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Abstract

Information theoretic quantities play a central
role in machine learning. The recent surge in the
complexity of data and models has increased the
demand for accurate estimation of these quanti-
ties. However, as the dimension grows the estima-
tion presents significant challenges, with existing
methods struggling already in relatively low di-
mensions. To address this issue, in this work,
we introduce REMEDI for efficient and accurate
estimation of differential entropy, a fundamen-
tal information theoretic quantity. The approach
combines the minimization of the cross-entropy
for simple, adaptive base models and the estima-
tion of their deviation, in terms of the relative
entropy, from the data density. Our approach
demonstrates improvement across a broad spec-
trum of estimation tasks, encompassing entropy
estimation on both synthetic and natural data. Fur-
ther, we extend important theoretical consistency
results to a more generalized setting required by
our approach. We illustrate how the framework
can be naturally extended to information theoretic
supervised learning models, with a specific fo-
cus on the Information Bottleneck approach. It
is demonstrated that the method delivers better
accuracy compared to the existing methods in In-
formation Bottleneck. In addition, we explore
a natural connection between REMEDI and gen-
erative modeling using rejection sampling and
Langevin dynamics.
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1. Introduction
Information theoretic quantities such as entropy, cross-
entropy, mutual information, relative entropy (Kullback-
Leibler divergence), and conditional entropy are abundant
in machine learning. Many learning algorithms are derived
from such quantities, and recent advances have revealed that
they can provide learning objectives on their own (Tishby
& Zaslavsky, 2015; Alemi et al., 2016), or in combination
with other terms (Sarra et al., 2021; Kingma & Welling,
2013). In some settings, an information theoretic objective
may reduce to a simple expression in practical machine
learning algorithms; for example: minimizing the forward
relative entropy R(P ||Q) with respect to Q, having samples
{xi} ∼ P, can be achieved by minimizing the negative log-
likelihood. However, these quantities are usually difficult
to estimate even in moderately high dimensions (Gao et al.,
2018).

In this work, we turn our attention toward the estimation
of the differential entropy (DE). This quantity appears in
many places throughout machine learning, such as rein-
forcement learning (Haarnoja et al., 2017), unsupervised
learning (Sarra et al., 2021), the Information Bottleneck
method (Alemi et al., 2016; Kolchinsky et al., 2019), and di-
mensionality reduction (Faivishevsky & Goldberger, 2008).
Often, differential entropy serves the role of something to
be maximized, perhaps under some constraints, such as in
the maximum entropy approaches (Jaynes, 1957), or the
Information Bottleneck method (Tishby et al., 2000; Tishby
& Zaslavsky, 2015). Therefore, it is advantageous that an es-
timator is differentiable with respect to the data, something
not true for many estimators, e.g., k-nearest neighbor-based
estimators. There exist kernel-based plug-in estimators that
are differentiable, however, they are prohibitively data in-
efficient in dimensions as low as 10 (see Chapter 20.3 in
(Wasserman, 2004)).

Recent works (Schraudolph, 2004; Pichler et al., 2022),
have introduced gradient-based learning objectives as up-
per bounds to the differential entropy, in an extension of
classical kernel density estimation techniques (Rosenblatt,
1956; Parzen, 1962; Ahmad & Lin, 1976). However, these
estimators still lie in the class of plug-in estimators and are
affected by the data inefficiency in large dimensions, see
Sec. 3.2 and Appendix C.1.
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To this end, our contributions are as follows —

• We introduce the Relative Entropy MixturE moDel cor-
rective transformatIon (REMEDI) approach that com-
bines the strengths of recent advances in the estimation
of information theoretic quantities (Pichler et al., 2022;
Belghazi et al., 2018) to improve DE estimation. The
approach takes modern plug-in entropy estimators and
refines their estimates with corrections obtained via the
Donsker-Varadhan formula.

• We present theoretical results proving the consistency
of the proposed estimator, under the assumption that
the data is sub-Gaussian, whereas existing related re-
sults put compactness assumptions on the support of
the data.

• We demonstrate the limitations of the current state-of-
the-art plug-in entropy estimators in moderately high
dimensions. We show that applying REMEDI correc-
tions to the existing differential entropy estimators sig-
nificantly improves entropy estimation in benchmark
datasets.

• We discuss the application of our approach in super-
vised learning with the Information Bottleneck frame-
work, to better estimate the mutual information be-
tween inputs and the latent space. On classifica-
tion tasks with the MNIST, CIFAR-10, and ImageNet
datasets, we show that REMEDI achieves better classi-
fication accuracy than state-of-the-art approaches.

• We explore the generative modeling aspect of our ap-
proach by highlighting the connections of REMEDI
with (i) rejection sampling, and (ii) stochastic differen-
tial equations.

2. Related works
Estimators of differential entropy are usually classified as
plug-in estimates, sample-spacings based estimates, and
nearest neighbor based estimates (Beirlant et al., 1997).
A classical estimator for the differential entropy is Parzen-
window estimation, which is provably consistent under weak
assumptions (Ahmad & Lin, 1976). It is known that Parzen-
window approximation is data-inefficient, see (Wasserman,
2004). Modern extensions of (Ahmad & Lin, 1976) come
from (Schraudolph, 2004), where each kernel has its pre-
cision matrix parametrized by its lower Cholesky factors,
with respect to which it is also differentiable, which enables
gradient-based learning. In (Pichler et al., 2022), this is
further extended to involve parametrized means and weights
for each kernel. The three above-mentioned approaches
are all plug-in estimators (Beirlant et al., 1997), where the
latter two involve a training step, whereby a mixture of

multivariate normal distributions are fitted to the data using
gradient-based training.

In recent studies (Belghazi et al., 2018), a new method
has been introduced for computing the mutual information
MI(X;Y ) between two random variables X,Y , based on
neural networks and the Donsker-Varadhan representation
formula. The method exploits that the mutual information is
the same as the relative entropy between PXY and PX ⊗PY ,
which makes the Donsker-Varadhan formula a lower bound
for the mutual information. However, recently (McAllester
& Stratos, 2020) it has been shown that such bounds are sta-
tistically difficult to approximate when PXY and PX ⊗PY
are too different. Using a base distribution, the same type of
bounds on the relative entropy can be exploited for comput-
ing the differential entropy, then appearing as upper bounds,
see Sec. 3. Recent studies (Park & Pardalos, 2021; Aharoni
et al., 2022) have taken this direction to neural differential
entropy estimation. However, the authors only consider
very simple base distributions, which implies poor sam-
ple efficiency, likely introducing the problems presented in
(McAllester & Stratos, 2020).

In this work, we explore the combination of a more flexible
mixture of Gaussian base distribution with the Donsker-
Varadhan type bound to propose an improved neural density
estimator. In addition, we theoretically prove that our esti-
mator is consistent, under weaker assumptions on the data
distribution compared to previous works (Belghazi et al.,
2018).

3. Method
In this section, we present the REMEDI approach for en-
tropy estimation. We state the limitations of the existing en-
tropy estimation approaches and discuss the ways REMEDI
addresses these limitations. Furthermore, we present the
optimization algorithm for solving the loss function using
finite data samples.

3.1. Preliminary concepts

In this section, we define the necessary concepts that will
be used throughout the paper.

Let P and Q be two probability measures, such that P ≪ Q,
on a Polish space X and its Borel σ-algebra Σ. X may be
taken to be Rd or a (closed) subset thereof.

The relative entropy, or Kullback-Leibler divergence, from
P to Q is defined as

R(P ∥ Q) = EP
[
log

(
dP
dQ

)]
=

∫
log

(
dP
dQ

)
dP (1)

The Donsker-Varadhan representation for the relative en-
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Figure 1: KNIFE training curves with error bars on 8-
dimensional triangle and uniform ball datasets. It is ob-
served that increasing the number of components M for
KNIFE leads to overfitting in both datasets.

tropy states that

R(P ∥ Q) = sup
T :X→R

EP[T ]− logEQ[eT ], (2)

where the supremum is taken over the class of continuous
bounded functions, or the class of Borel-measurable func-
tions from X to R (Donsker & Varadhan, 1983; Budhiraja
& Dupuis, 2019).

Assume that P,Q ≪ λ, where λ is the Lebesgue measure.
Then they have densities p, q. The definition of the differen-
tial entropy of P is

H(P) = −EP
[
log

dP
dλ

]
= −EP [log p] . (3)

3.2. Limitations of existing entropy estimation
approaches

Given n samples x1, x2, ..., xn from the data distribution
p(x) an oracle estimator of entropy is the Monte Carlo esti-
mator: ĤOracle(x) = n−1

∑n
i=1 − log p(xi). However, in

practice, we rarely know the true data density p(x). There-
fore, a large body of literature focuses on finding an accurate
plug-in estimator of the density p̂(x) which can replace p(x)
in the oracle estimator.

The Parzen window density estimation for p(x) amounts
to specifying a bandwidth h and then letting p̂(x) =
1
nh

∑n
i=1 ϕ(

x−xi

h ), where ϕ is the standard isotropic nor-
mal density in Rd. In (Schraudolph, 2004) this is improved
by parametrizing the positive definite covariance matrices
of the individual kernels by their lower Cholesky factors,
allowing for gradient-based learning of them.

In (Pichler et al., 2022), the authors propose a plug-in den-
sity estimator, KNIFE, that is a learnable mixture of M
multivariate Gaussian kernels. However, the number of
mixture components, M used in KNIFE, is treated as a hy-
perparameter to be optimized using discrete grid search. In

our experiments, we found that training KNIFE requires del-
icate tuning of the number of components M . In the training,
KNIFE minimizes the cross-entropy loss function which is
an upper bound to the true entropy i.e. H(P) ≤ LKNIFE

(Eq. 6 in (Pichler et al., 2022)). In Fig. 1, we present the
validation (solid) and training (dotted) loss curves by fit-
ting KNIFE on 8-dimensional triangle and uniform ball (see
Sec. D.3) datasets. We observe that increasing M leads
to overfitting on both datasets. In addition, the best esti-
mate of the entropy on the validation set lies significantly
away from the true entropy (green dotted line). The estima-
tion errors are even worse when the data dimension 20 (see
Fig. 12 in Appendix C). This behavior is in line with the
data inefficiency of the simpler kernel density estimators in
moderately large dimensions (Wasserman, 2004). To this
end, we propose REMEDI that applies a correction to any
simple learnable base density. We show that the REMEDI
estimator is theoretically consistent and is tractable using
existing optimization tools.

3.3. The REMEDI approach

In this section, we derive a bound that is tight to the true
entropy H(P) and can be parametrized for efficient opti-
mization. Using Eq. (2), we have,

H(P) = −EP [log p]

= −EP [log q]− EP [log (p/q)]

= −EP [log q]−R(P ∥ Q)

= −EP [log q]− sup
T :X→R

(EP[T ]− logEQ[eT ])

(4)

The first term in Eq. (4) is known as the cross-entropy from
P to Q. Working with Eq. (4), we have,

H(P) ≤ −EP [log q]−
(
EP[T ]− logEQ[eT ]

)
=: LREMEDI

(5)
where equality in Eq. (5) holds when taking the infimum
on the right-hand side with respect to T . It can be shown
that minimizing Eq. (5) is equivalent to minimizing a cross-
entropy loss between the Gibbs density p̃ induced by T and
true density p. Proposition B.1 in the appendix provides
more insight into this bound in Eq. (5).

Proposition B.1 implies that, (i) for any choice of Q optimiz-
ing RHS of Eq. 5 is equivalent to optimizing a cross-entropy
loss between p̃ and true density p, and (ii) the optimal solu-
tion is reached when the associated density is equal to the
true density. Therefore, we use Eq. (5) as a loss function,
denoted by LREMEDI, which we minimize to estimate H(P).

3.4. Algorithm

Given a set of n samples {xi}ni=1 from the data distribution
P and m independent samples {x̃j}mj=1 from Q, we can min-
imize LREMEDI with standard gradient-based optimization
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tools, by considering its empirical counterpart:

L̂REMEDI =
1

n

n∑
i=1

− log q(xi)︸ ︷︷ ︸
L̂KNIFE

−

(
1

n

n∑
i=1

T (xi)− log

(
1

m

m∑
i=1

eT (x̃i)

))
︸ ︷︷ ︸

L̂DV

.

(6)

The loss function L̂REMEDI has two components, (i) the cross-
entropy loss L̂KNIFE for training a KNIFE base distribution,
and (ii) the Donsker-Varadhan loss L̂DV. Here, x̃1, ..., x̃n
represents n samples from the base distribution. Although
we chose KNIFE as the base distribution Q it can be re-
placed by any distribution with a tractable likelihood and
efficient sampling scheme. In our experiments, we found
that KNIFE with a few components is a good candidate for
the base distribution. Following (Belghazi et al., 2018) we
parametrize T as a neural network, which provides a flexible
class for function approximation (Hornik et al., 1989).

We present the implementation details of REMEDI in Algo-
rithm 1. The parameters θKNIFE, ϕT denote the parameters
of KNIFE and the neural network T respectively. Note that,
optimizing L̂DV using naive gradient routines in, e.g., Py-
torch (Paszke et al., 2019) introduces bias in the stochastic
gradient estimation of the log of expectation term in the DV
loss (see Eq.12 in (Belghazi et al., 2018)). To alleviate this
we use large batch-sizes and exponential moving average
(Belghazi et al., 2018) in our experiments.

Algorithm 1 REMEDI algorithm

1: Draw n minibatch sample (x1, ..., xn) from p(x)
2: Initialize (θKNIFE, ϕT )
3: for k1 epochs do
4: Update θKNIFE optimizing cross-entropy loss using

the samples
5: end for
6: Draw m samples (x̃1, ..., x̃m) from KNIFE
7: for k2 epochs do
8: Use (x1, ..., xn) and (x̃1, ..., x̃m) to update ϕT by

optimizing the loss L̂DV

9: end for
10: return θ̂KNIFE, ϕ̂T

3.5. Theoretical results

To assess the validity of the REMEDI approach to entropy
estimation, we show in Appendix A that, under weak con-
ditions on P and Q, the estimator satisfies an appropriate
form of consistency. This requires considering the limit
of increasing both the amount of samples n taken from

P and m, taken from Q. By the law of large numbers,
L̂KNIFE = n−1

∑n
i=1 − log q(xi) → C(P ||Q), and what

needs to be shown for consistency is that, under appropriate
conditions, L̂DV → R(P ||Q). This is the done in Theo-
rem A.15. Then L̂REMEDI, by Eq. (6), converges to H(P).

An analogous result for mutual information estimation is
stated and proved in (Belghazi et al., 2018). However, they
require that X be compact. This is much too strong for
our purposes, since any linear combination or convolution
of Gaussians has infinite tails. For example (see Sec. 4),
the two moons dataset has this property and, even more
importantly, a common modeling choice for the latent space
conditional distribution in the Information Bottleneck frame-
work is to use a multivariate normal.

4. Experiments
In this section, we perform experiments to evaluate REMEDI
in various unsupervised and supervised tasks ranging from
differential entropy estimation, deep latent variable models,
and generative models. We demonstrate using synthetic and
natural datasets that REMEDI can easily be applicable in
these tasks.

4.1. Entropy estimation

Entropy estimation is an important step in many real-world
datasets. However, complex intrinsic features of the data
distribution, e.g. high-dimensionality, and multi-modality
can make the task challenging. In this section, we apply
REMEDI for the entropy estimation of two such complex
datasets: (1) Two moons, and (2) Triangle dataset (Pichler
et al., 2022) (see Appendix C for additional benchmarks).
On these datasets, we compare REMEDI with KNIFE (Pich-
ler et al., 2022) the current state-of-the-art approach for
entropy estimation. Furthermore, we analyze the inner work-
ings of how REMEDI corrects the base distribution.

4.1.1. TWO MOONS

We apply our method to the popular two moons dataset from
Scikit-learn (Pedregosa et al., 2011). Here for illustration,
we use 8 components for the KNIFE base-distribution. In
Fig. 2a we see that the training process for KNIFE planes out
around its final estimate at around 0.45. Here, the REMEDI
takes over and manages to push the estimate down below
0.30. This is close to the true entropy of the dataset; here,
the entropy offers no closed-form expression but an oracle
computation, using kernel density estimation on one million
samples, yields a value close to 0.29, see Appendix D.3.2.

To facilitate a better understanding of the learning mech-
anism of REMEDI, Fig. 2b shows a visualization of the
correction given by the method, compared to the contours
of KNIFE, i.e. Q, and samples from P. We can see that
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Figure 2: Results on two moons dataset. In the middle we see what direction (positive or negative) REMEDI affects the base
distribution. To the right is the unnormalized distribution implied by q(x)eT (x).

REMEDI reinforces low-probability regions of the data, with
respect to Q, by putting higher relative corrections there.
This is in line with the interpretation of T as learning the
(log) unnormalized Radon-Nikodym derivative d P

dQ . Ex-
ploiting this notion, we provide the corresponding learned
density plot in Fig. 2c.

4.1.2. TRIANGLE MIXTURE

In this section, we compare REMEDI to KNIFE on the tri-
angle mixture dataset (Pichler et al., 2022). This dataset
consists of samples from a mixture of triangle distributions
resulting in many modes. Applying REMEDI to the one-
dimensional version of the dataset yields Fig. 3a. Since
the normalizing constant is easily computed in one dimen-
sion, the normalized learned distribution along with the
true density, is shown in Fig. 3b. The high-dimensional
versions of this dataset constitute challenging targets for
our model. In (Pichler et al., 2022), the authors showcase
decent results in 8 dimensions, although still missing the
target by several integer points. This is the eight-fold prod-
uct distribution of one-dimensional two-component distribu-
tions, resulting in a 28-modal distribution, see Appendix D.3.
The true entropy if this distribution is 2.585. Applying a
16-component KNIFE estimator to this task results in an
estimates of around 4.36, where the improvement stops.
Adding REMEDI on top of this model improves this esti-
mate considerably to 3.08, see Fig. 4 for the full behavior.
Both estimates can be further improved by adding more
components to the KNIFE-based Q. In Appendix C, we
show that KNIFE with an increasing number of components
easily fails before reaching a good estimate, due to overfit-
ting issues, while using fewer with a REMEDI correction is
much more efficient.

4.2. Application to Information Bottleneck

Information Bottleneck (IB) (Tishby et al., 2000) is a popu-
lar latent variable model that aims to learn a representation
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(a) Training curve with standard deviations from 10
repetitions.
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(b) Comparison of REMEDI estimated pdf with KNIFE.

Figure 3: Results on one-dimensional triangle dataset. On
the bottom is the data distribution, compared to the density
that KNIFE and REMEDI (up to a constant) has learned.
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Figure 4: Training curve from the 8-dimensional triangle
dataset. The horizontal dashed line indicates where the
KNIFE training phase ends and REMEDI takes over.

Methods Entropy estimate
KNIFE 4.3563± 0.0528
REMEDI 3.0798± 0.0368
True 2.5852

Table 1: Estimates on 8-dimensional triangle dataset.

Z from the input X that is maximally compressive of X and
maximally predictive of the output Y . In practice, the learn-
ing problem is posed as a maximization problem (Tishby &
Zaslavsky, 2015) of the IB loss function:

LIB(Z) = MI(Z;Y )− β MI(X;Z) (7)

The loss function in Eq. (7) is in terms of the two mutual
information quantities. MI(Z;Y ) measures the predictive
information contained in Z and MI(X;Z) measures the
information about X contained in Z. Maximizing Eq. (7)
implies compressing the inputs while simultaneously maxi-
mizing the predictive information in the representation Z.
The Lagrange multiplier β serves to control the amount of
compression.

The Information Bottleneck has been applied in deep learn-
ing (Alemi et al., 2016; Achille & Soatto, 2018) to learn
compressed representation from high-dimensional inputs
e.g. images and texts that are highly predictive of the low-
dimensional targets e.g. labels. The usual practice is to
parametrize the representation Z by a stochastic encoder
pψ(z|x). Following (Alemi et al., 2016), we assume pψ(z|x)
to be a multivariate Gaussian distribution with mean µ(X)
and a diagonal covariance matrix Σ(X). However, it is
infeasible to calculate the mutual information MI(X;Z),
especially for complex datasets. Therefore, there are many
methods proposed in the literature for accurate estimation
of MI(X;Z) ranging from parametric (Alemi et al., 2016),
non-parametric (kernel density based) (Kolchinsky et al.,
2019; Pichler et al., 2022), and adversarial f-divergences
(Belghazi et al., 2018; Zhai & Zhang, 2022).

The application of REMEDI to estimate MI(X;Z) is

straightforward. From the decomposition MI(X;Z) =
H(Z)−H(Z|X) and the fact that we can analytically derive
H(Z|X), estimation of the mutual information boils down
to accurately estimating the entropy H(Z). We follow the
Algorithm 1 to apply REMEDI by replacing p(x) with the
stochastic encoder pψ(z|x). In applying REMEDI, we as-
sume a coordinate-wise independent isotropic Gaussian and
a 10-component KNIFE as the choices for the base distribu-
tion. Our choice for the number of components in KNIFE
is based on the number of classes in the data (see Fig.2 in
(Alemi et al., 2016)) and available GPU memory to fit the
parameters. Additional details about the implementation are
provided in the Appendix D.2.

We perform experiments to compare REMEDI against state-
of-the-art mutual information estimation approaches: VIB
(Alemi et al., 2016), KNIFE (Pichler et al., 2022), and MINE
(Belghazi et al., 2018). In our experiments, we followed the
open-source implementation of these approaches (the code
for our implementation is provided in the supplementary
materials). We evaluate REMEDI and other approaches
in image classification tasks on MNIST, CIFAR-10, and
ImageNet datasets. In our experiments, we use the standard
training and test splits for these datasets and closely follow
the network architectures from (Samaddar et al., 2023). We
run all methods for three different seeds. See Appendix D.2
for additional details.

Classification accuracy: In this section, we compare the
classification accuracy of each method on the test splits
of the three datasets. For evaluation metrics, we compute
the test set classification error and the log-likelihood (∝
MI(Z;Y )). We present the ”1 shot eval” from (Alemi et al.,
2016) where we take one sample from the encoder and pass
it to the decoder for prediction.

In Fig. 5, we plot the classification errors against the La-
grange multiplier β for the three datasets. On MNIST and
ImageNet, we observe that REMEDI consistently exhibits
the lowest classification errors for most of the β values.
On CIFAR10, all methods are seen to perform similarly,
however, REMEDI exhibits the lowest classification error
across the β values. Across the datasets, we observe im-
provements in accuracy by REMEDI, especially around the
values where the classification errors start to increase. This
region is interesting because it contains the minimum nec-
essary information (MNI) point (Fischer, 2020) where the
model retains the necessary information from the inputs to
predict the target and minimizes the redundant information
from the inputs. Additionally, we present similar plots based
on log-likelihood in Appendix G.1 where the conclusions
remain unchanged.

In Table 2, we present the best test accuracy and correspond-
ing log-likelihood across β for all the methods on the three
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(a) MNIST (b) CIFAR10 (c) ImageNet

Figure 5: Plot showing test error of the Information Bottleneck methods vs β on benchmark image classification datasets
(error bars represent standard deviations). For most β values, consistently REMEDI performs better than other methods on
MNIST and ImageNet. On CIFAR10, the classification errors are similar for all the methods. However, REMEDI exhibits
the lowest classification error across the β values.

datasets. On MNIST and CIFAR10, REMEDI performs bet-
ter than all methods in terms of the metrics. On ImageNet,
REMEDI performs similarly to the VIB method. However,
it learns significantly less information about the inputs mea-
sured (160.67 bits) by M̂I(X;Z) than the VIB (237.71 bits).
We note that on CIFAR10 and ImageNet we found stabil-
ity issues with the MINE implementation perhaps due to
the exponential term in the Donsker-Varadhan lower bound
(McAllester & Stratos, 2020).

In these experiments, we present results of two different
base distributions for REMEDI. We found that choosing an
independent isotropic Gaussian base distribution is com-
putationally more efficient than choosing a trainable base
distribution such as KNIFE. Additionally, our results indi-
cate that choosing a Gaussian base distribution increases the
classification accuracy of REMEDI especially on MNIST
and ImageNet.

Analysis of the latent space To understand the learning
mechanism of REMEDI, we try to visualize the Information
Bottleneck latent space. For the sake of visualization, we
train an IB model using REMEDI with 2-d latent space on
MNIST. Training using Algorithm 1 involves learning the
KNIFE base distribution and the corrections applied by
the REMEDI. Therefore, we analyze how each of the two
components captures the marginal distribution induced by
the IB latent space.

(a) Encoder samples (b) KNIFE (c) REMEDI

Figure 6: REMEDI marginal distribution of 2-d latent space
on MNIST.

We observe that the samples from the marginal distribution
of Z exhibit a clustering pattern in Fig. 6a where we can
identify 10 cluster components. These clusters represent
the 10 MNIST digits (Alemi et al., 2016). The KNIFE base
distribution, although having 10 mixture components, learns
mixture distribution in Fig. 6b with three identifiable modes.
We note that KNIFE struggles with identifying clusters that
are overlapping. In Fig. 6c, we observe that applying the
REMEDI based corrections helped improve the density esti-
mation significantly. Accurate marginal density estimation
in Fig. 6c implies the latent space is properly regularized.
In Appendix G.2, we perform this analysis throughout the
training process from which the conclusions were similar.
A similar analysis is also presented for CIFAR-10 in the
Appendix G.3. This perhaps explains the improvement in
accuracy shown by REMEDI over KNIFE in classification
tasks on MNIST and CIFAR-10.

4.3. Generative Models

One useful by-product of fitting a neural network T is that
we have implicitly defined a density p̃(x) := 1

C q(x)e
T (x),

with an unknown C, that approximates p(x). This can be
used in two common strategies for Monte Carlo sampling:
rejection sampling and sampling based on Langevin dynam-
ics. These two strategies and corresponding experiments are
briefly explained in the following subsections.

4.3.1. REJECTION SAMPLING

Rejection sampling to sample from p̃, using the density
q of Q for comparisons, amounts to the following proce-
dure. First, draw a sample X from Q. This sample is then
accepted or rejected based on comparing p̃(X) and q(X).
More concretely, if there is a constant C̃ ∈ (1,∞) such that
p̃(x)/C̃q(x) ≤ 1 for all x such that p̃(x) > 0, then X is
accepted with probability p̃(X)/C̃q(X).

From the specific form of p̃, we see that rejection sampling

7
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Methods MNIST CIFAR-10 ImageNet
Acc % LL Acc % LL Acc % LL

KNIFE (Pichler et al., 2022) 98.25 (0.093) 3.22 (0.005) 86.73 (0.394) 2.57 (0.007) 79.62 (0.053) 8.55 (0.006)
MINE (Belghazi et al., 2018) 98.01 (0.040) 3.22 (0.001) - - - -

VIB (Alemi et al., 2016) 98.34 (0.070) 3.24 (0.0003) 86.45 (0.135) 2.60 (0.013) 79.83 (0.061) 8.65 (0.003)
REMEDI (Gaussian base) 98.36 (0.076) 3.24 (0.003) 85.74 (1.671) 2.61 (0.056) 79.81 (0.047) 8.63 (0.002)
REMEDI (KNIFE base) 98.28 (0.105) 3.22 (0.004) 86.99 (0.176) 2.57 (0.005) 79.61 (0.015) 8.55 (0.006)

Table 2: Comparison of the best test accuracy and corresponding log-likelihood across the β values for MNIST, CIFAR-10,
and ImageNet (standard deviations in the parenthesis). In terms of the classification accuracy, on ImageNet REMEDI
performs close to the best performing method. However, on MNIST and CIFAR10 REMEDI shows improvement over the
state-of-the-art IB method.

here requires a constant C̃ such that eT (x) ≤ C̃. For such a
constant, a sample X from Q is accepted with probability
ϕ(X), where ϕ(x) := eT (x)

C̃
.

Revisiting the two moons dataset, using the learned T , rejec-
tion sampling is performed by taking C̃ as the maximum of
eT over the dataset, plus a small margin. In the experimental
run illustrated in Fig. 7, 10000 samples from Q were used,
out of which 2012 samples were accepted.

Figure 7: Left: 10000 proposals from Q. Right: 2012
accepted samples.

4.3.2. STOCHASTIC DIFFERENTIAL EQUATIONS

Figure 8: Q-samples X0 (leftmost) and XtH after simulat-
ing Eq. (8) with different β.

An alternative to rejection sampling, that does not require
sampling a large number of random variables from Q, is to
use Langevin dynamics based on q and T to sample from p̃.
This strategy is based on the stochastic differential equation

dXt = −∇V (Xt)dt+
√
2β−1dWt, X0 = x0, (8)

where the drift is defined by V (x) = − (log q(x) + T (x));
β ∈ (0,∞) is referred to as the inverse temperature. It is
straightforward to show that the invariant distribution of
X = {Xt}t≥0 is given by

1

Z
e−βV (x), (9)

where Z is the normalizing constant. Note that for the
choice β = 1, the exponent is precisely −V (x) =
(log q(x) + T (x)) and the density of the invariant distribu-
tion corresponds precisely to p̃. Based on this, the Langevin
dynamics Eq. (8) can be used to obtain samples from p̃.

Fig. 8 illustrates the outcome of the following experiment:
Taking X0 ∼ Q, we set the time horizon to tH = 0.1, and
simulate Eq. (8) using the Euler-Maruyama method with a
discretization parameter ∆t = 0.001 (i.e., 100 time steps).

5. Conclusion / Future work
In this paper, we introduce REMEDI, a mixture model cor-
rective transformation approach that combines recent plug-
in based entropy estimators with Donsker-Varadhan based
objectives, to improve the estimation of information theo-
retic quantities. We demonstrate the applicability of our ap-
proach to a variety of tasks ranging from entropy estimation,
supervised learning, to generative models. We theoretically
show the consistency of the REMEDI estimator under non-
compactly supported data distributions, which is required
by our framework. Using a range of benchmark datasets,
we show that REMEDI outperforms the state-of-the-art en-
tropy estimation approaches. We discuss the application of
REMEDI to the Information Bottleneck. We show that us-
ing this approach improves the performance of Information
Bottleneck in classification tasks on MNIST, CIFAR-10,
and ImageNet compared to the current state-of-the-art. In
addition, we show proof-of-concept that the REMEDI frame-
work can be applied to generative tasks, using approaches
such as rejection sampling and Langevin diffusion sampling.

It remains to be seen how this method performs in very
high dimension, for example, what results can be acquired

8
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when performing entropy estimation on image data such
as MNIST. When using a uniform base distribution, (Park
& Pardalos, 2021) finds that their method has some inter-
pretable results on MNIST, but it seems that it only weakly
learns to distinguish between in-distribution and out-of-
distribution data. Most likely, the sample efficiency is much
too low to learn much about the dataset. In these settings,
instead using Gaussian mixture models such as KNIFE,
copulas, or even normalizing flows may lead to base distri-
butions that provide samples close to the low-dimensional
data manifold, while also having tractable density functions.
Also, following the successful application of the Langevin
diffusion approach presented here, the connection to the
recently popularized score-based diffusion models (Song
et al., 2020b) should be explored.
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A. Consistency of REMEDI
Techniques such as Parzen-window estimation and KNIFE are weaker than REMEDI but are known to be consistent under
rather weak assumptions (Ahmad & Lin, 1976). This requires letting bandwidths go to zero and the number of mixture
components to infinity, sometimes quickly becoming intractable in even moderate dimensions (Wasserman, 2004). To justify
the method of letting ReLU-networks take some of the load and doing away with the infinitely many components, it is
important to understand whether such a consistency result can be restated with the growing complexity of the function class
of networks taking its place.

In this section, we will show that REMEDI is consistent, in the sense that it can approximate the relative entropy arbitrarily
well with many samples. (Belghazi et al., 2018) show consistency of their mutual information estimator, under the (strong)
assumption that the data and distributions are compactly supported. Such an assumption is undesirable in our case, since the
data P may have infinite tails (e.g. two moons) and the base distributions Q are Gaussian (mixtures).

It is possible to adapt the results of (Belghazi et al., 2018), to our entropy estimation setting. However, the generalization to
non-compact supports is non-trivial, and we provide it here for a specific class of neural networks, very similar to the ones
that we have used.

Assume that P and Q are probability measures on Rd with the Borel σ-algebra B(Rd), such that P ≪ Q. Recall that the
relative entropy, or KL-divergence, between P and Q is defined as

R(P ∥ Q) := EP
[
log

dP
dQ

]
. (10)

For a measurable function T : Rd → R, define the functional

R̃(T ) := EP[T ]− logEQ[eT ], (11)

and with a slight abuse of notation let, for a family F of functions T : Rd → R,

R̃(F) := sup
T∈F

R̃(T ) = sup
T∈F

(EP[T ]− logEQ[eT ]). (12)

The motivation behind these definitions is the central Donsker-Varadhan representation of the relative entropy, here restated
in terms of R̃.

Proposition A.1 (Donsker-Varadhan). Let P ≪ Q, then

R(P ∥ Q) = sup
T∈Cb

R̃(T ) = R̃(Cb), (13)

where Cb is the set of bounded continuous functions. The supremum may also be taken over bounded measurable functions.
The supremum is attained at T = log d P

dQ , which may not be bounded or continuous.

Let Pn and Qm be the empirical measures over n and m independent samples from P and Q, respectively. We define, for
n,m ∈ N, the empirical version of (12), based on Pn,Qm, as

R̃n,m(F) := sup
T∈F

(EPn [T ]− logEQm [eT ]). (14)

Note that in contrast to R(P ∥ Q) and R̃(F), the quantity R̃n,m(F) is random, and it is not clear in which fashion it
converges to R̃(F), if at all. This question falls under the field of empirical process theory (van de Geer, 2000). A few
common results from it will provide conditions on the class F such that R̃n,m(F) converges to R̃(F), almost surely. We
will give an overview of these and show how a class of ReLU networks fulfills them, while also being expressive enough for
Eq. (12) to approximate R(P ∥ Q) arbitrarily well.

12



REMEDI: Corrective Transformations for Improved Neural Entropy Estimation

A.1. Assumptions

As previously stated, we relax the assumption of (Belghazi et al., 2018) about compactness of the data space X ⊆ Rd. Thus
we simply assume that P and Q are probability measures on Rd, with P ≪ Q and R(P ∥ Q) < ∞. We will require finite
first moments, i.e., for X the identity mapping on Rd, we have (where ||.||p denotes the p-norm)

EP[||X||2],EQ[||X||2] < ∞. (15)

We also assume that Q is sub-Gaussian (see definition below), which holds for Gaussian mixtures, and that our parameter
space Θ is a compact subset of RN for some N .

With the compactness assumption on Θ, it will follow that there is a common global Lipschitz constant LΘ (with respect to
the Euclidean norm ||.||2) and a common bound AΘ at zero for the neural network functions {Tθ : Rd → R}θ∈Θ, when
using for example ReLU activation functions. With these assumptions, the proof will follow from arguments from empirical
process theory, taken from (van de Geer, 2000), and a deeper look at the class of ReLU networks, specifically those with
two hidden layers.

Below, we state the definitions of sub-Gaussian and sub-exponential random variables, of which especially the latter is of
crucial importance to the proof. We follow the presentation in (Vershynin, 2018). Note that these definitions do not require
centeredness.

Definition A.2. We say that the random variable X in R is sub-Gaussian if there is a constant K1 such that

P(|X| ≥ t) ≤ e
− t2

K2
1 , ∀t ≥ 0. (16)

Further, we say that the random vector X ∈ Rd is sub-Gaussian if uTX is sub-Gaussian for all u ∈ Rd with ||u|| = 1.
Additionally the probability measure P on Rd is sub-Gaussian if X = idRd is sub-Gaussian under P.

Definition A.3. We say that the random variable X in R is sub-exponential if there is a constant K1 such that

P(|X| ≥ t) ≤ e−
t

K1 , ∀t ≥ 0. (17)

The following properties of sub-Gaussian and sub-exponential distributions will become necessary.

Proposition A.4. The following facts hold for sub-Gaussian and sub-exponential variables.

1. The components of a sub-Gaussian vector are sub-Gaussian.

2. A sum of sub-exponential random variables is sub-exponential.

3. X is sub-Gaussian if and only if X2 is sub-exponential.

4. If X is a sub-Gaussian random vector in Rd, then the random variable ||X||2, its Euclidean norm, is sub-Gaussian.

5. If X is a centered (E[X] = 0), sub-Gaussian random variable on R, then there exists a variance proxy σ2 ≥ 0 such

that E[etX ] ≤ e
σ2t2

2 for all t ∈ R. We say then say that X ∼ subG(σ2).

6. If X1 ∼ subG(σ2
1) and X2 ∼ subG(σ2

2) are independent, then X1 +X2 ∼ subG(σ2
1 + σ2

2).

7. If X ∼ subG(σ2) and a ∈ R, then aX ∼ subG(a2σ2).

8. If X ∼ subG(σ2), then for any a ≥ 0 we have P(X ≥ a) ≤ exp
(
− a2

2σ2

)
.

Proof. Property 1 follows immediately from the definition by taking u = (1, 0, 0, . . .), (0, 1, 0, . . .) etc. Properties 2, 3 and
5 are standard, see (Vershynin, 2018). Property 4 follows from Properties 1, 2 and 3 since ||X||22 =

∑d
i=1 X

2
i is the sum of

sub-exponential random variables and thus sub-exponential. The following computation shows Property 6, while Property 7
is immediate.
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E[et(X1+X2)] = E[etX1 ]E[etX2 ] ≤ e
σ2
1t2

2 e
σ2
2t2

2 = e
(σ2

1+σ2
2)t2

2 (18)

To obtain Property 8, we minimize a Chernoff bound; we have, for any t ∈ R,

P(X ≥ a) = E[1X≥a] ≤ E
[
1X≥a

etX

eta

]
≤ E

[
1X≥a

etX

eta

]
= E

[
etX

eta

]
= e−ta E

[
etX
]
≤ e−ta+

σ2t2

2 . (19)

Minimizing this over t yields t = a
σ2 , which upon reinsertion into Equation Eq. (19) gives

P(X ≥ a) ≤ e−ta+
σ2t2

2 |t= a
σ2

= e−
a2

2σ2 . (20)

A.2. Uniform laws of large numbers

An overview over necessary results from (van de Geer, 2000) is given below. Consider a class G of functions g : X → R.
Let the empirical measure be Pn := 1

n

∑n
i=1 δXi

, where Xi are i.i.d. draws from P. We are interested in asserting the
convergence of

EPn [g] =
1

n

n∑
i=1

g(Xi) (21)

toward EP[g] for all g in G. This is equivalent to the convergence of the ”worst” g with respect to the data, represented by
Pn, i.e. of supg∈G |EPn [g]− EP[g]| toward zero. This is a uniform law of large numbers (ULLN), which is called strong if
the convergence happens almost surely.

Let p ≥ 1 be a norm exponent; we will be interested in p = 1. The bracketing number and bracketing entropy are defined as
follows.
Definition A.5. Let δ > 0 and P be a probability measure on X . Assume that there exists a collection of pairs of functions
{[gLj , gUj ]}Nj=1 in G such that ||gUj − gLj ||p ≤ δ and for each g ∈ G there exist j such that gLj ≤ g ≤ gUj . The smallest such
N (or ∞) is the bracketing number Np,B(δ,G,P), and the bracketing entropy is Hp,B(δ,G,P) = logNp,B(δ,G,P).

The following law of large numbers will be used to prove the consistency. Note that the proof given below differs slightly
from that provided in (van de Geer, 2000).
Lemma A.6 (Lemma 3.1 in van de Geer). Assume that H1,B(δ,G,P) < ∞ for all δ > 0. Then G satisfies the strong
uniform law of large numbers (ULLN): if {Xi}ni=1 are i.i.d. samples from P, then

sup
g∈G

∣∣∣EPn [g]− EP[g]
∣∣∣ = sup

g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− EP[g]

∣∣∣∣∣ a.s.−−→ 0. (22)

Proof. Use the empirical process notation P f = EP[f(X)] for expectation with respect to P. Then Eq. (22) is
supg∈G |Pn g − P g| a.s.−−→ 0. Take δ > 0. Then we have the above finite collection {[gLj , gUj ]}

Nδ
j=1, and for each g ∈ G there

exists j = j(g) such that gLj ≤ g ≤ gUj . Then it holds for any g that |Pn g − P g| ≤ |Pn gUj(g) − P g| ∨ |Pn gLj(g) − P g| =
maxB∈{L,U} |Pn gBj(g) − P g|, and thus we have

lim sup
n→∞

sup
g∈G

|Pn g − P g| ≤ lim sup
n→∞

sup
g∈G

max
B∈{L,U}

∣∣∣Pn gBj(g) − P g
∣∣∣

= lim sup
n→∞

sup
g∈G

max
B∈{L,U}

∣∣∣(Pn−P)gBj(g) + P(gBj(g) − g)
∣∣∣

≤ lim sup
n→∞

sup
g∈G

max
B∈{L,U}

∣∣∣(Pn−P)gBj(g)
∣∣∣+ δ

= δ + lim sup
n→∞

max
j∈{1,...,Nδ}

max
B∈{L,U}

∣∣(Pn−P)gBj
∣∣

= δ a.s.,

(23)
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where the last equality follows from the strong law of large numbers applied to each gUj (Xi). Taking intersection of the
events where the SLLN holds for each pair (j, B) ∈ {1, . . . , Nδ} × {L,U}, yields an event of probability one. Since
they are finitely many pairs, a simple argument shows that (maxj∈{1,...,Nδ} |(Pn−P)gUj |)(ω) converges for all ω in this
intersection.

Since δ is arbitrarily small, we have that lim supn→∞ supg∈G |Pn g − P g| = 0 almost surely, which is the claim.

Now we need to prove that {Tθ : θ ∈ Θ} satisfies the bracketing condition, H1,B(δ,G,P) < ∞ for all δ > 0, with respect
to a sub-Gaussian P.

Definition A.7. The envelope of G is the function

G(x) = sup
g∈G

|g(x)|. (24)

We say that G satisfies the envelope condition if G ∈ L1(P).

Recall that FΘ shares a common Lipschitz constant LΘ and bound AΘ at zero.

Lemma A.8. FΘ = {Tθ : θ ∈ Θ} satisfies the envelope condition with respect to P.

Proof. Note first that, for any x,

G(x) = sup
θ∈Θ

|Tθ(x)|

= sup
θ∈Θ

|Tθ(0) + (Tθ(x)− Tθ(0))|

≤ sup
θ∈Θ

|Tθ(0)|+ sup
θ∈Θ

|Tθ(x)− Tθ(0)|

≤ AΘ + LΘ||x||2.

(25)

Thus we obtain, by finite first moment of P,

EP [G] ≤ EP [AΘ + LΘ||X||2] = AΘ + LΘ EP [||X||2] < ∞. (26)

Lemma A.9. Fexp
Θ = {eTθ : θ ∈ Θ} satisfies the envelope condition with respect to Q.

Proof. As noted in proof of Lemma A.8, supθ∈Θ |Tθ(x)| ≤ AΘ + LΘ||x||2. By monotonicity of the supremum and the
map x 7→ ex, we have

Gexp(x) = sup
θ∈Θ

|eTθ(x)| ≤ sup
θ∈Θ

e|Tθ(x)| = esupθ∈Θ |Tθ(x)| ≤ eAΘ+LΘ||x||2 . (27)

Thus we obtain,

EQ[Gexp] ≤ EQ[eAΘ+LΘ||X||2 ] = eAΘ EQ[eLΘ||X||2 ], (28)

which by sub-Gaussianity of Q is finite.

Lemma A.10 (Lemma 3.10 in van de Geer). Assume that G = {gθ : θ ∈ Θ} satisfies the envelope condition with respect to
P. Assume also that (Θ, d) is a compact metric space, and that θ 7→ gθ(x) is continuous for P-almost all x ∈ X . Then for
any δ > 0,

H1,B(δ,G,P) < ∞. (29)
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Proof. See (van de Geer, 2000).

We now show that {Tθ : θ ∈ Θ} satisfies a strong uniform law of large numbers (ULLN).

Theorem A.11. Suppose each element Tθ of the family of neural network functions FΘ = {Tθ : X → R}θ∈Θ depends
continuously on θ, for any fixed x ∈ X . With the standing assumptions on P, Q, and FΘ (see Section A.1), we have that

R̃n,m(FΘ)
a.s.−−→ R̃(FΘ), (30)

as n,m → ∞.

Proof. Using the identity | sup f − sup g| ≤ sup |f − g|, we have

|R̃n,m(FΘ)− R̃(FΘ)| =
∣∣∣∣ sup
T∈FΘ

(EPn [T ]− logEQm [eT ])− sup
T∈FΘ

(EP[T ]− logEQ[eT ])

∣∣∣∣
≤ sup
T∈FΘ

∣∣∣(EPn [T ]− logEQm [eT ])− (EP[T ]− logEQ[eT ])
∣∣∣

≤ sup
T∈FΘ

∣∣∣EPn [T ]− EP[T ]
∣∣∣+ sup

T∈FΘ

∣∣∣logEQm [eT ]− logEQ[eT ]
∣∣∣

= sup
θ∈Θ

∣∣∣EPn [Tθ]− EP[Tθ]
∣∣∣+ sup

θ∈Θ

∣∣∣logEQm [eTθ ]− logEQ[eTθ ]
∣∣∣ .

(31)

By Lemma A.8, we have that FΘ satisfies the envelope condition with respect to P. Thus by Lemma A.10 and A.6, we have
that FΘ satisfies the strong ULLN. Hence we have for the first term of Equation (31),

sup
θ∈Θ

∣∣∣EPn [Tθ]− EP[Tθ]
∣∣∣ a.s.−−→ 0. (32)

The second term of Equation (31) is more difficult, because the logarithm does not have a Lipschitz constant on (0,∞). To
obtain one, we need to know that EQm [eTθ ] and EQ[eTθ ] can be suitably bounded from below. Let again LΘ be the common
Lipschitz constant of FΘ and AΘ := supθ∈Θ |Tθ(0)|. Note first that

EQ[eTθ ] ≥ EQ[e−AΘ−LΘ||X||2 ] > 0. (33)

Let µQ
2 := EQ [||X||2]. For b := exp(−AΘ − LΘ(µ

Q
2 + 1)), we have on Θ,

Prob
(
EQm [eTθ ] < b,∀θ ∈ Θ

)
≤ Prob

(
EQm

[
e−AΘ−LΘ||X||2

]
< b
)

(Jensen’s) ≤ Prob
(
exp(EQm [−AΘ − LΘ||X||2]) < b

)
= Prob

(
EQm [−AΘ − LΘ||X||2] < log b

)
= Prob

(
EQm [||X||2] > −AΘ + log b

LΘ

)
= Prob

(
EQm

[
||X||2 − µQ

2

]
> −AΘ + log b

LΘ
− µQ

2

)
= Prob

(
EQm

[
||X||2 − µQ

2

]
> 1
)
.

(34)

Now, notice that ||X||2 − µQ
2 is centered sub-Gaussian under Q, with some variance proxy (σ2)Q2 . Then it holds that
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EQm

[
||X||2 − µQ

2

]
=

1

m

m∑
i=1

(||X||2 − µQ
2 ) ∼ subG

(
(σ2)Q2
m

)
. (35)

Returning to Equation (34), we get

Prob
(
EQm

[
eTθ
]
< b,∀θ ∈ Θ

)
≤ Prob

(
EQm

[
||X||2 − µQ

2

]
> 1
)

≤ exp

(
−12/

(
2
(σ2)Q2
m

))

= exp

(
− 1

2(σ2)Q2
m

)
.

(36)

where in the second inequality we used the concentration inequality, Property 8, from Proposition A.4, with a = 1. Since∑∞
m=1 exp

(
− 1

2(σ2)Q2
m
)
< ∞, we get by the (first) Borel-Cantelli lemma that

Prob
(
EQm

[
eTθ
]
< b,∀θ ∈ Θ, infinitely often

)
= 0. (37)

In other words, on our probability space (Ω,Σ,Prob), there is an event Ω′ ∈ Σ, with Prob(Ω′) = 1 and a function
M : Ω → N, such that m ≥ M(ω) =⇒ EQm

[
eTθ
]
(ω) > b for ω ∈ Ω′. Let b̃ := b ∧ EQ[e−AΘ−LΘ||X||2 ]. The function

log |[b̃,∞) has a Lipschitz constant 1/b̃. On Ω′, we have that for all m ≥ M(ω),

sup
θ∈Θ

∣∣∣logEQm [eTθ ]− logEQ[eTθ ]
∣∣∣ (ω) ≤ 1

b̃
sup
θ∈Θ

∣∣∣EQm [eTθ ]− EQ[eTθ ]
∣∣∣ (ω). (38)

Fexp
Θ = {eTθ : θ ∈ Θ} satisfies the envelope condition with respect to Q, by Lemma A.9. By Lemma A.10 and A.6, we

have then that Fexp
Θ satisfies the strong ULLN. Thus we have that the left-hand side of Equation (38) goes to zero. Then,

since Ω′ is a probability one event, we have for the second term of Equation (31),

sup
θ∈Θ

∣∣∣logEQm [eTθ ]− logEQ[eTθ ]
∣∣∣ a.s.−−→ 0. (39)

Because the intersection of the events in Equation (32) and Equation (39) is a probability one event, we have

sup
θ∈Θ

∣∣∣EPn [Tθ]− EP[Tθ]
∣∣∣+ sup

θ∈Θ

∣∣∣logEQm [eTθ ]− logEQ[eTθ ]
∣∣∣ a.s.−−→ 0, (40)

so by Equation (31), R̃n,m(FΘ)
a.s.−−→ R̃(FΘ).

Universal approximation

We will also need to show that the we can use the universal approximation theorem even when X is non-compact. We
begin by proving that, for a constant M ∈ [0,∞], we can truncate the output of a ReLU network with one hidden layer to
[−M,M ], by adding another layer.

Lemma A.12. Let Tθ1 : Rd → R be a neural network with one hidden layer, with ReLU activation functions. Then, for
M ≥ 0 there exists a two hidden layer ReLU network Tθ2 which truncates Tθ1 to [−M,M ], i.e.,

Tθ2(x) = M ∧ (−M ∨ Tθ1(x)), ∀x ∈ Rd . (41)

17



REMEDI: Corrective Transformations for Improved Neural Entropy Estimation

Proof. The output of the one hidden layer neural network, with width l, can be written

Tθ1(x) =

l∑
i=1

αi(β
T
i x+ γi)

+. (42)

Let the first hidden layer of Tθ2 be identical to the hidden layer in Tθ1 . Let its second hidden layer consist of two nodes with
weights α(1)

i = α
(2)
i = αi, and biases M and −M , respectively. Then the activations of the second hidden layer are

o(1) =

(
l∑
i=1

αi(β
T
i x+ γi)

+ +M

)+

= (Tθ(x)− (−M))+

o(2) =

(
l∑
i=1

αi(β
T
i x+ γi)

+ −M

)+

= (Tθ(x)−M)+,

(43)

as well as the bias node o(0) = 1. Let the output layer consist of one node with weights λ(0) = −M , λ(1) = 1, and
λ(2) = −1. Then the output of the network is

Tθ2(x) = λ(0) + λ(1)o(1) + λ(2)o(2)

= −M + (Tθ(x)− (−M))+ − (Tθ(x)−M)+

= M ∧ (−M ∨ Tθ1(x)).

(44)

Lemma A.13. Let P be a probability measure on Rd. Let f : Rd → R be bounded and continuous. Then, for ε > 0, there
exists a two hidden layer neural network Tθ : Rd → R such that EP[|f − Tθ|] < ε. Further, if f is bounded by M ′ − 1, then
Tθ can be chosen to be bounded by M ′.

Proof. Let M = supx∈Rd |f(x)|+ 1. Take a compact set C = [−K,K]d ⊆ X such that P(Cc) < ε
3M .

Now, by the universal approximation theorem (Hornik et al., 1989), take a one hidden layer neural network Tθ1 such that
supx∈C |Tθ1(x)− f(x)| < ε

3 . Then we have that

sup
x∈C

|Tθ1(x)| ≤ sup
x∈C

|Tθ1(x)− f(x)|+ sup
x∈C

|f(x)| < ε

3
+ (M − 1) < M. (45)

Assuming that Tθ1 uses ReLU activation functions (which is compatible by simple extension of the result in (Hornik et al.,
1989)), by Lemma A.12 there is an alternative two hidden layer network Tθ such that Tθ(x) = M ∧ (−M ∨ Tθ1(x)). Note
that Tθ(x) = Tθ1(x) for x ∈ C, since Tθ1(x) ∈ [−M,M ] for x ∈ C.

Then we have that supx∈C |Tθ(x)− f(x)| < ε
3 and |Tθ(x)| ≤ M for all x ∈ Rd. This gives us that

EP[|f − Tθ|] = EP[|f − Tθ|1C ] + EP[|f − Tθ|1Cc ]

≤ EP[|f − Tθ|1C ] + EP[|f |1Cc ] + EP[|Tθ|1Cc ]

≤ EP[(ε/3)1C ] + EP[M 1Cc ] + EP[M 1Cc ]

<
ε

3
+

ε

3
+

ε

3
= ε.

(46)

The last statement of the lemma follows, since we can take M = M ′.
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Theorem A.14. Let P and Q be probability measures on X , such that P ≪ Q and R(P ∥ Q) < ∞. Then, for any ε > 0,
there exists a two hidden layer neural network Tθ : X → R such that R(P ∥ Q)− R̃(Tθ) < ε.

Proof. By the Donsker-Varadhan representation theorem, there exists a continuous, bounded (say by M ′ − 1) function
T : X → R such that R(P ∥ Q)− R̃(T ) < ε/2. Let it be normalized such that EQ[eT ] = 1 (note that R̃(T + c) = R̃(T )
for c ∈ R). By Lemma A.13, with the probability measure (P+Q)/2, there exists a two hidden layer neural network Tθ,
bounded by M ′, such that EP[|T − Tθ|] < ε/4 and EQ[|T − Tθ|] < e−M

′
ε/4. Then we have that

R̃(T )− R̃(Tθ) = EP[T − Tθ] + (logEQ[eTθ ]− logEQ[eT ]︸ ︷︷ ︸
0

)

≤ EP[T − Tθ] + (EQ[eTθ ]− EQ[eT ]︸ ︷︷ ︸
1

)

≤ EP[|T − Tθ|] + EQ[|eTθ − eT |]

≤ EP[|T − Tθ|] + EQ[eM
′
|Tθ − T |]

<
ε

4
+ eM

′
e−M

′ ε

4

=
ε

2
,

(47)

where the first inequality follows from the identity log x ≤ x − 1, and the third from the Lipschitz constant eM
′

of the
exponential function restricted to [−M ′,M ′]. Combining the two inequalities, we have

R(P ||Q)− R̃(Tθ) =
(
R(P ||Q)− R̃(Tθ)

)
+
(
R̃(T )− R̃(Tθ)

)
<

ε

2
+

ε

2
= ε. (48)

The result

We are now able to state and prove our main theorem.

Theorem A.15. REMEDI is strongly consistent, up to an arbitrarily small precision ε > 0.

Proof. Choose the number of parameters N , (appropriately assigned to the first and second layer) and a compact set
Θ ⊂ RN , both large enough such that |R(P ∥ Q)− R̃(FΘ)| < ε/2, by Theorem A.14. By the triangle inequality,

|R(P ∥ Q)− R̃n,m(FΘ)| = |R(P ∥ Q)− R̃(FΘ) + R̃(FΘ)− R̃n,m(FΘ)|
≤ |R(P ∥ Q)− R̃(FΘ)|+ |R̃n,m(FΘ)− R̃(FΘ)|

<
ε

2
+ |R̃n,m(FΘ)− R̃(FΘ)|.

(49)

The second term converges to zero almost surely by Theorem A.11, and therefore the error converges to strictly less than ε
almost surely.

B. Justification of the loss function
In this section, we present the proof of Proposition B.1 which provides insights into the REMEDI loss function and it’s
connection to density estimation. We restate the following notations for their use in the proof. Let P and Q be the target
and base distribution, respectively, defined on the sample space X , with densities p, q, let X be a random variable with
distribution P, and T be a function from the class of continuous bounded functions, or the class of Borel-measurable
functions from X to R. Using the function T we define the Gibbs distribution G on the sample space of X , which has the
density p̃(x) = q(x)eT (x)

EQ[eT ]
.
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Proposition B.1. Given a base distribution Q, assuming EQ[eT ] exists, consider the following density defined by T ,

p̃(x) =
q(x)eT (x)

EQ[eT ]
.

Then,

(i) the right-hand side in Eq. (5) is equal to −EP log p̃

(ii) T ∗ is the solution of

sup
T :X→R

(
EP[T ]− logEQ[eT ]

)
,

if and only if the associated density p̃∗ satisfies p̃∗ = p for any base distribution Q.

Proof of Proposition 3.1. We prove Proposition 3.1 in the following two parts.

1. Showing LREMEDI = −EP log p̃ : Using the form of p̃ we can write,

−EP log p̃(X) = −EP log
q(X)eT (X)

EQ[eT (X)]

= −EP log q(X)−
(
EP T (X)− logEQ eT (X)

)
= LREMEDI

2. Showing that optimal T ∗ is achieved if and only if p̃∗ = p for any Q : For any function T : X → R, and corresponding,
previously defined, distribution G, we expand the following relative entropy,

R(P ||G) = EP log
p(X)

p̃(X)

= EP log
p(X)

q(X)eT (X)

EQ[eT (X)]

= EP log
p(X)

q(X)
− EP T (X) + logEQ eT (X) (50)

If part : We show that, for any T ∗, if the associated Gibbs density p̃∗ is equal to p then T ∗ is the solution of
supT :X→R

(
EP[T ]− logEQ[eT ]

)
.

Let, G∗ be the distribution with density p̃∗. Then we have,

p̃∗ = p =⇒ R(P ||G∗) = 0 =⇒ EP log
p(X)

q(X)
= EP T ∗(X)− logEQ eT

∗(X)

The last equality is due to Eq. (50). Since the LHS of the last equation is R(P ||Q) following Donsker-Varadhan representa-
tion (Donsker & Varadhan, 1983) we have,

R(P ||Q) = EP T ∗(X)− logEQ eT
∗(X) ≤ sup

T :X→R

(
EP[T ]− logEQ[eT ]

)
= R(P ||Q)

Therefore, T ∗ is the maximizer of
(
EP[T ]− logEQ[eT ]

)
.

Only If part : We show that, if T ∗ is the solution of supT :X→R

(
EP[T ]− logEQ[eT ]

)
then p̃∗ = p.
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Let, G∗ be the distribution with density p̃∗. From the Donsker-Varadhan representation, we have,

R(P ||Q) = sup
T :X→R

(
EP[T ]− logEQ[eT ]

)
= EP T ∗(X)− logEQ eT

∗(X) (51)

Therefore, we have,

R(P ||G∗) = EP log
p(X)

q(X)
− EP T ∗(X) + logEQ eT

∗(X) = 0

The first equality is due to Eq. (50) and the second is from Eq. (51). Hence the proof follows.

C. Additional synthetic benchmarks
To benchmark how REMEDI copes with increasing dimensionality, we provide two additional benchmarks, the d-dimensional
ball and hypercube, see Section D.3. Since the investigation concerns the high-dimensional performance on the REMEDI
correction and not Gaussian mixture models (see Section C.1 for that analysis), we stick to a single component KNIFE base
model, which also trains quickly For comparison, we juxtapose the results with the validation set cross-entropy estimate of
the 256-component KNIFE model, which performs the best on almost all benchmarks in Section C.1.

From Figures 9 and 10, we note that the REMEDI entropy estimates are consistently considerably closer to the true entropy
than what the KNIFE framework can achieve. Further, although some overfitting can be seen, it is nowhere near as bad as
for KNIFE (see Appendix C.1). This means that there is likely more for REMEDI to claim with additional hyperparameter
tuning.
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Figure 9: Training curves on ball dataset. The 8-dimensional dataset is shown to the left and the 20-dimensional to the right.
The 256-component KNIFE model is also shown for reference.
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Figure 10: Training curves on cube dataset. The 8-dimensional dataset is shown to the left and the 20-dimensional to the
right. The 256-component KNIFE model is also shown for reference.

C.1. Inefficiency of KNIFE

An often-cited folklore result in statistics is that Gaussian mixture models are dense in the space of probability measures
equipped with the weak-* topology. Parzen-windowing is a subset of Gaussian mixture models with the same property. As
a consequence, both model families can be considered for a wide range of tasks such as density and entropy estimation.
(Ahmad & Lin, 1976) give conditions for when a certain Parzen-windowing-based estimator converges to the differential
entropy. It is however well known that standard kernel density estimation suffers heavily from the curse of dimensionality,
see e.g. the table on page 319 of (Wasserman, 2004), which shows that an unreasonable amount of data points is required to
obtain low error on a multi-variate normal target P. Since Gaussian mixture models such as KNIFE have more flexibility,
they require less components to achieve the estimate. The question then remains whether they manage to be sufficiently data
efficient in growing dimension. We show empirically that the KNIFE approach suffers from similar sample inefficiency
problems, even in a moderate dimension.

Unlike (Wasserman, 2004) we cannot simply use a multi-variate normal as the target, since this is in the model class
of KNIFE for any amount of components. Instead, we opt for the 8-dimensional targets comprised of uniforms over a
hypercube/ball, as well as the 8-dimensional triangle dataset, with 50000 training and validation samples each, see Section
D.3.

Fig. 1 and Fig. 11 show that KNIFE hits a barrier on all datasets when increasing the number of components.
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Figure 11: 8-dimensional cube

Increasing the number of components further leads to
overfitting, implying that KNIFE is data-inefficient al-
ready in this dimension, especially on the cube and ball
datasets where the best estimates are comparable with
using just one component.

To give additional verification to this, we perform the
experiment again in 20 dimensions, shown in Fig. 12. We
note that additional components at best give an almost
negligible improvement to all three datasets; in fact, we
see no gain at all on the ball dataset.

It becomes clear that in both of these dimensions, that
REMEDI can provide much more valuable entropy es-
timates, at least outside of gigantic sample sizes. Still,
REMEDI like most algorithms will of course also suffer
from problems like overfitting and the curse of dimension-
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ality. However, the prior provided by the class of shallow
neural networks trained with the Donsker-Varadhan target
scales better to moderately high dimensions that Parzen-windowing and KNIFE struggle with.
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Figure 12: KNIFE training curves on three 20-dimensional datasets.

C.2. Impact of the base distribution

One of the primary innovations of REMEDI compared to MINE or DDDE is the adaptive base distribution. The base
distribution is optimized for cross-entropy, or equivalently in the large sample regime, to minimize the relative entropy

R(P ||Q) = EP
[
log

(
dP
dQ

)]
. (52)

This means that, on average, the samples from Q are closer to the support P, and that regions where P is stronger than Q,
i.e. having large d P

dQ , are less pronounced. As (McAllester & Stratos, 2020) points out, these regions are hard to learn and
account for in the Donsker-Varadhan estimate.
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Figure 13: Training curves on 8-dimensional triangle dataset for different amounts of components in the base distribution,
averaged over 10 runs. The right plot is zoomed into the REMEDI phase.
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Components KNIFE REMEDI
1 5.6612± 0.0035 3.2025± 0.1414
2 5.2999± 0.0045 3.1713± 0.1039
4 5.0095± 0.0632 3.0968± 0.1068
8 4.6331± 0.0331 3.0708± 0.0750
16 4.3413± 0.0541 3.0124± 0.0449
32 3.9894± 0.0214 2.9621± 0.0026

Table 3: Entropy estimates and standard deviations on 8-dimensional triangle dataset, based on 10 runs.

To investigate what impact a good base distribution has, we rerun the experiments on the 8-dimensional triangle dataset. In
order to get a better understanding of the long-term learning behavior, we double the number of epochs for both the base
distribution and the REMEDI to 100 and 200, respectively. In Fig. 13 and Table 3 we see that learning with a higher amount
of components is indeed easier. The estimates given by using 16 and 32 components clearly beat the others, and seem to be
learning at a faster pace. Surprisingly, the difference is not as pronounced between 1 and 2 components, but we do note that
the training stabilizes for more components, also there.

C.3. Comparison to normalizing flows

Other than mixture models such as KNIFE, more flexible methods of density estimation, such as normalizing flows, can
be used for entropy computation. This allows for better estimates, at the cost of computational efficiency. Therefore, we
provide a comparison between the performance of KNIFE/REMEDI and RealNVP (Dinh et al., 2016), a popular family of
normalizing flows, at different computational budgets, measured in wall-clock time. For RealNVP, we use an out-of-the-box
implementation provided by the ’normflows’ (Stimper et al., 2023) package. In Fig. 14, the methods are compared on the
multi-modal 8-dimension triangle dataset, for different depths (i.e. amount of flow steps) of RealNVP, while the REMEDI
settings are untouched from earlier experiments. Taking the lower convex hull of all wall time-entropy estimate pairs, we
see that KNIFE/REMEDI occupies practically the entire Pareto front. Note that there are other families of normalizing flows,
continuous normalizing flows (CNF) (Grathwohl et al., 2018) such as diffusion models (Song et al., 2020b;a; Kingma et al.,
2021) that may be able to better cope with this multi-modality, but since these require integrating the divergence of a vector
field along the ODE solution (Chen et al., 2018), they have high complexity and we consider them out of scope.
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Figure 14: Performance of REMEDI and KNIFE given computational budget, compared to RealNVP.
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D. Experimental details
D.1. Entropy estimation experiments

For the experiments on the triangular and two moons datasets, we opted for a neural network that outputs fθ(x) = eT (x) in
the Donsker-Varadhan formula, letting T (x) be obtained by taking the logarithm. Following (Park & Pardalos, 2021), this is
implemented using the ELU activation function (Clevert et al., 2015) with α = 1, by applying the transformation

ELU(x) + 1 + ϵ (53)

to the final output of the model, where ϵ is a small scalar.

The architecture here exploits the structure of the KNIFE base distribution. For each of the M components i, with weight
αi, mean µi and covariance Σi (and precision Λi = Σ−1

i ), the input x is projected onto the uncorrelated components, with
respect to Σi, by premultiplying by the lower triangular Cholesky factor Li, of Λi. Hence, we obtain M component-wise
decorrelated offset vectors

yi = Li(x− µi) ∈ Rd .

These are then transformed via learnable matrices Ai ∈ Rd×d, since the features produced by Li are not consistent between
dimensions, even when performing singular value decomposition. These are then propagated through a fully connected
intermediate network with two (three for the 20-dimensional hypercube) shared linear layers followed by ReLU activation
functions, reaching the penultimate layer with dimension dp (in most experiments 500). They are then scalar multiplied
with vectors bi ∈ Rdp to produce scalars, which are then combined via weighting by the component relevances

p(i|x) = p(i)p(x|i)
p(x)

∝ wi exp

(
−1

2
||Li(x− µi)||2

)
. (54)

This weighted sum is finally input to the transformation in Eq. (53). In Table 4, the specific setups for each of the entropy
estimation tasks are shown.

Hyperparameter Two moons Triangle Ball Hypercube
Dimension 2 1 8 8 20 8 20

Train set size 50,000 50,000 50,000 50,000 50,000 50,000 50,000
Validation set size 50,000 50,000 50,000 50,000 50,000 50,000 50,000

# KNIFE components 8 16 16 1 1 1 1
Intermediate network layer widths (500, 500) (500, 500) (500, 500) (200, 200) (200, 200) (1000, 1000, 500) (1000, 1000, 500)

# epochs KNIFE 50 50 50 10 10 10 10
# epochs REMEDI 100 100 100 100 100 100 100
Training batch size 1000 1000 1000 1000 1000 1000 1000

Optimizer Adam Adam Adam Adam Adam Adam Adam
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-4 1e-4
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Table 4: Hyperparameter settings used for the entropy estimation experiments.

D.2. Information Bottleneck experiments

For all the Information Bottleneck (IB) experiments, we have used the encoder-decoder architecture from (Samaddar et al.,
2023). On MNIST, we used an MLP encoder with three fully connected layers. The first two layers each contain 800
nodes with ReLU activations and the last layer has 2K nodes predicting the µ(X) and diagonal of Σ(X) of the encoder
distribution. On CIFAR-10, we used a VGG16 encoder. For both datasets, we used a single-layer neural network as the
decoder. We chose the latent space dimension K = 32 for both datasets. Note that, we apply the square transformation
of MI(X;Z) term in the IB objective for all methods. This transformation makes the solution to IB objective function
identifiable with respect to β (Rodrı́guez Gálvez et al., 2020). For evaluation, we chose the model at the final epoch on
MNIST and the model with the best validation loss on CIFAR-10 and ImageNet.

For the CIFAR-10 data following (Samaddar et al., 2023), we perform a data augmentation step before training where we
augmented the training data using random transformations. We use the padding of each training data point by 4 pixels
on all sides and crop at a random location to return an original-sized image. We perform a flip of each training set image
horizontally with a probability of 0.5. Furthermore, we transform the training and validation set image with mean =
(0.4914, 0.4822, 0.4465) and standard deviation = (0.2023, 0.1994, 0.2010).
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For ImageNet, we resize the input images to 299 × 299 pixels by cropping them at their center. Subsequently, we normalize
the images to achieve a mean of (0.5, 0.5, 0.5) and a standard deviation of (0.5, 0.5, 0.5). Our approach aligns with the
implementation of (Alemi et al., 2016), where we apply a transformation to the ImageNet data using a pre-trained Inception
Resnet V2 (Szegedy et al., 2016) network, excluding the output layer. This transformation results in the original ImageNet
images being reduced to a 1534-dimensional representation, which serves as the basis for all our obtained results. In
accordance with (Alemi et al., 2016), we employ an encoder featuring two fully connected layers, each comprising 1024
hidden units, along with a single-layer decoder architecture. We chose the latent space dimension K = 100 for ImageNet.

The implementations of MINE and REMEDI require us to specify a neural network to approximate the function T . For
MINE, following the implementation of (Belghazi et al., 2018) we chose a two-layer MLP with 512 nodes each and additive
Gaussian noise and ELU activations. For REMEDI, we chose a two-layer MLP network with 100 nodes per layer and ReLU
activations.

Implementing the mutual information estimators of KNIFE, MINE, and REMEDI requires us to perform sub-optimization
of their parameters inside the main optimization of the encoder-decoder parameters. We follow the IB implementations of
(Pichler et al., 2022) to freeze the parameters of the encoder-decoder before performing the sub-optimization of the mutual
information estimators. For KNIFE and MINE, we run the sub-optimization for 5 epochs. We train the mutual information
estimators and the encoder-decoder parameters using the same mini-batch.

For REMEDI with KNIFE base distribution, following Algorithm 1, we first train the KNIFE parameters for 5 epochs and
then fix the KNIFE parameter to train the parameters of the REMEDI network for 5 epochs. Note that, although ImageNet
has 1000 classes, we keep the choice of 10-component KNIFE consistent due to the heavy computational burden of fitting
a KNIFE with many components in high dimensions. We use a constant learning rate of 0.001 for training the mutual
information estimators.

For REMEDI with standard Gaussian base distribution, since we are facing a more challenging learning problem we train the
parameters of the REMEDI network for 30 epochs with a reduced learning rate of 0.0001. In addition, during training, we
consider an initial burn-in period of 5 epochs where we don’t train the REMEDI network and introduce it after epoch 5. In our
experiments, this improves the stability of the algorithm. Additional hyperparameter details regarding the encoder-decoder
training are described in the below Table 5.

Hyperparameters MNIST CIFAR-10 ImageNet
Train set size 60,000 50,000 128,1167

Validation set size 10,000 10,000 50,000
# epochs 100 400 200

Training batch size 200 200 2000
Optimizer Adam SGD Adam

Learning rate 1e-4 0.1 1e-4
Learning rate drop 0.6 0.1 0.97

Learning rate drop steps 10 epochs 100 epochs 2 epochs
Weight decay Not used 5e-4 Not used

Table 5: Hyperparameter settings used for the IB experiments.

D.3. Datasets

D.3.1. TRIANGULAR

The triangular dataset is structurally the same as the one appearing in (Pichler et al., 2022). It is defined for any dimension
d > 1 as the d-fold product distribution of bimodal the distribution pictured in Fig. 15b with itself, making it a 2d-modal
distribution. In one dimension, we use the 10-modal distribution in Fig. 15a, to match (Pichler et al., 2022).

26



REMEDI: Corrective Transformations for Improved Neural Entropy Estimation

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0 Density

(a) One-dimensional data distribution.
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(b) Marginal data distribution, for d > 1.

Figure 15: Triangle dataset.

D.3.2. TWO MOONS

The two moons dataset consists of samples from sklearn.datasets.make moons(), from Scikit-learn (Pedregosa et al.,
2011), with a noise level of 0.05. 5000 samples are plotted in Fig. 16. The entropy of this dataset does not offer a closed-form
expression. To have an oracle baseline, we thus take a million samples from the dataset and run a kernel density estimator,
with bandwidth 0.01, tested against one hundred thousand independent samples. This yields an entropy estimate of 0.2893,
with a standard error of 0.0022. As an additional check, we run a Kozachenko-Leonenko k-nearest neighbor estimator
(Kozachenko & Leonenko, 1987; Gao et al., 2018) on one hundred million samples, setting k = 10 and using the Euclidean
distance, which yields a value of 0.2892. Given the consistency properties of these estimators, we can confidently say that
the true entropy is close to 0.29.

Figure 16: Samples from the two moons dataset.

D.3.3. UNIFORM HYPERCUBE/BALL

The datasets used to compare dimensional scaling between KNIFE and REMEDI are from the uniform distribution over a
centered unit volume d-dimensional ball Bd and cube Hd, respectively. This is easily scaled to any dimension d. By the
unit volume, the true differential entropy of each dataset is 0, for all dimensions.
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(a) MNIST (b) CIFAR10 (c) ImageNet

Figure 17: Plot showing log-likelihoods of the Information Bottleneck methods vs β on benchmark image classification
datasets (error bars represent standard deviations). For most β values, consistently REMDI performs better than other
methods on MNIST and ImageNet. On CIFAR10, the classification errors are similar for all the methods. However, REMEDI
exhibits the highest log-likelihood across the β values.

E. Code
The code needed to replicate the experiments of this paper is found at https://github.com/viktor765/REMEDI.
The project also uses code from the KNIFE repository, with the authors’ permission, found at https://github.com/
g-pichler/knife/.

F. Computational cost
The suite of pure entropy estimation tasks, including the two moons, triangle, ball, and hypercube datasets were run on
NVIDIA A100 and finished in approximately 29 hours. All IB experiments were run also using NVIDIA A100 GPUs. One
replication of IB with REMEDI run for a single β value took close to 2.5 hours for MNIST, 15 hours for CIFAR-10, and 35
hours for ImageNet.

G. Additional results on Information Bottleneck
In this section, we provide additional results from applying different mutual information estimation approaches to the
Information Bottleneck.

G.1. Results based on log-likelihood

In this section, we evaluate the IB methods based on the log-likelihood metric on the three datasets. Fig 17, shows the plot of
the log-likelihood vs the Lagrange multiplier β for the IB methods. We observe that similar to classification accuracy results
in the main paper REMEDI exhibits the highest log-likelihood on MNIST and ImageNet for most β values especially those
around the region where the log-likelihood starts to decrease. On CIFAR-10, although all the methods perform similarly in
terms of log-likelihood REMEDI with Gaussian base distribution produces the highest log-likelihood.

G.2. Latent space evolution on MNIST

In Table 6, we plot different components of the 2-d latent space learned by IB-REMEDI with KNIFE base distribution
throughout training on the MNIST dataset. The first column shows the latent space samples and the second and third
columns show the KNIFE (10 components) and REMEDI contours as the training progresses. As the epoch increases, we
observe that the latent space evolves into 10 clusters. We highlight that KNIFE struggles to learn the clusters especially
when overlapping (e.g. epoch 0). To this end, REMEDI corrects the trained KNIFE and can locate the mass correctly around
the clusters.

G.3. Analysis of the latent space on CIFAR-10

In this section, we present the 2-d latent space analysis on CIFAR-10. Similar to MNIST, we observe the samples from the
latent space show clusters corresponding to the classes in Fig. 18a. In Fig. 18b, we observe that the KNIFE fits the density
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Epoch Latent space KNIFE REMEDI
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Table 6: Sequence of latent space plots showing the evolution of the encoder samples and KNIFE and REMEDI density
contours during training IB-REMEDI (KNIFE base) (β = 1e− 09) on MNIST.
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(a) Encoder samples (b) KNIFE contours (c) REMEDI contours

Figure 18: REMEDI marginal distribution of 2-d latent space on CIFAR-10.

well which is further improved by REMEDI corrections in Fig. 18c. However, the gain from applying REMEDI from the
KNIFE step is less in CIFAR-10 than it is on MNIST.
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