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Abstract

Deep generative models (DGMs) aim at characterizing the distribution of the train-1

ing set by maximizing the marginal likelihood of inputs in an unsupervised manner,2

making them a promising option for unsupervised out-of-distribution (OOD) de-3

tection. However, recent works have reported that DGMs often assign higher4

likelihoods to OOD data than in-distribution (ID) data, i.e., overestimation, leading5

to their failures in OOD detection. Although several pioneer works have tried to6

analyze this phenomenon, and some VAE-based methods have also attempted to7

alleviate this issue by modifying their score functions for OOD detection, the root8

cause of the overestimation in VAE has never been revealed to our best knowl-9

edge. To fill this gap, this paper will provide a thorough theoretical analysis on10

the overestimation issue of VAE, and reveal that this phenomenon arises from two11

Inside-Enemy aspects: 1) the improper design of prior distribution; 2) the gap12

of dataset entropies between ID and OOD datasets. Based on these findings, we13

propose a novel score function to Alleviate VAE’s Overestimation In unsupervised14

OOD Detection, named “AVOID”, which contains two novel techniques, specifi-15

cally post-hoc prior and dataset entropy calibration. Experimental results verify16

our analysis, demonstrating that the proposed method is effective in alleviating17

overestimation and improving unsupervised OOD detection performance.18

1 Introduction19

The detection of out-of-distribution (OOD) data, i.e., identifying data that differ from the in-20

distribution (ID) training set, is crucial for ensuring the reliability and safety of real-world applications21

[1, 2, 3, 4]. While the most commonly used OOD detection methods rely on supervised classifiers22

[5, 6, 7, 8, 9, 10, 11], which require labeled data, the focus of this paper is on designing an unsu-23

pervised OOD detector. Unsupervised OOD detection refers to the task of designing a detector,24

based solely on the unlabeled training data, that can determine whether an input is ID or OOD25

[12, 13, 14, 15, 16, 17, 18]. This unsupervised approach is more practical for real-world scenarios26

where the data lack labels.27

Deep generative models (DGMs) are a highly attractive option for unsupervised OOD detection.28

DGMs, mainly including the auto-regressive model [19, 20], flow model [21, 22], diffusion model29

[23], generative adversarial network [24], and variational autoencoder (VAE) [25], are designed30

to model the distribution of the training set by explicitly or implicitly maximizing the likelihood31

estimation of p(x) for its input x without category label supervision or additional OOD auxiliary32

data. They have achieved great successes in a wide range of applications, such as image and text33

generation. Since generative models are promising at modeling the distribution of the training set,34

they could be seen as an ideal unsupervised OOD detector, where the likelihood of the unseen OOD35

data output by the model should be lower than that of the in-distribution data.36
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Unfortunately, developing a flawless unsupervised OOD detector using DGMs is not as easy as it37

seems to be. Recent experiments have revealed a counterfactual phenomenon that directly applying38

the likelihood of generative models as an OOD detector can result in overestimation, i.e., DGMs39

assign higher likelihoods to OOD data than ID data [12, 13, 17, 18]. For instance, a generative40

model trained on the FashionMNIST dataset could assign higher likelihoods to data from the MNIST41

dataset (OOD) than data from the FashionMNIST dataset (ID), as shown in Figure 6(a). Since OOD42

detection can be viewed as a verification of whether a generative model has learned to model the43

distribution of the training set accurately, the counterfactual phenomenon of overestimation not only44

poses challenges to unsupervised OOD detection but also raises doubts about the generative model’s45

fundamental ability in modeling the data distribution. Therefore, it highlights the need for developing46

more effective methods for unsupervised OOD detection and, more importantly, a more thorough47

understanding of the reasons behind the overestimation in deep generative models.48

To develop more effective methods for unsupervised OOD detection, some approaches have modified49

the likelihood to new score functions based on empirical assumptions, such as low- and high-level50

features’ consistency [17, 18] and ensemble approaches [26]. While these methods, particularly the51

VAE-based methods [18], have achieved state-of-the-art (SOTA) performance in unsupervised OOD52

detection, none of them provides a clear explanation for the overestimation issue. To gain insight into53

the overestimation issue in generative models, pioneering works have shown that the overestimation54

issue could arise from the intrinsic model curvature brought by the invertible architecture in flow55

models [27]. However, in contrast to the exact marginal likelihood estimation used in flow and56

auto-regressive models, VAE utilizes a lower bound of the likelihood, making it difficult to analyze.57

Overall, the reasons behind the overestimation issue of VAE are still not fully understood.58

In this paper, we try to address the research gap by providing a theoretical analysis of VAE’s59

overestimation in unsupervised OOD detection. Our contributions can be summarized as follows:60

1. Through theoretical analyses, we are the first to identify two factors that cause the overestima-61

tion issue of VAE: 1) the improper design of prior distribution; 2) the intrinsic gap of dataset62

entropies between ID and OOD datasets;63

2. Focused on these two discovered factors, we propose a new score function, named “AVOID”,64

to alleviate the overestimation issue from two aspects: 1) post-hoc prior for the improper65

design of prior distribution; 2) dataset entropy calibration for the gap of dataset entropies;66

3. Extensive experiments demonstrate that our method can effectively improve the performance67

of VAE-based methods on unsupervised OOD detection, with theoretical guarantee.68

2 Preliminaries69

2.1 Unsupervised Out-of-distribution Detection70

In this part, we will first give a problem statement of OOD detection and then we will introduce the71

detailed setup for applying unsupervised OOD detection.72

Problem statement. While deploying a machine learning system, it is possible to encounter inputs73

from unknown distributions that are semantically and/or statistically different from the training data,74

and such inputs are referred to as OOD data. Processing OOD data could potentially introduce critical75

errors that compromise the safety of the system [1]. Thus, the OOD detection task is to identify these76

OOD data, which could be seen as a binary classification task: determining whether an input x is77

more likely ID or OOD. It could be formalized as a level-set estimation:78

x =

{
ID, if S(x) > λ,

OOD, if S(x) ≤ λ,
(1)

where S(x) denotes the score function, i.e., OOD detector, and the threshold λ is commonly chosen79

to make a high fraction (e.g., 95%) of ID data is correctly classified [9]. In conclusion, OOD detection80

aims at designing the S(x) that could assign higher scores to ID data samples than OOD ones.81

Setup. Denoting the input space with X , an unlabeled training dataset Dtrain = {xi}Ni=1 containing82

of N data points can be obtained by sampling i.i.d. from a data distribution PX . Typically, we treat83

the PX as pid, which represents the in-distribution (ID) [17, 27]. With this unlabeled training set,84

unsupervised OOD detection is to design a score function S(x) that can determine whether an input85

is ID or OOD. This is different from supervised OOD detection, which typically leverages a classifier86

that is trained on labeled data [4, 7, 9]. We provide a detailed discussion in Appendix A.87
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2.2 VAE-based Unsupervised OOD Detection88

DGMs could be an ideal choice for unsupervised OOD detection because the estimated marginal89

likelihood pθ(x) can be naturally used as the score function S(x). Among DGMs, VAE can offer90

great flexibility and strong representation ability [28], leading to a series of unsupervised OOD91

detection methods based on VAE that have achieved SOTA performance [17, 18]. Specifically, VAE92

estimates the marginal likelihood by training with the variational evidence lower bound (ELBO), i.e.,93

ELBO(x) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||p(z)), (2)

where the posterior qϕ(z|x) is modeled by an encoder, the reconstruction likelihood pθ(x|z) is94

modeled by a decoder, and the prior p(z) is set as a Gaussian distribution N (0, I). After well training95

the VAE, ELBO(x) is an estimation of the p(x), which could be directly seen as the score function96

S(x) to do OOD detection. But the VAE would suffer from the overestimation issue, which will be97

introduced in the next section. More details and Related Work can be seen in Appendix B.98

3 Analysis of VAE’s overestimation in Unsupervised OOD Detection99

We will first conduct an analysis to identify the factors contributing to VAE’s overestimation, i.e.,100

the improper design of prior distribution and the gap between ID and OOD datasets’ entropies.101

Subsequently, we will give a deeper analysis of the first factor to have a better understanding.102

3.1 Identifying Factors of VAE’s Overestimation Issue103

Following the common analysis procedure [27], an ideal score function S(x) that could achieve good104

OOD detection performance is expected to have the following property for any OOD dataset:105

G = Ex∼pid(x)[S(x)]− Ex∼pood(x)[S(x)] > 0, (3)

where pid(x) and pood(x) denote the true distribution of the ID and OOD dataset, respectively. A106

larger gap between these two expectation terms can usually lead to better OOD detection performance.107

Using the ELBO(x) as the score function S(x), we could give a formal definition of the repeatedly108

reported VAE’s overestimation issue in the context of unsupervised OOD detection [12, 13, 17, 18].109

Definition 1 (VAE’s overestimation in unsupervised OOD Detection). Assume we have a VAE110

trained on a training set and we use the ELBO(x) as the score function to distinguish data points111

sampled i.i.d. from the in-distribution testing set (pid) and an OOD dataset (pood). When112

G = Ex∼pid(x)[ELBO(x)]− Ex∼pood(x)[ELBO(x)] ≤ 0, (4)

it is called VAE’s overestimation in unsupervised OOD detection.113

With a clear definition of overestimation, we could now investigate the underlying factors causing114

the overestimation in VAE. After well training a VAE, we could reformulate the expectation term of115

ELBO(x) from the perspective of information theory [29] as:116

Ex∼p(x)[ELBO(x)] = Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)]− Ex∼p(x)[DKL(qϕ(z|x)||p(z))]
= −Hp(x)−DKL(q(z)||p(z)), (5)

because we have117

Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)] = Iq(x, z) + Ep(x) log p(x) = Iq(x, z)−Hp(x), (6)

Ex∼p(x)[DKL(qϕ(z|x)||p(z))] = Iq(x, z) +DKL(q(z)||p(z)), (7)

where the Iq(x, z) is mutual information between x and z and the q(z) is the aggregated posterior118

distribution of the latent variables z, which is defined by q(z) = Ex∼p(x)qϕ(z|x). We leave the119

detailed definition and derivation in Appendix C.1. Thus, the gap G in Eq. (4) could be rewritten as120

G = [−Hpid(x) +Hpood(x)] + [−DKL(qid(z)||p(z)) +DKL(qood(z)||p(z))], (8)

where the dataset entropy Hpid(x)/Hpood(x) is a constant that only depends on the true distribution121

of ID/OOD dataset; the prior p(z) is typically set as a standard (multivariate) Gaussian distribution122

N (0, I) to enable reparameterization for efficient gradient descent optimization [25].123

Through analyzing the most widely used criterion, specifically the expectation of ELBO reformulated124

in Eq. (8), for VAE-based unsupervised OOD detection, we find that there will be two potential125

factors that lead to the overestimation issue of VAE, i.e., G ≤ 0:126
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Factor I: The improper design of prior distribution p(z). Several studies have argued that the127

aggregated posterior distribution of latent variables q(z) cannot always equal N (0, I), particularly128

when the dataset exhibits intrinsic multimodality [28, 30, 31, 32]. In fact, when q(z) is extremely129

close to p(z), it is more likely to become trapped in a bad local optimum known as posterior collapse130

[33, 34, 35], i.e., qϕ(z|x) ≈ p(z), resulting in q(z) =
∫
x
qϕ(z|x)p(x) ≈

∫
x
p(z)p(x) = p(z). In131

this situation, the posterior qϕ(z|x) becomes uninformative about the inputs. Thus, the value of132

DKL(qid(z)||p(z)) could be overestimated, potentially contributing to G ≤ 0.133

Factor II: The gap between Hpid(x) and Hpood(x). Considering the dataset’s statistics, such as the134

variance of pixel values, different datasets exhibit various levels of entropy. It is reasonable that a135

dataset containing images with richer low-level features and more diverse content is expected to have136

a higher entropy. As an example, the FashionMNIST dataset should possess higher entropy compared137

to the MNIST dataset. Therefore, when the entropy of the ID dataset is higher than that of an OOD138

dataset, the value of −Hpid(x) +Hpood(x) is less than 0, potentially leading to overestimation.139

3.2 More Analysis on Factor I140

In this part, we will focus on addressing the following question: when is the common design of the141

prior distribution proper, and when is it not?142
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Figure 1: Visualization of modeling a single-modal data distribution with a linear VAE.

When the design of prior is proper? Assuming that we have a dataset consisting of N data points143

{xi}Ni=1, each of which is sampled from a given d-dimensional data distribution p(x) = N (x|0,Σx)144

as shown in Figure 1(a). Then we construct a linear VAE to estimate p(x), formulated as:145

p(z) = N (z|0, I)
qϕ(z|x) = N (z|Ax+B,C) (9)

pθ(x|z) = N (x|Ez + F, σ2I),

where A,B,C,D,E,F, and σ are all learnable parameters and their optimal values can be obtained by146

the derivation in Appendix C.3. As the estimated distribution pθ(x) depicted in Figure 1(c), we can147

find that the linear VAE with the optimal parameter values can accurately estimate the p(x) through148

maximizing ELBO, i.e., the overestimation issue is not present. In this case, Figures 1(b) and 1(d)149

indicate that the design of the prior distribution is proper, where the posterior q(z) equals prior p(z).150

When the design of prior is NOT proper? Consider a more complex data distribution, e.g., a mixture151

of Gaussians, p(x) =
∑K

k=1 πkN (x|µk,Σk),K = 2 as shown in Figure 2(a), where πk = 1/K152

and
∑K

k=1 µk = 0. We construct a dataset consisting of K ×N data points, obtained by sampling153

N data samples {x(k)
i }N,K

i=1,k=1 from each component Gaussian N (x|µk,Σk). The formulation of154

p(z), qϕ(z|x), and pθ(x|z) is consistent with those in Eq. (9). More details are in Appendix C.2.155
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Figure 2: Visualization of modeling a multi-modal data distribution with a linear VAE.
In what follows, we will provide a basic derivation outline for the linear VAE under the multi-modal156

case. We can first obtain the marginal likelihood p̂θ(x;E,F, σ) =
∫
pθ(x|z)p(z) = N (x|F,EE⊤+157
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σ2I) with the strictly tighter importance sampling on ELBO [36], i.e., learning the optimal generative158

process. Then, the joint log-likelihood of the observed dataset {x(k)
i }N,K

i=1,k=1 can be formulated as:159

L =

K∑
k=1

N∑
i=1

log p̂θ(x
(k)
i ) = −KNd

2
log(2π)− KN

2
log det(M)− KN

2
tr[M−1S], (10)

where M = EE⊤ + σ2I and S = 1
KN

∑K
k=1

∑N
i=1(x

(k)
i − F)(x

(k)
i − F)⊤. After that, we could160

explore the stationary points of parameters through the ELBO, which can be analytically written as:161

ELBO(x) =

L1︷ ︸︸ ︷
Eqϕ(z|x)[log pθ(x|z)]−

L2︷ ︸︸ ︷
DKL[qϕ(z|x)||p(z)], (11)

L1 =
1

2σ2
[−tr(ECE⊤)− (EAx+EB)⊤(EAx+EB) + 2x⊤(EAx+EB)− x⊤x]− d

2
log(2πσ2),

L2 =
1

2
[− log det(C) + (Ax+B)⊤(Ax+B) + tr(C)− 1].

The detailed derivation of parameter solutions in Eq. (10) and (11) can be found in Appendix C.4.162

In conclusion of this case, Figure 2(b) illustrates that q(z) is a multi-modal distribution instead of163

p(z) = N (z|0, I), i.e., the design of the prior is not proper, which leads to overestimation as seen in164

Figure 2(c). However, as analyzed in Factor I, we found that the overestimation issue is mitigated165

when replacing p(z) in the KL term of the ELBO with q(z), which is shown in Figure 2(d).166

More empirical studies on the improper design of prior. To extend to a more practical and167

representative case, we used a 3-layer MLP to model qϕ(z|x) and pθ(x|z) with p(z) = N (0, I) on168

the same dataset of the above multi-modal case. Implementation details are provided in Appendix169

C.5. After training, we observed that q(z) still differs from p(z), as shown in Figure 3(a). The ELBO170

still suffers from overestimation, especially in the region near (0, 0), as shown in Figure 3(b).171
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Figure 3: (a) and (b): visualization of qid(z) and estimated p(x) by ELBO on the multi-modal
data distribution with a non-linear deep VAE; (c) and (d): the density plot of the log-probability of
posterior z, i.e., z ∼ qϕ(z|x), in prior N (0, I) on two dataset pairs.

Finally, we extend the analysis directly to high-dimensional image data. Since VAE trained on image172

data needs to be equipped with a higher dimensional latent variable space, it is hard to visualize173

directly. But please note that, if qid(z) is closer to p(z) = N (0, I), zid ∼ qid(z) should occupy174

the center of latent space N (0, I) and zood ∼ qood(z) should be pushed far from the center, leading175

to p(zid) to be larger than p(zood). However, surprisingly, we found this expected phenomenon176

does not exist, as shown in Figure 3(c) and 3(d), where the experiments are on two dataset pairs,177

Fashion-MNIST(ID)/MNIST(OOD) and CIFAR10(ID)/SVHN(OOD). This still suggests that the178

prior p(z) is improper, even qood(z) for OOD data may be closer to p(z) than qid(z).179

Brief summary. Through analyzing overestimation scenarios from simple to complex, the answer180

to the question at the beginning of this part could be: the prior distribution p(z) = N (0, I) is an181

improper choice for VAE when modeling a complex data distribution p(x), leading to an overestimated182

DKL(qid(z)||p(z)) and further raising the overestimation issue in unsupervised OOD detection.183

4 Alleviating VAE’s overestimation in Unsupervised OOD Detection184

In this section, we develop the “AVOID” method to alleviate the influence of two aforementioned185

factors in Section 3, including i) post-hoc prior and ii) dataset entropy calibration, both of which are186

implemented in a simple way to inspire related work and can be further investigated for improvement.187

4.1 Post-hoc Prior Method for Factor I188
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Figure 4: The t-SNE visualization of
the latent representations on FashionM-
NIST(ID)/MNIST(OOD) dataset pair.

To provide a more insightful view to investigate the re-189

lationship between qid(z), qood(z), and p(z), we use t-190

SNE [37] to visualize them in Figure 4. The visualization191

reveals that p(z) cannot distinguish between the latent192

variables sampled from qid(z) and qood(z), while qid(z) is193

clearly distinguishable from qood(z). Therefore, to alle-194

viate overestimation, we can explicitly modify the prior195

distribution p(z) in Eq. (8) to force it to be closer to qid(z)196

and far from qood(z), i.e., decreasing DKL(qid(z)||p(z))197

and increasing DKL(qood(z)||p(z)).198

A straightforward modifying approach is to replace p(z)199

in ELBO with an additional distribution q̂id(z) that can200

fit qid(z) well after training, where the target value of201

qid(z) can be acquired by marginalizing qϕ(z|x) over the202

training set, i.e., qid(z) = Ex∼pid(x)[qϕ(z|x)]. Previous study on distribution matching [30] has203

developed an LSTM-based method to efficiently fit qid(z) in the latent space, i.e.,204

q̂id(z) =

T∏
t=1

q(zt|z<t), where q(zt|z<t) = N (µi, σ
2
i ). (12)

Thus, we could propose a “post-hoc prior” (PHP) method for Factor I, formulated as205

PHP(x) := Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||q̂id(z)), (13)
which could lead to better OOD detection performance since it could enlarge the gap G, i.e.,206

GPHP = [−Hpid(x) +Hpood(x)] + [−DKL(qid(z)||q̂id(z)] +DKL(qood(z)||q̂id(z))] > G. (14)
Please note that PHP can be directly integrated into a trained VAE in a “plug-and-play” manner.207

4.2 Dataset Entropy Calibration Method for Factor II208

While the entropy of a dataset is a constant that remains unaffected by different model settings, it is209

still an essential factor that leads to overestimation. To address this, a straightforward approach is to210

design a calibration method that ensures the value added to the ELBO of ID data will be larger than211

that of OOD data. Specifically, we denote the calibration term as C(x), and its expected property212

could be formulated as213

Ex∼pid(x)[C(x)] > Ex∼pood(x)[C(x)]. (15)

After adding the calibration C(x) to the ELBO(x), we could obtain the “dataset entropy calibration”214

(DEC) method for Factor II, formulated as215

DEC(x) := Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||p(z)) + C(x). (16)

With the property in Eq. (15), we could find that the new gap GDEC becomes larger than the original216

gap G based solely on ELBO, as GDEC = G+Ex∼pid(x)[C(x)]−Ex∼pood(x)[C(x)] > G, which should217

alleviate the overestimation and lead to better unsupervised OOD detection performance.218
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Figure 5: Visualization of the
relationship between the num-
ber of singular values and the
reconstruction error.

How to design the calibration C(x)? For the choice of the function219

C(x), inspired by the previous work [13], we could use image com-220

pression methods like Singular Value Decomposition (SVD) [38]221

to roughly measure the complexity of an image, where the images222

from the same dataset should have similar complexity. An intuitive223

insight into this could be shown in Figure 5, where the ID dataset’s224

statistical feature, i.e., the curve, is distinguishable to other datasets.225

Based on this empirical study, we could first propose a non-scaled226

calibration function, denoted as Cnon(x). First, we could set the num-227

ber of singular values as nid, which can achieve the reconstruction228

error |xrecon − x| = ϵ in the ID training set; then for a test input xi,229

we use SVD to calculate the smallest ni that could also achieve a230

smaller reconstruction error ϵ, then Cnon(x) could be formulated as:231

Cnon(x) =

{
(ni/nid), if ni < nid,

[((nid − (ni − nid))/nid], if ni ≥ nid,
(17)
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which can give the ID dataset a higher expectation Ex∼pid(x)[Cnon(x)] than that of other statistically232

different OOD datasets. More details to obtain Cnon(x) can be found in Appendix D.233

4.3 Putting Them Together to Get “AVOID”234

By combining the post-hoc prior (PHP) method and the dataset entropy calibration (DEC) method,235

we could develop a new score function, denoted as SAVOID(x):236

SAVOID(x) := Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||q̂id(z)) + C(x). (18)

To balance the importance of PHP and DEC terms in Eq. (18), we consider to set an appropriate scale237

for C(x). For the scale of C(x), if it is too small, its effectiveness in alleviating overestimation could be238

limited. Otherwise, it may hurt the effectiveness of the PHP method since DEC will dominate the value239

of “AVOID”. Additionally, for statistically similar datasets, i.e., Hpid(x) ≈ Hpood(x), the property in240

Eq. (15) cannot be guaranteed and we may only have Ex∼pid(x)[Cnon(x)] ≈ Ex∼pood(x)[Cnon(x)], in241

which case we could only rely on the PHP method. Thus, an appropriate scale of Ex∼pid(x)[C(x)],242

named “Cscale”, could be derived by Cscale = Ex∼pid(x)[PHP(x)] ≈ Hpid(x), which leads to243

Ex∼pid(x)[DEC(x)] = −Hpid(x)−DKL(qid(z)||p(z)) + Cscale ≈ −DKL(qid(z)||p(z)). (19)

Thus, when Hpid(x) ≈ Hpood(x) and Ex∼pid(x)[C(x)] ≈ Ex∼pood(x)[C(x)], the PHP part of “AVOID”244

could still be helpful to alleviate overestimation.245

Motivated by the above analysis, we could implement the scaled calibration function, formulated as246

C(x) = Cnon(x)× Cscale =

{
(ni/nid)× Cscale, if ni < nid,

[((nid − (ni − nid))/nid]× Cscale, if ni ≥ nid.
(20)

5 Experiments247

5.1 Experimental Setup248

Datasets. In accordance with existing literature [17, 18, 39], we evaluate our method against previous249

works using two standard dataset pairs: FashionMNIST [40] (ID) / MNIST [41] (OOD) and CIFAR10250

[42] (ID) / SVHN [43] (OOD). The suffixes “ID” and “OOD” represent in-distribution and out-of-251

distribution datasets, respectively. To more comprehensively assess the generalization capabilities252

of these methods, we incorporate additional OOD datasets, the details of which are available in253

Appendix E.1. Notably, datasets featuring the suffix “-G” (e.g., “CIFAR10-G”) have been converted254

to grayscale, resulting in a single-channel format.255

Evaluation and Metrics. We adhere to the previous evaluation procedure [17, 18], where all methods256

are trained using the training split of the in-distribution dataset, and their OOD detection performance257

is assessed on both the testing split of the in-distribution dataset and the OOD dataset. In line258

with previous works [1, 5, 44], we employ evaluation metrics including the area under the receiver259

operating characteristic curve (AUROC ↑), the area under the precision-recall curve (AUPRC ↑),260

and the false positive rate at 80% true positive rate (FPR80 ↓). The arrows indicate the direction of261

improvement for each metric.262

Baselines. Our experiments primarily encompass two comparison aspects: i) evaluating our novel263

score function “AVOID” against previous unsupervised OOD detection methods to determine whether264

it can achieve competitive performance; and ii) comparing “AVOID” with VAE’s ELBO to assess265

whether our method can mitigate overestimation and yield improved performance. For comparisons266

in i, we can categorize the baselines into three groups, as outlined in [18]: “Supervised” includes267

supervised OOD detection methods that utilize in-distribution data labels [1, 5, 9, 45, 46, 47, 48, 49];268

“Auxiliary” refers to methods that employ auxiliary knowledge gathered from OOD data [13, 39, 44];269

and “Unsupervised” encompasses methods without reliance on labels or OOD-specific assumptions270

[14, 17, 18, 26]. For comparisons in ii, we compare our method with a standard VAE [25], which also271

serves as the foundation of our method. Further details regarding these baselines and their respective272

categories can be found in Appendix E.2.273

Implementation Details. The VAE’s latent variable z’s dimension is set as 200 for all experiments274

with the encoder and decoder parameterized by a 3-layer convolutional neural network, respectively.275
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Table 1: The comparisons of our method and other OOD detection methods. The best results achieved
by the methods of the category “Not ensembles” of “Unsupervised” have been bold.

FashinMNIST(ID)/MNIST(OOD) CIFAR10(ID)/SVHN(OOD)
Supervised Auxiliary Unsupervised Supervised Auxiliary Unsupervised

Method AUROC↑ Mehod AUROC↑ Method AUROC↑ Method AUROC↑ Mehod AUROC↑ Method AUROC↑
CP [1] 73.4 LR(PC) [39] 99.4 -Ensembles MD [46] 99.7 LR(PC) [39] 93.0 -Ensembles
CP(Ent) [1] 74.6 LR(BC) [39] 45.5 WAIC(5VAE) [26] 76.6 LMD [47] 27.9 LR(VAE) [39] 26.5 WAIC(5Glow) [26] 99.0
ODIN [45] 75.2 CP(OOD) [39] 87.7 WAIC(5PC) [26] 22.1 EN [6] 98.9 OE [44] 98.4 WAIC(5PC) [26] 62.8
VIB [5] 94.1 CP(Cal) [39] 90.4 -Not Ensembles iDE [52] 95.7 IC(Glow) [13] 95.0 -Not Ensembles
MD(CNN) [46] 94.2 IC(Glow) [13] 99.8 LRe [14] 98.8 LN[9] 98.4 IC(PC++) [13] 92.9 LRe [14] 87.5
MD(DN) [46] 98.6 IC(PC++) [13] 96.7 HVK [17] 98.4 ODIN [45] 82.9 IC(HVAE) [13] 83.3 HVK [17] 89.1
DE [1] 85.7 LLRada[18] 98.0 GN [49] 76.7 LLRada[18] 94.2

AVOID(ours) 99.2 AVOID(ours) 94.5

Table 2: The comparisons of our method with post-hoc prior (denoted as “PHP”) or dataset en-
tropy calibration (denoted as “DEC”) individually and other unsupervised OOD detection methods.
“PHP+DEC" is equal to our method “AVOID". Bold numbers are superior results.

FashinMNIST(ID)/MNIST(OOD) CIFAR10(ID)/SVHN(OOD)
Method AUROC↑ AUPRC↑ FPR80↓ Method AUROC↑ AUPRC↑ FPR80↓
ELBO [25] 23.5 35.6 98.5 ELBO [25] 24.9 36.7 94.6
WAIC(5PC) [26] 22.1 40.1 91.1 WAIC(5PC) [26] 62.8 61.6 65.7
HVK [17] 98.4 98.4 1.3 HVK [17] 89.1 87.5 17.2
LLRada[18] 97.0 97.6 0.9 LLRada[18] 92.6 91.8 11.1
-Ours: -Ours:
PHP 89.7 90.3 13.3 PHP 39.6 42.6 85.7
DEC 34.1 40.7 92.5 DEC 87.8 89.9 17.8
PHP+DEC 99.2 99.4 0.00 PHP+DEC 94.5 95.3 4.24

The reconstruction likelihood distribution is modeled by a discretized mixture of logistics [20]. For276

optimization, we adopt the same Adam optimizer [50] with a learning rate of 1e-3. We train all277

models in comparison by setting the batch size as 128 and the max epoch as 1000. All experiments278

are performed on a PC with an NVIDIA A100 GPU and our code is implemented with PyTorch [51].279

More implementation details can be found in Appendix E.3.280

5.2 Comparison with Unsupervised OOD Detection Baselines281

First, we compare our method with other SOTA baselines in Table 1. The results demonstrate that our282

method achieves competitive performance compared to “Supervised” and “Auxiliary” methods and283

outperforms “Unsupervised” OOD detection methods. Next, we provide a more detailed comparison284

with some unsupervised methods, particularly the ELBO of VAE, as shown in Table 2. These285

results indicate that our method effectively mitigates overestimation and enhances OOD detection286

performance when using VAE as the backbone. Lastly, to assess our method’s generalization287

capabilities, we test it on a broader range of datasets, as displayed in Table 3. Experimental results288

strongly verify our analysis of the VAE’s overestimation issue and demonstrate that our method289

consistently mitigates overestimation, regardless of the type of OOD datasets.290

5.3 Ablation Study on Verifying the Post-hoc Prior Method291

To evaluate the effectiveness of the Post-hoc Prior (PHP), we compare it with other unsupervised292

methods in Table 2. Moreover, we test the PHP method on additional datasets and present the results293

in Table 4 of Appendix F. The experimental results demonstrate that the PHP method can alleviate294

the overestimation. To provide a better understanding, we also visualize the density plot of ELBO and295

PHP for the “FashionMNIST(ID)/MNIST(OOD)” dataset pair in Figures 6(a) and 6(b), respectively.296

The Log-likelihood Ratio (LLR) methods [17, 18] are the current SOTA unsupervised OOD detection297

methods that also focus on latent variables. These methods are based on an empirical assumption298

that the bottom layer latent variables of a hierarchical VAE could learn low-level features and top299

layers learn semantic features. However, we discovered that while ELBO could already perform300

well in detecting some OOD data, the LLR method [18] could negatively impact OOD detection301

performance to some extent, as demonstrated in Figure 6(c), where the model is trained on MNIST302

and detects FashionMNIST as OOD. On the other hand, our method can still maintain comparable303

performance since the PHP method can explicitly alleviate overestimation, which is one of the304

strengths of our method compared to the SOTA methods.305

5.4 Ablation Study on Verifying the Dataset Entropy Calibration Method306

We evaluate the performance of dataset entropy calibration, referred to as “DEC”, in Table 2 and307

Table 5 of Appendix G. Although the DEC method is simple, our results show that it effectively308

alleviates overestimation. To better understand DEC, we visualize the calculated C(x) of CIFAR10309
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Table 3: The comparisons of our method “AVOID” and baseline “ELBO” on more datasets. Bold
numbers are superior performance.

ID FashionMNIST ID CIFAR10
OOD AUROC ↑ AUPRC ↑ FPR80 ↓ OOD AUROC ↑ AUPRC ↑ PFR80 ↓

ELBO / AVOID (ours) ELBO / AVOID (ours)
KMNIST 60.03 / 78.71 54.60 / 68.91 61.6 / 48.4 CIFAR100 52.91 / 55.36 51.15 / 72.13 77.42 / 73.93
Omniglot 99.86 / 100.0 99.89 / 100.0 0.00 / 0.00 CelebA 57.27 / 71.23 54.51 / 72.13 69.03 / 54.45

notMNIST 94.12 / 97.72 94.09 / 97.70 8.29 / 2.20 Places365 57.24 / 68.37 56.96 / 69.05 73.13 / 62.64
CIFAR10-G 98.01 / 99.01 98.24 / 99.04 1.20 / 0.40 LFWPeople 64.15 / 67.72 59.71 / 68.81 59.44 / 54.45
CIFAR100-G 98.49 / 98.59 97.49 / 97.87 1.00 / 1.00 SUN 53.14 / 63.09 54.48 / 63.32 79.52 / 68.63

SVHN-G 95.61 / 96.20 96.20 / 97.41 3.00 / 0.40 STL10 49.37 / 64.51 47.79 / 65.50 78.02 / 67.23
CelebA-G 97.33 / 97.87 94.71 / 95.82 3.00 / 0.40 Flowers102 67.68 / 76.83 64.68 / 78.01 57.94 / 46.65

SUN-G 99.16 / 99.32 99.39 / 99.47 0.00 / 0.00 GTSRB 39.50 / 53.06 41.73 / 49.84 86.61 / 73.63
Places365-G 98.92 / 98.89 98.05 / 98.61 0.80 / 0.80 DTD 37.86 / 81.82 40.93 / 62.42 82.22 / 64.24

Const 94.94 / 95.20 97.27 / 97.32 1.80 / 1.70 Const 0.001 / 80.12 30.71 / 89.42 100.0 / 22.38
Random 99.80 / 100.0 99.90 / 100.0 0.00 / 0.00 Random 71.81 / 99.31 82.89 / 99.59 85.71 / 0.000
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Figure 6: Density plots and ROC curves. (a): directly using ELBO(x), an estimation of the p(x),
of a VAE trained on FashionMNIST leads to overestimation in detecting MNIST as OOD data; (b):
using PHP method could alleviate the overestimation; (c): SOTA method LLR hurts the performance
when ELBO could already work well; (d): PHP method would not hurt the performance.

(ID) in Figure 7(a) and other OOD datasets in Figure 7(b) when nid = 20. Our results show that310

the C(x) of CIFAR10 (ID) achieves generally higher values than that of other datasets, which is the311

underlying reason for its effectiveness in alleviating overestimation. Additionally, we investigate the312

impact of different nid on OOD detection performance in Figure 7(c), where our results show that the313

performance is consistently better than ELBO.314
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Figure 7: (a) and (b) are respectively the visualizations of the calculated entropy calibration C(x) of
CIFAR10 (ID) and other OOD datasets, where the C(x) of CIFAR10 (ID) could achieve generally
higher values. (c) is the OOD detection performance of dataset entropy calibration with different nid
settings, which consistently outperforms ELBO.

6 Conclusion315

In conclusion, we have identified the underlying factors that lead to VAE’s overestimation in un-316

supervised OOD detection: the improper design of the prior and the gap of the dataset entropies317

between the ID and OOD datasets. With this analysis, we have developed a novel score function318

called “AVOID”, which is effective in alleviating overestimation and improving unsupervised OOD319

detection. This work may lead a research stream for improving unsupervised OOD detection by320

developing more efficient and sophisticated methods aimed at optimizing these revealed factors.321
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