
Our approach involves two main steps: (i) performing BO to generate a small set of potential configurations,
and (ii) applying MHT over the candidate set to identify valid configurations. Considering the shortcomings
of Pareto Testing, we argue that the two disjoint stages of optimization followed by testing are suboptimal,
especially for resource-intensive MOO. As an alternative, we propose adjusting the optimization procedure
for better testing outcomes by focusing only on the most relevant parts in the objective space. To accomplish
this, we need to (i) specify a region of interest guided by our testing goal, and (ii) establish a BO procedure
capable of effectively identifying configurations within the defined region. In the following we describe these
steps in details.

5.1 Defining the Region of Interest

We would like to define a region of interest in the objective space Rc+1, where we wish to identify candidate
configurations that are likely to be valid and efficient while conducting MHT. We start with the case of
a single constraint (c = 1). Recall that in the testing stage we define the null hypothesis Hλ : ℓ(λ) > α
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for a candidate configuration λ, and compute a p-value for a given empirical loss over the calibration data
ℓ̂cal(λ) = 1

m

∑k+m
j=k+1 ℓ(Xj , Yj ; λ). A valid p-value pλ has to be super-uniform under the null hypothesis,

i.e. P (pλ ≤ u) ≤ u, for all u ∈ [0, 1]. As presented in (Angelopoulos et al., 2021), a valid p-value can be
computed based on concentration inequalities that quantify how close is the sample loss to the expected
population loss. When the loss is bounded by 1, we can use, for example, Hoeffding’s inequality to obtain
the following p-value (see Appendix B.1):

pHF
λ := e

−2m(α−ℓ̂cal(λ))2
+ . (5)

For a given significance level δ, the null hypothesis is rejected (the configuration is declared to be risk-
condoling), when pHF

λ < δ. By rearranging (5), we obtain that the maximum empirical loss ℓ̂(λ) that can
pass the test with significance level δ is given by (see Appendix B.1):

αmax = α−
√

log (1/δ)
2m

. (6)

As an example, consider the error rate as a loss function, and assume that we would like to bound the error
rate by 5% (α = 0.05), with a significance level of δ = 0.1. By (6), if the empirical loss of a calibration set
of size m = 5000 is up to αmax = 4%, then we have enough evidence to declare that this configuration is
safe and its error will not exceed 5% on new unseen data drawn from the same distribution.

In the BO procedure, we are interested in identifying configurations that are likely to be both valid and
efficient. On the one hand, in order to be valid the loss must not exceed αmax. On the other hand, from effi-
ciency considerations, we would like to minimize the free objective as much as possible. This means that the
constrained loss should be close to αmax (from bellow) due to the inverse relation between the free objective
and the constrained objective. An illustration demonstrating this idea is provided in Fig. 2, where the irrel-
evant regions are: (i) the brown part on the right where the configurations are not satisfying the constraint,
and (ii) the green part on the left where the configurations are not effectively minimizing ℓ2. Ideally, we
would like to find configurations with expected loss equal to the limiting testing threshold αmax. However,
during optimization we can only evaluate the loss over a finite-size validation data with |Dval| = k samples.
To account for that, we construct an interval [ℓlow, ℓhigh] around αmax based on the size of the validation data.
In this region, we wish to include empirical loss values that are likely to correspond to an expected value of
αmax based on the evidence provided by the validation data. Specifically, we define the region R(α, k, m, δ, γ)
containing ℓ̂opt

1 (λ) values that are likely to be obtained under ℓ1(λ) = αmax with at least 1− 2γ probability:

P
(

ℓ̂opt
1 (λ) ∈ R(α, k, m, δ, γ)

∣∣ℓ1(λ) = αmax
)
≥ 1− 2γ. (7)

For example, using again Hoeffding’s inequality, we obtain the following region of interest:

R(α, k, m, δ, γ) =

αmax −
√

log (1/γ)
2k︸ ︷︷ ︸

ℓlow

, αmax +
√

log (1/γ)
2k︸ ︷︷ ︸

ℓhigh

 . (8)

Note that setting γ is an empirical choice that is unrelated to the MHT procedure and to the chosen
significance level δ. For small γ the region expands, accommodating more optional configurations but with
a lower density. Conversely, a larger γ produces a smaller region, leading to denser sampling around the
limiting value. Also note that, whenever k increases, the width of the region decreases, reflecting a growing
confidence that the observed losses are representative of actual expected loss. In practice, we use the tighter
Hoeffding-Bentkus inequality for the p-value computation in Eq. (5) and for defining the region of interest
by Eqs. (6) and (8) (see Appendix B.1).

In the case of multiple constraints, the null hypothesis is defined as Hλ : ∃ i where ℓi(λ) > αi, i.e. that at
least one of the constraints is not satisfied. A valid p-value is given by pλ = maxi∈{1,...,c} pλ,i, where pλ,i is
the p-value corresponding to the i-th constraint (see Appendix. B.2). Consequently, we define the region of
interest in the multi-constraint case as the intersection of the individual regions (as illustrated in Fig. B.2):

R(α, k, m, δ, γ) =
c⋂

i=1
R(αi, k, m, δ, γ); α = (α1, . . . , αc) (9)
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Figure 2: Left: Illustration of the different parts of the Pareto front. The green region consists of
configurations that are low risk (ℓ1 ≪ α) but inefficient in terms of the free objective ℓ2. The brown region
consists of configurations that are efficient but high risk (ℓ1 ≫ α) and cannot pass the test. In the middle,
we define the region of interest containing configurations that are likely to be both valid and efficient. Right:
comparing GuideBO to full Pareto front recovery for optimization budget N = 10. In the full Pareto front
method there is no control on the distribution of the configurations over the front, while GuideBO focuses
on the region of interest. As a result, comparing the chosen valid configurations (marked by v), there exists
a noticeable advantage in favor of GuideBO in minimizing ℓ2.

5.2 Local Hypervolume Improvement

Figure 3: GuideBO for two objectives.
ℓ1 is controlled at α while ℓ2 is min-
imized. The shaded area corresponds
to our defined region of interest. A ref-
erence point (in red) is defined accord-
ingly to enclose the region of interest.

Given our definition of the region of interest, we derive a BO
procedure that recovers Pareto optimal points in the intersection of
R(α, k, m) and P. Our key idea is to use the HVI in Eq. (4) as an
acquisition function, while modifying it to capture only the region
of interest. To this end, we properly define the reference point
r ∈ Rc+1 to enclose the desired region.

Recall that the reference point defines the upper limit in each direc-
tion. Therefore, for the constrained dimensions we set ri = ℓhigh

i , i ∈
{1, . . . , c} using the upper bound in Eq. (8). As for unconstrained
dimension rc+1, we can use the maximum possible value of ℓfree.
However, this will unnecessarily increase the defined region, includ-
ing the green region depicted in Fig. 2, where the configurations are
low-risk in terms of the constrained objectives but are sub-optimal
with respect to the free objective. Instead, we determine the last di-
mension based on the lower limiting values. Accordingly, we set rc+1
to be the point on the free axis that correspond to the intersection
of the lower limits of the constrained dimensions:

rc+1 = ĝfree(λfree), where λfree = arg min
λ

∥∥[ĝ1(λ), . . . , ĝc(λ)]− [ℓlow
1 , . . . , ℓlow

c ]
∥∥

2 (10)

where we use the GP posterior mean as our objective estimator, i.e. ĝ = µ. As a result, we obtain the
following reference point:

r =
(

ℓhigh
1 , . . . , ℓhigh

c , ĝfree(λfree)
)

. (11)

We select the next configuration by maximizing the HVI (4) with respect to this reference point:

λn = arg max
λ

HV I(ĝ(λ), P̂; r), (12)

which leads to recovering only the relevant section and not the entire Pareto front. We evaluate the objective
functions on the new selected configuration, and update our candidate set accordingly. This process of BO

7



Under review as submission to TMLR

Algorithm 1 GuideBO: Testing Guided Bayesian Optimization
Definitions: ℓ1, . . . , ℓc and ℓfree are the objective functions, g1, . . . , gc and gfree are their associated sur-
rogate models. ℓlow

1 , . . . , ℓlow
c and ℓhigh

1 , . . . , ℓhigh
c are the lower and upper bounds, respectively, for the first

c objectives. C0 = {λ0, . . . , λN0} is an initial pool of configurations and L0 = {ℓ(λ1), . . . , ℓ(λN0)} are the
associated objectives. N is our total budget. ParetoFront() filter Pareto optimal objective values.

1: function BO(ℓ, C0, L0, {ℓlow
1 , . . . , ℓlow

c }, {ℓ
high
1 , . . . , ℓhigh

j }, N)
2: Nmax ← N − |C0|
3: r←

(
ℓhigh

1 , . . . , ℓhigh
c , maxλ∈C0 ℓfree(λ)

)
▷ Initialize reference point.

4: for n = 0, 1, 2, . . . , Nmax − 1 do
5: Fit ĝ on (Cn, Ln) ▷ Fit surrogate models.
6: rc+1 ← ĝfree(λfree), λfree = arg min

λ

∥∥[ĝ1(λ), . . . , ĝc(λ)]− [ℓlow
1 , . . . , ℓlow

c ]
∥∥

2 ▷ Update ref. point.

7: P̂ ← ParetoFront(Ln) ▷ Filter Pareto front.
8: λn+1 = arg maxλ HV I(ĝ(λ), P̂; r). ▷ Optimize acquisition function.
9: Evaluate ℓ(λn+1) ▷ Evaluate new configuration.

10: Cn+1 ← Cn ∪ λn+1. ▷ Add new configuration.
11: Ln+1 ← Ln ∪ ℓ(λn+1). ▷ Add new objective values.

12: CBO ← CNmax

13: return CBO

iterations continues until reaching the maximum budget N . The resulting candidate set is denoted as CBO.
Our proposed BO method, GuideBO, is summarized in Algorithm 1 and is illustrated in Fig. 3 for c = 1.

Note that in MOBO it is common to use an HVI-based acquisition function that also takes into account
the predictive uncertainty as in EHVI (Emmerich et al., 2005) and SMS-EGO (Ponweiser et al., 2008).
However, our preliminary runs showed that these approaches do not work well in the examined scenarios
with small budget (N ∈ [10, 50]), as they often generated points outside the region of interest. Similarly,
for these scenarios the random scalarization approach, proposed in (Paria et al., 2020), was less effective for
generating well-distributed points inside the desired region.

5.3 Testing the Final Selection

We follow (Angelopoulos et al., 2021; Laufer-Goldshtein et al., 2023) for testing the selected set. Prior to
testing we filter and order the candidate set CBO. Specifically, we retain only Pareto optimal configurations
from CBO, and arrange the remaining configurations by increasing p-values (approximated by Dval). Next, we
recompute the p-values based on Dcal and perform FST, where we start testing from the first configuration
and continue until the first time the p-value exceeds δ. As a result, we obtain the validated set Cvalid, and
choose a configuration minimizing the free objective:

λ∗ = min
λ∈Cvalid

ℓfree(λ). (13)

The method is summarized in Algorithm C.1. As a consequence of (Angelopoulos et al., 2021; Laufer-
Goldshtein et al., 2023) we achieve a valid risk-controlling configuration, as we now formally state.

Theorem 5.1. Let Dval = {Xi, Yi}k
i=1 and Dcal = {Xi, Yi}k+m

i=k+1 be two disjoint datasets. Suppose the
p-value pλ, derived from Dcal, is super-uniform under Hλ for all λ. Then the output λ∗ of Algorithm C.1
satisfies Eq. (1).

The proof is provided in Appendix B.3. Note that in situations where we are unable to identify any statis-
tically valid configuration (i.e., Cvalid = ∅), we set λ = null. To avoid this situation, the user should select
limits α1, . . . , αc that are likely to be feasible. In practice, this can be done relying on the initial pool of
configurations C0, which is generated at the beginning of the BO procedure, and can give an indication to pos-
sible achievable limits. Specifically, the user may select αi ∈ [minλ∈C0 ℓi(λ), maxλ∈C0 ℓi(λ)], i ∈ {1, . . . , c},
and can further refine this choice during the BO iterations as more function evaluations are accumulated.
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6 Applications
We demonstrate the effectiveness of GuideBO across various tasks with diverse objectives. In each setting,
the definition of λ varies, influencing the model differently during or after training.

Classification Fairness. In many classification tasks, it is important to take into account the behavior of
the predictor with respect to different subpopulations. Assuming a binary classification task and a binary
sensitive attribute a = {−1, 1}, we consider the Difference of Demographic Parity (DDP) as a fairness
score (Wu et al., 2019):

DDP(f) = E
[
1f(x)>0|a = −1

]
− E

[
1f(x)>0|a = 1

]
. (14)

We define the following loss, parameterized by λ = [λ1, λ2], which consists of two regularization terms that
prompt fairness:

R(f ; λ) = BCE(f) + λ1 · D̂DP(f) + λ2 · M̂ixUP(f), (15)

where BCE(f) is the standard binary cross-entropy loss, D̂DP(f) is the hyperbolic tangent relaxation
of (14) (Padh et al., 2021), and M̂ixUP(f) is a regularization based on mixup paths that interpolate samples
between groups (Chuang & Mroueh, 2020). Changing the values of λ leads to different models that trade-off
accuracy for fairness. In this setup, we have a 2-dimensional hyperparamter λ and two objectives: (i) the
error of the model ℓerr(λ) = E

[
1fλ(X )̸=Y

]
, and (ii) the DDP defined in (14) ℓddp(λ) = DDP(fλ).

Classification Robustness. Predictors often rely on spurious correlations found in the data (such as
background features), which leads to significant performance variations among different subgroups. Recently,
Izmailov et al. (2022) demonstrated that models trained using expected risk minimization surprisingly learn
core features in addition to spurious ones. Accordingly, they proposed to enhance model robustness by
retraining the final layer on a balanced dataset. We adapt their approach to obtain different configurations,
offering a trade-off between robustness and average performance.

Given a dataset D (either the training set or a part of the validation set), we define a parameterized dataset
Dλ as follows. Suppose the data consists of samples (X, Y, G), where G ∈ G is the group label and G is the
set of all groups present in the data. We denote by λ a |G|-dimensional hyperparameter combination that
lies in the |G|-1 probability simplex. The vector λ consists of the probabilities of each group appearing in
Dλ. To create Dλ we first sample the group membership label according to λ, and then uniformly sample
an example from the chosen group. Consequently, λ is a |G|-dimensional hyperparameter that controls the
proportion of each group in Dλ. The dataset is evenly balanced across groups when all probabilities are
equal to 1/|G|, and it is equivalent to the original dataset when the λ matches the prior probability of each
group. We define two objective functions: (i) the average error ℓerr(λ) = E

[
1fλ(X )̸=Y

]
, and (ii) the worst

error over all subgroups ℓworst-err(λ) = maxg∈G E
[
1fλ(X) ̸=Y |G = g

]
.

Robust and Selective Classification. We also examine the case of selective classification and robustness.
The selective classifier can abstain from making a prediction when the confidence is lower than a threshold τ ,
i.e. fλ(x) < τ . In this case, we have a |G|+ 1-dimensional hyperparameter λ′ = (λ, τ) and an additional ob-
jective function of the mis-coverage rate (where the predictor decides to abstain) ℓmis-cover(λ′) = E

[
1fλ(x)<τ

]
.

VAE. Variational Autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014) are generative
models that leverage a variational approach to learn the latent variables underlying the data, and can
generate new samples by sampling from the latent prior distribution. We focus on a β-VAE (Higgins et al.,
2016), which balances the reconstruction error (distortion) and the Kullback Leibler (KL) divergence (rate):

R(f ; β) = Epd(x)
[
Eqϕ(z|x) [− log pθ(x|z)]

]
+ β · Epd(x) [DKL(qϕ(z|x)||p(z))] , (16)

where z ∈ RD is the latent embedding, f consists of an encoder qϕ(z|x) and a decoder pθ(x|z), parameterized
by ϕ and θ, respectively, and p(z) is the latent prior distribution. Generally, models with low distortion
perform high-quality reconstruction but generate less realistic samples and vice versa. We define the
hyperparameter λ = (β, D) consisting of the KL penalty strength β and the latent dimension D. We specify
two objectives ℓrecon(f) and ℓKLD(f) defined by the left and right terms in (16), respectively.

Transformer Pruning. We adopt the multi-dimensional transformer pruning scheme proposed in (Laufer-
Goldshtein et al., 2023), which involves three strategies for reducing computational complexity: (i) token
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pruning, removing unimportant tokens from the input sequence, (ii) layer early-exiting, computing part of the
model’s layers for easy examples, and (iii) head pruning, removing a portion of attention heads from the model
architecture. We obtain λ = (λ1, λ2, λ3) with the three thresholds controlling the pruning strength in each
dimension, and consider two objectives: (i) the accuracy difference between the full model and the pruned
model ℓdiff-acc(λ) = E

[
(1f(X)=Y − 1fλ(X)=Y )+

]
and (ii) the respective cost ratio ℓcost(λ) = E

[
C(fλ(X))
C(f(X))

]
.

Early Time Classification. We adapt the early time classification scheme proposed by Ringel et al.
(2024) for predicting the label of a given input data stream as quickly as possible. Specifically, we focus on
employing LLMs for the task of reading comprehension, where the goal is to analyze a long document (given
as context) and select an answer to a provided question. Let πt(X) denote a heuristic confidence measure of
the prediction made based on the input X received until time t (e.g. the maximum predicted probability).
We define the stopping-time for input X as τ(X) = {mint : πt(X) ≥ λt or t = tmax}. In this setting, the
hyperparmeter λ = (λ1, λ2, . . . , λtmax) consists of the thresholds for all possible stopping times t = 1, . . . , tmax.
We have two objectives: (i) the accuracy difference between the full-time prediction the early-time prediction
ℓdiff-acc(λ) = E

[
(1f(X)=Y − 1fλ(X)=Y )+

]
and (ii) the normalized halt time ℓtime(λ) = E [τ(X)/tmax].

7 Experiments
We describe the experimental setup and present our main results. Further experimental details, as well as
additional results are provided in Appendixes D and E, respectively.

7.1 Baselines

We define several baselines. In the second testing stage, both GuideBO and the baselines follow the same
testing procedure that guarantees risk control. The baselines differ only in their optimization mechanisms
during the first stage, therefore all of them can be considered as variants of Pareto Testing (Laufer-Goldshtein
et al., 2023). We define two simple baselines and three multi-objective optimizers aimed at recovering the
full Pareto front:
• Uniform - defines a uniform grid of configurations in the hyperparameter space.
• Random - a uniform random sampling for n = 1, and Latin Hypercube Sampling (LHS) (McKay et al.,

2000) for n > 1.
• HVI - uses the same acquisition function as in GuideBO, defined in (4). The key difference is that the

reference point is defined in the standard way by the maximum possible loss values instead of using our
focused reference point (11).

• EHVI (Emmerich et al., 2006) - similar to HVI but includes uncertainty in the hypervloume computation.
Here too the reference point is defined by the maximum possible loss values.

• ParEGO (Knowles, 2006; Cristescu & Knowles, 2015) - uses random scalarization with Tchebycheff
function to convert the multi-objective function into a single-objective, then employs EI as the acquisition
function. We use the Smac3 implementation (Lindauer et al., 2022).

7.2 Datasets

Here we describe the datasets used for each task. Table 1 summarizes the number of samples for each
dataset according to the different splits (train/validation/calibration/test). We use the following datasets:

Table 1: Datasets Details

Dataset Train Validation Calibration Test
Adult 32,559 3,618 4,522 4,523

CelebA 162,770 19,867 9,981 9,981
MNIST 50,000 10,000 5,000 5,000

AG News 120,000 2,500 2,500 2,600
Quality - 1,537 1,536 1,536

Fairness. We use the Adult (Dua et al., 2017) dataset,
which consists of samples of individuals with 14 features
as an input. The goal is to predict whether their annual
income is above 50k$. Gender is considered as a sensitive
attribute.
Robustness + Robust and selective classifica-
tion. We use CelebA (Lin et al., 2019) and consider a bi-
nary prediction task of whether a person has a blond hair.
The spurious correlation is associated with the gender at-
tribute, resulting in |G| = 4 groups: (blond, female), (blond, male), (non-blond, female), (non-blond, male).
VAE. We use the MNIST dataset (LeCun, 1998), which consists of grayscale images of handwritten digits.
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Table 2: Tasks Details

Task n (ℓ1, . . . , ℓfree) (best ℓ1, . . ., worst ℓfree) (worst ℓ1, . . ., best ℓfree) N N0
Fairness 2 (Err., DDP) (0.154, 0.145) (0.225, 0.01) 10 5

Robustness 4 (Avg. Error, Worst Err.) (0.045, 0.62) (0.089, 0.11) 30 20
Selective & Robust. 5 (Avg. Error, Mis-cover., Worst Err.) (0.045, 0.0, 0.62) (0.089, 0.0, 0.11) 30 20

VAE 2 (Recon. Err., KLD) (0.001, 88) (0.07, 0.001) 10 5
Pruning 3 (Acc. Difference, Rel. Cost) (0.0, 1.0) (0.8, 0.0) 50 30

Early-Time Class. 10 (Acc. Difference, Halt Time) (0.0, 1.0) (0.12, 0.1) 50 30

Pruning. We use AG News (Zhang et al., 2015) dataset where the task is to predict the category (out of
four options) of news articles based on their content.
Early-Time Classification. We use the QuALITY dataset (Pang et al., 2022), which consists of triplets
with a question, multiple choice answers, and a long context, along with the corresponding correct choice.
The long context is partitioned into tmax = 10 segments.

7.3 Evaluation

We emphasize again the purpose of each data split. The training dataset is used for learning the model’s
parameters. The validation data is used for selecting candidate hyperparameter configurations, with
GuideBO (Algorithm 1) or the baseline procedures. It is also used for ordering the chosen configurations
before testing. The calibration data is used for the FST procedure over the chosen ordered set. The final
selected λ∗ (13) is used for setting the model configuration. Finally, the performance of the selected model
is examined over the test dataset. Since in all methods we perform the same testing procedure, the chosen
configuration is guaranteed to satisfy the specified constraints, as we verify empirically. Therefore, our
primary metric for evaluating the efficiency of each method is its ability to minimize free objective function.

We repeat the experiments with 5 random seeds over the optimization procedure. For each seed, we
further generate 20 random splits of calibration and test subsets. Accordingly, we obtain 5 × 20 = 100
random trials, and report the mean and standard deviation across all trials. For each task, we choose
the values of α according to the objective values obtained for the initially generated configurations.
Table 2 lists the range values for each objective. We select values that lie within the range defined
by these extreme points, ensuring they are not too close to either boundary. This is because values
that are too small may not be statistically achievable, while excessively large values can be trivially
satisfied, with tighter control not significantly improving the free objective. We set δ = 0.1 and γ = 0.01.

Figure 4: Rank count across settings and the average
rank. GuideBO is ranked first in almost all cases,
while the baselines have an inconsistent performance.

7.4 Results

Minimization of the free objective func-
tion. We examine the following scenarios: Fair-
ness - error is controlled and DDP is minimized;
Robustness (and selective classification) - avg.
error is controlled and worst error is minimized;
Robustness and selective classification - error
and miscoverage are controlled while worst error is
minimized; VAE - reconstruction error is controlled
and KLD is minimized; Pruning - error difference
is controlled and relative cost is minimized; Early
time classification - error difference is controlled
and relative cost is minimized. Results are pre-
sented in Fig. 5 showing the values of the free
objective function, evaluated over test data, across
all tasks and α levels. To summarize the results, we
rank the methods in each scenario, and report the counts of all rankings, as well as the average rank in Fig. 4.
We observe that GuideBO consistently outperforms all baselines in nearly all cases. The multi-objective
baselines outperform the simple baselines that distribute configurations across the entire space. Moreover,
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(a) Fairness (b) Robustness (c) Selective Robustness

(d) VAE (e) Pruning (f) Early Classification

Figure 5: Presents the free objective functions across tasks and different limits. The objectives are evaluated
over Dtest for the configuration that was chosen by each method. GuideBO consistently surpasses the
baselines in nearly all cases. In contrast, the performance of the baselines exhibits significant variability.

the baselines exhibit inconsistent performance, delivering satisfactory results for certain tasks or specific α
values, but falling short in others. This inconsistency can be attributed to the arbitrary distribution of the
configurations for the baselines. As a result, we sometimes randomly obtain configurations that are close
to the testing limit (thus efficient), while at other times, the closest configuration is relatively far (thus
inefficient). In contrast, GuideBO achieves a dense sampling of the relevant part of the Pareto front, leading
to more precise and stable control across various conditions.

Additional Results. We show that the constraints are satisfied in all cases by both GuideBO and the
baselines in Fig. E.1. In addition, we explore the influence of varying the budget N in comparison to a
dense uniform grid (with 1000 points) in Fig. E.2. We show that N = 100 is sufficient to match (and
sometimes outperform) the performance of the dense grid, highlighting the computational advantage of the
proposed method. We also examine the influence of the parameter γ in Fig. E.3, showing that the method
is generally insensitive to γ. Moreover, Fig. E.4 shows that using the proposed region is preferable over a
single-sided upper bound at α, implying that it is important to exclude inefficient configurations. Finally,
we present examples of GuideBO’s outcomes in Fig. E.5, highlighting its effectiveness in identifying relevant
configurations within the defined region of interest, as opposed to recovering the entire front.

8 Conclusion
We introduce a versatile framework designed for reliable model selection. This framework is capable of
meeting statistical risk limitations while simultaneously optimizing other conflicting metrics. We establish
a confined region within the objective space that is a promising target for statistical testing. Our proposed
method, referred to as GuideBO, is employed to pinpoint configurations that are Pareto optimal and lie
the specified region. We statistically validate the set of candidate configurations using multiple hypothesis
testing to achieve verified control guarantees. The broad applicability and effectiveness of our approach is
demonstrated for tuning different types of hyperparameters across various tasks and objectives, including
high-accuracy, fairness, robustness, generation and reconstruction quality and cost and time considerations.

12



Under review as submission to TMLR

References
Anastasios N Angelopoulos, Stephen Bates, Emmanuel J Candès, Michael I Jordan, and Lihua Lei. Learn

then test: Calibrating predictive algorithms to achieve risk control. arXiv preprint arXiv:2110.01052,
2021.

Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal risk control.
arXiv preprint arXiv:2208.02814, 2022.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

Johannes Bader and Eckart Zitzler. Hype: An algorithm for fast hypervolume-based many-objective opti-
mization. Evolutionary computation, 19(1):45–76, 2011.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Predictive inference
with the jackknife+. The Annals of Statistics, 49(1):486–507, 2021.

Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan. Distribution-free,
risk-controlling prediction sets. Journal of the ACM (JACM), 68(6):1–34, 2021.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for multi-objective
bayesian optimization. In Advances in Neural Information Processing Systems, volume 32, 2019.

Syrine Belakaria, Aryan Deshwal, Nitthilan Kannappan Jayakodi, and Janardhan Rao Doppa. Uncertainty-
aware search framework for multi-objective bayesian optimization. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(06):10044–10052, 2020.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas,
Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter optimization: Founda-
tions, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 13(2):e1484, 2023.

Clément Chadebec, Louis Vincent, and Stephanie Allassonniere. Pythae: Unifying generative autoencoders
in python - a benchmarking use case. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 21575–21589. Curran
Associates, Inc., 2022.

Weiyu Chen and James Kwok. Multi-objective deep learning with adaptive reference vectors. Advances in
Neural Information Processing Systems, 35:32723–32735, 2022.

Ching-Yao Chuang and Youssef Mroueh. Fair mixup: Fairness via interpolation. In International Conference
on Learning Representations, 2020.

Cristina Cristescu and Joshua Knowles. Surrogate-based multiobjective optimization: Parego update and
test. In Workshop on Computational Intelligence (UKCI), volume 770, 2015.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel bayesian optimization of multiple noisy
objectives with expected hypervolume improvement. Advances in Neural Information Processing Systems,
34:2187–2200, 2021.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197, 2002.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization. Comptes
Rendus Mathematique, 350(5-6):313–318, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Dheeru Dua, Casey Graff, et al. Uci machine learning repository, 2017.

13



Under review as submission to TMLR

Michael Emmerich, Nicola Beume, and Boris Naujoks. An emo algorithm using the hypervolume measure as
selection criterion. In International Conference on Evolutionary Multi-Criterion Optimization, pp. 62–76.
Springer, 2005.

Michael TM Emmerich, Kyriakos C Giannakoglou, and Boris Naujoks. Single-and multiobjective evolu-
tionary optimization assisted by gaussian random field metamodels. IEEE Transactions on Evolutionary
Computation, 10(4):421–439, 2006.

Matthias Feurer, Katharina Eggensperger, Edward Bergman, Florian Pfisterer, Bernd Bischl, and Frank
Hutter. Mind the gap: Measuring generalization performance across multiple objectives. In International
Symposium on Intelligent Data Analysis, pp. 130–142. Springer, 2023.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Jacob Gardner, Matt Kusner, Kilian Weinberger, John Cunningham, et al. Bayesian optimization with
inequality constraints. In International Conference on Machine Learning, pp. 937–945. PMLR, 2014.

Chirag Gupta, Aleksandr Podkopaev, and Aaditya Ramdas. Distribution-free binary classification: predic-
tion sets, confidence intervals and calibration. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances in
neural information processing systems, 29, 2016.

Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive entropy search
for multi-objective bayesian optimization. In International conference on machine learning, pp. 1492–1501.
PMLR, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In International conference on learning representations, 2016.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected works of
Wassily Hoeffding, pp. 409–426, 1994.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, pp.
65–70, 1979.

Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. How to specify a reference point in hyper-
volume calculation for fair performance comparison. Evolutionary computation, 26(3):411–440, 2018.

Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew G Wilson. On feature learning in the presence
of spurious correlations. Advances in Neural Information Processing Systems, 35:38516–38532, 2022.

Florian Karl, Tobias Pielok, Julia Moosbauer, Florian Pfisterer, Stefan Coors, Martin Binder, Lennart Schnei-
der, Janek Thomas, Jakob Richter, Michel Lang, et al. Multi-objective hyperparameter optimization–an
overview. arXiv preprint arXiv:2206.07438, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for expensive multiob-
jective optimization problems. IEEE Transactions on Evolutionary Computation, 10(1):50–66, 2006.

Mina Konakovic Lukovic, Yunsheng Tian, and Wojciech Matusik. Diversity-guided multi-objective bayesian
optimization with batch evaluations. Advances in Neural Information Processing Systems, 33:17708–17720,
2020.

HJ Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence
of noise. Journal of Basic Engineering, 86(1):97–106, 1964.

14



Under review as submission to TMLR

Stefanos Laskaridis, Alexandros Kouris, and Nicholas D Lane. Adaptive inference through early-exit net-
works: Design, challenges and directions. In Proceedings of the 5th International Workshop on Embedded
and Mobile Deep Learning, pp. 1–6, 2021.

Bracha Laufer-Goldshtein, Adam Fisch, Regina Barzilay, and Tommi Jaakkola. Efficiently controlling mul-
tiple risks with pareto testing. ICLR, 2023.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Jing Lei, James Robins, and Larry Wasserman. Distribution-free prediction sets. Journal of the American
Statistical Association, 108(501):278–287, 2013.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free
predictive inference for regression. Journal of the American Statistical Association, 113(523):1094–1111,
2018.

Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained bayesian optimization
with noisy experiments. Bayesian Analysis, 14(2), 2019.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning. Advances
in neural information processing systems, 32, 2019.

Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Kwong. Controllable pareto multi-task learning. arXiv
preprint arXiv:2010.06313, 2020.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Ben-
jamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization package
for hyperparameter optimization. J. Mach. Learn. Res., 23:54–1, 2022.

Michael Lohaus, Michael Perrot, and Ulrike Von Luxburg. Too relaxed to be fair. In International Conference
on Machine Learning, pp. 6360–6369. PMLR, 2020.

Debabrata Mahapatra and Vaibhav Rajan. Multi-task learning with user preferences: Gradient descent
with controlled ascent in pareto optimization. In International Conference on Machine Learning, pp.
6597–6607. PMLR, 2020.

Michael D McKay, Richard J Beckman, and William J Conover. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics, 42(1):55–61, 2000.

Gaurav Menghani. Efficient deep learning: A survey on making deep learning models smaller, faster, and
better. ACM Computing Surveys, 55(12):1–37, 2023.

Jonas Močkus. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical
Conference: Novosibirsk, July 1–7, 1974, pp. 400–404. Springer, 1975.

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. Learning the pareto front with hypernetworks.
arXiv preprint arXiv:2010.04104, 2020.

Kirtan Padh, Diego Antognini, Emma Lejal-Glaude, Boi Faltings, and Claudiu Musat. Addressing fairness
in classification with a model-agnostic multi-objective algorithm. In Uncertainty in Artificial Intelligence,
pp. 600–609. PMLR, 2021.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen, Vishakh
Padmakumar, Johnny Ma, Jana Thompson, He He, et al. Quality: Question answering with long input
texts, yes! In 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 5336–5358, 2022.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-objective
bayesian optimization using random scalarizations. In Uncertainty in Artificial Intelligence, pp. 766–776.
PMLR, 2020.

15



Under review as submission to TMLR

Dana Pessach and Erez Shmueli. A review on fairness in machine learning. ACM Computing Surveys
(CSUR), 55(3):1–44, 2022.

Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze. Multiobjective optimization on a
limited budget of evaluations using model-assisted-metric selection. In International conference on parallel
problem solving from nature, pp. 784–794. Springer, 2008.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pp. 1278–1286.
PMLR, 2014.

Liran Ringel, Regev Cohen, Daniel Freedman, Michael Elad, and Yaniv Romano. Early time classification
with accumulated accuracy gap control. arXiv preprint arXiv:2402.00857, 2024.

Michael Ruchte and Josif Grabocka. Scalable pareto front approximation for deep multi-objective learning.
In 2021 IEEE international conference on data mining (ICDM), pp. 1306–1311. IEEE, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint
arXiv:1911.08731, 2019.

David Salinas, Jacek Golebiowski, Aaron Klein, Matthias Seeger, and Cedric Archambeau. Optimizing
hyperparameters with conformal quantile regression. arXiv preprint arXiv:2305.03623, 2023.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in neural
information processing systems, 31, 2018.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

S Stanton, W Maddox, and AG Wilson. Bayesian optimization with conformal prediction sets. In Artificial
Intelligence and Statistics, 2023.

Vladimir Vovk. On-line confidence machines are well-calibrated. In The 43rd Annual IEEE Symposium on
Foundations of Computer Science., 2002.

Vladimir Vovk, Ivan Petej, and Valentina Fedorova. Large-scale probabilistic predictors with and without
guarantees of validity. In Advances in Neural Information Processing Systems (NeurIPS), 2015.

Vladimir Vovk, Jieli Shen, Valery Manokhin, and Min-ge Xie. Nonparametric predictive distributions based
on conformal prediction. In Proceedings of the Sixth Workshop on Conformal and Probabilistic Prediction
and Applications, 2017.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian optimization.
arXiv preprint arXiv:2206.03301, 2022.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning. MIT press
Cambridge, MA, 2006.

Maciej Wołczyk, Bartosz Wójcik, Klaudia Bałazy, Igor T Podolak, Jacek Tabor, Marek Śmieja, and Tomasz
Trzcinski. Zero time waste: Recycling predictions in early exit neural networks. Advances in Neural
Information Processing Systems, 34:2516–2528, 2021.

Yongkai Wu, Lu Zhang, and Xintao Wu. On convexity and bounds of fairness-aware classification. In The
World Wide Web Conference, pp. 3356–3362, 2019.

Yuzhe Yang, Haoran Zhang, Dina Katabi, and Marzyeh Ghassemi. Change is hard: A closer look at
subpopulation shift. arXiv preprint arXiv:2302.12254, 2023.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE
Transactions on evolutionary computation, 11(6):712–731, 2007.

16



Under review as submission to TMLR

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
Advances in neural information processing systems, 28, 2015.

Yunchuan Zhang, Sangwoo Park, and Osvaldo Simeone. Bayesian optimization with formal safety guarantees
via online conformal prediction. arXiv preprint arXiv:2306.17815, 2023.

Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolutionary algorithms—a comparative
case study. In International conference on parallel problem solving from nature, pp. 292–301. Springer,
1998.

A Additional related work
Gradient-Based MOO. When dealing with differentiable objective functions, gradient-based MOO
algorithms can be utilized. The cornerstone of these methods is Multiple-Gradient Descent (MGD) (Sener
& Koltun, 2018; Désidéri, 2012), which ensures that all objectives are decreased simultaneously, leading
to convergence at a Pareto optimal point. Several extensions were proposed to enable convergence to a
specific point on the front defined by a preference vector (Lin et al., 2019; Mahapatra & Rajan, 2020), or
learning the entire Pareto front, using a preference-conditioned model (Navon et al., 2020; Lin et al., 2020;
Chen & Kwok, 2022; Ruchte & Grabocka, 2021). However, this line of research focuses on differentiable
objectives, optimizing the loss space used during training, which is typically different from the ultimate
non-differentiable metrics used for evaluation (e.g. error rates). Furthermore, it focuses on recovering a
single or multiple (possibly infinitely many) Pareto optimal points, without addressing the actual selection
of model configuration under specific constraints, which is the problem we tackle in this paper.

B Mathematical Details

B.1 Derivation of the Region of Interest

Suppose the loss is bounded above by 1, then Hoeffding’s inequality (Hoeffding, 1994) is given by:

P
(

ℓ̂(λ)− ℓ(λ) ≤ −t
)
≤ e−2nt2

. (17)

and
P
(

ℓ̂(λ)− ℓ(λ) ≥ t
)
≤ e−2nt2

. (18)

for t > 0. Taking u = e−2nt2 , we have t =
√

log(1/u)
2n , hence:

P

(
ℓ̂(λ)− ℓ(λ) ≤ −

√
log (1/u)

2n

)
≤ u. (19)

and

P

(
ℓ̂(λ)− ℓ(λ) ≥

√
log (1/u)

2n

)
≤ u. (20)

This implies an upper confidence bound

ℓ+
HF(λ) = ℓ̂(λ) +

√
log (1/u)

2n
(21)

and a lower confidence bound

ℓ−
HF(λ) = ℓ̂(λ)−

√
log (1/u)

2n
. (22)
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In addition, we can use Hoeffding’s inequality to derive a valid p-value under the null hypothesis Hλ : ℓ(λ) >
α. By (19), we get:

P

(
ℓ̂(λ)− α ≤ −

√
log (1/u)

2n

)
≤ P

(
ℓ̂(λ)− ℓ(λ) ≤ −

√
log (1/u)

2n

)
≤ u. (23)

For ℓ̂(λ) < α, we rearrange (23) to obtain:

P
(

e−2n(α−ℓ̂(λ))2
≤ u

)
≤ u, (24)

which implies that pHF
λ := e

−2m(α−ℓ̂(λ))2
+ is super-uniform, hence is a valid p-value. Comparing pHF

λ to δ,
yields the maximum empirical loss ℓ̂(λ), evaluated over a calibration set of size m, which can pass the test
with significance level δ:

αmax = α−
√

log (1/δ)
2m

. (25)

This can be equivalently obtained from the upper bound (21).

The region of interest in Eqs. (7) and (8) is obtained based on Eqs. (21) and (22):

P
(

ℓ̂opt
1 (λ) ∈ R(α, k, m, δ, γ)

∣∣ℓ1(λ) = αmax
)

=

1− P

(
ℓ̂opt

1 (λ) ≥ ℓ1(λ)−
√

log (1/u)
2n

)
− P

(
ℓ̂opt

1 (λ) ≥ ℓ1(λ) +
√

log (1/u)
2n

)
≥ 1− 2γ.

(26)

A tighter alternative to Hoeffding p-value was proposed in (Bates et al., 2021) based Hoeffding and Bentkus
inequalities. The Hoeffding-Bentkus p-value is given by:

pHB
λ = min

(
exp{−mh1(ℓ̂(λ) ∧ α, α)}, eP

(
Binom(m, α) ≤ ⌈mℓ̂(λ)⌉

))
(27)

where h1(a, b) = a log( a
b ) + (1− a) log( 1−a

1−b ). For binary risk functions (e.g. error) we use the Binomial tail
probability instead (without the e factor):

P Bin := P(Binom(m, α) ≤ ⌈mℓ̂(λ)⌉) (28)

Note that for a given δ we can numerically extract from Eqs. (27) or (28) the upper and lower bounds
corresponding to a 1− 2γ confidence interval, and use it to define the region of interest as in Eq. (8).

B.2 A valid p-value for multiple constraints

We prove that taking the maximum p-value across constraints is a valid p-value for the combined hypothesis.
Lemma B.1. Let pλ,i be a p-value for Hλ,i : ℓi(λ) > αi, for each i ∈ {1, . . . , c}. Define pλ := max1≤i≤c pλ,i.
Then, for all λ such that Hλ : ∃i where ℓi(λ) > αi holds, we have:

P (pλ ≤ u) ≤ u (29)

where u ∈ [0, 1].

Proof. Let J ⊆ {1, . . . , c} be the set of all true null hypotheses (unsatisfied constraints) at λ. We have:

P
(

pλ ≤ u
)
≤ P

(
max
j∈J

pλ,j ≤ u

)
= P

⋂
j∈J

pλ,j ≤ u

 ≤ max
j∈J

P (pλ,j ≤ u) . (30)

Since for each j ∈ J , P (pλ,j ≤ u) ≤ u, we have maxj∈J P (pλ,j ≤ u) ≤ u, implying that P (pλ ≤ u) ≤ u.
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B.3 Proof of Proposition 5.1

The proof is based on (Angelopoulos et al., 2021; Laufer-Goldshtein et al., 2023), which we repeat here for
completeness.

Proof. Recall that Dval and Dcal are two disjoint, i.i.d. datasets. Therefore, Dcal is i.i.d. w.r.t the returned
configuration set optimized in Algorithm 1 over Dval.

We now prove that the testing procedure returns a set of valid configurations with FWER bounded by δ.
Let Hλ′ be the first true null hypothesis in the sequence. Given that pλ′ is a super uniform p-value under
Hλ′ , the probability of making a false discovery at λ′ is bounded by δ. This means that the event that
Hλ′ is rejected (false discovery) occurs with probability lower than δ. According to the sequential testing
procedure, all other Hλ that follow are also rejected (regardless of if Hλ is true or not). Therefore the
probability of making any false discovery is bounded by δ, which satisfies the FWER control requirement.

B.4 Hypervolume

An illustration of the hypervolume defined in Eq. (3) is given in Fig. B.1 for the 2-dimensional case. It can
be seen that the hypervolume is equivalent to the volume of the union of the boxes created by the Pareto
optimal points and the reference point.

Figure B.1: An illustration of the hypervolume in the 2-dimensional case. The reference point is marked in
red and three Pareto optimal points are marked in blue.

B.5 Region of Interest

An illustration of the region of interest defined in Eq. (9) is given in Fig. B.2 for the 3-dimensional case (two
constraints and a single free objective function). The volume is defined by the intersection of the regions
defined by each constrained dimension.
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Figure B.2: An illustration of the region of interest in the 3-dimensional case.

C Algorithms
Our overall proposed method is summarized in Algorithm C.1.

Algorithm C.1 Configuration Selection
Definitions: f is a configurable model set by an hyperparameter λ. Dval = {Xi, Yi}k

i=1 and Dcal = {Xi, Yi}k+m
i=k+1 are

two disjoint subsets of validation and calibration data, respectively. {ℓ1, . . . , ℓc} are constrained objective functions,
and ℓfree is a free objective. {α1, . . . , αc} are user-specified bounds for the constrained objectives. Λ is the configuration
space. δ is the tolerance. N is the optimization budget, and N0 is the size of the intial pool of configurations.
ParetoOptimalSet() returns Pareto optimal points.

1: function Select(Dval,Dcal, Λ, {α1, . . . , αc}, δ, N)
2: Compute ℓlow

i , ℓhigh
i for i ∈ {1, . . . , c} based on (8) and (9) ▷ Determine the region of interest.

3: C0,L0 ← Randomly sample an initial pool of configurations of size N0 ▷ Generate an initial pool.
4: CBO ← BO(Dval,ℓ, C0, Lo, {ℓlow

1 , . . . , ℓlow
c }, {ℓhigh

1 , . . . , ℓhigh
j }, N) ▷ BO via Algorithm 1.

5: Cp ←ParetoOptimalSet(CBO) ▷ Filter Pareto optimal points.
6: Compute pval

λ over Dval for all λ ∈ Cp ▷ Compute approximated p-values.
7: Co ← Order configurations according to increasing pval

λ ▷ Order configurations.
8: Compute pcal

λ over Dcal for all λ ∈ Co ▷ Compute p-values.
9: Apply FST: Cvalid = {λ(j) : j < J}, J = minj{j : pcal

λ ≥ δ} ▷ Apply FST.
10: λ∗ = minλ∈Cvalid ℓfree(λ) ▷ select the best-performing configuration.
11: return λ∗

D Implementation and dataset details
We provide here further details on the datasets, application specifications, model architectures, training
procedures, and examined scenarios.

Initialization. For GuideBO, HVI and EHVI we randomly sample an initial pull of size N0, and perform
N −N0 iterations of BO. We use a uniform grid for n = 1 and LHS for n > 1. The values of N and N0 for
each task are provided in Table 2. For ParEGO we use the default initialization defined by the SMAC3
implementation.

Fairness. For computing D̂DP(f), the indicator 1f(x)>0 in Eq. (14) is relaxed using tanh(c ·max(0, f(x)))
with c = 3 (Padh et al., 2021). In addition, we define a linear interpolation in the input space: xt =
t · x1 + (1 − t) · x−1, for t ∈ [0, 1] where x1 and x−1 represent samples with attributes a = 1 and a = −1,
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respectively. The mixup regularization is defined by:

M̂ixUP(f) = Et [|EX [⟨∇xf(xt), x−1 − x1⟩]|] , (31)

regularizing the expected inner product between the Jacobian on mixup samples and the difference x−1 −
x1 (Chuang & Mroueh, 2020). Our model is a 3-layer feed-forward neural network with hidden dimensions
[60, 25]. We train all models using Adam optimizer with learning rate 1e − 3 for 50 epochs and batch size
256.

Robustness. We use a ResNet-50 model pretrained on ImageNet. We train the models for 50 epochs with
SGD with a constant learning rate of 1e − 3, momentum decay of 0.9, batch size 32 and weight decay of
1e−4. We use random crops and horizontal flips as data augmentation. We use half of the CelebA validation
data to train the last layer, and the other half for BO.

VAE. We use the implementation provided by (Chadebec et al., 2022) of a ResNet-based encoder and
decoder, trained using AdamW optimizer with β1 = 0.91, β2 = 0.99, and weight decay 0.05. We set the
learning to 1e−4 and the batch size to 64. The training process consisted of 10 epochs. We use binary-cross
entropy reconstruction loss for training the model, and the mean squared error normalized by the total
number of pixels (728) as the reconstruction objective function for hyperparameter tuning.

Pruning. We use a BERT-base model (Devlin et al., 2018) with 12 layers and 12 heads per layer. We
follow the recipe in (Laufer-Goldshtein et al., 2023) and attach a prediction head and a token importance
predictor per layer. The core model is first finetuned on the task. We compute the attention head importance
scores based on 5K held-out samples out of the training data. We freeze the backbone model and train the
early-exit classifiers and the token importance predictors on the training data (115K samples).

Each prediction head is a 2-layer feed-forward neural network with 32 dimensional hidden states, and ReLU
activation. The input is the hidden representation of the [CLS] token concatenated with the hidden repre-
sentation of all previous layers, following (Wołczyk et al., 2021).

Similarly, each token importance predictor is a 2-layer feed-forward neural network with 32 dimensional
hidden states, and ReLU activation. The input is the hidden representation of each token in the current
layer and all previous layers (Wołczyk et al., 2021).

Early-Time Classification. We asdapt the setup described in (Ringel et al., 2024), and use the processed
model outcomes that appear in their implementation1. The context of each question is divided into sentences,
which are grouped into tmax = 10 sets. The input sequence until time t is provided as a prompt that includes
the context sentences up to timestep t, along with the question and its four options, labeled ‘A’, ‘B’, ‘C’,
and ‘D’. The prompt concludes with “The answer is:\n\n”. The prompt is processed by the Vicuna-13B
model.

E Additional Results
In this section, we describe additional experiments and results.

Satisfying Constraints and Tighter Contorl. We show the values of the constrained objective functions
in Fig. E.1, where the red dashed lines depict the limit. We see that the constraints are satisfied by all
methods as expected, since in any case the configurations are validated through the testing procedure.
Notably, GuideBO obtains tighter control compared to baselines in nearly all cases. This is consistent with
our earlier finding that GuideBO better minimizes the free objective function.

Varying Optimization Budget. We examine the effect of varying the optimization budget N . We show
results for the pruning task with N ∈ {20, 50, 100}. In addition, we compare to a dense grid with uniform
sampling of all 3 hyperparmeters with a total of N = 1000 configurations. We see on Fig. E.2 that the
relative cost gradually improves with the increase in N . It reaches (and in some cases outperform) the dense
grid baseline with N = 100 (that is 10% decrease in budget). This indicates that using our proposed method
we can significantly decrease the required budget without scarifying performance.

1https://github.com/liranringel/etc
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(a) Fairness (b) Robustness (c) Selective Robustness

(d) VAE (e) Pruning (f) Early Classification

Figure E.1: Presents the constrained objective functions across tasks and different limits (marked by dashed
red lines). The objectives are evaluated over Dtest for the configuration that was chosen by each method.
All method satisfy the limits due to the testing procedure.

Figure E.2: Results of the proposed method over AG News (pruning task) for different number of
evaluations, and with a grid of uniform thresholds. Accuracy reduction is controlled and cost is minimized.

Influence of γ. We examine the influence of γ, which determines the boundaries of the region of interest.
Figure E.3 shows the scores obtained for different values of γ. We observe that in most cases there is no
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noticeable difference in the performance with respect to γ. However, it appears that moderate values, neither
too large nor too small, are preferable.

(a) Fairness (b) Robustness (c) Selective Robustness

(d) VAE (e) Pruning (f) Early Classification

Figure E.3: Influence of γ. Showing the scores of the free objective for different values of γ, which controls
the width of the region of interest, defined in Eq. (8).

Ablation study - one-sided upper bound. We compare the proposed method to the case that the BO
search is constrained by a one-sided bound at the upper limit defined by α. This means that the reference
point is set to ri = αi for i ∈ 1, . . . , c, while rc+1 is set according to the maximum value of ℓfree, as in the
standard full Pareto front approach. Figure E.4 shows the values of the free objective across tasks. We
see that in most cases performing the search in the defined region of interest is preferable to a single-sided
bound. This shows the benefit of removing low risk, inefficient configurations from the search space (the
green section in Fig. 2).

Demonstration of BO Selection. We show the outcomes of the BO procedure across several tasks in
Fig. E.5. We compare the proposed method to HVI that recovers the entire Pareto front. The reference
point defined in (11) is marked by a green square, and the boundaries of the region of interest are depicted
by dashed lines. The blue points correspond to the configurations in the initial pool C0, while the red
points correspond to the configurations selected by the BO procedure. We see that the specified region is
significantly smaller compared to the entire front. Moreover, we observe that by GuideBO we obtain a dense
set of configurations in the region of interest as desired. In contrast, for HVI we obtain samples all over
the front. In addition, the distribution of points is not always evenly spread along the front, so that certain
part of the front are denser than other. This explains why HVI (and similarly the other baselines) is inferior
compared to GuideBO since for certain α values the distribution of the selected configurations is sparse near
the limiting value.
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(a) Fairness (b) Robustness (c) Selective Robustness

(d) VAE (e) Pruning (f) Early Classification

Figure E.4: Ablation study - comparing the proposed method with two-sided region to a one-sided upper
bound, defined by the limiting α. Presenting the scores obtained for the free objective.
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(a) Fairness (GuideBO, α = 0.17) (b) Fairness (Full)

(c) VAE (GuideBO, α = 0.03) (d) VAE (Full)

(e) Pruning (GuideBO, α = 0.075) (f) Pruning (Full)

(g) Early Class. (GuideBO, α = 0.05) (h) Early-Time Class. (Full)

Figure E.5: Demonstration of the selection outcomes of the BO procedure, comparing the proposed method
(left) to full recovery of the Pareto front by HVI (right): the green square is the defined reference point,
the blue points correspond to the initial set of configurations, and the red points correspond to selected
configurations. Dashed lines enclose the region of interest.
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