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Abstract
While leveraging additional training data is well
established to improve adversarial robustness, it
incurs the unavoidable cost of data collection and
the heavy computation to train models. To mit-
igate the costs, we propose Guided Adversarial
Training (GAT), a novel adversarial training tech-
nique that exploits auxiliary tasks under a limited
set of training data. Our approach extends single-
task models into multi-task models during the
min-max optimization of adversarial training, and
drives the loss optimization with a regularization
of the gradient curvature across multiple tasks.
Experimentally, GAT increases the robust AUC
of CheXpert medical imaging dataset from 50% to
83% and On CIFAR-10, GAT outperforms eight
state-of-the-art adversarial training and achieves
56.21% robust accuracy with Resnet-50. Overall,
we demonstrate that guided multi-task learning
is an actionable and promising avenue to push
further the boundaries of model robustness.

1. Introduction
Despite their impressive performance, Deep Neural Net-
works (DNNs) are sensitive to small, imperceptible pertur-
bations in the input. The resulting adversarial inputs raise
multiple questions about the robustness of such systems,
especially in safety-critical domains such as autonomous
driving (Cao et al., 2019), financial services (Ghamizi et al.,
2020), and medical imaging (Ma et al., 2021).

Adversarial training (AT) (Madry et al., 2017a) is the de
facto standard for building robust models. In its simplest
form, AT trains the model with the original training data and
adversarial examples crafted from them. Robustness can
be further increased with additional data in the AT process,
including unlabeled data (Carmon et al., 2019), augmented
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data (Rebuffi et al., 2021), or artificial data from generative
models (Gowal et al., 2021). These approaches produce sig-
nificantly more robust models (e.g. ResNet50 with 51.56%
robust accuracy on CIFAR-10) and can be further enhanced
through the use of very large models (WideResNet-70-16
with 66% robust accuracy) (Croce et al., 2020).

However, the robustness achieved by AT with data augmen-
tation has already reached a plateau (Schmidt et al., 2018;
Gowal et al., 2021) whereas the computational costs of AT in
large models prohibit their use at scale. This is why research
has explored new techniques to increase robustness, taking
inspiration from, e.g., Neural Architecture Search (Ghamizi
et al., 2019; Dong & Yang, 2019) and self-supervised learn-
ing (Hendrycks et al., 2019; Chen et al., 2020). They are,
however, not yet competitive to data augmentation tech-
niques in terms of clean and robust performances.

In this paper, we propose Guided Adversarial Training
(GAT), a new technique based on multi-task learning to
improve AT. Inspired from preliminary investigations of
robustness in multi-task models Mao et al. (2020) and
Ghamizi et al. (2021), we demonstrate that robustness can
be improved by adding auxiliary tasks to the model and
introducing a gradient curvature minimization and a multi-
objective weighting strategy into the AT optimization pro-
cess. Our novel regularization can achieve optimal pareto-
fronts across the tasks for both clean and robust perfor-
mances. To this end, GAT can exploit both self-supervised
tasks without human intervention (e.g. image rotation) and
domain-knowledge tasks using human-provided labels.

Our experiments demonstrate that GAT outperforms eight
state-of-the-art AT techniques based on data augmentation
and training optimization, with an improvement on CIFAR-
10 of 3.14% to 26.4% compared to state of the art adversar-
ial training with data-augmentation. GAT shines in scarce
data scenarios (e.g. medical diagnosis tasks), where data
augmentation is not applicable.

Our large study across five datasets and six tasks demon-
strates that task augmentation is an efficient alternative to
data augmentation, and can be key to achieving both clean
and robust performances.

Our algorithm and replication packages are available on
https://github.com/yamizi/taskaugment
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2. Background
2.1. Multi-task learning (MTL)

MTL leverages shared knowledge across multiple tasks to
learn models with higher efficiency (Vandenhende et al.,
2021; Standley et al., 2020a). A multi-task model is com-
monly composed of an encoder that learns shared parame-
ters across the tasks and a decoder part that branches out
into task-specific heads.

We can view MTL as a form of inductive bias. By introduc-
ing an inductive bias, MTL causes a model to prefer some
hypotheses over others (Ruder, 2017). MTL effectively in-
creases the sample size we are using to train our model. As
different tasks have different noise patterns, a model that
learns two tasks simultaneously can learn a more general
representation. Learning task A alone bears the risk of over-
fitting to task A, while learning A and B jointly enables the
model to obtain a better representation (Caruana, 1997).

2.2. Adversarial robustness

An adversarial attack is the process of intentionally intro-
ducing perturbations on the inputs of a model to cause the
wrong predictions. One of the earliest attacks is the Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014a).
It adds a small perturbation δ to the input of a neural net-
work, which is defined as: η = ϵ sign(δxL (θ, x, y)), where
θ are the parameters of the network, x is the input data, y is
its associated label, Lθ(x, y) is the loss function used, and
ϵ is the strength of the attack.

Following Goodfellow et al. (2014a), other attacks were
proposed, such as by adding iterations (I-FGSM) (Kurakin
et al., 2016), projections and random restart (PGD) (Madry
et al., 2017b), and momentum (MIM) (Dong et al., 2018).

Given a multi-task model Mθ parameterized by θ for M
tasks, an input example x, and its corresponding ground-
truth label ȳ, the attacker seeks the perturbation δ that will
maximize the joint loss Lθ of the attacked tasks:

argmax
δ∈∆

Lθ(x+ δ, ȳ) s.t. ||δ||p ≤ ϵ, (1)

where p ∈ {1, 2,∞} and ∥ · ∥p denotes the ℓp-norm. A
typical choice for a perturbation space is to take ∆ = {δ :
∥δ∥∞ ≤ ϵ} for some ϵ > 0.

Lθ(x+ δ, ȳ) =
∑M

j=1 Lj(x+ δ, yj) is the joint loss of the
M attacked tasks.

Adversarial training (AT) AT is a method for learning
networks which are robust to adversarial attacks. Given
a multi-task model Mθ parameterized by θ, a dataset
{(xi, yi)}, a loss function Lθ, and a perturbation space ∆ ,

the learning problem is cast as the following optimization:

min
θ

∑
i

max
δ∈∆

Lθ(xi + δ, yi) (2)

The procedure for AT uses some adversarial attack to ap-
proximate the inner maximization over ∆, followed by some
variation of gradient descent on the model parameters θ.

2.3. Adversarial vulnerability

Simon-Gabriel et al. (2019) introduced the concept of adver-
sarial vulnerability to evaluate and compare the robustness
of single-task models and settings. Mao et al. (2020) ex-
tended it to multi-task models as follows:

Definition 2.1. Let M be a multi-task model, T ′ ⊆ T
be a subset of its tasks, and LT ′ be the joint loss of tasks
in T ′. Then, we denote by Ex[δL(T ′, ϵ)] the adversarial
vulnerability of M on T ′ to an ϵ-sized ∥.∥p-attack, and
define it as the average increase of LT ′ after attack over the
whole dataset:

Ex[δL(T ′, ϵ)] = Ex

[
max

∥δ∥p≤ϵ
| LT ′(x+ δ, ȳ)− LT ′(x, ȳ) |

]

This definition matches the definitions of previous work
(Goodfellow et al., 2014b; Sinha et al., 2017) of the robust-
ness of deep learning models: the models are considered
vulnerable when a small perturbation causes a large average
variation of the joint loss.

Similarly, the adversarial task vulnerability of a task i is the
average increase of LT ′(x, yi) after attack.

3. Preliminaries
To build our method, we first investigate the factors that
influence the robustness of multi-task models. This prelimi-
nary study enables us to derive relevant metrics to optimize
during the AT process for multi-task models.

Our idea stems from previous observations that task weights
can have a significant impact on the robustness of multi-task
models (Ghamizi et al., 2022). We pursue this investigation
and identify the three main factors of adversarial vulnera-
bility in multi-task models: The relative orientation of the
gradient of the tasks’ loss, their magnitude similarity and
the weighting of the clean and adversarial contributions to
the loss (Proof in Appendix A.1).

Theorem 3.1. Consider a multi-task model M where an
attacker targets T = {t1, t2} two tasks weighted with α1

and α2 respectively, with an ϵ-sized ∥.∥p-attack. If the
model is converged, and the gradient for each task is i.i.d.
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with zero mean and the tasks are correlated, the adversarial
vulnerability of the model can be approximated as

Ex[δL′] ∝

√
1 + 2

α1.α2.Cov (∂xL1, ∂xL2)

α2
1σ

2
1 + α2

2σ
2
2

, (3)

where σ2
i = Cov (∂xLi, ∂xLi) and ∂xL(x, yi) the gradient

of the task i.

The above theorem reveals that adversarial vulnerability is
particularly sensitive to the relative amplitude of the gradi-
ents of the tasks and their orientation. In standard multi-task
learning (MTL), the relative properties of the task gradients
– such as the orientation angle, magnitude similarity, and
curvature – have an impact on the learning speed and on the
achieved clean accuracy (Vandenhende et al., 2021). There-
fore, task weighting approaches like Projecting Conflicting
Gradients (PCG) (Yu et al., 2020) rely on these properties
to optimize standard training.

3.1. Empirical study

To confirm empirically the findings of Theorem 3.1, we
study the following metrics and empirically check their
correlation to robustness.

Definition 3.2. Let ϕij be the angle between two tasks’
gradients gi and gj . We define the gradients as conflicting
when cosϕij < 0.

Definition 3.3. The gradient magnitude similarity be-
tween two gradients gi and gj is Φ(gi,gj) =

2∥gi∥2∥gj∥2

∥gi∥2
2+∥gj∥2

2
.

When the magnitude of two gradients is the same, this value
equals 1. As the gradient magnitude difference increases,
the similarity goes towards zero.

Definition 3.4. The multi-task curvature bounding mea-
sure between two gradients gi and gj is ξ(gi,gj) =

(1− cos2 ϕij)
∥gi−gj |22
∥gi+gj∥2

2
.

The multi-task curvature bounding measure combines in-
formation about both the orientation of the gradients of the
tasks and the relative amplitude of the gradients.

We evaluate in Fig. 1 the Pearson correlation coefficient
between the robust accuracy and each of the three metrics.
For adversarially trained models (top), both the Gradient
multi-task curvature bounding measure (left) and the
Gradient cosine angle (right) are strongly negatively cor-
related with the adversarial robustness, with respectively
a correlation coefficient r of −0.86 and −0.87. However,
for models trained with standard training, only the Gradi-
ent multi-task curvature bounding measure is negatively
correlated (r = −0.45) to the robustness of the models.

These results show that the gradient curvature measure
can be a good surrogate to study the robustness of MTL mod-
els, especially with AT. The negative correlation between
the gradient curvature measure and the robust accuracy sug-
gests that a flatter multitask loss landscape leads to more
robust models. Our results are in coherence with the seminal
works from Engstrom et al. (2017) and Moosavi-Dezfooli
et al. (2018) studied in the single-task setting.

4. Method
Based on our preliminary findings, we propose GAT –
Guided Adversarial Training – as a new approach for ef-
fective AT. GAT introduces three novel components: (1)
a multi-task AT using both self-supervised and domain-
knowledge tasks, (2) a gradient curvature regularization
that guides the AT towards less vulnerable loss landscapes,
and (3) a pareto-optimal multi-objective optimization of the
weights of each loss (clean and robust losses for target tasks)
at each step of the min-max optimization of AT.

4.1. The proposed approach: GAT

GAT first transforms any single-task model into a multi-task
model before AT. We connect additional decoders to the
penultimate layer of the existing model. The architecture of
each decoder is selected for one auxiliary task specifically.
For example, we use a single dense layer as a decoder for
classification tasks and a U-net (Ronneberger et al., 2015)
decoder for segmentation tasks. In Figure 2, we extend
an ImageNet classification model into a multi-task model
that learns both the class (target task) and the orientation
(auxiliary task) of the image. The auxiliary task here is ’the
rotation angle prediction’, a self-supervised classification
task where we can generate the labels on the fly by rotating
the original image.

We consider two types of task augmentation. In self-
supervised task augmentation, the image is pre-processed
with some image transformation like jigsaw scrambling
(Noroozi & Favaro, 2016) or image rotation (Gidaris et al.,
2018). The auxiliary task predicts the applied image trans-
formation (e.g., the permutation matrix for the jigsaw
task, the rotation angle for the rotation task). In domain-
knowledge tasks, a human oracle provides additional labels.
In the medical imaging case, these additional labels may
include, e.g., other pathologies and stages or patient data
like gender and age.

A naive implementation of AT (Eq. (2)) to multi-task models
consists of the following min-max optimization problem:

min
θ

∑
i

max
δ∈∆

M∑
j=1

(Lj(xi, yi,j) + Lj(xi + δ, yi,j)), (4)

where yi,j is the label of the input example i for the task j.
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Figure 1. Robust accuracy (X-axis) with each of our three metrics (Y-axis). Top: Models with AT, bottom: Models with standard training.
Left: Gradient multi-task curvature bounding measure, middle: Gradient magnitude similarity, right: Gradient cosine angle. Below each
scatter plot is the Pearson correlation coefficient r and its p-value between the robust accuracy and the studied metric. This study confirms
that the Gradient Curvature is a good surrogate for adversarial robustness and can be used to optimize the robustness.

4.2. Guiding the gradient curvature with regularization

We showed in Section 3 that the curvature bounding mea-
sure is a reliable surrogate of the adversarial robustness of
models. Hence, we guide the AT of Eq. (4) with a curvature
regularization term:

L
(reg)
j =

j−1∑
k=1

(1− cos2 ϕjk)
∥gj − gk|22
∥gj + gk∥22

.

Therefore, the definitive formulation of GAT:

minθ
∑

i maxδ∈∆

∑M
j=1(

α
(clean)
j Lj(xi, yi,j) + α

(adv)
j Lj(xi + δ, yi,j) + L

(reg)
j

)
(5)

where α
(clean)
j and α

(adv)
j are positive weights that control

the relative contribution of the clean and adversarial loss
(respectively) of task j to the objective function to optimize.
Their value will be optimized automatically throughout the
AT process, as proposed below.

4.3. Adversarial Training as a multi-objective
optimization problem (MOOP)

The optimization proposed in Eq. (5) faces conflicting gradi-
ents between the clean and adversarial losses, and possibly
between the target and auxiliary tasks. Weighting strategies
for MTL (Liu et al., 2021; Yu et al., 2020; Wang et al., 2020)
all assume that the tasks’ gradients are misaligned and not
totally opposed. The case of GAT is more complex because
there is no guarantee that this assumption holds across the

AT optimization. Instead of achieving the minimization of
the whole loss, we seek to reach a Pareto-stationary point
where we cannot improve the loss of one task without de-
grading the loss of another task (Kaisa, 1999).

To solve this MOOP, we extend the Multi-Gradient Descent
Algorithm (MGDA) (Desideri, 2012) to AT. We generalize
gradient descent to multi-objective settings by identifying a
descent direction common to all objectives (i.e., clean and
robust losses of target tasks) and tune the weights of the
tasks’ losses at each adversarial training batch. MGDA for-
mally guarantees convergence to a Pareto-stationary point
(Desideri, 2012) to achieve both clean and robust perfor-
mances. Subsequent research by Sener & Koltun (2018) has
shown that the Multi-Gradient Descent Algorithm (MGDA)
”yields a Pareto optimal solution under realistic assump-
tions”. We rely on these assumptions and the upper bound
they propose using the Frank-Wolfe-based optimizer (Algo-
rithm 3) to achieve Pareto optimality. The only assumption
we use is the same as the one proven by Sener & Koltun
(2018), namely, the non-singularity assumption. The as-
sumption is reasonable because the singularity implies that
tasks are linearly related, and a trade-off is not necessary.
Our empirical study in section 3.1 confirms that our tasks
are not linearly related.

Algorithm 1 presents GAT and is explained in details (in-
cluding the MGDA procedure) in Appendix A.3.
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Figure 2. Comparison of single-task AT (a) and our proposed approach GAT (b). GAT preserves the original target task and adds an
auxiliary task where abundant labels are available: For instance, a self-supervised task like rotation angle prediction. In (a1) and (b1), we
generate the adversarial example using only the loss of the target task (blue line). We update the models’ weights with backpropagation
in (a2) and (b2). We compute the model’s weights update with GAT (b2) using a weighted combination (σ1,2, σ

′
1,2) of the loss of the

different tasks over the clean examples (green line) and the adversarial examples (red line).

Algorithm 1 Pseudo-Algorithm of GAT
Given: a single task model M parameterized by θs for the
shared encoder and θt for the specific heads, a batch example
x, and ȳ = (y1, ..., ys, ...ym) its corresponding labels for each
task, with y1 the target task, y1<i≤s the auxiliary self-supervised
tasks and ys<i≤m the auxiliary domain-knowledge tasks;
Given: an input processing ft for each auxiliary self-supervised
t task with label y1<t≤s.
Given: a PGD adversarial attack with a step size ϵstep; a
maximum perturbation ϵ; S number of attack iterations;
Step 1: Create a decoder Di at the penultimate layer of M for
each of the auxiliary task ti / i > 1.
Step 2: For each epoch and batch x Do

1. For each self-supervised task t1<i≤s:
x←⃝s

t=2 ft(x)

2. x̂← PGD(x, y1, ϵstep, ϵ, S).

3. Get the task losses l and regularization losses l(reg):
l← l1,x, l1,x̂, . . . , lM,x, lM,x̂, l

(reg)
M+1,x, . . . , l

(reg)
2M−1,x.

4. α1, . . . , α2M−1 ←MGDA(θ,l)

5. θs ← θs − η
∑2M−1

t=1 αt∇θsh lt,x(θ
s, θt)

Step 3: Disable the auxiliary branches added at step 1.

5. Experiments
We extensively evaluate GAT on two datasets and demon-
strate that GAT achieves better robust performances than
SoTA data augmentation AT: We compare GAT with Cutmix
(Yun et al., 2019), MaxUp (Gong et al., 2020), unlabeled
data augmentation (Carmon et al., 2019), denoising diffu-
sion probabilistic models augmentations (DDPM) (Gowal
et al., 2021), self-supervised pre-training (Chen et al., 2020),
self-supervised multi-task learning (Hendrycks et al., 2019).
We also compare GAT to three popular AT approaches that

do not focus on data augmentation: Madry adversarial train-
ing (Madry et al., 2017b), TRADES adversarial training
(Zhang et al., 2019), and FAST adversarial training (Wong
et al., 2020).

The extension of our evaluation to different settings is dis-
cussed in Section 7.

5.1. Experimental setup

We present below our main settings. Further details are in
Appendix A.4.

Datasets. CIFAR-10 (Krizhevsky et al., 2009) is a 32x32
color image dataset. We evaluate two scenarios: A full
50.000 image AT scenario and an AT scenario using a subset
of 10% to simulate scarce data scenarios. A study with 25%,
and 50% of the original data is in the Appendix B.1.

CheXpert (Irvin et al., 2019) is a public chest X-ray dataset.
It consists of 512x512 grayscale image radiography col-
lected from one hospital. We report below the results for
predicting the Edema and the Atelectasis disease as target
tasks, and provide results for other combinations of patholo-
gies in Appendix B.2. We confirm our results for another
medical imaging dataset (NIH) in Appendix C.2.

Architecture. We use an encoder-decoder image classifi-
cation architecture, with ResNet-50v2 as encoders for the
main study. We provide in Appendix C complementary
studies with WideResnet28 encoders.

Task augmentations. For both CIFAR-10 and CheXpert
datasets, we evaluate two self-supervised tasks: Jigsaw,
where we split the images into 16 chunks and scramble
them according to a permutation matrix. The permutation
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Figure 3. Comparison of GAT performances with state-of-the-art
AT mechanisms on CIFAR-10 classification. In yellow AT with
data augmentations and in green techniques with AT optimizations.
GAT outperforms all existing approaches in terms of robust accu-
racy and remains competitive in terms of clean accuracy.

matrix represents the labels of the Jigsaw prediction task.
In the Rotation auxiliary task, we rotate the images by 0,
90, 180, or degrees, and the 4 rotation angles are the labels
learned by the Rotation prediction task.

To evaluate domain-knowledge tasks, we generate new la-
bels as follows. For CIFAR-10, we split the existing 10
classes into 2 macro classes: Vehicles or Animals. We refer
to this task as Macro. For CheXpert, we add the binary
classification of Cardiomegaly and Pneumothorax as aux-
iliary tasks. These auxiliary pathologies often co-occur with
Edema and Atelectasis. We also extract the age and gender
meta-data related to the patients and use them to build aux-
iliary tasks. Learning the Age is a regression task, while
learning the Gender is a 3-class classification task.

Training. Both natural and AT is combined with common
data augmentations (rotation, cropping, scaling), using SGD
with lr=0.1, a cosine annealing, and early stopping. We train
CIFAR-10 models for 400 epochs and CheXpert models for
200 epochs. We perform AT following Madry’s approach
(Madry et al., 2017a) with a 10-steps PGD attack and ϵ =
8/255 size budgets, and we only target the main task to craft
the adversarial examples.

5.2. Results

GAT improves up to 21% the robustness of CIFAR-10
models over AT strategies. We show in Fig. 3 (and Ap-
pendix B.3) the clean and robust accuracy on CIFAR-10 of

Figure 4. Comparison of different Task Augmentation strategies
with single-task models using AT; Clean and robust AUC of GAT
vs Single task AT of models trained to diagnose Atelectasis and
Edema pathologies.

AT with various optimizations compared to AT with our ap-
proach. GAT outperforms data-augmentation AT techniques
in terms of robust accuracy from 3.14% to 26.4% points,
and outperforms AT training optimizations up to 21.82%.

GAT increases up to 41% the robustness of medical
diagnosis. Figure 4 shows the clean and robust AUC of
the single-task baseline models (circle marker), and the
task-augmented models.

For Atelectasis (blue), age task augmentation leads to lower
results than the baseline. However, all remaining task aug-
mentations outperform the baseline both on the clean and
robust AUC. The gender augmentation increases the robust
AUC of Atelectasis from 58.75% to 83.34%.

For Edema (orange), Task augmentation with Jigsaw leads
to the best clean and robust AUC increase. The robust AUC
jumps from 55.68% to 70.47% compared to single-task AT.

GAT and data augmentation strategies can be combined
to improve clean and robust performances. The regular-
ization term of the curvature measure used in GAT involves
and may negatively impacts clean performance. We investi-
gate if combining GAT with data-augmentation techniques
can mitigate these effects. We show in Table 1 that GAT
with various data augmentation strategies achieves higher
robust accuracy than models with data augmentation alone
in seven of the nine cases (in blue, Table 1). The two excep-
tions are CutMix when combined with Jigsaw or Rotation.
Compared to GAT alone, all combinations of GAT with data
augmentation show a slight drop in robustness (e.g., GAT
with Rotation drops from 36.13% to 33.78%) but signifi-
cantly improve clean accuracy. For example, they increase
from 56.51% to 87.85% using the Rotation auxiliary task.
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Table 1. The mean and std across three runs for combinations of our approach with data augmentation techniques. The blue cells
indicate the combinations where GAT outperform data augmentation techniques with statistical significance, the underlined cells are the
combinations that outperform task augmentation alone and, in bold the best performances.

Task Robust accuracy (%) Clean accuracy (%)
Augment None Jigsaw Macro Rotation None Jigsaw Macro Rotation
None 39.09±0.13 32.95±0.59 48.38±0.11 36.13±0.29 74.49±0.16 43.99±0.36 73.70±0.51 56.51±0.12
Cutmix 38.95±0.32 23.86±0.55 41.09±0.22 20.19±0.04 87.31±0.12 60.53±1.10 87.52±0.16 87.86±0.33
Unlabeled 21.98±0.18 26.33±0.28 33.88±0.15 35.29±0.20 80.30±0.41 49.32±1.06 84.57±0.05 71.08±0.08
Pre-train 27.30±0.40 35.47±0.38 32.64±0.27 33.78±0.35 86.64±0.26 87.56±0.18 86.69±0.31 87.85±0.21

Table 2. Ablation study of the impact of the weighting strategies
on the test and robust accuracies.

Test acc Robust acc
Macro Task + Equal weights 83.00 % 32.16 %
Macro Task + MGDA (Ours) 73.70 % 48.38 %
Macro Task + GV (Wang et al., 2020) 64.11 % 35.56 %
Macro Task + PCG (Yu et al., 2020) 63.76 % 44.74 %

6. Ablation studies
We demonstrate in the following why the implementation
choices of our approach GAT are the best, and how other
choices impact the performance of GAT.

Impact of weighting strategies. We proposed to formu-
late the AT process through the lens of Pareto-stationary
optimization. We argue that this Pareto approach is more
relevant than other multi-task strategies to handle adversar-
ial and clean losses across multiple (potential) opposing
tasks. To confirm this hypothesis, we provide in Table 2 an
ablation study of GAT on the CIFAR-10 dataset. Both best
clean and robust performances are achieved by GAT.

Moreover, GAT achieved best the pareto-optimum. We con-
struct the front obtained by each weighting strategy, then
compute its associated hyper-volume metric. This metric
measures the volume of the dominated portion of the objec-
tive space and lower values indicate better pareto fronts. The
best values are achieved by GAT with MGDA in Appendix
C.3.

Impact of task-dependent adversarial perturbations.
As our primary focus is the robustness of the main task
only, we generate the perturbation δ only on the main task
as presented in step 1 of Figure 2. Therefore, the perturba-
tion δ is independent of the auxiliary tasks in Equation 5.
One can also generate adversarial examples dependent on
the auxiliary tasks. It can be relevant if we want to robustify
all the tasks of the model together. This study differs from
the threat model and objectives of our paper. Nevertheless,
we evaluate in Table 3 the three cases.

Our findings indicate that there is no transferability from

Table 3. Comparison of GAT for models adversarially trained with
a perturbation δ dependent of the main task only, or a perturbation
δ dependant of both tasks.

AT on Auxiliary task Test acc Robust acc
None 74.49 % 39.09 %

Main only
Jigsaw 43.99 % 32.95 %
Rotation 56.51 % 36.13 %
Macro 73.70 % 48.38 %

Both tasks
Jigsaw 32.20 % 17.20 %
Rotation 44.90 % 24.80 %
Macro 75.20 % 36.50 %

Auxiliary only
Jigsaw 79.70 % 1.64%
Rotation 86.03% 12.22%
Macro 83.98% 41.98 %

the Jigsaw task (the robustness improved from 0 to 1.64%),
weak transferability from the Rotation task which improves
the robustness to 12.22%), and strong transferability from
the Macro task (where the robustness improved to 41.98%).
We can explain this phenomenon by how related are the
auxiliary tasks to the main task. Indeed, the Macro task
is the most related to the main task. We acknowledge that
further research is needed in this area, and we appreciate
your interest in our work.

Overall, our results suggest that robustifying both tasks
require additional optimizations. Indeed, it suggests that δ
generated on both tasks does not robustify the main task for
Jigsaw and Rotation, and can significantly deteriorate its
clean performance.

Impact of the number of tasks While our approach is
proven for two tasks (because of Theorem 3.1 and MGDA),
we hypothesize that it can still achieve higher robustness
than SoTA with additional tasks. We show in Figure 5 how
GAT behaves with additional tasks. Performances peak at
three tasks using the combination of Macro and Rotation
auxiliary tasks, while AT with combinations of three or four
tasks involving the Jigsaw task remains less effective.

7. Generalization studies
For a fair computational cost comparison, we compared
GAT with AT techniques on the same Resnet50 architecture

7
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Figure 5. Adversarial robustness’ change when adding additional
tasks then AT from scratch with GAT.

Table 4. Robust accuracy of different models AT with GAT, with 3
different task augmentations, compared to their counterpart single
task AT. In bold the cases where GAT outperforms single-task AT.

Scenario Auxiliary task
None Jigsaw Macro Rotation

AutoAttack 27.01 29.63 32.54 13.82
AutoPGD 40.00 23.00 40.90 21.00
FAB 61.90 34.30 63.40 56.10
Transfer 1.53 13.44 10.8 15.45
WideResnet28 42.52 32.75 46.6 41.06

and training protocol. Some AT leverage larger models or
datasets, or longer training to achieve better robustness on
standardized benchmarks (Croce et al., 2020). We study in
the following whether GAT can generalize to more complex
datasets and tasks, larger models, or different threat models.

Generalization to dense tasks. While our study focused
on classification tasks, GAT can be deployed with self-
supervised dense tasks like auto-encoders or depth estima-
tion. To confirm the generalization of our approach, we
evaluate an additional dataset: ROBIN; one of the most re-
cent benchmarks to evaluate robustness of models (Zhao
et al., 2021). We evaluate 3 additional self-supervised dense
tasks: Depth estimation, Histogram of Oriented Gradients,
and Auto-encoder. We evaluate these tasks both on CIFAR-
10 and ROBIN. Our results in Table 5 suggest that dense
tasks can also be used to improve the robustness of models.

Generalization to larger architectures. We train
WideResnet28-10 models with GAT and compare their ro-
bust accuracy to a single-task WideResnet28-10 model with
AT. Macro increases the single-task model’s robust accuracy
from 42.52% to 46.6%.

Generalization to adaptive attacks. To assess if GAT
is not a gradient-obfuscation defense, we evaluate our de-

Table 5. Comparison of the performance GAT for models adver-
sarially trained with dense tasks.

Dataset Auxiliary Task Test acc Robust acc

CIFAR10

No auxiliary 74.49 % 39.09 %
Depth estimation 43.12 % 0.5 %
HOG 83.39 % 44.59 %
Auto-encoder 85.11 % 42.23 %

ROBIN

No auxiliary 93.71 % 56.78 %
Depth estimation 87.43 % 18.54 %
HOG 98.59 % 94.93 %
Auto-encoder 98.78 % 94.84 %

fended models against a large set of adversarial attacks.
AutoPGD(Croce & Hein, 2020a), a parameter-free gradi-
ent attack, and FAB(Croce & Hein, 2020b), a white-box
boundary attack. Autoattack (Croce & Hein, 2020c) is an
ensemble that combines the previous white-box attacks with
the black-box attack SquareAttack(Andriushchenko et al.,
2020) in targeted and untargeted threat models.

The results in Table 4 show that GAT with Jigsaw or Macro
auxiliary tasks provide better robustness to AutoAttack than
AT with the target task alone. Thus, we confirm that stronger
attacks do not easily overcome the robustness provided by
GAT.

Generalization to transfer attacks. We evaluate in Table
4 the threat model where the attacker has access to the full
training set but has no knowledge of the auxiliary tasks
leveraged by GAT. Models trained with GAT have slightly
different decision boundaries from models with common
AT. The success rate of surrogate attacks drops from 98.47%
(i.e., 1.53% robust accuracy) to 84.55% when we train the
target task with Rotation based GAT.

Generalization to extremely scarce data. We restrict the
AT of the models to 10% of the full CIFAR-10 training
dataset and compare the performance of AT with GAT. GAT
with self-supervised tasks and GAT with domain-knowledge
tasks both outperform single-task model AT. In particular,
the Macro task augmentation boosts the robust accuracy
from 8.37% to 22.42%. The detailed results with 10%, 25%,
and 50% of training data are in Appendix B.3.

8. Related Work
Multi-task learning Vandenhende et al. (2021) recently
proposed a new taxonomy of MTL approaches. They orga-
nized MTL research around two main questions: (i) which
tasks should be learned together and (ii) how we can opti-
mize the learning of multiple tasks. For example, there are
multiple grouping and weighting strategies such as Gradient
Vaccine (GV) (Wang et al., 2020), and Project Conflicting
Gradients (PCG) (Yu et al., 2020) that can significantly

8
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impact the training of MT models.

Multi-objective optimization for large number of tasks re-
mains also an open-problem, and the recent work from Stan-
dley et al. (2020b) investigated which tasks can be combined
to improve clean performance.

Our work explores the orthogonal question of robustness:
(iii) how can we combine auxiliary tasks with AT to improve
the adversarial robustness?

Self-supervised multi-task learning Recent work has
evaluated the impact of self-supervised tasks on the robust-
ness. Klingner et al. (Klingner et al., 2020) evaluated how
the robustness and performances are impacted by MTL for
depth tasks. Their study does not tackle at all adversarial
training and focuses on vanilla training. Hendrycks et al.
(Hendrycks et al., 2019) evaluated the robustness of multi-
task models with rotation tasks to PGD attacks. However,
they do not take into account the MTL in the adversarial
process. PGD is applied summed on both the losses and is
therefore used as a single task model.

Adversarial training The original AT formulation has
been improved, either to balance the trade-off between stan-
dard and robust accuracy like TRADES (Zhang et al., 2019)
and FAT (Zhang et al., 2020), or to speed up the training
(Shafahi et al., 2019; Wong et al., 2020). Finally, AT was
combined with data augmentation techniques, either with
unlabeled data (Carmon et al., 2019), self-supervised pre-
training (Chen et al., 2020), or Mixup (Rebuffi et al., 2021).

These approaches, while very effective, entail a computation
overhead that can be prohibitive for practical cases like med-
ical imaging. Our work suggests that GAT is a parallel line
of research and can be combined with these augmentations.

Provable robustness This type of robustness is generally
not comparable to empirical robustness (which we target)
and is not considered in established robustness benchmarks
like RobustBench(Croce et al., 2020). Provable robustness
of MTL is therefore an orthogonal field to our research.

Conclusion
In this paper, we demonstrated that augmenting single-task
models with self-supervised and domain-knowledge aux-
iliary tasks significantly improves the robust accuracy of
classification. We proposed a novel adversarial training
approach, Guided Adversarial Training that solves the min-
max optimization of adversarial training through the prism
of Pareto multi-objective learning and curvature regulariza-
tion. Our approach complements existing data augmentation
techniques for robust learning and improves adversarially
trained models’ clean and robust accuracy. We expect that

combining data augmentation and task augmentation is key
for further breakthroughs in adversarial robustness.
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A. Appendix A: Replication
A.1. Proofs

Definition A.1. Let M be a multi-task model. T ′ ⊆ T a subset of its tasks and L′
T the joint loss of tasks in T ′. Then,

we call Ex[δL(T ′, ϵ)] the adversarial vulnerability of M on T ′ to an ϵ-sized ∥.∥p-attack.

And we define it as the average increase of LT ′ after attack over the whole dataset, i.e.:

Ex[δL(T ′, ϵ)] = Ex

[
max

∥δ∥p≤ϵ
| LT ′(x+ δ, ȳ)− LT ′(x, ȳ) |

]
Lemma A.2. Under an ϵ-sized ∥.∥p-attack, the adversarial vulnerability of a multi-task model can be approximated through
the first-order Taylor expansion, that is:

Ex[δL′(x, ȳ, ϵ,T ′)] ∝ Ex[|| ∂xL′(x, ȳ) ||q] (6)

Proof. From definition 1, we have:

Ex[δL(T ′, ϵ)] = Ex

[
max

∥δ∥p≤ϵ
| LT ′(x+ δ, ȳ)− LT ′(x, ȳ) |

]

Given the perturbation δ is minimal, we can approximate δL with a Taylor expansion up to the first order:

Ex[δL(T ′, ϵ)] = Ex

[
max

∥δ∥p≤ϵ
| LT ′(x+ δ, ȳ)− LT ′(x, ȳ) |

]
≈ Ex

[
max

∥δ∥p≤ϵ
| δ · ∂xL′(x, ȳ) |

]

The noise δ is optimally adjusted to the coordinates of ∂xL′ within an ϵ-constraint. By the definition of the dual-norm, we
get:

Ex[δL′(x, ȳ, δ,T ′)] ≈|| δ ||p ·Ex[|| ∂xL′(x, ȳ) ||q] (7)

where q is the dual norm of p and 1
p + 1

q = 1 and 1 ≤ p ≤ ∞.

Once given the p-norm bounded ball, i.e., || δ ||p is constant (denoted C in the following), we get:

Ex[δL′(x, ȳ, ϵ,T ′)] ≈ C · Ex[|| ∂xL′(x, ȳ) ||q] ∝ Ex[|| ∂xL′(x, ȳ) ||q] (8)

Theorem A.3. Consider a multi-task model M where an attacker targets T = {t1, t2} two tasks weighted with α1 and α2

respectively, with an ϵ-sized ∥.∥p-attack. If the model is converged, and the gradient for each task is i.i.d. with zero mean
and the tasks are correlated, the adversarial vulnerability of the model can be approximated as

Ex[δL′] ∝

√
1 + 2

α1.α2.Cov (∂xL1, ∂xL2)

α2
1σ

2
1 + α2

2σ
2
2

, (9)

where σ2
i = Cov (∂xLi, ∂xLi) and ∂xL(x, yi) the gradient of the task i.
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A.2.

Proof. let ri = αi · ∂xL(x, yi) the weighted gradient of the task i, with a weight αi such as the joint gradient of M is
defined as ∂xL(x, ȳ) =

∑M
i=1 ri. let p = q = 2

We have:

Ex

[
|| C · ∂xL′(x, ȳ) ||22

]
= Ex

|| M∑
j=1

C · ri ||22


= C2Ex

 M∑
i=1

|| ri ||22 +2

M∑
i=1

i−1∑
j=1

|| ri ||2|| rj ||2


= C2

 M∑
i=1

Ex[r
2
i ] + 2

M∑
i=1

i−1∑
j=1

Ex[rirj ]


(10)

For two tasks, we have then:

Ex

[
|| C · ∂xL′(x, ȳ) ||22

]
= C2

(
Ex[r

2
1] + Ex[r

2
2] + 2Ex[r1r2]

)
(11)

We know:
Cov (ri, rj) = Ex [rirj ]− Ex [ri]Ex [rj ] (12)

According to the assumptions, the gradient of each task is i.i.d with zero means: Ex [ri] = 0 Then Cov (ri, rj) = Ex [rirj ]
and Ex

[
r2i
]
= Cov (ri, ri) = α2

i Cov (∂xLi, ∂xLi) = α2
iσ

2
i .

Ex

[
|| C · ∂xL′(x, ȳ) ||22

]
= C2

(
α2
1σ

2
1 + α2

2σ
2
2 + 2 · α1α2 Cov (∂xL1, ∂xL2)

)
= K ·

(
1 + 2

α1α2 Cov (∂xL1, ∂xL2)

α2
1σ

2
1 + α2

2σ
2
2

)
C · Ex [|| ∂xL′(x, ȳ) ||2] =

√
K ·

√(
1 + 2

α1α2 Cov (∂xL1, ∂xL2)

α2
1σ

2
1 + α2

2σ
2
2

) (13)

where K = C2(α2
1σ

2
1 + α2

2σ
2
2)

Using the first order adversarial vulnerability (Lemma 2), we then have:

Ex[δL′] ≈ C · Ex [|| ∂xL′(x, ȳ) ||2] ≈
√
K ·

√
1 + 2

α1α2 Cov (∂xL1, ∂xL2)

α2
1σ

2
1 + α2

2σ
2
2

∝

√
1 + 2

α1.α2.Cov (∂xL1, ∂xL2)

α2
1σ

2
1 + α2

2σ
2
2

(14)

with K a constant dependent of the bounded ball and the attacked tasks.
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Algorithm 2 Pseudo-Algorithm of GAT

Given: a single task model M parameterized by θs for the shared encoder and θt for the specific heads, a batch
example x, and ȳ = (y1, ..., ys, ...ym) its corresponding labels for each task, with y1 the target task, y1<i≤s the auxiliary
self-supervised tasks and ys<i≤m the auxiliary domain-knowledge tasks;
Given: an input processing ft for each auxiliary self-supervised t task with label y1<t≤s.
Given: a weight optimizer opt; a list of task-specific decoders functions D = {D1, ..., DM}
Given: a PGD adversarial attack with a step size ϵstep; a maximum perturbation ϵ; S number of attack iterations;
Step 1: Create a decoder Di at the penultimate layer of M for each of the auxiliary task ti / i > 1.
Step 2: For each epoch and batch x Do

1. For each self-supervised task t1<i≤s, successively pre-process the batch examples x with the appropriate input
processing function:
x←⃝s

t=2 ft(x)

2. Generate x̂, the adversarial examples of x: x̂← PGD(x, y1, ϵstep, ϵ, S).

3. Compute the losses li,x and li,x̂ of x and x̂ respectively for each task ti with label yi; l ←
l1,x, l1,x̂, . . . , lM,x, lM,x̂, l

(reg)
M+1,x, . . . , l

(reg)
2M−1,x.

4. Apply MGDA to find the minimum norm element in the convex hull given the list of losses:
α1, . . . , α2M−1 ←MGDA(θs, θtθ,l)

5. Back-propagate the weighted gradients and update the model weights with optimizer opt.
θs ← θs − η

∑2M−1
t=1 αt∇θsh lt,x(θ

s, θt)

Step 3: Disable the auxiliary branches added at step 1.

A.3. GAT Algorithm

Following Sener & Koltun (2018), we use the Frank-Wolfe algorithm(Jaggi, 2013) to solve the constrained optimization
problem as follows:

Algorithm 3 MGDA(θs, θt,l) procedure (Sener & Koltun, 2018)

Initialize α = (α1, . . . , αT ) = ( 1
T , . . . ,

1
T )

PrecomputeM st.Mi,j =
(
∇θsh l̂i(θ

sh, θi)
)⊺(∇θsh l̂j(θ

sh, θj)
)

Repeat
t̂ = argminr

∑
t α

tMrt

γ̂ = argminγ
(
(1− γ)α+ γet̂

)⊺M(
(1− γ)α+ γet̂

)
α = (1− γ̂)α+ γ̂et̂
until γ̂ ∼ 0 or Number of Iterations Limit
return α1, . . . , αT

A.4. Experimental Setting

A.4.1. DATASETS

We show in table 6 the general properties of the datasets used in training our models. Table 7 ((Cohen et al., 2020)) details
the number of positive and negative examples with each label for each dataset. Our models are trained either on CheXpert or
NIH depending on the evaluation.

Our evaluation covers as target tasks very scarce pathologies (Edema, Pneumonia), and medium scarce pathologies
(Atelectasis), across both datasets.

All datasets, CheXpert, NIH, and ROBIN use images of the same dimensions as ImageNet (256x256). We did not include
Tiny ImageNet in our study as it lacks multiple tasks required for a comprehensive evaluation. Furthermore, we chose the
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NIH CheXpert

Number of patient radiographs 112,120 224,316
Number of patients 30,805 65,240
Age in years: mean (standard deviation) 46.9 (16.6) 60.7 (18.4)
Percentage of females (%) 43.5% 40.6%
Number of pathology labels 8 14

Table 6. Characteristics of NIH and CheXpert datasets used in our evaluation.

Dataset NIH CheXpert
Atelectasis 1702/29103 12691/14317

Cardiomegaly 767/30038 9099/17765
Consolidation 427/30378 5390/22504

Edema 82/30723 14929/20615
Effusion 1280/29525 20640/23500

Emphysema 265/30540 -
Enlarged Cardio - 5181/20506

Fibrosis 571/30234 -
Fracture - 4250/14948
Hernia 83/30722 -

Infiltration 3604/27201 -
Lung Lesion - 4217/14422
Lung Opacity - 30873/15675

Mass 1280/29525 -
Nodule 1661/29144 -

Pleural Thickening 763/30042 -
Pneumonia 168/30637 2822/14793

Pneumothorax 269/30536 4311/32685

Table 7. Samples distributions across each pathology and dataset. Each cell shows the number of positive/negative samples of the label.
There are 7 common pathologies in NIH and CheXpert datasets. Among those, in bold the pathologies evaluated as target task, and in
underline the pathologies used as an auxiliary.

ROBIN dataset as it is a subset of ImageNet that offers additional labels that can serve as auxiliary task, making it the most
suitable variant for our study.

A.5. Architectures

The majority of the tests are carried out using the Resnet50v2 (He et al., 2016) encoder, which has a depth of 50 and 25.6M
parameters. This encoder is the main focus because it is the most widely used for Xray image classification (Ganesan et al.,
2019). We also perform some tests using the WRN-28-10 (Zagoruyko & Komodakis, 2016) encoder, which has a depth of
28, a width multiplier of 10, and 36M parameters.

A.6. Adversarial Training

The outer minimization: We use MADRY adversarial training (Madry et al., 2017a), i.e. we train the model using a
summed loss computed from the clean and adversarial examples. for ATTA, we use a backpropagation over the pareto
optimal of the four losses. The learning uses the SGD optimizer with lr=0.1, a cosine annealing, and checkpoint over the
best performance.

The inner maximization: We generate the adversarial examples with PGD (Madry et al., 2017b), on ℓ∞ norms and
ϵ = 8/255 for CIFAR-10 and STL-10 and ϵ = 4/255 for CheXpert and NIH models. We use in the iterative attack 1 random
start, and 10 steps.
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A.7. Robustness evaluation

We evaluate the robustness against PGD-10 on ℓ∞ norms and ϵ = 8/255 for CIFAR-10 and STL-10 and ϵ = 4/255 for
CheXpert and NIH models. We also evaluate CIFAR-10 models against AutoAttack (Croce & Hein, 2020a). Autoattack
is a mixture of ℓ∞epsilon = 8/255 attacks: untargeted AUTOPGD (a variant of PGD with an adaptive step) on the
cross-entropy loss with 100 steps, targeted AUTOPGD with 100 steps, a 100 steps FAB attack, and finally a 5000 queries
Square attack.

These hyper-parameters of AutoAttack are consistent with AutoAttack’s default parameterization in Kim (2020); Croce et al.
(2020).

A.8. Computation budget

We train all our models on slurm nodes, using single node training. Each node has one A100 GPU 32Gb V100 SXM2. We
train CIFAR-10 and STL-10 models for 400 epochs and CheXpert and NIH models for 200 epochs. The WRN-70-16 model
is trained for 40 epochs to account for being 10 times larger than the Resnet50 used for the main evaluation.

Our license is MIT Licence, and we use the following external packages:

Torchxrayvision: Located in folder ./torchxrayvision. Adapted from https://github.com/mlmed/
torchxrayvision: Apache Licence

Taskonomy/Taskgrouping: Located in folder ./utils/multitask models. Adapted from https://github.com/
tstandley/taskgrouping/ MIT Licence

LibMTL: Located in folder ./utils/weights. Adapted from https://github.com/median-research-group/
LibMTL MIT Licence
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Table 8. Evaluation results of 4 Different (Di, Ti,Ai) Scenarios: D1 (adversarial fine-tuning with 10% of the training data),D2 (adversarial
fine-tuning with 50% of the training data), T1,2,3 training respectively without an auxiliary task, with Rotation and with Jigsaw task, A1

(Robust Accuracy against a PGD-4 attack), A2 (Robust Accuracy against a PGD-10 attack).

Dataset subset Auxiliary PGD steps Metric mean std

0.1 None 10 Test accuracy 60.41 0.62
Robust accuracy 8.37 0.32

4 Test accuracy 60.38 0.59
Robust accuracy 11.81 0.23

Jigsaw 10 Test accuracy 51.98 0.53
Robust accuracy 32.41 0.46

4 Test accuracy 51.06 1.47
Robust accuracy 32.26 0.85

Rotation 10 Test accuracy 50.41 0.11
Robust accuracy 15.01 0.29

4 Test accuracy 50.17 0.49
Robust accuracy 20.01 0.27

Macro 10 Test accuracy 65.62 0.48
Robust accuracy 22.42 0.35

4 Test accuracy 65.65 0.42
Robust accuracy 42.68 0.38

0.5 None 10 Test accuracy 77.45 0.25
Robust accuracy 25.04 0.15

4 Test accuracy 77.51 0.15
Robust accuracy 31.71 0.08

Jigsaw 10 Test accuracy 59.72 0.45
Robust accuracy 29.08 1.58

4 Test accuracy 58.42 1.16
Robust accuracy 33.68 0.52

Rotation 10 Test accuracy 59.77 0.58
Robust accuracy 17.09 0.51

4 Test accuracy 59.69 0.70
Robust accuracy 24.56 0.49

Macro 10 Test accuracy 73.68 0.72
Robust accuracy 33.76 0.71

4 Test accuracy 73.62 0.81
Robust accuracy 54.14 0.63

B. Appendix B: Detailed results of the main study
B.1. Limited data training with CIFAR-10

GAT: To evaluate whether test accuracy (i.e. equal weights task augmentation) is effective when access to adversarial
training data is limited, we first train models with the full dataset for 200 epochs then we adversarial fine-tune (PGD-4;
8/255) the models with a subset of training data (10%, 50%). For each scenario, we fine-tune 3 different models with
different seeds and report in Table 8 the Test Accuracy (Test accuracy) and Robust Accuracy (Robust accuracy) with and
without an auxiliary task. We report the mean and standard deviation across the runs. The std across the experiments is
pretty low and the conclusions of the main paper hold.

B.2. CheXpert detailed results

We extend the evaluation of the main paper to 6 additional combinations of auxiliary tasks and target task, using the
Pneumonia pathology as a target. We present all the results in Table 10. These extended results corroborate that AT with
auxiliary task significantly improves the robustness of classification models on the CheXpert dataset (Irvin et al., 2019).
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Table 9. GAT different data scenarios: 10%, 25% and 50% of CIFAR-10 dataset. We evaluate 3 different task augmentations with MGDA
weighting strategy.

Scenario Clean accuracy (%) Robust accuracy (%)
None Jigsaw Macro Rotation None Jigsaw Macro Rotation

10% 52.66 42.7 54.89 47.07 12.46 32.14 13.43 39.2
25% 68.39 49.76 68.54 62.85 24.56 32.08 27.74 47.75
50% 76.13 66.57 76.5 78.19 33.69 23.79 31.94 16.63

Table 10. Robust and clean AUC of CheXpert models trained with GAT.

Target Task Auxiliary Task Robust AUC Clean AUC

Atelectasis Single task 50.00 58.76
Atelectasis Cardiomegaly 71.20 71.97
Atelectasis Pneumothorax 70.93 71.92
Atelectasis Age 46.26 66.89
Atelectasis Gender 83.00 83.35
Atelectasis Jigsaw 63.81 65.92
Atelectasis Rotation 78.32 74.50
Edema Single task 55.69 52.42
Edema Cardiomegaly 52.74 55.79
Edema Pneumothorax 47.40 58.86
Edema Age 59.17 53.41
Edema Gender 31.46 56.07
Edema Jigsaw 70.47 67.77
Edema Rotation 52.59 55.98
Pneumonia Single task 38.70 56.66
Pneumonia Cardiomegaly 57.47 57.05
Pneumonia Pneumothorax 32.25 56.74
Pneumonia Age 49.15 56.58
Pneumonia Gender 60.08 57.59
Pneumonia Jigsaw 46.45 56.47
Pneumonia Rotation 60.76 60.00
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Table 11. Robust and clean Accuracy of CIFAR-10 models trained with GAT vs trained with other adversarial training (AT) optimizations
Method Robust accuracy (%) Clean accuracy (%) Type of AT optimization
GAT [Ours] 48.38 73.70 Task augmentation
GAT-noReg [Ours] 44.34 83.47 Task augmentation
CutMix (Yun et al., 2019) 38.95 87.31 Data augmentation
Maxup (Gong et al., 2020) 45.24 83.54 Data augmentation
Unlabeled (Carmon et al., 2019) 21.98 80.30 Data augmentation
DDPM (Gowal et al., 2021) 44.41 73.27 Data augmentation
TRADES (Zhang et al., 2019) 42.76 60.73 Training optimization
FAST (Wong et al., 2020) 26.56 78.18 Training optimization
Self-supervised (Hendrycks et al., 2019) 36.50 75.20 Training & data optimization
Pre-training (Chen et al., 2020) 27.30 86.64 Training & data optimization
Madry Adversarial Training (Madry et al., 2017b) 39.09 74.49 Training optimization

B.3. CIFAR10 detailed results

We gather the performance of all SoTA adversarial training approaches in Table ??. GAT without regularization term has a
lower robustness but preserves better the clean performance. For DDPM, we follow Gowal et al. (2021) and use samples
generated by a Denoising Diffusion Probabilistic Model (Ho et al., 2020) to improve robustness. The DDPM is solely trained
on the original training data and does not use additional external data. We do not however use the additional optimizations
proposed by Gowal et al. (2021) to achieve their results, and stick to the same training protocol as all our experiments.

Their additional training optimizations are detailed in their repository: https://github.com/deepmind/
deepmind-research/tree/master/adversarial_robustness/pytorch.
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C. Appendix C: Complementary results
C.1. Statistical significance when compared with SoTA

Dietterich suggests the McNemar’s test in seminal study on the use of statistical hypothesis tests to compare classi-
fiers(Dietterich, 1998).

The test is particularly suggested when the methods being compared can only be assessed once, e.g. on a single test set, as
opposed to numerous evaluations using a resampling methodology, such as k-fold cross-validation. It is also recommended
when the computation cost of training the same model multiple times is high. Both are our cases in this study.

The results in Table 2 of the main paper use this statistical test. The blue cells are the ones where we can reject Null
Hypothesis: Classifiers with ATTA vs without have a different proportion of errors on the test set. In our study, we
use α = 0.05 and provide in the figshare repository https://figshare.com/projects/ATTA/139864 the
Contingency tables and raw values of the test: You can find the sumary of the evaluation below:

• Model ’Rotation’ VS ’Macro’

statistic=792.000, p-value=0.000

Different proportions of errors (reject
H0): The two classifiers have a dif-
ferent proportion of errors on the
test

• Model ’Rotation’ VS ’Jigsaw’

statistic=610.000, p-value=0.000

reject H0

• Model ’Rotation’ VS ’Depth’

statistic=464.000, p-value=0.000

reject H0

• Model ’Rotation’ VS ’Hog’

statistic=770.000, p-value=0.000

reject H0

• Model ’Rotation’ VS ’Rot + Unla-
beled’

statistic=395.000, p-value=0.000

reject H0

• Model ’Rotation’ VS ’Macro + Un-
labeled’

statistic=380.000, p-value=0.000

reject H0

• Model ’Rotation’ VS ’Unlabeled’

statistic=788.000, p-value=0.000

reject H0

• Model ’Rotation’ VS ’Jigsaw + Un-
labeled’

statistic=638.000, p-value=0.000

reject H0

• Model ’Rotation’ VS ’Rot + Cutmix’

statistic=610.000, p-value=0.000

reject H0

• Model ’Rotation’ VS ’Macro + Cut-
mix’

statistic=842.000, p-value=0.010

reject H0

• Model ’Rotation’ VS ’Jigsaw + Cut-
mix’

statistic=590.000, p-value=0.000

reject H0

• Model ’Macro’ VS ’Rotation’

statistic=792.000, p-value=0.000

reject H0

• Model ’Macro’ VS ’Jigsaw’

statistic=502.000, p-value=0.000

reject H0

• Model ’Macro’ VS ’Depth’

statistic=372.000, p-value=0.000

reject H0

• Model ’Macro’ VS ’Hog’

statistic=460.000, p-value=0.095

Same proportions of errors (fail to
reject H0)

• Model ’Macro’ VS ’Rot + Unla-
beled’

statistic=509.000, p-value=0.000

reject H0

• Model ’Macro’ VS ’Macro + Unla-
beled’

statistic=287.000, p-value=0.000

reject H0

• Model ’Macro’ VS ’Unlabeled’

statistic=715.000, p-value=0.103

Same proportions of errors (fail to
reject H0)

• Model ’Macro’ VS ’Jigsaw + Unla-
beled’

statistic=472.000, p-value=0.000

reject H0

• Model ’Macro’ VS ’Rot + Cutmix’

statistic=621.000, p-value=0.000

reject H0

• Model ’Macro’ VS ’Macro + Cut-
mix’

statistic=631.000, p-value=0.010

reject H0

• Model ’Macro’ VS ’Jigsaw + Cut-
mix’

statistic=468.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Rotation’

statistic=610.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Macro’

statistic=502.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Depth’

statistic=1066.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Hog’

statistic=523.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Rot + Unla-
beled’

statistic=344.000, p-value=0.000

reject H0
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• Model ’Jigsaw’ VS ’Macro + Unla-
beled’

statistic=255.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Unlabeled’

statistic=563.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Jigsaw + Unla-
beled’

statistic=1116.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Rot + Cutmix’

statistic=1415.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Macro + Cut-
mix’

statistic=580.000, p-value=0.000

reject H0

• Model ’Jigsaw’ VS ’Jigsaw + Cut-
mix’

statistic=1278.000, p-value=0.444

Same proportions of errors (fail to
reject H0)

• Model ’Depth’ VS ’Rotation’

statistic=464.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Macro’

statistic=372.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Jigsaw’

statistic=1066.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Hog’

statistic=390.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Rot + Unlabeled’

statistic=265.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Macro + Unla-
beled’

statistic=192.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Unlabeled’

statistic=453.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Jigsaw + Unla-
beled’

statistic=1218.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Rot + Cutmix’

statistic=816.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Macro + Cut-
mix’

statistic=352.000, p-value=0.000

reject H0

• Model ’Depth’ VS ’Jigsaw + Cut-
mix’

statistic=857.000, p-value=0.000

reject H0

• Model ’Hog’ VS ’Rotation’

statistic=770.000, p-value=0.000

reject H0

• Model ’Hog’ VS ’Macro’

statistic=460.000, p-value=0.095

Same proportions of errors (fail to
reject H0)

• Model ’Hog’ VS ’Jigsaw’

statistic=523.000, p-value=0.000

reject H0

• Model ’Hog’ VS ’Depth’

statistic=390.000, p-value=0.000

reject H0

• Model ’Hog’ VS ’Rot + Unlabeled’

statistic=560.000, p-value=0.000

reject H0

• Model ’Hog’ VS ’Macro + Unla-
beled’

statistic=312.000, p-value=0.000

reject H0

• Model ’Hog’ VS ’Unlabeled’

statistic=774.000, p-value=0.800

Same proportions of errors (fail to
reject H0)

• Model ’Hog’ VS ’Jigsaw + Unla-
beled’

statistic=484.000, p-value=0.000

reject H0

• Model ’Hog’ VS ’Rot + Cutmix’

statistic=629.000, p-value=0.000

reject H0

• Model ’Hog’ VS ’Macro + Cutmix’
statistic=631.000, p-value=0.000
reject H0

• Model ’Hog’ VS ’Jigsaw + Cutmix’
statistic=445.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Rota-
tion’
statistic=395.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS
’Macro’
statistic=509.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Jig-
saw’
statistic=344.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Depth’
statistic=265.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Hog’
statistic=560.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Macro
+ Unlabeled’
statistic=470.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Unla-
beled’
statistic=475.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Jigsaw
+ Unlabeled’
statistic=310.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Rot +
Cutmix’
statistic=261.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Macro
+ Cutmix’
statistic=460.000, p-value=0.000
reject H0

• Model ’Rot + Unlabeled’ VS ’Jigsaw
+ Cutmix’
statistic=326.000, p-value=0.000
reject H0
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• Model ’Macro + Unlabeled’ VS ’Ro-
tation’

statistic=380.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS
’Macro’

statistic=287.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS ’Jig-
saw’

statistic=255.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS
’Depth’

statistic=192.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS
’Hog’

statistic=312.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS ’Rot
+ Unlabeled’

statistic=470.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS ’Un-
labeled’

statistic=225.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS ’Jig-
saw + Unlabeled’

statistic=191.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS ’Rot
+ Cutmix’

statistic=292.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS
’Macro + Cutmix’

statistic=213.000, p-value=0.000

reject H0

• Model ’Macro + Unlabeled’ VS ’Jig-
saw + Cutmix’

statistic=201.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Rotation’

statistic=788.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Macro’

statistic=715.000, p-value=0.103

Same proportions of errors (fail to
reject H0)

• Model ’Unlabeled’ VS ’Jigsaw’

statistic=563.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Depth’

statistic=453.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Hog’

statistic=774.000, p-value=0.800

Same proportions of errors (fail to
reject H0)

• Model ’Unlabeled’ VS ’Rot + Unla-
beled’

statistic=475.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Macro + Un-
labeled’

statistic=225.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Jigsaw + Un-
labeled’

statistic=452.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Rot + Cut-
mix’

statistic=574.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Macro + Cut-
mix’

statistic=622.000, p-value=0.000

reject H0

• Model ’Unlabeled’ VS ’Jigsaw +
Cutmix’

statistic=482.000, p-value=0.000

reject H0

• Model ’Jigsaw + Unlabeled’ VS ’Ro-
tation’

statistic=638.000, p-value=0.000

reject H0

• Model ’Jigsaw + Unlabeled’ VS
’Macro’

statistic=472.000, p-value=0.000

reject H0

• Model ’Jigsaw + Unlabeled’ VS ’Jig-
saw’
statistic=1116.000, p-value=0.000
reject H0

• Model ’Jigsaw + Unlabeled’ VS
’Depth’
statistic=1218.000, p-value=0.000
reject H0

• Model ’Jigsaw + Unlabeled’ VS
’Hog’
statistic=484.000, p-value=0.000
reject H0

• Model ’Jigsaw + Unlabeled’ VS ’Rot
+ Unlabeled’
statistic=310.000, p-value=0.000
reject H0

• Model ’Jigsaw + Unlabeled’ VS
’Macro + Unlabeled’
statistic=191.000, p-value=0.000
reject H0

• Model ’Jigsaw + Unlabeled’ VS ’Un-
labeled’
statistic=452.000, p-value=0.000
reject H0

• Model ’Jigsaw + Unlabeled’ VS ’Rot
+ Cutmix’
statistic=1305.000, p-value=0.000
reject H0

• Model ’Jigsaw + Unlabeled’ VS
’Macro + Cutmix’
statistic=463.000, p-value=0.000
reject H0

• Model ’Jigsaw + Unlabeled’ VS ’Jig-
saw + Cutmix’
statistic=968.000, p-value=0.000
reject H0

• Model ’Rot + Cutmix’ VS ’Rotation’
statistic=610.000, p-value=0.000
reject H0

• Model ’Rot + Cutmix’ VS ’Macro’
statistic=621.000, p-value=0.000
reject H0

• Model ’Rot + Cutmix’ VS ’Jigsaw’
statistic=1415.000, p-value=0.000
reject H0

• Model ’Rot + Cutmix’ VS ’Depth’
statistic=816.000, p-value=0.000
reject H0
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• Model ’Rot + Cutmix’ VS ’Hog’

statistic=629.000, p-value=0.000

reject H0

• Model ’Rot + Cutmix’ VS ’Rot + Un-
labeled’

statistic=261.000, p-value=0.000

reject H0

• Model ’Rot + Cutmix’ VS ’Macro +
Unlabeled’

statistic=292.000, p-value=0.000

reject H0

• Model ’Rot + Cutmix’ VS ’Unla-
beled’

statistic=574.000, p-value=0.000

reject H0

• Model ’Rot + Cutmix’ VS ’Jigsaw +
Unlabeled’

statistic=1305.000, p-value=0.000

reject H0

• Model ’Rot + Cutmix’ VS ’Macro +
Cutmix’

statistic=561.000, p-value=0.000

reject H0

• Model ’Rot + Cutmix’ VS ’Jigsaw +
Cutmix’

statistic=1275.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS ’Rota-
tion’

statistic=842.000, p-value=0.010

reject H0

• Model ’Macro + Cutmix’ VS
’Macro’

statistic=631.000, p-value=0.010

reject H0

• Model ’Macro + Cutmix’ VS ’Jig-
saw’

statistic=580.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS
’Depth’

statistic=352.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS ’Hog’

statistic=631.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS ’Rot +
Unlabeled’

statistic=460.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS ’Macro
+ Unlabeled’

statistic=213.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS ’Unla-
beled’

statistic=622.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS ’Jigsaw
+ Unlabeled’

statistic=463.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS ’Rot +
Cutmix’

statistic=561.000, p-value=0.000

reject H0

• Model ’Macro + Cutmix’ VS ’Jigsaw
+ Cutmix’

statistic=327.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Rota-
tion’

statistic=590.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS
’Macro’

statistic=468.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Jig-
saw’

statistic=1278.000, p-value=0.444

Same proportions of errors (fail to
reject H0)

• Model ’Jigsaw + Cutmix’ VS
’Depth’

statistic=857.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Hog’

statistic=445.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Rot +
Unlabeled’

statistic=326.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Macro
+ Unlabeled’

statistic=201.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Unla-
beled’

statistic=482.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Jig-
saw + Unlabeled’

statistic=968.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Rot +
Cutmix’

statistic=1275.000, p-value=0.000

reject H0

• Model ’Jigsaw + Cutmix’ VS ’Macro
+ Cutmix’

statistic=327.000, p-value=0.000

reject H0

The test is particularly suggested when the methods being compared can only be assessed once, e.g. on a single test set, as
opposed to numerous evaluations using a resampling methodology, such as k-fold cross-validation.

C.2. GAT on a supplementary Chest X-ray dataset: NIH

We present in Figure 6 similar study of the main paper, but on the NIH dataset. Our conclusions that GAT outperforms
Adversarial training (circles in 6) are confirmed on this dataset as well.
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Figure 6. Comparison of different Task Augmentation strategies with single-task models using Adversarial Training; Clean and robust
AUC of GAT vs Single task adversarial training to diagnose Atelectasis and Edema pathologies for the NIH dataset

Table 12. Four Different Ti Scenarios: T1 ; standard training, T2 : adversarial training @ Goodfellow, T3 : adversarial training @ Madry,
T4 : adversarial training @ Trades (Zhang et al., 2019), and T5 : adversarial training @ Fast(Wong et al., 2020), with 3 different task
augmentations and equal weighting strategies.

Scenario Clean accuracy (%) Robust accuracy (%)
Jigsaw Macro Rotation Jigsaw Macro Rotation

T1 : Standard training 88.78 93.04 69.67 0.59 0.06 3.18
T3 : Madry AT 64.9 83.00 68.23 20.25 32.16 25.43
T2 : Goodfellow AT 55.01 77.49 42.29 40.5 38.24 34.43
T4 : Trades AT 46.4 60.73 50.24 33.61 42.76 42.05
T5 : Fast AT 52.35 78.18 56.36 19.06 26.56 19.84
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Table 13. Evaluation results of Two Different Ti Scenarios: T1 (standard training), T2 (adversarial training), with 3 different task
augmentations and 5 weighting strategies. In bold, the best values for each scenario

Scenario Weight Clean accuracy (%) Robust accuracy (%)
Jigsaw Macro Rotation Jigsaw Macro Rotation

T1

Equal 88.78 93.04 69.67 0.59 0.06 3.18
GradVac 89.08 93.01 68.42 0.26 0.09 3.81
IMTL 61.46 93.75 71.24 0.98 0.09 3.81
GAT [Ours] 41.65 93.89 70.26 0.00 0.24 4.33
PCGrad 88.85 92.99 69.11 0.69 0.11 3.13

T2

Equal 55.01 77.49 42.29 40.5 38.24 34.43
GradVac 44.67 64.11 57.71 36.24 35.56 40.17
IMTL 42.05 69.63 59.61 33.84 48.21 39.93
MGDA [Ours] 43.99 73.7 56.51 32.95 48.38 36.13
PCGrad 41.6 63.76 56.38 33.8 44.74 41.59

Table 14. Hyper-volume of different fronts. Lower values mean better pareto-fronts.
Weight Hyper-volume

MGDA (OURS) 0.4442
IMTL 0.4534
PCG 0.4679
GV 0.4497

C.3. GAT combined with other weighting strategies

We evaluate 5 weighting strategies on Resnet-50 architectures:

1. Equal weights (Equal),

2. Impartial Multi-task Learning (IMTL) (Liu et al., 2021),

3. Multiple Gradient Descent Algorithm (MGDA) (Sener & Koltun, 2018),

4. Gradient Vaccine (GradVac) (Wang et al., 2020),

5. Project Conflicting Gradients (PCGrad) (Yu et al., 2020)

The results in Table 13 uncover that adversarial training using the Macro task yields the best performance in 4 over 5
weighting strategies, and that MGDA weighting strategies yields the best clean and robust accuracy among the weighting
strategies (with the MACRO task). MGDA uses multi-objective optimization to converge to the pareto-stationnary for
both the tasks we train over. This search algorithm shows that we can attain loss landscapes with high clean and robust
performances that greedy gradient algorithms (equal weights, GradVac, PCGrad) fail to uncover.

We used the default hyper-parameters for the weighting strategies. One possible work would be to fine-tune the weighting
strategies to the adversarial training setting.

Hyper-volume. Hyper-volume is a popular metric to compare different pareto fronts. It only needs a reference point as
showed in Fi.7. It calculates the area/volume, which is dominated by the provided set of solutions with respect to a reference
point. We use the implementation from the Pymoo library1.

We provide in Table ?? the hyper-volume metric of the fronts obtained using each of the weighting strategies (MGDA,
IMTL, GV, PCG) we compare. Lower values indicate better solutions. The results confirm that using MGDA for GAT leads
to better pareto-fronts.

1https://pymoo.org/misc/indicators.html
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Figure 7. Hypervolume (Fonseca et al., 2006)

Table 15. Impact of the number of tasks on the robust accuracy of models.
Added tasks Robust accuracy (%) Number of tasks
Target (No auxiliary task) 39.09 1
Target + Jigsaw 32.95 2
Target + Rotation 36.13 2
Target + Macro 48.38 2
Target + Jigsaw + Rotation 35.45 3
Target + Jigsaw + Macro 16.13 3
Target + Rotation + Macro 56.21 3
Target + Macro + Rotation + Jigsaw 28.24 4

C.4. Impact of number of tasks

We show in Table 15 how robust accuracy of models fluctuate depending on the choice and number of auxiliary tasks. It
seems that the Jigsaw task is the most vulnerable and causes significant degradation of the robustness of the model.

C.5. Adaptive attacks: AutoAttack

We evaluate for all the models of the study the adversarial robustness against AutoAttack. For 3/4 scenarios, adversarial
training with task augmentation using Macro tasks outperforms single-task adversarial training.

C.6. Surrogate attacks

We evaluate in Table 17 the transferability of attacks from a surrogate model to a target model. Both models are trained on
the same training dataset.

(1) When the target model has an auxiliary task, the success rate of the attack crafted from a single-task surrogate model
drops by 14%. (2) When the surrogate model has an auxiliary task, the success rate against a single task target model drops
by 60%.

(1) indicates that the adversarial examples generated to fool a multi-task model actually lie in a loss landscape that is not
adversarial for the single task model: The PGD optimization is misguided when multiple tasks are present.

(2) The adversarial examples generated against one single task are actual relevant to models with multiple tasks. It means
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Table 16. Robust accuracy (%) against AutoAttack of different models adversarially trained with GAT, with 3 different task augmentations,
compared to their counterpart single task adversarially trained models. In bold the cases where GAT outperforms single-task AT.

Dataset Scenario Auxiliary task
None Jigsaw Macro Rotation

CIFAR-10
100% Dataset 27.01 29.63 32.54 13.82
10% Dataset 14.27 11.63 15.00 11.56
WideResnet28-10 36.29 15.99 34.44 25.72
WideResNet-70-16 36.29 15.99 34.44 25.72

STL-10 100% Dataset 19.40 12.78 20.02 17.64

Table 17. Evaluation results of Three Different combinations of surrogate models and target models. For each combination, we craft
the adversarial examples on the surrogate and evaluate the success rate of the examples on the target models. Both surrogate and target
models are trained with standard training.

Target→ Single Task Auxiliary Rotation Auxiliary Jigsaw
Surrogate ↓ Success rate %
Single Task 98.47 84.55 86.56

Auxiliary Rotation 37.95 98.05 79.86
Auxiliary Jigsaw 37.48 79.35 98.59

that multitask learning by itself has the same vulnerable area as the single task-learning, it is just that gradient-based attacks
have more difficulty to find them.

28


