
Published in Transactions on Machine Learning Research (04/2025)

MaxCutBench: Revisiting and Benchmarking Graph Neural
Networks for Maximum Cut

Ankur Nath anath@tamu.edu
Department of Computer Science & Engineering
Texas A&M University

Alan Kuhnle kuhnle@tamu.edu
Department of Computer Science & Engineering
Texas A&M University

Reviewed on OpenReview: https: // openreview. net/ forum? id= 322PpCGAX8

Abstract

Recently, there has been much work on designing general heuristics for graph-based, com-
binatorial optimization problems via the incorporation of Graph Neural Networks (GNNs)
to learn distribution-specific solution structures. However, there is a lack of consistency
in evaluating these heuristics in terms of the baselines and instances chosen, making it
difficult to assess the relative performance of the algorithms. In this paper, we introduce
MaxCutBench—an open-source benchmark suite dedicated to the NP-hard Maximum Cut
problem. The suite offers a unified interface for 16 algorithms, both traditional and machine-
learning-based. Using our benchmark, we conduct an in-depth analysis of the implemented
algorithms on a carefully selected set of hard instances from diverse graph datasets. Our
main finding is that classical local search heuristics can outperform several highly cited
learning-based approaches, including S2V-DQN (Khalil et al., 2017), ECO-DQN (Barrett
et al., 2020), among others, in terms of objective value, generalization, inference time, and
scalability. Additionally, we find that the performance of ECO-DQN either remains the
same or improves when the GNN is replaced by simple linear regression. We hope our
benchmark will contribute to the efforts of the community to standardize the evaluation of
learned heuristics for combinatorial optimization. Code, data, and pre-trained models are
available at: https://github.com/ankurnath/MaxCut-Bench.

1 Introduction
The design of effective heuristics or approximation algorithms for NP-hard combinatorial optimization (CO)
problems is a challenging task, often requiring domain-specific knowledge alongside a rigorous process of
empirical refinement. Typically, the precise probability distribution of a particular set of instances that
are needed for a given application is complex or unknown and may deviate far from the set of worst-case
instances that give rise to the computational complexity of the problem at hand. For example, consider
a shipping company that must solve a presumably similar optimization problem each day for the routing
of its delivery vehicles. Consequently, there has been significant interest among researchers in automating
this demanding and tedious design process using machine learning to develop algorithms that exploit the
inherent structure of these distributions (Khalil et al., 2017; Barrett et al., 2020; 2022; Zhang et al., 2023;
Tönshoff et al., 2022). Empirical evidence suggests that learned heuristics (Barrett et al., 2020; Tönshoff
et al., 2022) can be competitive with state-of-the-art (SOTA) heuristics tailored to individual problems.

However, along with the surge of automated, general heuristics for CO problems, it is necessary to have
a standardized way to evaluate these heuristics to determine what gains, if any, are achieved over more
traditional heuristics. The current status of the field is that each work formulates a heuristic and then selects
its own baselines, problems, and instance distributions to evaluate the heuristic. Often, a combination of
weak traditional heuristics and expensive exact algorithms is employed as baselines, such as the Greedy

1

https://openreview.net/forum?id=322PpCGAX8
https://github.com/ankurnath/MaxCut-Bench

Published in Transactions on Machine Learning Research (04/2025)

algorithm (weak) or exact IP solvers such as Gurobi (Gurobi Optimization, LLC, 2023) and Cplex (IBM-
ILOG, 2023). More discussion and details can be found in Appendix A.3.

In this paper, we analyze several highly cited and recently proposed learned heuristics for the Maximum Cut
(MaxCut) problem. MaxCut is one of the fundamental NP-hard optimization problems (Karp, 1972) and
has been intensely studied for decades (Darvariu et al., 2024). It has numerous real-world applications, such
as portfolio optimization (Venturelli & Kondratyev, 2019; Elsokkary et al., 2017), protein folding (Perdomo-
Ortiz et al., 2012), VLSI design (Barahona et al., 1988), and finding the ground state of the Ising Hamiltonian
in physics (Barahona, 1982).1 Significant commercial and research efforts have been devoted to developing
MaxCut solvers using classical (Goto et al., 2019) and quantum annealing (Leleu et al., 2019; Tiunov et al.,
2019) approaches, as well as classical (Goemans & Williamson, 1995; Rehfeldt et al., 2023; Benlic & Hao,
2013; Martí et al., 2009; Festa et al., 2002; Burer et al., 2002) and learned (Barrett et al., 2020; 2022; Zhang
et al., 2023) algorithms. These efforts underscore the combination of intractability and broad applicability
that motivates our focus on this problem.

To address these gaps and promote fair and comprehensive evaluation for CO, we carefully select distributions
of instances for MaxCut and evaluate the performance of several highly cited and recently proposed heuristics
on these instances. We pose the following research questions:

In this setting, can we reproduce or corroborate the performance of learned heuristics as compared to their
traditional counterparts? Is there any absolute performance gain, perhaps with a trade-off in computational

efficiency, when using learned heuristics compared to reasonably effective traditional baselines? Finally,
how well do algorithms trained with one distribution generalize to another distribution?

Contributions.

• We provide an open-source benchmark suite MaxCut-Bench for the Maximum Cut problem. The
software currently supports several highly cited or recently proposed, learned heuristics such as S2V-
DQN (Khalil et al., 2017), ECO-DQN (Barrett et al., 2020), ANYCSP (Tönshoff et al., 2022), Gflow-
CombOpt (Zhang et al., 2023). Our modern re-implementation of several algorithms, using efficient
graph learning packages, is designed with a focus on reproducibility and scalability, enabling the handling
of larger instances. Our evaluation suite is designed to support research on combinatorial problems on
graphs and aims to provide a fair and comparable environment for future evaluations.

• Using MaxCut-Bench, we compare the learned heuristics to classical heuristics across multiple datasets
that have previously been used to benchmark SOTA traditional heuristics. Our results reveal that classical
local search heuristics, Tabu Search and Extremal Optimization, consistently match or outperform
all evaluated learned heuristics in terms of objective value, scalability, and generalization—except for
ANYCSP. This finding is particularly surprising given that S2V-DQN, for instance, is widely regarded as
a strong heuristic, frequently used as a baseline, and cited thousands of times.

• Using our re-implementation of learned local search heuristics, we analyze deep learning techniques de-
signed to enhance local search and conduct an exhaustive evaluation of these heuristics on hard instances.
Our results demonstrate that the strong performance of the highly cited heuristic ECO-DQN can be
replicated by selecting a subset of its features related to Tabu Search and replacing the GNN with a
linear regression model, whether using the original code or our re-implementation.

The main goal of our work is to provide a fair and comparable environment for evaluating machine learning
algorithms in combinatorial optimization, specifically for the Maximum Cut problem. We believe our work
highlights the lack of standardized datasets and baselines necessary to demonstrate significant improvements.
We hope that MaxCutBench can address this gap. In addition to our negative results, we also find that
classic algorithms, such as local search, can be significantly enhanced with deep learning (Khalil et al., 2017;
Yao et al., 2021). This suggests that more research is needed on replacing handcrafted rules with machine
learning and standardization in datasets and baselines.

1This requires an exact solution to the MaxCut problem, and the 2021 Nobel Prize in Physics was awarded for work on spin
glasses.

2

Published in Transactions on Machine Learning Research (04/2025)

Organization. The rest of this paper is organized as follows. In Section 2, we discuss relevant related work.
We present the MaxCut-Bench instance distributions and algorithms in Section 3. In Section 4, we use the
benchmark to answer the motivating questions above. Finally, in Section 5, we conclude the paper.

2 Related Work
In the following, we review two categories of related works: benchmarking learned heuristics for CO, which
aligns with our work, and algorithms for MaxCut.

Benchmarking Learned Heuristics for CO. With the growing interest in using GNNs to tackle CO
problems, several recent works revisit their effectiveness compared to traditional heuristics. For the MaxCut
problem, Yao et al. (2019) show that a simple local search algorithm, Extremal Optimization (Boettcher
& Percus, 2001), consistently outperforms their adapted GNN baseline (Chen et al., 2017) across various con-
figurations of dense and sparse random regular graphs. However, their study does not compare these results
with existing solvers from the literature. To the best of our knowledge, we are the first to comprehensively
compare SOTA-learned heuristics from the literature against classical heuristics for MaxCut.

For the Maximum Independent Set (MIS) problem, Böther et al. (2022) show that the performance of
the popular guided tree search algorithm (Li et al., 2018) is not reproducible, and the GNN used in the tree
search does not play any meaningful role. Instead, the various classical algorithms are responsible for the
good performance, especially on hard instances. This is analogous to our result for the ECO-DQN algorithm
(details in section 4.2), where we show that the GNN does not appear to play a meaningful role in the
algorithm, and instead, the good performance of ECO-DQN for MaxCut may come from its Tabu Search-
related features. Similarly, Angelini & Ricci-Tersenghi (2023) show that a simple greedy algorithm, running
almost in linear time, finds solutions of better quality than a physics-inspired unsupervised GNN-based
heuristic (Schuetz et al., 2022). In the context of the Traveling Salesman Problem (TSP), Joshi et al.
(2020) note that GNNs achieve promising results for relatively small instances, typically up to a few hundred
cities. However, for instances involving millions of cities, the classical Lin-Kernighan-Helsgaun algorithm
(Helsgaun, 2000; Taillard & Helsgaun, 2019) consistently finds solutions close to optimal. More recently,
Liu et al. (2023) demonstrate that learned heuristics still lag behind traditional solvers in effectively solving
TSP. For the Minimum Vertex Cover problem, Sato et al. (2019) shows that the best approximation
ratio achievable by a large class of GNNs is 2, which is suboptimal (Karakostas, 2009).

Other Algorithms for MaxCut. In addition to the algorithms included in this paper, several other
algorithms are available for solving MaxCut. Dunning et al. (2018) systematically evaluate ten classical
heuristics for MaxCut on a library of large instances and use machine learning to predict which heuristic
works best on a previously unseen problem instance. Abe et al. (2019) combine a GNN with a Monte Carlo
tree search approach to learn a heuristic for MaxCut. Beloborodov et al. (2020) use reinforcement learning
in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which
is equivalent to the MaxCut problem. Karalias & Loukas (2020) propose an unsupervised approach with
theoretical guarantees to produce a distribution over subsets of nodes as a possible solution to MaxCut.
To address scalability challenges, Barrett et al. (2022) limits the costly GNN to a pre-processing step and
introduces a recurrent unit for fast action selection. Schuetz et al. (2022) reformulate MaxCut as a quadratic
unconstrained binary optimization problem, removing binary constraints to create a differentiable loss func-
tion. Readers may refer to Mazyavkina et al. (2021); Cappart et al. (2023) for further insights into learned
heuristics for MaxCut.

3 The MaxCut-Bench Benchmark
In this section, we formally introduce the Maximum Cut (MaxCut) problem as follows. Given an undirected
graph G(V, E, w), where V represents the set of vertices, E denotes the set of edges and weights w(u, v) on
the edges (u, v) ∈ E, the goal is to find a subset of nodes S ⊆ V that maximizes the objective function,
f(S) =

∑
u∈S,v∈V \S w(u, v). Next, we present a comprehensive overview of the setup for MaxCut-Bench.

We provide the general selection criteria and considerations for algorithms (Section 3.1) and datasets (Section
3.2).

3

Published in Transactions on Machine Learning Research (04/2025)

Table 1: Categorization of all algorithms and datasets used in our evaluation.

Algorithms
IP solver Cplex, Gurobi
Classical Heuristics Semidefinite Programming, Greedy, Tabu Search, Extremal Optimization
GNNs S2V-DQN, ECO-DQN, LS-DQN, RUN-CSP, ANYCSP, Gflow-CombOpt
Quantum Annealing Leleu et al. (2019), Leleu et al. (2021)

Datasets
Random Instaces Erdős-Rényi, Barabási-Albert, Holme-Kim, Watts-Strogatz
Hard Instances Gset, SK spin glass, Optsicom, Phase transition, Big Mac Library, MaxCut and

BQP Instance Library

3.1 Benchmark Algorithms
Table 1 shows the overall 16 algorithms integrated into our benchmark. They are divided into four categories
and we briefly introduce each category in the following, and more details are provided in Appendix A.2.

Classical methods. We include common classical algorithms, such as Semidefinite Programming (SDP)
and Greedy, along with two local search algorithms: Tabu Search (TS) (Glover, 1990) and Extremal
Optimization (EO) (Boettcher & Percus, 2001). Both TS and EO incorporate strategies to escape local
minima and explore the search space more effectively.

Mixed-Integer program solver. We select two commonly used commercial mixed-integer programming
solvers: Cplex and Gurobi.

GNN-based heuristics. We focus on works selected based on three primary criteria: being highly cited,
recently introduced, or widely used as benchmarks for evaluating learned heuristics. S2V-DQN, introduced
by Khalil et al. (2017), is a seminal algorithm with thousands of citations and serves as a baseline in numerous
subsequent studies (Li et al., 2018; Manchanda et al., 2019; Barrett et al., 2020; Sun et al., 2023). In addition
to replicating S2V-DQN, we include its extensions, ECO-DQN (Barrett et al., 2020) and LS-DQN (Yao et al.,
2021). Furthermore, we incorporate RUN-CSP (Toenshoff et al., 2021), a common baseline for recent neural
solvers (Schuetz et al., 2022; Sun et al., 2022; Toenshoff et al., 2021). Finally, we include two recent works:
Gflow-CombOpt (Zhang et al., 2023), highlighted at NeurIPS 2023, and ANYCSP (Tönshoff et al., 2022),
published in IJCAI 2023.

Quantum annealing. We use two SOTA quantum annealing algorithms (Leleu et al., 2019; 2021) to obtain
the best (possibly optimal) solutions within a cutoff time of 1 hour. All approximation ratios reported in
the paper are based on the best solution found by either of the two solvers.

3.2 Benchmark Datasets
We have gathered a diverse collection of instances from both real-world datasets and random graph distri-
butions, as detailed in Table 1, which are based on the following criteria:

Random Instances. To ensure a thorough comparison, we use commonly employed random graph models
for instance generation, including Erdős et al. (1960) (ER), Albert & Barabási (2002) (BA), Holme & Kim
(2002) (HK) and Watts & Strogatz (1998) (WS).

Hard Instances. We select datasets that have been employed for evaluating the performance of sev-
eral SOTA traditional heuristics (Benlic & Hao, 2013; Leleu et al., 2019; 2021; Hamerly et al., 2019).
These datasets include Sherrington-Kirkpatrick (SK) spin glass (Sherrington & Kirkpatrick, 1975), dense
unweighted instances at their phase transitions (Coppersmith et al., 2004), Optsicom project (Corberán
et al., 2006), Big Mac Library (Rendl et al., 2010), MaxCut and BQP Instance Library (Bonn, 2010) and
Stanford Gset dataset (Ye, 2003).

4

Published in Transactions on Machine Learning Research (04/2025)

For a more comprehensive description of all mentioned datasets and the hyperparameters used for graph
generation, please refer to Appendix A.1.

4 Experiments and Analysis
In this section, we use the benchmark to investigate the objective value, inference time, scalability and
generalization of algorithms by answering the following specific questions:

• How effective are the algorithms frequently used as baselines in the literature? We observe that commonly
used baselines for evaluating learned heuristics, such as Cplex, SDP, and Greedy, often fail to pro-
vide strong comparisons, as their performance is frequently surpassed by simple stochastic local search
algorithms, such as TS and EO (Section 4.1).

• Does deep learning combined with classical heuristics improve the performance of classical heuristics?
While S2V-DQN and LS-DQN demonstrate improvements over local search by incorporating GNNs, we
have noted that the GNN in ECO-DQN can be effectively replaced by linear regression without any loss
in performance. (Section 4.2).

• Can learned heuristics consistently outperform simple, general-purpose heuristics? Except for ANYCSP,
the answer is generally no. We demonstrate that several learned heuristics do not outperform TS and EO
(Section 4.3).

• Can learned heuristics maintain their effectiveness when applied to out-of-distribution instances beyond
their training data? Again, except for ANYCSP, the answer is no. We observe a substantial decline in
performance when learned heuristics are tested on graph distributions different from the training set, with
ANYCSP being a notable exception (Section 4.4).

• How efficient are these algorithms in terms of time and space on large hard instances? Classical local
search heuristics tend to outperform most learned heuristics while using minimal computing resources
and inference time, although their performance does decrease as the problem size increases (Section 4.5).

All learned algorithms in our benchmark are implemented using PyTorch (Paszke et al., 2019). All experi-
ments were conducted on a Linux server with a GPU (NVIDIA RTX A6000) and CPU (AMD EPYC 7713),
using PyTorch 2.3.0, DGL 2.2.1 (Wang, 2019) and Python 3.11.9. We clearly state the changes necessary to
update previous implementations and ensure that our reimplementations align with the results published in
the literature. We provide all the details of these changes in Appendix A.4.

Evaluation settings. All training is performed on randomly 4000 generated graphs and the validation is
performed on a fixed set of 50 held-out graphs from the same distribution. For synthetic datasets, testing
is performed on 100 instances drawn from the same distribution; or upon the test instances provided in the
original resource (see details in Appendix A.1). We evaluate the algorithms using the average approximation
ratio as a performance metric. Given an instance, the approximation ratio for an algorithm is computed by
normalizing the objective value of the best-known solution for the instance. As S2V-DQN is deterministic
at test time, we use a single optimization episode for each graph. For all other algorithms, we run each
algorithm for 50 randomly initialized episodes with 2|V | number of search steps per episode and select the
best outcome from these runs following the experimental setup of Barrett et al. (2020) and Yao et al. (2021).
Experimentally, we have found that the performance of all algorithms saturates within this number of search
steps (we refer the reader to Appendix A.6 for more details).

Summary of results. In Figure 1, we present an overview of the performance of all heuristics, excluding
the two quantum annealing algorithms specifically used to find the best-known solutions with a one-hour
cutoff time. Our key findings include the following: classical heuristics are often faster while providing
solutions of similar or better quality; the GNN used in ECO-DQN can be replaced by linear regression
without any performance degradation; and a recent solver, ANYCSP, based on global search, can provide
competitive solution quality but requires significantly greater computational resources.

4.1 Effectiveness of Common Baselines in Evaluating Learned Heuristics
In this section, we analyze the performance of the common classical baselines that are used for comparing
the performance of learned heuristics for MaxCut. The main question we address is whether outperforming
certain heuristics is significant. For this evaluation, we use the dataset from Barrett et al. (2020), where

5

Published in Transactions on Machine Learning Research (04/2025)

Greedy

S2V-DQN

Gflow-CombOPT

CPLEX

EO

TS
Gurobi

ECO+LR

LS-DQN

ANYCSP

ECO-DQN

RUN-CSP

Greedy

S2V-DQN

CPLEX

RUN-CSP

EO

TS

Gurobi

ECO+LR

LS-DQN

ECO-DQN

ANYCSP

SDP

SDP

Figure 1: Comparison of the performance between learned and classical heuristics. Classical heuristics, such
as EO and TS, often outperform most learned heuristics while being faster. Note that we include Greedy,
which starts with a random solution rather than an empty one, as opposed to Zhang et al. (2023).

20 40 60 100 200 500
Graph Size,|V|

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ap

pr
ox

. R
at

io

(a) ER (Barrett et al. (2020))

20 40 60 100 200 500
Graph Size,|V|

0.2

0.4

0.6

0.8

1.0
M

ea
n

Ap
pr

ox
. R

at
io

Gurobi
Greedy
SDP

TS
EO
CPLEX*

(b) BA (Barrett et al. (2020))

Figure 2: Performance comparison of classical baselines. The most common baselines, Greedy, SDP, and
Cplex, can be easily outperformed by classical local search heuristics ; *Values (10-minute cut-off time) as
reported in Barrett et al. (2020)

optimal or best-known solutions are publicly available. This dataset consists of ER and BA graphs up to
500 vertices.

As shown in Fig. 2, Cplex performs relatively well on graphs with up to 60 vertices but shows a significant
drop in performance for graphs with 200 and 500 vertices due to the large solution space. A similar drop
in Cplex performance for larger graphs was reported by Khalil et al. (2017). The Greedy algorithm is
robust across distributions but typically performs 20% worse than the best-known solutions. Similarly, SDP
performs slightly better than Greedy but still exhibits an optimality gap of 10–15%. In contrast, Gurobi
finds solutions close to the best-known values very quickly, within a 10-second time limit.

EO and TS consistently outperform or match Greedy, SDP and Cplex, demonstrating their competitive-
ness as heuristics. However, their performance declines as instance size increases (see Fig. 3).

Final Considerations. We conclude that while improvements over commonly used baselines, such as
Greedy, SDP, and Cplex, are incremental, simple modifications to local search can outperform these
baselines by a significant margin. This highlights the need for more work to standardize baseline selection
for the empirical evaluation of CO problems.

6

Published in Transactions on Machine Learning Research (04/2025)

Table 2: Summary of the learned algorithms that improve upon local search.

Algorithm Initial Solution Node Features Action Reward Termination Simplified Algorithm

S2V-DQN Empty Vertex State Add Marginal gain all marginal gains
are negative

Greedily add, starting with
empty solution

LS-DQN Random Vertex State Add or
Delete -Marginal gain Self-termination or

2|V| steps
Greedily add/delete, starting

with random solution

ECO-DQN Random

Vertex State
Marginal Gain

Time Since Flip
....

Add or
Delete

max((current objective value-
best objective value),0)+

small reward if new
local minima is found

2|V| steps Tabu Search

4.2 Impact of Integrating Deep Learning with Local Search
In this subsection, we examine whether deep learning heuristics that combine local search with a neural
network provide any improvement over local search alone. The pipeline of this category of algorithms is
as follows: handcrafted node features are generated at each step of the algorithm, and passed through a
GNN to generate node embeddings. These embeddings are fed into a reinforcement learning (RL) algorithm,
which selects the action to take. The action involves either selecting a node to add to or delete from the
solution. Table 2 summarizes the key differences between these algorithms. Next, we discuss each algorithm
and investigate the causes of some of the unexpected outcomes presented in our paper.

S2V-DQN. S2V-DQN starts with an empty solution and incrementally adds a vertex, guided by a GNN
until no greedy actions remain. The concept can be simplified to greedily adding the node that results in the
largest improvement in objective value; we refer to this as S2V-Simplified. From Fig. 3, we observe that S2V-
DQN outperforms Greedy and S2V-Simplified in four out of five distributions from the well-known Gset
benchmark dataset, typically by a margin of 10-20%. Since Greedy was reported as the best competitor
to S2V-DQN by Khalil et al. (2017), this confirms that our implementation successfully reproduces the
performance reported in the original work (See more details in A.4.1). This improvement is impressive,
showing the promise of using GNNs to improve classical heuristics.

However, from Fig. 3 and Table 3, we observe that TS and EO —two simple local search heuristics with a
single parameter— outperform S2V-DQN in almost all cases, typically by a margin of 5-10%. In fact, even
starting from a random solution and applying the Greedy algorithm outperforms S2V-DQN on certain
distributions, usually by a small margin, such as ER (weighted and unweighted), BA (unweighted), and Phase
Transition networks, as shown in Table 3. This demonstrates the power of stochasticity when combined with
local search.

LS-DQN. Following in the footsteps of S2V-DQN, LS-DQN starts with a random solution and adds or
deletes from a node from the solution at each step guided by a GNN. LS-DQN improves the performance of
its simplified version as shown in Table 3, especially for weighted instances.

However, our analysis contradicts the claim of Yao et al. (2021) that LS-DQN matches the performance of
ECO-DQN. This may be explained by observing that Yao et al. (2021) compared the performance of ECO-
DQN and LS-DQN only on complete graphs, which underscores the importance of comparing algorithms
across a range of instances.

ECO-DQN. While S2V-DQN and LS-DQN use the current solution as the state-space representation for
the RL agent, ECO-DQN proposes six additional handcrafted features per vertex for its state space. We
observe that two of these features are closely related to the traditional heuristic, Tabu Search (TS): 1)
Marginal Gain: the change in the objective value when a vertex is added to or removed from the solution
set (we refer this action as a flip) 2) Time Since Flip: steps since the vertex has last been flipped to
prevent short looping trajectories.

We first describe how the TS algorithm works to clarify why TS can be considered a simpler version of
ECO-DQN. TS selects the node to flip that results in the maximum increase in the objective value, provided
the time since the last flip of the node exceeds a specified hyperparameter. This approach helps TS actively

7

Published in Transactions on Machine Learning Research (04/2025)

2000 4000 6000 800010000
Graph Size,|V|

0.7

0.8

0.9

M
ea

n
Ap

pr
ox

. R
at

io
Toroidal (Weighted)

2000 4000 6000
Graph Size,|V|

0.80
0.85
0.90
0.95

M
ea

n
Ap

pr
ox

. R
at

io

ER (Weighted)

2000 4000 6000
Graph Size,|V|

0.80

0.85

0.90

0.95

M
ea

n
Ap

pr
ox

. R
at

io

Planar (Weighted)

2000 4000 6000
Graph Size,|V|

0.96

0.97

0.98

0.99

M
ea

n
Ap

pr
ox

. R
at

io

Planar (Unweighted)

2000 4000 6000 800010000
Graph Size,|V|

0.875
0.900
0.925
0.950
0.975
1.000

M
ea

n
Ap

pr
ox

. R
at

io

ER (Unweighted)
S2V-Simplified
Greedy
TS
S2V-DQN
EO

Figure 3: Performance comparison of S2V-DQN and classical approaches. S2V-DQN outperforms its sim-
plified version and Greedy by a significant margin, consistent with Khalil et al. (2017). See Table 11.

Table 3: Performance comparison of learned heuristics with their simple counterparts (best in bold): The
first and second halves of the table show results for unweighted and weighted instances, respectively.

S2V-DQN LS-DQN ECO-DQN
Graph Nodes S2V-Simplified S2V+GNN Greedy LS+GNN TS ECO+LR ECO+GNN

Gset (ER) 800 0.970±0.003 0.970±0.001 0.985±0.001 0.992±0.001 0.999±0.001 0.996±0.001 0.997±0.001

Gset (Planar) 800 0.960±0.002 0.980±0.001 0.963±0.002 0.984±0.002 0.992±0.001 0.991±0.001 0.990±0.001

BA 800 0.938±0.007 0.951±0.006 0.952±0.003 0.983±0.003 0.992±0.002 0.993±0.002 0.991±0.002

WS 800 0.944±0.006 0.973±0.005 0.927±0.003 0.971±0.003 0.990±0.002 0.988±0.002 0.992±0.002

HK 800 0.939±0.007 0.966±0.005 0.951±0.003 0.984±0.003 0.992±0.002 0.992±0.002 0.992±0.002

Phase Transition 100-200 0.982±0.005 0.985±0.006 0.996±0.002 0.998±0.002 1.000±0.000 1.000±0.000 1.000±0.000

Gset (ER) 800 0.856±0.026 0.906±0.017 0.911±0.012 0.953±0.007 0.995±0.003 0.981±0.002 0.984±0.003

Gset (Planar) 800 0.863±0.030 0.890±0.027 0.871±0.013 0.942±0.007 0.980±0.005 0.975±0.005 0.966±0.009

Gset (Toroidal) 800 0.838±0.003 0.960±0.010 0.793±0.010 0.965±0.007 0.989±0.003 0.993±0.004 0.994±0.002

BA 800 0.853±0.018 0.886±0.019 0.855±0.012 0.934±0.011 0.978±0.007 0.979±0.008 0.972±0.009

WS 800 0.861±0.014 0.919±0.012 0.833±0.010 0.923±0.007 0.967±0.006 0.973±0.006 0.961±0.008

HK 800 0.857±0.019 0.908±0.017 0.855±0.012 0.937±0.009 0.977±0.007 0.978±0.008 0.974±0.009

Barrett et al. (ER) 200 0.866±0.038 0.951±0.024 0.954±0.014 0.987±0.010 1.000±0.001 1.000±0.001 1.000±0.001

Barrett et al. (BA) 200 0.849±0.054 0.937±0.043 0.903±0.039 0.977±0.032 0.984±0.032 0.984±0.032 0.983±0.033

SK spin-glass 70-100 0.865±0.057 0.939±0.049 0.994±0.010 0.999±0.003 1.000±0.000 1.000±0.000 1.000±0.000

Optsicom 125 0.779±0.049 0.962±0.023 0.872±0.022 0.991±0.010 1.000±0.000 1.000±0.000 1.000±0.000

avoid revisiting previously explored points in the search space. However, if flipping a node results in the
best objective value found so far, TS overrides this restriction and flips that node.

Now looking at the reward function defined in ECO-DQN, we see the algorithm trains its agent to avoid
revisiting the same local minima by providing a small reward (referred to as the immediate reward in the
original paper) when the agent discovers a new local minimum. Additionally, ECO-DQN encourages the
agent to select the node that gives the best objective value found so far. Intuitively, this reward mechanism

8

Published in Transactions on Machine Learning Research (04/2025)

should encourage the selection of nodes with a high time since the last flip and those that yield the best
objective value.

To better understand the performance of ECO-DQN, we compare it with TS and an ablated version of
ECO-DQN, called SoftTabu (ECO+LR). SoftTabu replaces the GNN with linear regression and omits the
features not related to TS, that is, all but the two features described above.

From Table 3, we observe that TS and SoftTabu often match or even outperform ECO-DQN (ECO+GNN) in
terms of performance. To further validate this observation, we conduct empirical experiments based on the
original paper, using the publicly available implementation of ECO-DQN provided by the authors without
any modifications. The results are then compared with TS and ECO+LR (see Appendix A.4.2).

We use a paired t-test to compare different methods and conclude that there is no significant performance
difference between ECO-DQN and its simpler counterparts (as shown in Table 12). In fact, adding the GNN
adversely affects the generalization performance of ECO-DQN (as discussed in Section 4.4).

2000 4000 6000
Graph Size,|V|

0.80
0.85
0.90
0.95
1.00

M
ea

n
Ap

pr
ox

. R
at

io Planar (Unweighted)

ECO-DQN
ECO+LR
LS-DQN
TS

2000 4000 6000
Graph Size,|V|

0.90
0.92
0.94
0.96
0.98

M
ea

n
Ap

pr
ox

. R
at

io Planar (Weighted)

2000 4000 6000 800010000
Graph Size,|V|

0.85

0.90

0.95

1.00

M
ea

n
Ap

pr
ox

. R
at

io Toroidal (Weighted)

2000 4000 6000
Graph Size,|V|

0.6

0.8

1.0

M
ea

n
Ap

pr
ox

. R
at

io ER (Weighted)

2000 4000 6000 800010000
Graph Size,|V|

0.85

0.90

0.95

1.00

M
ea

n
Ap

pr
ox

. R
at

io ER (Unweighted)

Figure 4: Performance comparison of ECO-DQN, LS-DQN, and classical approaches. Replacing GNN in
ECO-DQN with linear regression does not hurt performance, underscoring the need for ablation studies.
Results are also shown in Table 11.

Ablation Studies in Algorithm Design. We observe that the highly cited ECO-DQN does not exhibit
performance gains from the inclusion of deep learning. To clearly establish the contribution of the deep
learning component, we strongly recommend conducting ablation studies for any proposed algorithm.

A New Approach to Heuristic Optimization. S2V-DQN and its subsequent refinement, LS-DQN,
serve as proof of concept that, despite not surpassing all baselines, they introduce a novel paradigm for
improving heuristics by replacing handcrafted rules with machine learning. At the same time, our extensive
analysis using MaxCutBench underscores the importance of benchmarking against simple heuristics to gain
meaningful insights and measure progress comprehensively.

Final Considerations. As instance sizes increase, the performance gap between the best-known solutions
across learned heuristics grows significantly. This limitation highlights the challenge of enabling agents to
reason effectively about larger systems, creating opportunities for future research.

9

Published in Transactions on Machine Learning Research (04/2025)

Table 4: Average Approximation ratios of classical and learned heuristics (best in bold);"—" denotes no
reasonable result is achieved by the corresponding algorithm and the first and second halves of the table
show results for unweighted and weighted instances, respectively.

Classical Heuristics Learned Heuristics
Graph Nodes EO TS S2V-DQN LS-DQN ECO-DQN RUN-CSP Gflow-CombOpt ANYCSP

Gset (ER) 800 0.995±0.001 0.999±0.001 0.970±0.001 0.970±0.001 0.997±0.001 0.982±0.001 0.979±0.003 0.999±0.000

Gset (Planar) 800 0.987±0.000 0.992±0.001 0.980±0.001 0.980±0.001 0.990±0.001 0.958±0.003 0.967±0.003 0.997±0.001

BA 800 0.983±0.003 0.992±0.002 0.951±0.006 0.951±0.006 0.991±0.002 0.978±0.003 0.955±0.006 1.000±0.000

WS 800 0.979±0.003 0.990±0.002 0.973±0.005 0.973±0.005 0.992±0.002 0.978±0.003 0.958±0.004 0.999±0.000

HK 800 0.983±0.003 0.992±0.002 0.966±0.005 0.966±0.005 0.992±0.002 0.977±0.003 0.930±0.015 1.000±0.000

Phase Transition 100-200 0.999±0.001 1.000±0.000 0.985±0.006 0.985±0.006 1.000±0.000 0.994±0.002 0.993±0.004 1.000±0.000

Gset (ER) 800 0.973±0.005 0.995±0.003 0.906±0.017 0.906±0.017 0.984±0.003 0.909±0.007 — 0.998±0.002

Gset (Planar) 800 0.954±0.007 0.980±0.005 0.890±0.027 0.890±0.027 0.966±0.009 0.925±0.013 — 0.995±0.005

Gset (Toroidal) 800 0.948±0.010 0.989±0.003 0.960±0.010 0.960±0.010 0.994±0.002 0.976±0.002 — 0.999±0.002

BA 800 0.949±0.008 0.978±0.007 0.886±0.019 0.886±0.019 0.972±0.009 0.931±0.009 — 1.000±0.000

WS 800 0.943±0.007 0.967±0.006 0.919±0.012 0.919±0.012 0.961±0.008 0.950±0.007 — 0.999±0.000

HK 800 0.949±0.009 0.977±0.007 0.908±0.017 0.908±0.017 0.974±0.009 0.937±0.009 — 1.000±0.000

Barrett et al. (ER) 200 0.989±0.008 1.000±0.001 0.951±0.024 0.951±0.024 1.000±0.001 0.940±0.015 — 1.000±0.000

Barrett et al. (BA) 200 0.969±0.035 0.984±0.032 0.937±0.043 0.937±0.043 0.983±0.033 0.958±0.035 — 0.986±0.032

SK spin-glass 70-100 0.995±0.006 1.000±0.000 0.939±0.049 0.939±0.049 1.000±0.000 0.962±0.019 — 1.000±0.001

Physics (Regular) 125 0.986±0.011 1.000±0.000 0.962±0.023 0.962±0.023 1.000±0.000 0.989±0.009 — 1.000±0.000

4.3 Performance Comparison of Learned Heuristics and Simple Heuristics
In this section, we evaluate the algorithms to assess whether any of the deep learning heuristics can achieve
the SOTA objective value on the instances in the MaxCut benchmark. While it may be too early to
expect learned heuristics to beat SOTA heuristics tailored for specific problems, the question of how learned
heuristics fare against simple heuristics remains unanswered. One of the main reasons for this is the variety
of baselines and instances used in existing work (more details can be found in Appendix A.3).

Gr
ee

dy
EC

O-
DQ

N
RU

N-
CS

P
Gf

lo
w-

Co
m

bO
PT EO TS

AN
YC

SP

0.970

0.975

0.980

0.985

0.990

0.995

1.000

M
ea

n
Ap

pr
ox

. R
at

io

Gset(ER800)

Gr
ee

dy
EC

O-
DQ

N
RU

N-
CS

P
Gf

lo
w-

Co
m

bO
PT EO TS

AN
YC

SP

0.95

0.96

0.97

0.98

0.99

1.00
Gset(Planar800)

Gr
ee

dy
EC

O-
DQ

N
RU

N-
CS

P
Gf

lo
w-

Co
m

bO
PT EO TS

AN
YC

SP

0.92

0.94

0.96

0.98

1.00
BA800

Gr
ee

dy
EC

O-
DQ

N
RU

N-
CS

P
Gf

lo
w-

Co
m

bO
PT EO TS

AN
YC

SP

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
WS800

Figure 5: Violin plots of mean approx. ratio for learned and classical heuristics on a selection of unweighted
instances. Among the learned heuristics, only ANYCSP outperforms the classical heuristics.

Impact of findings. We compare learned local search heuristics (S2V-DQN, ECO-DQN and LS-DQN),
Gflow-CombOpt, RUN-CSP, and ANYCSP with the traditional heuristics EO and TS. Our results show
that EO and TS can either outperform or achieve comparable solution quality to learned local search heuris-
tics. Additionally, we observe that EO and TS can outperform Gflow-CombOpt and RUN-CSP, especially
on larger instances, while ANYCSP usually outperforms them by a margin of 2-5%. Next, we discuss our
empirical observations for each algorithm.

Learned Local Search Heuristics. Similar to our observation for TS in Section 4.2, EO can match or
even surpass the performance of learned local search heuristics. While ECO-DQN performs slightly better

10

Published in Transactions on Machine Learning Research (04/2025)

than EO, this outcome is expected, as TS also outperforms EO, and no significant differences are observed
between these methods.

RUN-CSP. From Table 4, we observe that TS outperforms RUN-CSP on all distributions, while EO out-
performs RUN-CSP on most distributions. Although RUN-CSP is commonly used as a baseline in recent
neural CO solvers (Karalias & Loukas, 2020; Sun et al., 2022; Schuetz et al., 2022; Tönshoff et al., 2022), it
is worth noting that its performance can be readily exceeded by classical heuristics. This underscores the
importance of choosing robust baselines to highlight meaningful improvements.

Gflow-CombOpt. We restrict our empirical evaluation of Gflow-CombOpt to unweighted instances
because Zhang et al. (2023) only evaluated Gflow-CombOpt for MaxCut on unweighted BA graphs, fol-
lowing Sun et al. (2022), and our attempt to adapt Gflow-CombOpt to handle weighted graphs performed
poorly and did not surpass Greedy. From Table 4 and Figure 5, we observe that TS and EO consistently
outperform Gflow-CombOpt. In our opinion, this example highlights the need for more standardization
in evaluation, as Gflow-CombOpt is often outperformed by naive local search heuristics.

ANYCSP. We analyze ANYCSP in its default configuration and observe that it consistently finds near-
optimal solutions (that is, solutions near the value found by the Quantum Annealing algorithms), and is
superior in value to TS and the other traditional local search algorithms. These promising results demonstrate
that ANYCSP can effectively learn the solution structure across diverse graph distributions and remains
robust across multiple distributions.

Final considerations. The empirical findings suggest that benchmarking against weak heuristics on a
very particular set of instances may establish a low standard, potentially leading to a misleading sense
of achievement. Hence, selecting appropriate baselines is crucial to accurately assess the effectiveness of
learned heuristics. At a minimum, we recommend that any work should at least include simple algorithms
that improve upon Greedy– failure to consistently beat the naive baselines suggests that the algorithm may
need further development.

4.4 Generalization Capabilities of Learned Heuristics

0.0
0.2
0.4
0.6
0.8
1.0

Ap
pr

ox
. R

at
io

ER(unweighted)

0.0
0.2
0.4
0.6
0.8
1.0

ER(weighted)

0.0
0.2
0.4
0.6
0.8
1.0

Skew(unweighted)

0.0
0.2
0.4
0.6
0.8
1.0

Skew(weighted)

0.0
0.2
0.4
0.6
0.8
1.0

Torodial(weighted)

Trained on ER(weighted) distribution

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

Ap
pr

ox
. R

at
io

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

Trained on Torodial(weighted) distribution

Figure 6: Generalization of algorithms for unseen distribution. The inclusion of GNN in ECO-DQN hurts
generalization, and except for ANYCSP, all other heuristics perform poorly.

The ability of learned heuristics to perform well on a wide range of distributions, even if these distributions
are not represented during training, is a highly desirable characteristic for practical CO problems (Cappart

11

Published in Transactions on Machine Learning Research (04/2025)

et al., 2023). Many works include experiments to assess how well the heuristic generalizes. Often, this is in
the form of training on smaller instances and generalizing to test on larger ones, although cross-distribution
performance is also frequently assessed.

Several learned heuristics such as ECO-DQN, LS-DQN, and S2V-DQN are claimed to exhibit promising
performance across a diverse range of graph structures, including those not present in their training data.
In this section, we evaluate the generalization performance using MaxCut-Bench.

Impact of Findings. From Figure 6, we notice that there can be a substantial decline in performance
when the learned heuristics are tested on graph distributions other than train distributions, with the notable
exception of ANYCSP. In particular, observe that when trained on the toroidal distribution (second row),
the test performance of ECO-DQN, LS-DQN, S2V-DQN, and RUN-CSP may fall below 25% on several
distributions. This outcome may be anticipated. Intuitively, we would expect a network trained on instances
of a particular structure to adapt toward this class of instances and perform poorer for different structures.
We observe that TS, SoftTabu, and EO seem to generalize well across wider distributions. Both TS and
EO have a single parameter, which we optimized for the training distribution to assess its generalization
performance.

These results raise the possibility that the generalization of learned heuristics from learning over small
and easy instances to testing on larger and more complicated ones may not be as robust as the literature
(Khalil et al., 2017; Barrett et al., 2020; 2022; Yao et al., 2021) suggests. This feature is often touted as an
amelioration of the expensive training process required for the learned heuristics. Additional results from
our generalization experiments on BigMac, MaxCut, and the BQP Instance Library can be found in A.5.

4.5 Efficiency and Trade-offs in Large-Scale Instances
In this section, we analyze the efficiency and scalability of learned heuristics over ER graphs of size |V | = 800
from the Gset dataset. For time efficiency, we evaluate the efficiency of the algorithms by measuring the
wall-clock time. For scalability, we evaluate the average GPU and CPU usage per second of these learned
algorithms. Due to space constraints, we report run-time and performance of each algorithm across datasets
in Appendix 10.

Figure 7: Comparison of the wall-clock time and average GPU and CPU memory utilization among heuristics.
Iterative approaches, such as ANYCSP, ECO-DQN, and LS-DQN, take significantly more time.

Impact of Findings. From Figure 7, we observe that algorithms that use multiple randomly initialized
episodes (iterative approaches) require significantly more time and memory. We observe that ANYCSP takes
the longest to complete and consumes the most memory, while classical heuristics are an order of magnitude
faster. This demonstrates a clear trade-off where the more accurate algorithms come with a longer run-time.

5 Conclusion
In this paper, we introduce MaxCut-Bench, a comprehensive benchmark for evaluating deep learning-
based algorithms for the Maximum Cut problem, consisting of carefully selected instance distributions and

12

Published in Transactions on Machine Learning Research (04/2025)

implemented algorithms. We intend that MaxCut-Bench will foster further research and refinement of
learning-based algorithms, enabling more informed evaluations and comparisons. We regard our work as a
long-term evolving project and are dedicated to its continuous development. Our roadmap for the future
includes expanding its scope to cover a broader spectrum of CO problems, incorporating more cutting-edge
models, and integrating newer and more challenging distributions of instances.

While one might expect that extensively tailored heuristics can outperform learned approaches, our empirical
findings suggest that simple local search heuristics frequently outperform complicated GNN-based heuristics.
Specifically, Tabu Search, a local search heuristic that tries to avoid solutions previously encountered,
outperforms all but one of the evaluated learned heuristics across a broad range of instance distributions.
In addition, we show that ablating the GNN from ECO-DQN does not hurt its performance, and show
evidence that ECO-DQN may simply be learning a heuristic similar to Tabu Search. On the positive
side, ANYCSP did show a modest improvement over Tabu Search, although it uses many times the
computational resources. Further, we observe that in some cases using a GNN to guide a traditional heuristic
can improve the performance of the original heuristic.

References
Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving np-hard problems on graphs with

extended alphago zero. arXiv preprint arXiv:1905.11623, 2019.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of modern
physics, 74(1):47, 2002.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than classical
greedy algorithms in solving combinatorial optimization problems like maximum independent set. Nature
Machine Intelligence, 5(1):29–31, 2023.

Francisco Barahona. On the computational complexity of ising spin glass models. Journal of Physics A:
Mathematical and General, 15(10):3241, 1982.

Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An application of combina-
torial optimization to statistical physics and circuit layout design. Operations Research, 36(3):493–513,
1988.

Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combinatorial opti-
mization with reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 3243–3250, 2020.

Thomas D Barrett, Christopher WF Parsonson, and Alexandre Laterre. Learning to solve combinatorial
graph partitioning problems via efficient exploration. arXiv preprint arXiv:2205.14105, 2022.

Dmitrii Beloborodov, Alexander E Ulanov, Jakob N Foerster, Shimon Whiteson, and AI Lvovsky. Reinforce-
ment learning enhanced quantum-inspired algorithm for combinatorial optimization. Machine Learning:
Science and Technology, 2(2):025009, 2020.

Una Benlic and Jin-Kao Hao. Breakout local search for the max-cutproblem. Engineering Applications of
Artificial Intelligence, 26(3):1162–1173, 2013.

Stefan Boettcher and Allon G Percus. Extremal optimization for graph partitioning. Physical Review E, 64
(2):026114, 2001.

Bonn. Benchmark library for qubo instances. http://bqp.cs.uni-bonn.de/library/html/instances.
html, 2010.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich. What’s
wrong with deep learning in tree search for combinatorial optimization. arXiv preprint arXiv:2201.10494,
2022.

13

http://bqp.cs.uni-bonn.de/library/html/instances.html
http://bqp.cs.uni-bonn.de/library/html/instances.html

Published in Transactions on Machine Learning Research (04/2025)

Samuel Burer, Renato DC Monteiro, and Yin Zhang. Rank-two relaxation heuristics for max-cut and other
binary quadratic programs. SIAM Journal on Optimization, 12(2):503–521, 2002.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
Combinatorial optimization and reasoning with graph neural networks. Journal of Machine Learning
Research, 24(130):1–61, 2023.

Francis Chen, Brian Isakov, Tyler King, Timothée Leleu, Peter McMahon, and Tatsuhiro Onodera. cim-
optimizer: a simulator of the Coherent Ising Machine, October 2022. URL https://github.com/
mcmahon-lab/cim-optimizer.

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph neural networks.
arXiv preprint arXiv:1705.08415, 2017.

Don Coppersmith, David Gamarnik, MohammadTaghi Hajiaghayi, and Gregory B Sorkin. Random max
sat, random max cut, and their phase transitions. Random Structures & Algorithms, 24(4):502–545, 2004.

Á Corberán, J Peiró, V Campos, F Glover, and R Martí. Optsicom project. 2006.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Graph reinforcement learning for combi-
natorial optimization: A survey and unifying perspective. arXiv preprint arXiv:2404.06492, 2024.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex optimization.
Journal of Machine Learning Research, 17(83):1–5, 2016.

Iain Dunning, Swati Gupta, and John Silberholz. What works best when? a systematic evaluation of
heuristics for max-cut and qubo. INFORMS Journal on Computing, 30(3):608–624, 2018.

Nada Elsokkary, Faisal Shah Khan, Davide La Torre, Travis S Humble, and Joel Gottlieb. Financial portfolio
management using d-wave quantum optimizer: The case of abu dhabi securities exchange. Technical report,
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2017.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci, 5(1):
17–60, 1960.

Paola Festa, Panos M Pardalos, Mauricio GC Resende, and Celso C Ribeiro. Randomized heuristics for the
max-cut problem. Optimization methods and software, 17(6):1033–1058, 2002.

Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115–1145,
1995.

Hayato Goto, Kosuke Tatsumura, and Alexander R Dixon. Combinatorial optimization by simulating adia-
batic bifurcations in nonlinear hamiltonian systems. Science advances, 5(4):eaav2372, 2019.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.gurobi.com.

Ryan Hamerly, Takahiro Inagaki, Peter L McMahon, Davide Venturelli, Alireza Marandi, Tatsuhiro Onodera,
Edwin Ng, Carsten Langrock, Kensuke Inaba, Toshimori Honjo, et al. Experimental investigation of
performance differences between coherent ising machines and a quantum annealer. Science advances, 5
(5):eaau0823, 2019.

Christoph Helmberg and Franz Rendl. A spectral bundle method for semidefinite programming. SIAM
Journal on Optimization, 10(3):673–696, 2000.

Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic. European
journal of operational research, 126(1):106–130, 2000.

14

https://github.com/mcmahon-lab/cim-optimizer
https://github.com/mcmahon-lab/cim-optimizer
https://www.gurobi.com

Published in Transactions on Machine Learning Research (04/2025)

Petter Holme and Beom Jun Kim. Growing scale-free networks with tunable clustering. Physical review E,
65(2):026107, 2002.

IBM-ILOG. Cplex. https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer, 2023.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the travelling
salesperson problem requires rethinking generalization. arXiv preprint arXiv:2006.07054, 2020.

George Karakostas. A better approximation ratio for the vertex cover problem. ACM Transactions on
Algorithms (TALG), 5(4):1–8, 2009.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for com-
binatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:6659–6672,
2020.

Richard M. Karp. Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston, MA,
1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2_9. URL https://doi.org/10.1007/
978-1-4684-2001-2_9.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Timothée Leleu, Yoshihisa Yamamoto, Peter L McMahon, and Kazuyuki Aihara. Destabilization of local
minima in analog spin systems by correction of amplitude heterogeneity. Physical review letters, 122(4):
040607, 2019.

Timothée Leleu, Farad Khoyratee, Timothée Levi, Ryan Hamerly, Takashi Kohno, and Kazuyuki Aihara.
Scaling advantage of chaotic amplitude control for high-performance combinatorial optimization. Com-
munications Physics, 4(1):266, 2021.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional networks
and guided tree search. Advances in neural information processing systems, 31, 2018.

Shengcai Liu, Yu Zhang, Ke Tang, and Xin Yao. How good is neural combinatorial optimization? a
systematic evaluation on the traveling salesman problem. IEEE Computational Intelligence Magazine, 18
(3):14–28, 2023.

Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh. Learning
heuristics over large graphs via deep reinforcement learning. arXiv preprint arXiv:1903.03332, 2019.

Rafael Martí, Abraham Duarte, and Manuel Laguna. Advanced scatter search for the max-cut problem.
INFORMS Journal on Computing, 21(1):26–38, 2009.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combi-
natorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Alejandro Perdomo-Ortiz, Neil Dickson, Marshall Drew-Brook, Geordie Rose, and Alán Aspuru-Guzik. Find-
ing low-energy conformations of lattice protein models by quantum annealing. Scientific reports, 2(1):1–7,
2012.

Daniel Rehfeldt, Thorsten Koch, and Yuji Shinano. Faster exact solution of sparse maxcut and qubo prob-
lems. Mathematical Programming Computation, 15(3):445–470, 2023.

Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations. Math. Programming, 121(2):307, 2010.

15

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Published in Transactions on Machine Learning Research (04/2025)

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks for
combinatorial problems. Advances in Neural Information Processing Systems, 32, 2019.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-
inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Physical review letters, 35(26):
1792, 1975.

Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on graphs.
arXiv preprint arXiv:2207.11542, 2022.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting sampling for
combinatorial optimization. In International Conference on Machine Learning, pp. 32859–32874. PMLR,
2023.

Éric D Taillard and Keld Helsgaun. Popmusic for the travelling salesman problem. European Journal of
Operational Research, 272(2):420–429, 2019.

Egor S Tiunov, Alexander E Ulanov, and AI Lvovsky. Annealing by simulating the coherent ising machine.
Optics express, 27(7):10288–10295, 2019.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum
constraint satisfaction. Frontiers in artificial intelligence, 3:580607, 2021.

Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: Graph neural networks
as fast global search heuristics for constraint satisfaction. arXiv preprint arXiv:2208.10227, 2022.

Davide Venturelli and Alexei Kondratyev. Reverse quantum annealing approach to portfolio optimization
problems. Quantum Machine Intelligence, 1(1-2):17–30, 2019.

Minjie Yu Wang. Deep graph library: Towards efficient and scalable deep learning on graphs. In ICLR
workshop on representation learning on graphs and manifolds, 2019.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393(6684):
440–442, 1998.

Yoshihisa Yamamoto, Kazuyuki Aihara, Timothee Leleu, Ken-ichi Kawarabayashi, Satoshi Kako, Martin
Fejer, Kyo Inoue, and Hiroki Takesue. Coherent ising machines—optical neural networks operating at the
quantum limit. npj Quantum Information, 3(1):49, 2017.

Fan Yao, Renqin Cai, and Hongning Wang. Reversible action design for combinatorial optimization with
reinforcement learning. arXiv preprint arXiv:2102.07210, 2021.

Weichi Yao, Afonso S Bandeira, and Soledad Villar. Experimental performance of graph neural networks on
random instances of max-cut. In Wavelets and Sparsity XVIII, volume 11138, pp. 242–251. SPIE, 2019.

Yinyu Ye. The gset dataset. https://web.stanford.edu/ yyye/yyye/Gset/, 2003.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let the flows
tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint arXiv:2305.17010,
2023.

A Appendix
A.1 Detailed Description of Datasets
In this section, we provide details on the datasets, groups of datasets, and random graph models used in this
paper.

16

Published in Transactions on Machine Learning Research (04/2025)

• Barrett et al. (2020). This dataset consists of Erdős-Rényi and Barabási-Albert graphs (ER and BA
respectively) with edge weights w ∈ {0,±1} and up to 500 vertices. We set the same parameters from the
paper and generate ER graphs using p = 0.15 with edge weights w ∈ {0,±1} for training and validation.
Similarly, for BA graphs , we use m = 4 with edge weights w ∈ {0,±1}. For testing, we use 100 test
graphs from this distribution from this dataset.

• Erdős-Rényi (ER). This well-known random graph model by Erdős et al. (1960) connects each pair
of vertices with a probability p. Following Ye (2003), we set the same parameters from the paper and
generate graphs of size |V | = 800 using p = 0.06 with edge weights w ∈ {0,±1} and w ∈ {0, 1} for training
and validation.

• Barabási-Albert (BA). This random graph model by Albert & Barabási (2002) iteratively adds nodes,
connecting them to m already existing nodes. For our experiments, we generate graphs of size |V | = 800
using m = 4, with edge weights w ∈ {0,±1} and w ∈ {0, 1}.

• Holme-Kim (HK). This random graph model by Holme & Kim (2002), similar to the BA model, includes
an extra step for each randomly created edge that forms a triangle with probability p. We generate graphs
of size |V | = 800 using m = 4 and p = 0.10, with edge weights w ∈ {0,±1} and w ∈ {0, 1}.

• Watts-Strogatz (WS). The random graph model by Watts & Strogatz (1998) starts with a well-
structured ring lattice with a mean degree of k. In the next step, each edge is replaced with probability p
by another edge sampled uniformly at random. This approach aims to preserve "small-world properties"
while maintaining a random structure similar to ER graphs. We generate graphs of size |V | = 800 using
k = 4 and p = 0.15, with edge weights w ∈ {0,±1} and w ∈ {0, 1}.

• Gset. This dataset (Ye, 2003) is extensively used to benchmark classical heuristics (Benlic & Hao, 2013;
Leleu et al., 2019; 2021) for MaxCut. The dataset comprises three types of weighted and unweighted
random graphs: ER graphs with uniform edge probabilities, Planar graphs with decaying connectivity,
and regular Toroidal graphs. For generating training and validation distributions, we use the independent
graph generator Rudy by Giovanni Rinaldi, which is used for generating Gset graphs as sourced from Ye
(2003). For training and validation, we generate ER, the union of Planar, and regular Toroidal graphs for
training and validation. The arguments for generating the graphs with Rudy are collected from Helmberg
& Rendl (2000).

• Optsicom. This distribution comes from a publicly available library of MaxCut instances2 and includes
synthetic and realistic instances that are widely used in the optimization community (see references on
the library website). For training and validation, we generate a similar distribution, and for testing, we
make use of a subset of the instances available, namely ten problems from Ising Spin glass models in
physics (the first 10 instances in Set2 of the library) following Khalil et al. (2017). All ten instances have
125 nodes and 375 edges, with edge weights w ∈ {0,±1}.

• Sherrington-Kirkpatrick spin glass. This distribution contains dense Sherrington-Kirkpatrick in-
stances with elements Jij ∈ {−1, 1} generated from ER graphs based on examples from Hamerly et al.
(2019). We generate graphs of size 70 to 100 vertices for training and validation. For testing, we use
instances with the best-known value provided in CIM-Optimizer (Chen et al., 2022).

• Phase transition. This distribution contains dense unweighted instances from ER graphs at the phase
transition (p = 0.5) (Coppersmith et al., 2004), based on examples from Hamerly et al. (2019). We
generate graphs with 100 to 200 vertices for training and validation and make use of test instances
provided in CIM-Optimizer (Chen et al., 2022).

• Big Mac Library. We select MaxCut instances from this dataset generated with Rudy, using edge
weights w ∈ {0,±1}. These instances were collected during the development of the Big Mac.

• MaxCut and BQP Instance Library. This distribution comes from a publicly available library of
MaxCut instances3. For testing, we select Ising spin glass instances with edge weights w ∈ {0,±1} and
vertices ranging from 1000 to 2744.

A.2 Detailed Description of Benchmark Algorithms
All algorithms make use of 50 attempts, and the best solution found is reported, except for S2V, which is
deterministic. Next, we provide details about each algorithm discussed in our paper.

2https://grafo.etsii.urjc.es/optsicom/index.php.html
3http://bqp.cs.uni-bonn.de/library/html/instances.html

17

Published in Transactions on Machine Learning Research (04/2025)

Mixed-Interger program solver.

• Gurobi. Gurobi is a commercial mathematical optimization solver. In our experiments, we limit the
number of threads to 10 and set a cut-off time of 10 seconds.

• Cplex. Cplex is another popular optimization solver. We use similar settings as Gurobi for the
experiments.

Classical Heuristics.

• Greedy. The algorithm starts with an empty solution and greedily moves the node which results in the
largest improvement in cut weight until no greedy actions are left.

• Semdifinite Programming (SDP). Semidefinite Programming is a subset of convex optimization
that involves optimizing a linear objective function over the intersection of the cone of positive semidefinite
matrices and an affine space. In our experiments, we use cvxpy (Diamond & Boyd, 2016) with default
settings and limit the number of threads to 10 to ensure consistency with other methods.

• Tabu Search (TS). The algorithm begins with an arbitrary solution and, at each step, selects a node to
flip (either including or excluding it from the solution set) that results in the greatest increase in objective
value among the nodes that have not been selected for a specified hyper-parameter called Tabu Tenure.
However, if selecting a node results in the best objective value found so far, TS disregards that rule. This
algorithm continues searching for a fixed number of steps even when no further immediate improvements
can be made, thereby enhancing the search process by exploring a broader solution space and potentially
discovering better solutions over time. Various improved versions of this algorithm have been proposed
Glover (1990); we consider the vanilla version of the algorithm (see Algorithm 1). Further details can be
found in Glover (1990).

• Extremal optimization (EO). The algorithm begins with an initial arbitrary solution and sorts the
vertices by their descending marginal gain. It then defines a probability distribution Pk ∝ k−τ where
1 ≤ k ≤ |V | for a given value of the parameter τ to determine the likelihood of selecting each vertex
based on its rank in the sorted list. At each step, an index k is sampled according to this probability
distribution, and the membership of the selected vertex is flipped. This method allows the algorithm
to escape local optima and explore the search space more effectively, thereby increasing the chances of
finding better solutions. Similar to TS, it stops after a fixed number of iterations (see Algorithm 2).
Further details can be found in Boettcher & Percus (2001).

GNN-based heuristics

• S2V-DQN. The algorithm starts from an empty solution and incrementally constructs solutions by
adding one vertex at each step to the current solution, guided by a GNN . Once a vertex is added to the
solution, it cannot be removed; in other words, the algorithm does not reverse its earlier decisions. The
state space of its RL agent is represented by the current solution. The algorithm stops when no action can
improve the objective value. The reward function of the algorithm is simply the change in the objective
value. Further details can be found in Khalil et al. (2017).

• ECO-DQN. Unlike S2V-DQN, this algorithm starts with an arbitrary partition of vertices and allows
reversible actions. Barrett et al. (2020) provides seven handcrafted features per node to represent the
state space of its RL agent. At each step, it selects a vertex and flips its membership. The RL agent
often chooses vertices that do not correspond to the greatest immediate increase in the objective value
(non-greedy). Thus, it aims to strike a balance between exploitation and exploration of the search space.
The algorithm stops after a fixed number of iterations. It provides a reward to the RL agent only when a
new solution has been found, which equals the difference between the new best solution and the previous
best solution. Since the reward can be very sparse, the algorithm also provides a small intermediate
reward to the agent when the agent reaches a new locally minimal solution. Further details can be found
in Barrett et al. (2020).

• LS-DQN. Similar to ECO-DQN, LS-DQN allows reversible actions and starts with an arbitrary solution
instead of an empty one. The state space of its RL agent is represented by the current solution. At each
step, it selects a vertex and flips the membership of the selected vertex. It stops after a fixed number of
iterations or can terminate on its own. The reward function of this algorithm is defined as the negative

18

Published in Transactions on Machine Learning Research (04/2025)

Algorithm 1 Tabu Search
1: Input: Instance G(V, E), Oracle f , Tabu Tenure γ, Maximum number of iterations maxiter
2: Output: bestobj
3: Initialize current solution S ← random solution
4: Initialize tabu list T as an empty dictionary
5: Initialize best objective value bestobj ← f(S)
6: Initialize iteration counter iter ← 0
7: while iter < maxiter do
8: bestmove← None
9: bestvalue← −∞

10: for each vertex v ∈ V do
11: Flip the membership of v in S to obtain S′

12: Calculate objective value f(S′)
13: if f(S′) > bestobj or (v /∈ T and f(S′) > bestvalue) then
14: bestmove← v
15: bestvalue← f(S′)
16: end
17: end for
18: Flip the membership of bestmove in S
19: Insert or update bestmove in tabu list T with a value equal to the tabu tenure γ
20: if f(S) > bestobj then
21: bestobj ← f(S)
22: end
23: for each vertex v in tabu list T do
24: Decrease tabu tenure of v by 1
25: if tabu tenure of v is 0 then
26: Remove v from T
27: end
28: end for
29: Increment iteration counter iter ← iter + 1
30: end while
31: return bestobj

19

Published in Transactions on Machine Learning Research (04/2025)

Algorithm 2 Extremal Optimization Algorithm
Input: oracle f , graph G(V, E), initial solution S0, tau τ , maximum iterations maxiter

1: Initialize current solution S ← S0
2: Initialize a probability distribution Pk ∝ k−τ where 1 ≤ k ≤ |V |
3: Initialize best objective value bestobj ← f(S)
4: Initialize iteration counter iter ← 0
5: while iter < maxiter do
6: Initialize a list marginal_gains← []
7: for each vertex v ∈ V do
8: Flip the membership of v in S to obtain S′

9: Calculate objective value f(S′)
10: Calculate gain← f(S′)− f(S)
11: Append gain to marginal_gains
12: end for
13: Sort vertices in descending order of marginal gains
14: Select an index k according to the probability distribution Pk

15: Select the vertex vk that is in the k-th position in the sorted list
16: Flip the membership of vk in S to obtain new solution S
17: if f(S) > bestobj then
18: bestobj ← f(S)
19: end
20: Increment iteration counter iter ← iter + 1
21: end while
22: return bestobj

value change of the objective function at each step. It generalizes to a variety of CO problems, like
MaxCut and TSP. Further details can be found in Yao et al. (2021).

• Gflow-CombOpt. The algorithm begins with an empty solution. The formulation of the Markov
decision process (MDP) for the generative flow network proceeds as follows: at each step, it adds one
vertex to the solution. After each action, it checks if adding the vertex would decrease the cut value. If
so, it excludes the vertex, ensuring it is never added back to the solution. Despite starting with an empty
solution, the algorithm generates diverse solution candidates by sampling from a probability distribution
in a sequential decision-making process. Further details can be found in Zhang et al. (2023).

• RUN-CSP. The algorithm solves CO problems that can be mapped to binary constraint satisfaction
problems (CSP). It employs a graph neural network as a message-passing protocol, with the CSP instances
modeled as a graph where nodes correspond to variables and edges represent constraints. Like other
GNN-based heuristics, it is not a reinforcement learning approach; rather, the loss function to optimize
this algorithm is designed to satisfy as many constraints as possible. The results show that it performs
effectively on significantly larger instances, even when trained on relatively small ones. Further details
can be found in Toenshoff et al. (2021).

• ANYCSP. The algorithm is an end-to-end search heuristic for any constraint satisfaction problem.
Tönshoff et al. (2022) introduced a novel representation of CSP instances, called the constraint value
graph, which allows for direct processing of any CSP instance. The state space of the RL agent is
represented by both the current solution and the best solution found so far. At each step, the algorithm
generates a soft assignment of variables within the CSP instance, enabling transitions between any two
solutions in a single step. To encourage exploration and prevent the search from getting stuck in local
maxima, a reward scheme similar to ECO-DQN is employed. Notably, the RL agent does not receive a
reward upon reaching an unseen local minimum. Empirical evidence has shown that this approach can
compete with or even surpass classical SOTA problem-specific heuristics. Further details can be found in
Tönshoff et al. (2022).

Quantum Annealing

20

Published in Transactions on Machine Learning Research (04/2025)

Quantum annealing algorithms start by framing the optimization problem as an energy landscape of a
quantum system, with the solution being the state of the lowest energy. Initially, the quantum system is set
in a superposition of all possible solutions, which represents a high-energy state. The objective is to steer
the system towards the lowest energy state, which corresponds to the optimal or near-optimal solution for
the problem. Next, we describe two SOTA quantum annealing algorithms used in our benchmark.

• Amplitude Heterogeneity Correction (AHC). The algorithm maps the objective function of CO
problems to the energy landscape of a physical system called Coherent Ising Machine (Yamamoto et al.,
2017). It relaxes the binary vertex states of the MaxCut problem to continuous values and finds low-
energy states efficiently. It finds solutions of better or equal quality for GSet instances compared to those
previously known from the classical SOTA heuristic Breakout Local Search (Benlic & Hao, 2013).

• Chaotic Amplitude Control (CAC). To improve the scalability, this algorithm makes use of non-
relaxational dynamics that can accelerate the sampling of low-energy states to reduce the time to find
optimal solutions. Further details can be found in Leleu et al. (2021).

A.3 Baseline and Instance Bias
In this section, we continue our discussion on the lack of consensus regarding instances and baselines.
This inconsistency leads to a situation where empirical results in different research papers are often not
comparable. We present an overview of common baselines used to evaluate the performance of learned
heuristics for MaxCut in Table 5. In Section 4.1, our empirical analysis shows that classical local search
heuristics such as Tabu Search (Glover, 1990), Extremal Optimization (Boettcher & Percus, 2001) often
outperform common baselines like Greedy, Semidefinite Programming (SDP) (Goemans & Williamson,
1995) and Cplex (IBM-ILOG, 2023) in practice. A comparison with these local search heuristics will help
us gain insights into the performance improvements that learned heuristics offer.

Similarly, we observe from Table 6, that few heuristics actually evaluate their performance on hard instances
that are used to benchmark SOTA heuristics.

A.4 Reproducibility
In this section, we list all the changes we made to the previous implementations of algorithms and provide
implementation details of the algorithms.

A.4.1 S2V-DQN
We use the publicly available implementation of S2V-DQN by Barrett et al. (2020) as our initial codebase4

for implementing S2V-DQN. This implementation had poor scalability because it used dense representations
of graphs. It also could not handle distributions containing graphs of different sizes because dense repre-
sentations of graphs of different sizes cannot be batched together. Therefore, we reimplement it to ensure
it can scale up easily to larger instances. To ensure a fair comparison, we evaluate the performance of our
implementation against pre-trained models provided by Barrett et al. (2022). From Figure 8, we observe
that we have successfully reproduced the performance reported in the literature.

4Code available at: https://github.com/tomdbar/eco-dqn

Table 5: Overview of common baselines to evaluate the performance of learned heuristics.

Baselines → Operation Research Classical Heuristics Learned Heuristics
Approach ↓ Cplex Gurobi SDP Greedy TS EO S2V-DQN ECO-DQN RUN-CSP

S2V-DQN ! ! !

ECO-DQN ! ! !

LS-DQN ! ! ! !

RUN-CSP ! ! ! !

ANYCSP ! ! ! !

Gflow-Comb ! ! !

21

Published in Transactions on Machine Learning Research (04/2025)

Algorithms → S2V-DQN ECO-DQN LS-DQN RUN-CSP ANY-CSP Gflow-CombOpt
Datasets ↓

ER ! !

BA ! ! !

Regular ! !

Gset ! ! ! !

Table 6: Overview of common datasets to evaluate the performance of learned heuristics.

50 100 150 200
Graph Size,|V|

0.75
0.80
0.85
0.90
0.95
1.00

M
ea

n
Ap

pr
ox

. R
at

io

S2V-DQN (OURS)
S2V-Simplified
Greedy
S2V-DQN (Pre-trained)

(a) BA (Barrett et al. (2020))

50 100 150 200
Graph Size,|V|

0.8

0.9

1.0

M
ea

n
Ap

pr
ox

. R
at

io

(b) ER (Barrett et al. (2020))

Figure 8: Performance comparison of S2V-DQN for reproducibility; Note that for BA graphs with 60 vertices,
we were unable to load the pre-trained model for S2V-DQN.

A.4.2 ECO-DQN
Similar to S2V-DQN, we use the publicly available implementation of ECO-DQN and make similar im-
provements as we did for S2V-DQN. To ensure reproducibility, we compare our implementation with the
pre-trained networks provided by Barrett et al. (2020). From Figure 9, we observe that we have successfully
reproduced the performance reported in the original paper.

50 100 150 200
Graph Size,|V|

0.980
0.985
0.990
0.995
1.000

M
ea

n
Ap

pr
ox

. R
at

io

ECO-DQN (OURS)
ECO+LR
ECO-Simplified
ECO-DQN (Pre-trained)

(a) BA (Barrett et al. (2020))

50 100 150 200
Graph Size,|V|

0.975
0.980
0.985
0.990
0.995
1.000

M
ea

n
Ap

pr
ox

. R
at

io

(b) ER (Barrett et al. (2020))

Figure 9: Performance comparison of ECO-DQN for reproducibility

22

Published in Transactions on Machine Learning Research (04/2025)

Finally, we tested agents trained on weighted ER graphs with |V | = 200 on real-world datasets and hard
instances, following the experimental setup of Barrett et al. (2020). From Table 7, we observe that ECO+LR
outperforms ECO-DQN, except for ER graphs where ECO-DQN performs slightly better than ECO+LR.

Table 7: Average approximation ratios on known benchmarks: The second half of the table shows results for
extended experiments.

Dataset Type Nodes ECO-Simplified ECO+LR ECO-DQN(Pre-trained) ECO-DQN(OURS)
Physics Regular 125 1.000 1.000 1.000 1.000
G1-10 ER 800 0.989 0.984 0.994 0.990
G22-31 ER 2000 0.953 0.977 0.974 0.981

A.4.3 LS-DQN
Since the LS-DQN codebase was not publicly available initially, we contacted the authors. Unfortunately,
their codebase5 is designed specifically for clustered graphs and is not suitable for training on arbitrary graph
distributions. The authors did not provide details about their configuration and hyper-parameter settings
in the paper. However, we were able to replicate similar improvements over RG using the GNN, as reported
in the paper (see Table 3).

A.4.4 Gflow-CombOpt
For unweighted instances, we utilize the original implementation6 of Gflow-CombOpt with the default
configuration. For weighted instances, we incorporate weighted graph convolution to utilize edge weights
and make necessary adjustments to ensure that a vertex is added to the solution set only if it improves the
cut value compared to not including it. However, we observe poor empirical performance of the algorithm
for weighted instances. Therefore, we restrict our empirical evaluation of GFlow-CombOPT to unweighted
instances.

A.4.5 RUN-CSP and ANYCSP
We use the PyTorch implementation of RUN-CSP7 and ANYCSP8 with the default configuration.

A.4.6 CAC and AHC
We use the implementations of these two algorithms provided by Chen et al. (2022) and tune their hyper-
parameters using Bayesian Optimization Hyperband.

A.4.7 TS
To tune the value of tabu tenure, we run a grid search with a step size of 10, starting from 20 to 150, over
the validation dataset and use the tuned tabu tenure for testing. We report the parameters used for our
experiments in Table 8.

A.4.8 EO
To tune the value of tau, we run a grid search with a step size of 0.1, starting from 1.1 to 1.9, over the
validation dataset and use the tuned tau for testing. We report the parameters used for our experiments in
Table 8.

A.5 Additional results on generalization
Due to space constraints, we present the results of the generalization of learned and classical heuristics that
are trained on a skewed graph distribution of size |V | = 800 from Gset and tested on various distributions
of size |V | = 2000 from Gset. From Figure 10, we observe that simple heuristics match or outperform the
performance of learned heuristics. In addition, we train all learned heuristics on ER graphs from Barrett
et al. (2020) dataset and test on BigMac MaxCut, and BQP Instance Library. From Figure 11, we observe

5Code available at: https://github.com/MingzheWu418/LocalSearch-DQN
6Code available at: https://github.com/zdhNarsil/GFlowNet-CombOpt
7Code available at:https://github.com/toenshoff/RUNCSP-PyTorch
8Code available at:https://github.com/toenshoff/ANYCSP

23

Published in Transactions on Machine Learning Research (04/2025)

Table 8: Parameters used for Tabu Search (TS) and Extremal Optimization (EO).

Graph Nodes Tabu Tenure (TS) Tau (EO)
Gset (ER) 800 80 1.4

GSet (Skew) 800 90 1.4
BA 800 110 1.3
WS 800 140 1.4
HK 800 100 1.4

Phase Transition 100-200 20 1.8
GSet (ER) 800 100 1.7

GSet (Skew) 800 90 1.4
GSet (Torodial) 800 100 1.4

BA 800 120 1.2
WS 800 110 1.3
HK 800 110 1.2

Barrett et al. (ER) 200 10 1.9
Barrett et al. (BA) 200 20 1.6

SK spin-glass 70-100 20 1.8
Physics (Regular) 125 20 1.4

that ECO-DQN and SoftTabu (ECO+LR) achieve comparable performance, while S2V-DQN and RUN-CSP
perform significantly worse.

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

Ap
pr

ox
. R

at
io

ER(unweighted)

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

ER(weighted)

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

Skew(unweighted)

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

Skew(weighted)

EC
O-

DQ
N

LS
-D

QN
So

ftT
ab

u
S2

V-
DQ

N
AN

YC
SP

RU
N-

CS
P EO TS

0.0
0.2
0.4
0.6
0.8
1.0

Torodial(weighted)
Trained on Skew(weighted) distribution

Figure 10: Generalization of agents to unseen graph sizes and structures.

A.6 Additional details on Evaluation settings
Since we are using the previous codebase from several works, and they are not equally optimized, we use the
number of search steps instead of a timeout. As both S2V-DQN and Gflow-CombOpt are irreversible (only
add to the solution set), these algorithms can run for a maximum of |V | steps. For other learned algorithms,
we run the experiments for 4|V | steps and find no significant improvement in the objective value. We present
the results of the learned heuristics in Table 9.

A.7 Efficiency and Trade-offs in Large-Scale Instances
In this subsection, we present the run-time and mean approximation ratio of each algorithm evaluated across
multiple datasets in Table 10.

24

Published in Transactions on Machine Learning Research (04/2025)

EO TS

S2
V-

DQ
N

EC
O-

DQ
N

EC
O+

LR

AN
YC

SP

RU
N-

CS
P0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

Ap
pr

ox
. R

at
io

(a) BigMac

EO TS

S2
V-

DQ
N

EC
O-

DQ
N

EC
O+

LR

AN
YC

SP

RU
N-

CS
P0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ap

pr
ox

. R
at

io

(b) MaxCut and BQP Instance Library

Figure 11: Additional experiments on generalizations on BigMac and MaxCut and BQP Instance Library.

Table 9: Average approximation ratios of learned heuristics optimized for 4|V | steps: The first and second
halves of the table show results for unweighted and weighted instances, respectively.

Graph Nodes ECO-DQN LS-DQN RUN-CSP ANYCSP
Gset (ER) 800 0.997±0.001 0.993±0.001 0.979±0.002 0.999±0.000

GSet (Planar) 800 0.989±0.001 0.983±0.002 0.954±0.001 0.997±0.001

BA 800 0.992±0.002 0.983±0.003 0.980±0.002 1.000±0.000

WS 800 0.992±0.002 0.972±0.003 0.979±0.003 1.000±0.000

HK 800 0.991±0.002 0.983±0.003 0.979±0.003 1.000±0.000

Phase Transition 100-200 1.000±0.000 0.998±0.001 0.984±0.005 1.000±0.000

GSet (ER) 800 0.981±0.006 0.950±0.008 0.912±0.009 0.998±0.002

GSet (Planar) 800 0.967±0.008 0.946±0.018 0.914±0.018 0.995±0.005

GSet (Torodial) 800 0.992±0.004 0.964±0.003 0.974±0.002 0.999±0.002

BA 800 0.973±0.008 0.933±0.010 0.937±0.009 1.000±0.000

WS 800 0.961±0.007 0.922±0.008 0.954±0.007 1.000±0.000

HK 800 0.975±0.009 0.937±0.009 0.944±0.007 1.000±0.000

Barrett et al. (ER) 200 1.000±0.001 0.988±0.008 0.945±0.012 1.000±0.000

Barrett et al. (BA) 200 0.983±0.031 0.977±0.032 0.960±0.016 0.989±0.037

SK spin-glass 70-100 1.000±0.000 0.999±0.002 0.962±0.019 1.000±0.001

Physics (Regular) 125 1.000±0.000 0.995±0.009 0.982±0.008 1.000±0.000

25

Published in Transactions on Machine Learning Research (04/2025)

Ta
bl

e
10

:
A

co
m

pa
rs

io
n

of
ru

n-
tim

e
an

d
pe

rfo
rm

an
ce

of
al

ll
ea

rn
ed

an
d

cl
as

sic
al

he
ris

tic
s

ac
ro

ss
al

ld
at

as
et

s.

G
re

ed
y

EO
T

S
S2

V
-D

Q
N

LS
-D

Q
N

EC
O

-D
Q

N
EC

O
+

LR
G

flo
w

RU
N

-C
SP

A
N

Y
C

SP

BA
20

0
(W

ei
gh

te
d)

0.
89

2
(0

.5
11

)
0.

97
0

(1
.8

27
)

0.
96

9
(1

.2
50

)
0.

93
7

(0
.5

38
)

0.
97

8
(2

.1
17

)
0.

98
2

(3
.0

24
)

0.
98

4
(1

.8
87

)
N

aN
0.

94
3

(1
.1

51
)

0.
98

6
(2

.2
98

)
BA

80
0

(U
nw

ei
gh

te
d)

0.
95

3
(0

.4
47

)
0.

98
2

(2
.2

16
)

0.
99

2
(1

.7
66

)
0.

95
0

(1
.0

79
)

0.
98

4
(2

0.
20

8)
0.

99
1

(2
3.

81
4)

0.
99

3
(1

0.
57

9)
0.

95
5

(3
.5

86
)

0.
98

0
(1

4.
52

9)
1.

00
0

(3
4.

66
3)

BA
80

0
(W

ei
gh

te
d)

0.
85

9
(0

.4
66

)
0.

94
7

(2
.3

44
)

0.
97

6
(1

.7
97

)
0.

88
5

(1
.1

90
)

0.
96

0
(2

3.
78

8)
0.

97
2

(2
5.

52
4)

0.
97

8
(1

1.
17

9)
N

aN
0.

93
6

(1
4.

88
0)

1.
00

0
(3

4.
65

5)
ER

20
0

(W
ei

gh
te

d)
0.

94
6

(0
.5

14
)

0.
98

6
(1

.8
37

)
0.

99
0

(1
.2

61
)

0.
95

1
(0

.6
59

)
0.

98
8

(3
.6

89
)

0.
99

9
(4

.5
08

)
0.

99
8

(2
.4

22
)

N
aN

0.
89

4
(4

.3
76

)
1.

00
0

(4
.8

67
)

ER
80

0
(U

nw
ei

gh
te

d)
0.

98
2

(0
.4

36
)

0.
99

4
(1

.8
98

)
0.

99
7

(1
.5

23
)

0.
97

0
(1

.3
20

)
0.

99
2

(6
2.

09
4)

0.
98

5
(7

2.
63

2)
0.

99
7

(2
3.

74
0)

0.
97

9
(8

.9
63

)
0.

98
2

(6
3.

57
8)

0.
99

9
(1

12
.2

58
)

ER
80

0
(W

ei
gh

te
d)

0.
91

5
(0

.5
28

)
0.

96
3

(2
.4

42
)

0.
98

6
(1

.9
51

)
0.

90
6

(1
.6

37
)

0.
94

7
(6

6.
03

6)
0.

98
5

(7
2.

54
6)

0.
98

7
(2

6.
11

4)
N

aN
0.

87
6

(6
6.

64
1)

0.
99

8
(1

12
.2

78
)

H
K

80
0

(U
nw

ei
gh

te
d)

0.
95

2
(0

.4
47

)
0.

98
2

(2
.2

87
)

0.
99

2
(1

.8
31

)
0.

96
6

(2
.5

03
)

0.
98

3
(2

0.
56

0)
0.

99
1

(2
4.

56
1)

0.
99

3
(1

1.
44

8)
0.

93
0

(3
.4

41
)

0.
97

9
(1

4.
51

0)
1.

00
0

(3
4.

73
5)

H
K

80
0

(W
ei

gh
te

d)
0.

85
8

(0
.4

54
)

0.
94

5
(2

.3
56

)
0.

97
1

(1
.8

01
)

0.
90

4
(1

.1
25

)
0.

94
7

(2
0.

01
9)

0.
97

0
(2

4.
69

3)
0.

97
5

(1
1.

30
5)

N
aN

0.
94

0
(3

.7
22

)
0.

99
6

(8
.6

73
)

Ph
as

e
Tr

an
sit

io
n

(U
nw

ei
gh

te
d)

0.
99

5
(0

.4
69

)
0.

99
9

(2
.2

16
)

0.
99

9
(1

.6
87

)
0.

98
5

(0
.2

40
)

0.
99

8
(6

.3
79

)
1.

00
0

(7
.3

23
)

1.
00

0
(3

.9
84

)
0.

92
4

(0
.2

71
)

0.
98

5
(5

.1
17

)
1.

00
0

(8
.4

41
)

Ph
ys

ic
s

(W
ei

gh
te

d)
0.

88
6

(0
.5

19
)

0.
99

6
(2

.0
77

)
0.

97
8

(1
.2

57
)

0.
96

2
(0

.1
87

)
0.

99
6

(1
.1

89
)

1.
00

0
(1

.7
00

)
1.

00
0

(1
.1

47
)

N
aN

0.
98

9
(0

.3
43

)
1.

00
0

(0
.9

22
)

Pl
an

ar
80

0
(U

nw
ei

gh
te

d)
0.

96
2

(0
.5

25
)

0.
98

5
(2

.3
42

)
0.

99
1

(1
.8

62
)

0.
98

0
(1

.1
18

)
0.

98
4

(2
4.

55
3)

0.
98

9
(2

9.
58

3)
0.

99
0

(1
4.

20
6)

0.
96

7
(3

.6
94

)
0.

95
4

(1
9.

07
9)

0.
99

7
(4

1.
04

1)
Pl

an
ar

80
0

(W
ei

gh
te

d)
0.

87
0

(0
.5

95
)

0.
93

8
(2

.5
40

)
0.

97
3

(1
.9

30
)

0.
89

0
(1

.1
54

)
0.

93
6

(2
6.

08
7)

0.
96

7
(3

2.
55

1)
0.

97
8

(1
5.

04
8)

N
aN

0.
91

4
(1

9.
64

4)
0.

99
8

(4
1.

53
1)

SK
70

-1
00

(W
ei

gh
te

d)
0.

99
3

(0
.5

16
)

0.
99

3
(1

.8
47

)
0.

99
9

(1
.7

46
)

0.
93

9
(0

.2
84

)
0.

99
9

(2
.1

64
)

1.
00

0
(2

.2
89

)
1.

00
0

(1
.3

47
)

N
aN

0.
88

4
(2

.7
48

)
1.

00
0

(2
.4

64
)

To
ro

di
al

80
0

(W
ei

gh
te

d)
0.

80
4

(0
.6

15
)

0.
94

7
(2

.4
13

)
0.

98
5

(1
.9

11
)

0.
96

0
(1

.1
19

)
0.

96
2

(1
5.

01
4)

0.
99

3
(1

8.
85

0)
0.

99
2

(9
.0

13
)

N
aN

0.
97

5
(2

.4
31

)
0.

99
5

(6
.5

80
)

W
S8

00
(U

nw
ei

gh
te

d)
0.

92
7

(0
.4

48
)

0.
97

8
(2

.2
23

)
0.

98
9

(1
.7

24
)

0.
97

2
(1

.0
64

)
0.

97
5

(1
4.

35
5)

0.
99

0
(1

8.
40

3)
0.

98
6

(8
.7

28
)

0.
95

7
(2

.9
43

)
0.

97
8

(9
.4

94
)

1.
00

0
(2

7.
11

3)
W

S8
00

(W
ei

gh
te

d)
0.

82
9

(0
.6

82
)

0.
93

9
(2

.7
63

)
0.

96
4

(1
.7

88
)

0.
91

5
(1

.1
05

)
0.

93
1

(1
6.

33
9)

0.
95

7
(1

8.
85

0)
0.

97
0

(9
.0

09
)

N
aN

0.
95

1
(9

.8
77

)
0.

99
8

(2
7.

12
5)

26

Published in Transactions on Machine Learning Research (04/2025)

A.8 Additional Tables

Table 11: Performance of learned local search heuristics.

Classical Heuristics Learned Heuristics
Graph Nodes Greedy TS EO S2V-Simplified S2V-DQN LS-DQN ECO-DQN ECO+LR

ER (Unweighted)

800 0.984±0.001 0.998±0.001 0.994±0.001 0.97±0.003 0.97±0.001 0.992±0.001 0.984±0.002 0.997±0.001

1000 0.971±0.003 0.996±0.001 0.99±0.001 0.959±0.003 0.947±0.003 0.968±0.002 0.972±0.002 0.995±0.002

2000 0.966±0.001 0.994±0.001 0.988±0.001 0.959±0.004 0.945±0.001 0.963±0.002 0.967±0.001 0.994±0.001

5000 0.922±0.0 0.965±0.0 0.97±0.0 0.932±0.0 0.924±0.0 0.838±0.0 0.918±0.0 0.977±0.0

7000 0.92±0.0 0.962±0.0 0.964±0.0 0.931±0.0 0.918±0.0 0.834±0.0 0.916±0.0 0.974±0.0

10000 0.901±0.0 0.92±0.0 0.932±0.0 0.931±0.0 0.873±0.0 0.828±0.0 0.896±0.0 0.96±0.0

ER (Weighted)

800 0.919±0.011 0.986±0.002 0.965±0.007 0.834±0.03 0.906±0.015 0.95±0.013 0.981±0.005 0.988±0.005

2000 0.87±0.007 0.977±0.003 0.95±0.004 0.82±0.011 0.869±0.007 0.852±0.008 0.947±0.005 0.976±0.003

5000 0.809±0.0 0.91±0.0 0.912±0.0 0.781±0.0 0.806±0.0 0.43±0.0 0.923±0.0 0.942±0.0

7000 0.803±0.0 0.91±0.0 0.91±0.0 0.784±0.0 0.819±0.0 0.436±0.0 0.924±0.0 0.945±0.0

Toroidal (Weighted)

800 0.798±0.012 0.982±0.003 0.942±0.004 0.728±0.02 0.96±0.009 0.964±0.003 0.992±0.004 0.993±0.003

2000 0.766±0.003 0.955±0.004 0.926±0.001 0.734±0.011 0.958±0.006 0.95±0.003 0.984±0.002 0.987±0.001

5000 0.759±0.0 0.897±0.0 0.905±0.0 0.726±0.0 0.954±0.0 0.937±0.0 0.976±0.0 0.979±0.0

7000 0.757±0.0 0.909±0.0 0.9±0.0 0.731±0.0 0.954±0.0 0.943±0.0 0.978±0.0 0.979±0.0

10000 0.755±0.003 0.864±0.012 0.89±0.002 0.731±0.001 0.954±0.002 0.939±0.001 0.975±0.0 0.979±0.0

Planar (Unweighted)

800 0.964±0.003 0.99±0.001 0.986±0.002 0.96±0.001 0.98±0.001 0.984±0.001 0.99±0.001 0.99±0.001

1000 0.962±0.001 0.99±0.001 0.985±0.001 0.957±0.003 0.978±0.001 0.984±0.0 0.989±0.001 0.99±0.001

2000 0.959±0.0 0.983±0.001 0.982±0.001 0.956±0.003 0.981±0.001 0.979±0.0 0.983±0.002 0.985±0.002

5000 0.956±0.0 0.979±0.0 0.98±0.0 0.956±0.0 0.972±0.0 0.775±0.0 0.976±0.0 0.98±0.0

7000 0.958±0.0 0.98±0.0 0.98±0.0 0.957±0.0 0.972±0.0 0.773±0.0 0.975±0.0 0.978±0.0

Planar (Weighted)

800 0.868±0.005 0.977±0.005 0.949±0.008 0.816±0.022 0.89±0.023 0.943±0.006 0.965±0.002 0.978±0.003

2000 0.86±0.003 0.944±0.004 0.933±0.001 0.809±0.023 0.889±0.007 0.923±0.007 0.947±0.005 0.961±0.003

5000 0.845±0.0 0.925±0.0 0.925±0.0 0.82±0.0 0.889±0.0 0.904±0.0 0.931±0.0 0.956±0.0

7000 0.845±0.0 0.918±0.0 0.918±0.0 0.815±0.0 0.882±0.0 0.894±0.0 0.937±0.0 0.956±0.0

Table 12: T-test results between different methods.

Comparison t-statistic p-value Significance
TS & ECO+LR 0.218 0.829 No

TS & ECO+GNN 0.602 0.551 No
ECO+LR & ECO+GNN 0.425 0.674 No

27

	Introduction
	Related Work
	The MaxCut-Bench Benchmark
	Benchmark Algorithms
	Benchmark Datasets

	Experiments and Analysis
	Effectiveness of Common Baselines in Evaluating Learned Heuristics
	Impact of Integrating Deep Learning with Local Search
	Performance Comparison of Learned Heuristics and Simple Heuristics
	Generalization Capabilities of Learned Heuristics
	Efficiency and Trade-offs in Large-Scale Instances

	Conclusion
	Appendix
	Detailed Description of Datasets
	Detailed Description of Benchmark Algorithms
	Baseline and Instance Bias
	Reproducibility
	S2V-DQN
	ECO-DQN
	LS-DQN
	Gflow-CombOpt
	RUN-CSP and ANYCSP
	CAC and AHC
	TS
	EO

	Additional results on generalization
	Additional details on Evaluation settings
	Efficiency and Trade-offs in Large-Scale Instances
	Additional Tables

