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Abstract

Machine Unlearning, the process of selectively
eliminating the influence of certain data examples
used during a model’s training, is a crucial area of
research for safeguarding User Privacy and ensur-
ing compliance with recent data protection regu-
lations. Existing unlearning methods face critical
drawbacks, including their prohibitively high cost,
often associated with a large number of hyper-
parameters, and the limitation of forgetting only
relatively small data portions. This often makes
retraining the model from scratch a quicker and
more effective solution.
In this study, we introduce Gradient-based and
Task-Agnostic Machine Unlearning (∇τ ), an op-
timization framework designed to remove the in-
fluence of a subset of training data efficiently. It
applies adaptive gradient ascent to the data to be
forgotten while using standard gradient descent
for the remaining data. ∇τ offers multiple ben-
efits over existing approaches. It enables the un-
learning of large sections of the training dataset
(up to 30%). It is versatile, supporting various un-
learning tasks (such as subset forgetting or class
removal) and applicable across different domains
(images, text, etc.). Importantly, ∇τ requires no
hyperparameter adjustments, making it a more
appealing option than retraining the model from
scratch. We evaluate our framework’s effective-
ness using a set of well-established Membership
Inference Attack metrics, demonstrating up to
10% enhancements in performance compared to
state-of-the-art methods without compromising
the original model’s accuracy.
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1. Introduction
The field of machine learning has seen remarkable advance-
ments in the past years. Current state-of-the-art models
sometimes achieve performance levels comparable to hu-
man beings and obtain excellent accuracy in downstream
tasks (LeCun et al., 2015; Silver et al., 2016; Brown et al.,
2020; Gilardi et al., 2023). On the downside, deep machine
learning models’ growing complexity and scale introduce
safety concerns ranging from User Privacy, potential bi-
ases in prediction, to deliberate output manipulation, among
other issues (Shokri et al., 2017; Yeom et al., 2018; Li et al.,
2020; Siddique et al., 2024). Indeed, publicly available mod-
els often rely on user-provided data and require adherence
to the latest GDPR regulations, colloquially referred to as
“right to be forgotten”, allowing users to request the removal
of their data from trained models for privacy reasons. Addi-
tionally, models trained on large amounts of publicly avail-
able data may encounter challenges in filtering and human-
checking, potentially leading to biases if the data contains
toxic or inappropriate content (Siddique et al., 2024). Con-
sequently, there is a need to remove these biases once they
are discovered. Meanwhile, threat actors have a rising pres-
ence who purposefully manipulate training data with ma-
licious intent, causing arbitrary mispredictions when cer-
tain patterns are detected. This model behavior, known as a
backdoor (Li et al., 2020), requires immediate removal of
the influence of the manipulated data. All these scenarios,
and many others, have in common the need to remove the
influence that some training samples had on the final model.

A straightforward solution consists of starting a retraining
procedure from scratch, excluding the data intended for re-
moval. However, this is often impractical due to the signifi-
cant time and computational power required.

Machine Unlearning addresses this challenge by developing
methods to remove the influence of specific training samples
efficiently, avoiding the need for complete retraining. Cur-
rent works in the literature focus on different variations of
this task, using distinct definitions based on their objective.
Often, it is hard to compare all these approaches, as there is a
lack of a precise definition and specific metrics. One method
may be suitable for a certain instance of unlearning, such as
“removing biases” (Yu et al., 2023), but may not work for
other cases like “removing backdoors” (Liu et al., 2023).
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In this context, we propose a comprehensive reinterpretation
of the classic definition of approximating retraining, aiming
for a more adaptable approach across various use cases. Our
primary focus lies on enhancing User Privacy through un-
learning. We emphasize the importance of defending against
privacy-leaking attacks on specific training set samples.

Moreover, we aim to develop a method that is not overly
sensitive to hyperparameters and does not require extensive
experiments to find the best setup, as this time and computa-
tion resources could be otherwise used for retraining.

To address these objectives, we introduce Gradient-based
and Task-Agnostic machine Unlearning (∇τ ), an optimiza-
tion framework designed to remove the influence of train-
ing data subsets efficiently. ∇τ demonstrates effectiveness
across diverse unlearning scenarios while preserving the in-
tegrity of model performance. We conduct extensive evalua-
tions of ∇τ across different datasets and domains, including
performing unlearning on models trained for image classi-
fication tasks on CIFAR-10 and CIFAR-100 (Krizhevsky,
2012), and text classification tasks on GoEmotion (Dem-
szky et al., 2020). Finally, we investigate ∇τ ’s performance
across various hyperparameter values and various sizes of
the set to be forgotten, demonstrating ∇τ robustness. The
main contributions of this work are the following:

• We present ∇τ , a method that adapts the gradient step
to the quantity of information to be forgotten. The
procedure introduced is both Model and Task-agnostic.
Our method outperforms state-of-the-art methods and
preserves accuracy levels present before unlearning.

• We conduct extensive experiments to prove the effec-
tiveness of our method and compare it with other ap-
proaches over a heterogeneous set of setups, includ-
ing different domains (Text, Image), unlearning tasks
(Random subset removal, Class removal) and sizes of
the forget set, up to 30% of the original training set.

• We perform a comprehensive evaluation of our method
for different values of the sole hyperparameter intro-
duced, providing insights on its correct use and empiri-
cally proving its robustness to small variations.

We publish our code at https://github.com/
dnl-trpp/Nabla-Tau

2. Related Work
Several studies explore the concept of unlearning focusing
on specific subtasks (e.g. removing bias, User Privacy) and
currently a standardized definition is missing.

Unlearning for User Privacy. In this context, the goal is
to mitigate the influence of specific sample subsets to safe-

guard data from privacy breaches like Membership Infer-
ence Attacks. Existing methods lack consistency in problem
definition, framework, and evaluation. Graves et al. (2020)
address unlearning as resistance to data-leakage attacks via
label swapping. Chundawat et al. (2023) focus on remov-
ing forget set information using an incompetent teacher for
approximation. Foster et al. (2023) propose a retraining-
free method targeting influential weights, but it is limited
to small forget set sizes. Kurmanji et al. (2023) introduce
an unlearning method based on bad teaching effective in
scenarios beyond User Privacy (e.g., removing biases), but
evaluate their method only on class and subclass removal.

A drawback of existing methods is the introduction of new
hyperparameters that require careful selection before un-
learning, often making the process more time-consuming
than simple retraining. Additionally, most studies focus ex-
clusively on image classification models and small forget
set sizes (less then 2% of training set).

Our method performs effectively in scenarios involving ran-
dom subset removal, where forgetting samples do not nec-
essarily share a common class or similarity. Additionally,
we achieve optimal results for class removal. Our method
proves effective for forget sets comprising up to 30% of
the original dataset. We validate its applicability across im-
age and text classification tasks. Importantly, our approach
maintains remarkable robustness with respect to the sole in-
troduced hyperparameter, crucial for practical use in real-
world scenarios. We offer empirical insights on configuring
this hyperparameter based solely on the unlearning set size.

Membership Inference Attack. Membership Inference At-
tacks (MIAs) (Yeom et al., 2018; Shokri et al., 2017) are
privacy attacks on machine learning models where an at-
tacker tries to determine whether a sample was used during
training. In the context of Machine Unlearning, this attack
is used as a metric to determine if the unlearning procedure
can protect User Privacy for a given Forget Sample (Nguyen
et al., 2022). In this work, we use the same MIAs used
by Kurmanji et al. (2023) and Foster et al. (2023); in this
setting, the attacker only observes model outputs. This is
known as the Blackbox setting, contrasting with the White-
box setting where the attacker can access all model parame-
ters. Additional details will be included in Section 5.

We direct interested readers to the survey by Nguyen et al.
(2022), which comprehensively covers various aspects and
open questions of Machine Unlearning.

3. Problem Definition
Let D be a dataset and A a randomized training procedure.
The output of A, given D, and a fixed architecture is a vec-
tor of all model’s parameters A(D) = wo. Due to the proce-
dure’s internal randomness, wo is a random variable. We de-
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note the function implemented by the model with parameters
w as f(·, w), with a little abuse of notation, we will often re-
fer to a model as its parameters. We define the forget set as
a subset Df ⊂ D of samples from which we aim to remove
their influence on the model. The retain set Dr = is the com-
plementary of the forget set. Given wo = A(D), Df and
Dr, the goal of a deep Machine Unlearning procedure U is
to produce a new set of weights wu = U(wo, Df ) such that
the ‘unlearned model’ wu has ‘forgotten’ Df without hurt-
ing the performance of the original model on Dr. By ‘forget-
ting’ we mean the ability of the unlearned model to be indis-
tinguishable under a certain metric from the golden baseline
of retraining only on Dr. In perfect unlearning (Nguyen
et al., 2022; Bourtoule et al., 2020; Brophy & Lowd, 2021;
Thudi et al., 2022),we seek the distribution of models trained
solely on Dr to match that of the unlearned model. Measur-
ing these distributions is not trivial, and often, in specific
applications, a less strict unlearning definition might suffice.
Here, the focus is on preserving specific properties rather
than the entire weights distribution. This is achieved by
aligning certain metrics computed on the model’s weights.
More formally, for a map M that takes as input the model w
and a subset of samples X in the input space X we require:
P(M(X,wu)∈ S)=P(M(X,wr) ∈ S) ∀S ⊂ M,∀X ⊂ X.

represents the output space of the map M , and S is any mea-
surable set in M. If the map M(X,w) is the output of the
network with weights w on samples X , i.e., M(X,w) =
f(X,w), the problem is also referred to as weak unlearning
(Baumhauer et al., 2022; Nguyen et al., 2022). The choice
of M depends on the desired properties of the model to be
preserved. For instance, in Bias removal, a metric measur-
ing bias levels is used, while in User Privacy Unlearning,
Membership Inference Attacks (MIA) metric are employed.

4. Our Method
We introduce a novel loss function aimed at eliminating
the influence of samples in the forget set while maintain-
ing the integrity of the model’s performance. With a pri-
mary emphasis on User Privacy, our goal is to align the out-
put distribution of samples within the forget set with that
of the Test Set. We assume access to a validation set, but
since we need only aggregate information of the set, such as
its mean loss value even a small validation dataset, which
is commonly available, is sufficient. If a validation set is
not available, one could optimize the mean value of vali-
dation losses, potentially starting from the average training
loss.Let LD be the mean of the losses on a set D: LD =
1

|D|
∑

x∈D l(f(x,wi)). We represent the mean loss on the
forget set, retain set, and the validation set as LDf

, LDr
, and

LDv , respectively. We introduce the following loss function:

L = α(ReLU(LDv − LDf
))2 + (1− α)LDr .

The term ReLU(LDv
− LDf

) is used to reverse the gradi-
ent step on the forget set. This occurs only if the loss on
the forget set is smaller than the objective loss LDv . Oth-
erwise, the ReLU activation ensures that this term and its
gradient become null and do not affect the optimization fur-
ther. Optionally, the objective loss can be recomputed every
c epochs. The parameter α balances the noise injection and
the fine-tuning term, α equal to 0 corresponds to simple fine-
tuning. Our findings suggest optimizing α using a scheduler
yields the best results. Specifically, linearly decreasing α
based on the number of optimization steps proves to be both
efficient and fairly independent of the initial value of α. In
Section Bof the Appendix, we experimentally demonstrate
how to select an appropriate α based on the size of the for-
get set relative to the retain set. Deriving the loss we obtain:

∇L=

{
−α2(LDv−LDf

)∇LDf
+(1−α)∇LDr LDf

≤LDv

(1− α)LDr
LDf

>LDv

The squared term ReLU(LDv − LDf
)2 scales the negative

gradient step ∇LDf
in proportion to LDv−LDf

, effectively
creating an adaptive step.
An outline of our framework (Algorithm 1) and additional
details are provided in Appendix A.

5. Experimental Setup
Our main focus is on forgetting a random subset of train-
ing data for User Privacy, where random means the sam-
ples have no correlation (e.g., these do not belong to the
same class). This setting effectively represents scenarios
where uncorrelated users request data removal. To validate
our method, we conduct experiments on three classification
datasets from different domains and perform additional tests
to demonstrate robustness (Appendix B). With random sub-
set removal being our primary focus, we also present results
on Class Removal. All relevant material regarding this set-
ting is provided in Appendix C.

Datasets and Architectures We evaluate our method across
various datasets and domains. For image classification, we
use the CIFAR-10 and CIFAR-100 benchmarks (Krizhevsky,
2012) following Chundawat et al. (Chundawat et al., 2023)
with the ResNet18 (He et al., 2015) model. For text classifi-
cation, we employ the GoEmotions dataset (Demszky et al.,
2020), which labels sentences with 27 different emotions or
as neutral, and use RoBERTa (Liu et al., 2019) with a linear
layer on top as the model. Additional training details are
provided in Appendix D.

Baselines We compare our method with state-of-the-art
methods for random subset removal, particularly SSD (Fos-
ter et al., 2023) and Amnesiac (Graves et al., 2020). Addi-
tionally, we include the baseline of model Retraining, where
the model is trained from scratch on the retain set, and sim-
ple Fine-tuning, where a pre-trained model is optimized
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Table 1. Results on forgetting 3%, 15% of the CIFAR-10 train set and 15% of the CIFAR-100 train set. Mean and standard deviation
values are averaged over three runs having different seeds. AD is the model’s accuracy on dataset D. MIAL and MIAE denote the
MIA score using loss and entropy distribution, respectively. Bold font denotes the best results excluding the retraining golden baseline.

ADr
↑ |ADf

−ADt
| ↓ ADt

↑ |MIAL − 50| ↓ |MIAE − 50| ↓

C
IF

A
R

-1
0

fo
rg

et
se

t3
%

Original 94.14± 0.00 9.24± 0.21 85.29± 0.21 5.13± 0.92 4.34± 1.02
Fine-tuning 99.75± 0.01 5.93± 0.67 85.67± 0.52 2.47± 0.85 2.03± 0.71
Retraining 95.30± 0.02 0.70± 0.52 84.07± 0.23 0.47± 0.31 1.70± 0.87
SCRUB 94.11± 0.06 9.50± 0.10 85.19± 0.12 4.41± 0.60 3.50± 0.79
SSD 94.14± 0.01 9.24± 0.20 85.31± 0.17 4.64± 0.64 3.44± 0.67
Amnesiac 98.76± 0.09 18.87± 0.85 85.20± 0.16 11.20± 0.50 15.61± 0.51
∇τ (ours) 99.34± 0.07 2.06± 0.15 85.94± 0.46 0.60± 0.59 1.50± 0.70

C
IF

A
R

-1
0

fo
rg

et
se

t1
5%

Original 94.14± 0.00 9.13± 0.21 85.29± 0.21 4.71± 0.28 3.76± 0.17
Fine-tuning 98.77± 0.02 6.30± 0.41 85.55± 0.30 3.02± 0.14 1.57± 0.33
Retraining 86.98± 0.39 0.44± 0.17 80.25± 0.55 0.49± 0.25 0.74± 0.25
SCRUB 93.90± 0.14 9.10± 0.13 85.02± 0.31 4.86± 0.20 3.67± 0.21
SSD 94.13± 0.02 9.07± 0.17 85.34± 0.18 4.88± 0.20 3.76± 0.65
Amnesiac 96.73± 0.06 4.22± 0.69 84.77± 0.24 4.73± 0.42 11.15± 0.49
∇τ (ours) 97.82± 0.07 2.39± 0.11 85.73± 0.25 1.52± 0.22 1.72± 0.28

C
IF

A
R

-1
00

fo
rg

et
se

t1
5%

Original 99.21± 0.00 39.12± 0.10 60.13± 0.10 24.24± 0.39 21.66± 0.32
Fine-tuning 99.97± 0.00 31.83± 0.32 59.65± 0.25 16.08± 0.53 10.15± 0.14
Retraining 77.84± 2.73 0.50± 0.33 50.60± 1.11 0.73± 0.32 0.28± 0.18
SCRUB 96.05± 0.33 37.83± 0.28 58.13± 0.08 21.05± 0.69 17.47± 0.71
SSD 99.14± 0.07 38.97± 0.02 60.20± 0.03 23.90± 0.26 21.44± 0.49
Amnesiac 99.81± 0.03 3.43± 1.28 52.07± 0.33 5.37± 0.38 10.48± 0.54
∇τ (ours) 99.74± 0.01 3.38± 1.13 58.39± 0.32 0.95± 0.35 4.95± 0.50

on the retain set. The starting model trained on the entire
dataset is referred to as Original. Retraining is conducted for
the same number of epochs as the Original model. For fair
comparison, our method, Fine-tuning, and other baselines
(excluding the training-free SSD) are run for 1/10 of the Re-
training steps, ensuring an equal number of model updates.

Metrics To evaluate privacy leaks in the forget set of the
final model, we use Membership Inference Attacks (MIA)
as a metric (Kurmanji et al., 2023; Foster et al., 2023). The
discrepancy between loss and entropy distributions of sam-
ples seen or unseen during training allows attackers (logistic
classifiers) to infer sample membership using (see left side
of Figure 1). We use the accuracy of an ‘attacker’ to evalu-
ate Machine Unlearning. When the attacker is trained using
the model’s losses on forget and test examples, we denote
its accuracy as MIAL (Kurmanji et al., 2023); when using
the model’s output entropies on forget and test examples,
we denote its accuracy as MIAE (Foster et al., 2023). In
the perfect scenario of Retraining the model only on Dr, the
attacker’s accuracy is 50%, equivalent to random guessing.
We use accuracy as a metric to measure the efficiency and
effectiveness of the final model. Our goal is to closely align
forget set accuracy with test set accuracy to prevent attack-
ers from inferring whether a sample from the forget set was
used during training. We measure this alignment by calcu-
lating the difference between the unlearned model’s accu-

0 2 4 6 8 10
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10 3

10 2

10 1

100

Fr
eq
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nc

y
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Figure 1. Loss distributions of Forget (orange) and Test (blue) sets
before (left) and after (right) unlearning on CIFAR-10.

racy on the forget set and its accuracy on the test set.

6. Experimental Results
We test our method across various scenarios to evaluate its
effectiveness. We focus on unlearning for User Privacy, pri-
marily in settings involving random subset removal, where
the samples lack any specific correlation and we test our
method with different forget set sizes, namely 3%, 15%, and
30% of the training set. Additionally, in Appendix C, we
conduct experiments for the task of class removal. Finally,
in Appendix B, we empirically demonstrate the robustness
of our method with respect to its hyperparameter α.

Results of forgetting 3% and 15% of CIFAR-10 and 15%
of CIFAR-100 are shown in Table 1. Complete results for
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Table 2. Results on forgetting 3%, 15% and 30% of train set on GoEmotion for Text Classification. Results are obtained by averaging
across three runs having different seeds. Bold font denotes the best results excluding the retraining golden baseline. AD is the model’s
accuracy on dataset D. MIAL and MIAE denote the MIA score using loss and entropy distribution, respectively.

ADr
↑ |ADf

−ADt
| ↓ ADt

↑ |MIAL − 50| ↓ |MIAE − 50| ↓

fo
rg

et
se

t
3%

Original 82.83± 0.03 29.00± 0.24 54.59± 0.08 15.13± 1.31 7.56± 1.73
Fine-tuning 61.17± 1.14 2.17± 1.25 53.87± 0.61 1.17± 0.93 1.79± 0.94
Retraining 85.82± 0.26 2.04± 0.92 54.45± 0.16 1.48± 0.83 1.24± 0.66
∇τ (ours) 57.36± 1.83 2.84± 1.46 50.92± 1.15 1.29± 0.97 1.19± 0.70

fo
rg

et
se

t
15

%

Original 82.85± 0.04 28.62± 0.38 54.61± 0.42 15.20± 0.65 7.19± 0.09
Fine-tuning 60.92± 0.43 3.72± 0.84 53.64± 0.64 1.18± 0.33 1.08± 0.10
Retraining 85.77± 0.12 0.63± 0.38 54.73± 0.12 0.39± 0.29 0.43± 0.18
∇τ (ours) 59.34± 0.83 4.24± 2.18 52.17± 0.61 1.83± 0.97 0.70± 0.17

fo
rg

et
se

t
30

%

Original 82.95± 0.02 28.36± 0.16 54.44± 0.20 15.01± 0.55 7.32± 0.16
Fine-tuning 62.85± 0.33 5.27± 0.23 52.96± 0.22 2.68± 0.06 0.33± 0.14
Retraining 84.80± 0.20 0.32± 0.34 54.17± 0.15 0.38± 0.35 0.44± 0.24
∇τ (ours) 62.59± 0.92 6.32± 1.07 53.22± 0.92 2.93± 0.14 0.90± 0.48

CIFAR-10 are in Table 7 in Appendix, and for CIFAR-100
in Table 6 in the Appendix. Both datasets, CIFAR-10 and
CIFAR-100, are utilized for image classification but exhibit
significant differences. CIFAR-10 has fewer classes and
a smaller initial difference between its test and forget sets,
leading to a lower starting MIA compared to CIFAR-100.
Results for the Text Classification task domain are presented
in Table 2. Given the absence of evaluated state-of-the-
art methods in this specific setting, we solely compare our
method against retraining and fine-tuning baselines.
Results Our experiments revealed that for both Image Clas-
sification tasks, SSD (Foster et al., 2023) and Amnesiac
(Graves et al., 2020) did not effectively reduce the MIA
accuracy on forget sets of the tested sizes. SCRUB (Kur-
manji et al., 2023), which focuses on class and subclass re-
moval, demonstrates ineffectiveness in this setup. Amnesiac
(Graves et al., 2020) significantly reduces forget set accu-
racy, but has a minor impact on MIA accuracy compared to
the original model. In some cases, it performs worse than
the original model (see CIFAR-10 experiment with a forget
set size of 3%). SSD (Foster et al., 2023) has no effect on ac-
curacy and shows no noticeable impact on MIA scores. As
expected, fine-tuning achieves high accuracies on Dr and
Dt, but offers no guarantee on forgetting and often performs
poorly on MIAs. In contrast, our method surpasses other
approaches in reducing the MIA score, nearly matching re-
training baselines for both loss and entropy distributions.
Additionally, our approach maintains consistently high Test
Accuracy, sometimes even exceeding the initial accuracy,
particularly in forget set sizes of 3% and 15% on CIFAR-10.

Also in text classification, our method effectively removes
the influence of Forget Samples and defends against MIAs,
even with a high initial difference between Train and Test
set accuracy (27.3%). Notably, simple fine-tuning already
provides effective defense against MIAs in this scenario.

7. Conclusions
In this work, we introduced ∇τ , a novel approach for con-
ducting Machine Unlearning, specifically targeting the re-
moval of a substantial subset of training data influence from
the final model. Our method places a primary emphasis on
User Privacy, this is especially relevant because of the “right
to be forgotten” of the GDPR regulation, which requires
data holders to be capable of removing user data upon re-
quest. We demonstrate its optimal performance measured
in terms of accuracy and MIA, where the latter serves as a
more reliable way of ensuring the model has forgotten the
desired data, compared to accuracy alone. The effectiveness
of our method has been validated across various settings,
both in Image and Text classification tasks, outperforming
several baselines. Notably, our approach showcases the ca-
pability to realign the distribution of the forget set closely
with the Test Set, making our model excel in Machine Un-
learning for User Privacy. Importantly, our approach intro-
duces only one hyperparameter and demonstrates robustness
without extensive tuning, crucial for real-world applicabil-
ity. Although our experiments primarily focused on classifi-
cation tasks, our method is task-agnostic, relying solely on
loss alignment, and adaptable to diverse downstream tasks.
In future works, we aim at exploring the adaptability of our
method to additional tasks and domains. Moving ahead, our
hope is that this research will establish a new foundation for
investigating unlearning with a focus on User Privacy. Sub-
sequent research should prioritize the standardization of Un-
learning settings and definitions while exploring innovative
methods adaptable to a variety of Unlearning scenarios.
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A. Additional Details on the Method

Algorithm 1 ∇τ Training Loop
Input: Model, forget set, Validation Set, retain set,α
Output: Updated Model

for each forget epoch do
if n epoch % c == 0 then

LDv
= ComputeMeanLoss(Validation Set);

end
for each Xf ,Yf in forget set do

Xr,Yr = NextRetainBatch();
LDf

= Loss(Xf ,Yf);
LDr

= Loss(Xr,Yr);
L = αReLU((LDv − LDf

)2) + (1− α)LDr

OptimizationStep(Model,L);
end
α = SchedulerStep(α)

end
return Model

Implementation insights: Balancing retain and forget sets An outline of our framework can be found in Algorithm 1. In
practice, the forget set is typically smaller than the retain set. Each optimization step in our method accesses a batch from
both sets, with the same batch size. Consequently, due to their size disparity, the Forget epoch — representing the number of
steps required to process all forget set batches — differs from an epoch on the retain set.

B. Choosing α

Setup To test the robustness of our method, we repeat the procedure over many different forget set Sizes and with different
values of our only hyperparameter α. We repeat each experiment with three different seeds and showcase the mean value.
We plot the absolute difference from the perfect value 50% in a heatmap shown in Figure 4. A score close to 0 is a good
defense against Membership Inference Attacks and approximates well the retraining baseline. Ideally, we want to observe a
good score independently of the chosen hyperparameter α.

Results As observed in Figure 2, for each split of Df there exist multiple values of α for which we obtain an optimal MIA
score. This hyperparameter can be chosen in a range of values that all lead to good results. For instance, for a forget set size
of 15%, all α values between 0.2 and 0.45 obtain values within the standard deviation of the golden baseline of retraining
(0.5). Even when choosing an α that is outside this range of values, it can be observed that the results are less than 3% away
from the values obtained by retraining.

We also visualize the absolute difference between the accuracy on Df and the accuracy on Dt in Figure 3 . Consistent with
MIA score observations, our method shows promise with sufficiently high α. Examining these findings reveals a positive
correlation between discrepancies in accuracy and MIA scores.

As a rule of thumb, it can be derived by this experiment that a starting alpha that is around 5
3 of the forget set size returns

overall better performances across all the settings.

C. Class Removal
Setup When performing Class Removal together with the baselines of Retraining and Fine-tuning we compare our method
with SCRUB (Kurmanji et al., 2023) that was specifically tested in this setting.

For class removal we conduct experiments focused on removing the influence of an entire class of CIFAR10. We test for
two classes: “automobile” (Class 1) and “dog” (Class 5). We exclude the forgotten class from the Test set to evaluate the
accuracy. The MIA is computed on the loss (and entropy) only on samples belonging to the class we intend to forget,
including both samples seen and unseen during training.
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Figure 4. Experiment using our method on CIFAR-10 across different forget set sizes (Y Axis) and α parameter (X Axis). On the left
we report the absolute distance of MIAL from the ideal value 50%. To improve the readability of the heatmaps, we do not report the
standard deviations. However, for results where |MIAL − 50| < 1.0 (the ones that best approximate retraining), the standard deviation
is always under 1%. Note that even the golden baseline has a standard deviation ±0.5% from 50%. On the right, we report the absolute
difference between the accuracy on forget set ADf and the accuracy on Test set ADt . The results highlight a similar pattern, indicating
that similar scores in the accuracies are correlated to lower MIA scores. The results show the mean across three runs with different seeds.
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Results The results presented in Table 3 demonstrate our approach’s capability to entirely eliminate a specific class’
impact. Accuracy on the forgotten class drops to 0, reproducing the results achieved through fine-tuning and the retraining
baseline. The test accuracy remains consistently high, even surpassing the initial accuracy for class 5. Remarkably, the MIA
score of our method notably decreases with respect to the original model, and ∇τ outperforms SCRUB in almost all setups.

Table 3. Results on forgetting an entire class (“automobile” and “dog”) of CIFAR10 for Text Classification. Mean and standard deviation
are obtained by averaging across three runs with 3 seeds. Bold font denotes the best results, excluding the retraining golden baseline. AD

is the model’s accuracy on dataset D. MIAL and MIAE denote the MIA score using loss and entropy distribution, respectively.
ADr ↑ ADf

↓ ADt ↑ |MIAL − 50| ↓ |MIAE − 50| ↓

C
la

ss
1

Original 93.89± 0.00 96.46± 0.00 84.56± 0.22 2.75± 1.46 3.04± 0.98
Fine-tuning 100.00± 0.00 0.00± 0.00 85.02± 0.20 1.68± 1.31 2.40± 1.38
Retraining 100.00± 0.00 0.00± 0.00 76.46± 0.48 1.23± 1.01 1.39± 1.10
SCRUB 93.58± 0.10 95.31± 0.14 84.19± 0.22 3.07± 0.30 1.10± 0.89
∇τ (ours) 86.13± 18.50 0.00± 0.00 76.41± 13.18 1.49± 1.49 2.34± 0.67

C
la

ss
5

Original 94.90± 0.00 87.32± 0.00 86.49± 0.17 6.81± 0.47 2.55± 0.64
Fine-tuning 100.00± 0.00 0.00± 0.00 88.21± 0.08 1.17± 0.62 1.06± 0.73
Retraining 100.00± 0.00 0.00± 0.00 80.64± 0.30 1.99± 1.00 0.98± 0.47
SCRUB 94.40± 0.04 89.46± 0.27 85.85± 0.10 7.73± 0.89 3.34± 1.95
∇τ (ours) 99.82± 0.01 0.00± 0.00 88.55± 0.13 2.14± 0.29 1.12± 0.80

D. Additional Training Details and Hyperparameters

Table 4. Hyperparameters used during the training procedure on each Dataset. The resulting checkpoints are used for all following
experiments on our unlearning procedure.

CIFAR-10 CIFAR-100 GoEmotions
Architecture ResNet18 ResNet18 RoBERTa
Optimizer SGD SGD AdamW
Batch Size 256 256 128
Learning Rate 0.1 0.1 5e-5
LR decay Linear [1,0.001] Linear [1, 0.001] Linear [1, 0.1]
Weight Decay 5e-4 5e-4 0.01

Table 5. Hyperparameters used during the unlearning procedure.
CIFAR-10 CIFAR-100 GoEmotions Class Removal

Optimizer AdamW AdamW AdamW AdamW
Batch Size 256 256 128 256
Learning Rate 0.001 0.001 0.0003 0.001
LR decay Linear [1,0.1] Linear [1,0.1] N/A Linear [1, 0.1]
Weight Decay 0.01 0.01 0.01 0.01
Alpha 5/3 * |Df | 5/3 * |Df | 0.5 5/3 * |Df |
Alpha decay Linear [1, 0] Linear [1, 0] Linear [1, 0] Linear [1, 0]

To produce the starting checkpoint for the unlearning procedure on CIFAR-10 and CIFAR-100, we use data augmentations
techniques including random crop and horizontal flip. Interestingly, we noticed that using data augmentation techniques
during training helps reducing the MIA score of the resulting model. We decided to keep these checkpoints, as they provide
a more realistic setting for a real-world unlearning use-case. All images are standardized by means and standard deviations.

In all our unlearning experiments, we use the AdamW optimizer with weight decay. During pre-training and subsequent
experiments, we always pick the last model produced by the optimization procedure.

Table 4 provides a detailed description of the hyperparameters used in the pre-training procedures. The resulting checkpoints
are used for all subsequent unlearning experiments.
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Table 6. Results on forgetting 3%, 15%, and 30% of the CIFAR-10 train set. Mean and standard deviation values are averaged over three
runs having different seeds. AD is the model’s accuracy on dataset D. MIAL and MIAE denote the MIA score using loss and entropy
distribution, respectively. Bold font denotes the best results excluding the retraining golden baseline.

ADr ↑ |ADf
−ADt | ↓ ADt ↑ |MIAL − 50| ↓ |MIAE − 50| ↓

fo
rg

et
se

t3
%

Original 94.14± 0.00 9.24± 0.21 85.29± 0.21 5.13± 0.92 4.34± 1.02
Fine-tuning 99.75± 0.01 5.93± 0.67 85.67± 0.52 2.47± 0.85 2.03± 0.71
Retraining 95.30± 0.02 0.70± 0.52 84.07± 0.23 0.47± 0.31 1.70± 0.87
SCRUB 94.11± 0.06 9.50± 0.10 85.19± 0.12 4.41± 0.60 3.50± 0.79
SSD 94.14± 0.01 9.24± 0.20 85.31± 0.17 4.64± 0.64 3.44± 0.67
Amnesiac 98.76± 0.09 18.87± 0.85 85.20± 0.16 11.20± 0.50 15.61± 0.51
∇τ (ours) 99.34± 0.07 2.06± 0.15 85.94± 0.46 0.60± 0.59 1.50± 0.70

fo
rg

et
se

t1
5%

Original 94.14± 0.00 9.13± 0.21 85.29± 0.21 4.71± 0.28 3.76± 0.17
Fine-tuning 98.77± 0.02 6.30± 0.41 85.55± 0.30 3.02± 0.14 1.57± 0.33
Retraining 86.98± 0.39 0.44± 0.17 80.25± 0.55 0.49± 0.25 0.74± 0.25
SCRUB 93.90± 0.14 9.10± 0.13 85.02± 0.31 4.86± 0.20 3.67± 0.21
SSD 94.13± 0.02 9.07± 0.17 85.34± 0.18 4.88± 0.20 3.76± 0.65
Amnesiac 96.73± 0.06 4.22± 0.69 84.77± 0.24 4.73± 0.42 11.15± 0.49
∇τ (ours) 97.82± 0.07 2.39± 0.11 85.73± 0.25 1.52± 0.22 1.72± 0.28

fo
rg

et
se

t3
0%

Original 94.14± 0.00 8.93± 0.21 85.29± 0.21 5.05± 0.24 3.47± 0.38
Fine-tuning 97.73± 0.05 6.72± 0.17 85.75± 0.33 2.90± 0.28 1.30± 0.18
Retraining 95.17± 0.09 0.88± 0.40 82.24± 0.20 0.33± 0.39 0.46± 0.25
SCRUB 94.09± 0.02 8.98± 0.24 85.17± 0.24 4.64± 0.12 3.63± 0.53
SSD 94.14± 0.00 8.93± 0.21 85.29± 0.21 5.03± 0.13 3.62± 0.47
Amnesiac 95.16± 0.07 1.39± 0.09 84.55± 0.11 1.55± 0.92 6.91± 0.23
∇τ (ours) 95.53± 0.12 3.31± 0.14 84.69± 0.05 1.70± 0.43 1.35± 0.04

In Table 5 we present the hyperparameters used to conduct the experiments on our unlearning procedure. Notice that the
Retraining baseline uses the same hyperparameters as pre-training, while Fine-tuning employs the same hyperparameters as
shown in Table 5 (except for alpha hyperparameter that is not present in the regular Cross-entropy loss).

All the competing state-of-the-art baselines use the same hyperparameters provided by their official implementation. Our
method and all the baselines, with exception of SSD, are based on a regular optimization procedure that runs unlearning for
some epochs. SSD, instead, is a two steps retraining-free approach. For a fair comparison, all the other baselines – and our
method – run for the same number of steps, equivalent to 6 epochs on the retain set.

E. Additional Experiments
Here, we provide the complete tables with the experiments conducted across various forget set sizes: 3%, 15%, and 30% for
both CIFAR-10 and CIFAR-100. For the sake of completeness, we also include previously reported results, now divided
into separate tables for CIFAR-10 Table 6 and CIFAR-100 Table 7.
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Table 7. Results for forgetting 3%, 15%, and 30% of the CIFAR-100 train set across all baselines. Mean and standard deviation are
obtained by averaging on three runs having different seeds. Bold font denotes the best results excluding the retraining golden baseline.
AD is the model’s accuracy on dataset D. MIAL and MIAE denote the MIA score using loss and entropy distribution, respectively.

ADr
↑ |ADf

−ADt
| ↓ ADt

↑ |MIAL − 50| ↓ |MIAE − 50| ↓

fo
rg

et
se

t3
%

Original 99.21± 0.00 39.13± 0.10 60.13± 0.10 22.63± 0.07 20.03± 0.20
Fine-tuning 99.96± 0.00 31.22± 0.70 60.09± 0.25 15.22± 0.86 9.23± 0.77
Retraining 98.77± 0.06 2.84± 0.68 53.49± 0.21 0.63± 0.53 0.13± 0.12
SCRUB 96.65± 0.04 38.12± 0.36 58.33± 0.32 19.61± 0.51 16.42± 0.11
SSD 98.82± 0.08 38.93± 0.16 59.94± 0.23 22.44± 0.22 19.97± 0.22
Amnesiac 99.89± 0.01 34.28± 1.45 57.95± 0.28 11.98± 0.15 12.84± 0.08
∇τ (ours) 99.91± 0.00 3.78± 0.66 59.35± 0.15 0.88± 0.52 7.04± 0.59

fo
rg

et
se

t1
5%

Original 99.21± 0.00 39.12± 0.10 60.13± 0.10 24.24± 0.39 21.66± 0.32
Fine-tuning 99.97± 0.00 31.83± 0.32 59.65± 0.25 16.08± 0.53 10.15± 0.14
Retraining 77.84± 2.73 0.50± 0.33 50.60± 1.11 0.73± 0.32 0.28± 0.18
SCRUB 96.05± 0.33 37.83± 0.28 58.13± 0.08 21.05± 0.69 17.47± 0.71
SSD 99.14± 0.07 38.97± 0.02 60.20± 0.03 23.90± 0.26 21.44± 0.49
Amnesiac 99.81± 0.03 3.43± 1.28 52.07± 0.33 5.37± 0.38 10.48± 0.54
∇τ (ours) 99.74± 0.01 3.38± 1.13 58.39± 0.32 0.95± 0.35 4.95± 0.50

fo
rg

et
se

t3
0%

Original 99.24± 0.00 39.02± 0.10 60.13± 0.10 24.07± 0.37 21.39± 0.37
Fine-tuning 99.97± 0.00 32.11± 0.42 59.63± 0.28 16.32± 0.23 10.54± 0.23
Retraining 99.22± 0.01 0.79± 0.48 49.22± 0.16 0.58± 0.13 0.63± 0.38
SCRUB 96.85± 0.17 38.07± 0.14 58.48± 0.27 21.36± 0.49 17.97± 0.45
SSD 99.24± 0.00 39.02± 0.10 60.13± 0.10 24.28± 0.44 21.34± 0.34
Amnesiac 99.50± 0.07 17.32± 0.81 47.51± 0.35 11.62± 0.73 4.03± 0.36
∇τ (ours) 98.02± 0.09 5.89± 0.16 54.48± 0.17 2.74± 0.37 3.46± 0.18
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