
Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement
Learning

Whiyoung Jung * 1 Sunghoon Hong * 1 Deunsol Yoon * 1 Kanghoon Lee 1 Woohyung Lim 1

Abstract

Multi-Agent Reinforcement Learning (MARL)
struggles with coordination in sparse reward envi-
ronments. Macro-actions —sequences of actions
executed as single decisions— facilitate long-
term planning but introduce asynchrony, compli-
cating Centralized Training with Decentralized
Execution (CTDE). Existing CTDE methods use
padding to handle asynchrony, risking misaligned
asynchronous experiences and spurious correla-
tions. We propose the Agent-Centric Actor-Critic
(ACAC) algorithm to manage asynchrony with-
out padding. ACAC uses agent-centric encoders
for independent trajectory processing, with an
attention-based aggregation module integrating
these histories into a centralized critic for im-
proved temporal abstractions. The proposed struc-
ture is trained via a PPO-based algorithm with a
modified Generalized Advantage Estimation for
asynchronous environments. Experiments show
ACAC accelerates convergence and enhances per-
formance over baselines in complex MARL tasks.

1. Introduction
Multi-Agent Reinforcement Learning (MARL) has achieved
significant progress (Omidshafiei et al., 2017; Foerster et al.,
2018; Lowe et al., 2017; Rashid et al., 2018; Yu et al.,
2022; Kuba et al., 2022), enabling distributed agents to learn
coordinated strategies efficiently. Despite these advances,
many real-world tasks remain notoriously challenging due
to sparse rewards, where feedback signals are infrequent
and less informative. In such environments, agents struggle
to infer how their individual actions influence collective
performance, often requiring extensive exploration.

One promising approach to address sparse rewards is to

*Equal contribution 1LG AI Research, Seoul, Republic of Korea.
Correspondence to: Woohyung Lim <w.lim@lgresearch.ai>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked

ACAC (macro)
MAPPO (micro)

Figure 1. (Left) An example of Overcooked problem. (Right) Com-
parison of the learning efficiency when using micro-actions (dot-
ted) versus macro-actions (solid).

Timesteps

Observation

& Decision Time

Macro-action

Go to

Lettuce

Go to Knife 2

Go to Knife 1

Chop

Go to Plate 1

Chop

Go to Onion

Go to Tomato

Figure 2. An example trajectory of asynchronous decisions.

treat a well-defined sequence of actions1 —referred to as a
macro-action—as a single high-level decision (Xiao et al.,
2020a;b). By selecting macro-actions, agents adopt long-
term strategies that significantly enhance learning efficiency
compared to relying solely on low-level (micro-)actions.
An illustrative example of such an environment is the Over-
cooked problem, shown in the left side of Figure 1. In this
setting, macro-actions like GO TO TOMATO each comprise
a sequence of micro-actions aimed at completing a sub-
task. As depicted in the right side of Figure 1, using these
macro-actions can significantly enhance learning efficiency.

However, employing macro-actions also causes the agents’
action-selection timesteps to become asynchronous, as
shown in Figure 2. In this figure, for instance, when the blue
agent selects GO TO TOMATO, it spends four timesteps exe-
cuting the macro-action before finally acquiring the tomato.
After finishing a macro-action, each agent receives a new

1Macro-actions are not fixed sequences of micro-actions; see
Section 2.3 for further details.

1

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

observation and chooses its next macro-action accordingly.
Because macro-action durations vary across agents, the ex-
act times when they complete their actions—and thus when
they select new ones—differ as well. This variability in
execution times underlies the asynchronous nature of the
MARL environment.

Centralized Training with Decentralized Execution (CTDE)
is a widely adopted framework for efficient learning in syn-
chronous MARL environments. While CTDE can also be
considered to enhance learning efficiency in asynchronous
MARL settings, its straightforward application becomes
infeasible. In asynchronous environments, observation and
macro-action information are available only for subsets of
agents at any given timestep. Consequently, existing CTDE
methods designed for synchronous MARL cannot be di-
rectly applied. To address this limitation, current approaches
(Xiao et al., 2020a;b) typically pad the missing information
for agents during centralized training using their most re-
cent observations. However, as highlighted by (Liang et al.,
2022), this padding technique can result in the abstraction
of misleading information, potentially undermining the ef-
fectiveness of the learning process.

To address this challenge, we propose an Agent-Centric
Actor-Critic (ACAC) algorithm. ACAC leverages agent-
centric history encoders to process each agent’s trajectory
individually, followed by an attention-based mechanism
that integrates these per-agent histories into a centralized
critic. This design eliminates the redundancy inherent in
padding-based methods, leading to more accurate temporal
abstractions, faster learning, and higher-quality policies. To
train the centralized critic and decentralized actors, we intro-
duce a PPO-based algorithm incorporating a modified GAE
suited for asynchronous settings. We evaluate ACAC on sev-
eral macro-action-based multi-agent benchmarks, where ex-
perimental results show that it not only accelerates learning
convergence under sparse rewards but also achieves higher
final returns than conventional padding-based approaches.

2. Background
2.1. Synchronous Multi-Agent RL Settings

Cooperative Multi-Agent Reinforcement Learning is gen-
erally formulated as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) (Bernstein et al.,
2002; Omidshafiei et al., 2015). A Dec-POMDP is formally
defined as a tuple D = (I,S,A,Ω, T ,R, O, γ), where I
represents the set of N agents, S denotes the environmental
state space, and A = ×i∈IAi is the joint action space of the
agents. Ω = ×i∈IΩ

i is the joint observation space, T spec-
ifies the state transition probabilities, and R is the global
reward function. O defines the observation function, and γ
is the discount factor. In this synchronous setting, all agents

Critic Critic Critic Critic

(a) With original macro-observations

Critic Critic Critic Critic

padded

padded

padded padded

padded

padded

(b) With padded macro-observations

Figure 3. Centralized critics for the example in Figure 2.

act synchronously by selecting and executing their actions
simultaneously at each discrete time step. The objective is
to maximize a shared cumulative reward.

2.2. Asynchronous Multi-Agent RL Settings

In asynchronous settings, agents operate asynchronously
by selecting and executing macro-actions that may vary in
duration, enabling flexible and scalable coordination among
agents. This framework can be modeled as a Macro-Action
Decentralized Partially Observable Markov Decision Pro-
cess (MacDec-POMDP) (Amato et al., 2014).

A MacDec-POMDP is defined as a tuple D′ = (D,M, ζ).
Here, M = ×i∈IMi represents the joint macro-action
space, where Mi is the macro-action space for each agent
i, and mi ∈ Mi denotes a macro-action chosen by agent i.
Similarly, ζ = ×i∈Iζ

i denotes the joint macro-observation
space, where ζi is the macro-observation space for each
agent i, zi ∈ ζi represents the macro-observation of agent i,
and z̃ ∈ ζ is the aggregated joint macro-observation across
all agents. For the full notation for the MacDec-POMDP
can be found in Appendix B.

In a MacDec-POMDP, each agent selects a macro-actionmi

2

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

based on its current macro-observation zi. Once a macro-
action mi is chosen, the sequence of micro-actions that
constitute it is executed in order. Upon completion of these
micro-actions, the macro-action mi terminates. At this
point, the agent receives both a new macro-observation
zinext and select a new macro-action mi

next based on the up-
dated macro-observation zinext. This cycle continues until
the episode concludes. The objective of MacDec-POMDP is
identical to that of Dec-POMDP, but it incorporates macro-
observations and macro-actions to facilitate higher-level
decision-making and improve learning efficiency.

2.3. Macro-Actions in MacDec-POMDP

Within MacDec-POMDP, macro-actions are modeled as
options in the Semi-Markov Decision Process framework
(Sutton et al., 1999). Each macro-action is defined as
m = ⟨πm, Im, βm⟩, where πm is an intra-option policy
over micro-actions given a history of micro-observations,
Im is the initiation set from which the macro-action can
start, and βm is the termination condition, giving the prob-
ability that the macro-action ends given the current micro-
observation history. The design of these intra-option policies
and termination conditions enables inter-agent interaction
and adaptation. This careful formulation allows cooperative
behaviors to emerge naturally within the MacDec-POMDP
framework.

2.4. Extending Sync. MARL to Async. MARL

Centralized Training with Decentralized Execution (CTDE)
is a widely adopted framework for efficient learning in syn-
chronous MARL environments. CTDE leverages a central-
ized critic to estimate the joint value function for all agents,
facilitating coordinated policy development. While CTDE
can also be considered to enhance learning efficiency in
asynchronous MARL settings, its straightforward applica-
tion becomes infeasible.

In asynchronous environments, macro-observation infor-
mation is available only for subsets of agents at any given
timestep. Consequently, existing CTDE methods designed
for synchronous MARL cannot be directly applied because
the centralized critic requires joint macro-observations of
varying sizes, as illustrated in Figure 3 (a). To address this
limitation, current approaches (Xiao et al., 2020a;b) typ-
ically pad the missing information for agents using their
most recent macro-observations, as shown in Figure 3 (b).
This padding strategy represents the simplest way to apply
synchronous MARL methods to asynchronous CTDE with-
out considering specialized algorithmic or network structure
modifications. However, as highlighted by (Liang et al.,
2022), this padding technique can lead to the abstraction of
misleading information, potentially undermining the effec-
tiveness of the learning process.

Specifically, the padding-based method does not distinguish
whether the newly obtained information is identical to pre-
vious information or merely reuses past macro-observations.
As a result, both the presence of new information and the
duration information derived from previous data become
inaccurate, thereby reducing the accuracy of history abstrac-
tion. This lack of distinction compromises the centralized
critic’s ability to accurately interpret the agents’ historical
macro-actions and macro-observations, further diminishing
the overall learning effectiveness in asynchronous MARL
environments.

3. Method
3.1. Review of a CTDE Framework for Async. MARL

Centralized Critic. A centralized critic in the CTDE frame-
work is usually trained using the combined histories of all
agents. At each timestep t, the observation history of the
i-th agent is denoted as:

zi≤t =
{
ziu | ziu is available , u ≤ t

}
,

where zi≤t represents the sequence of all observations of
agent i up to timestep t. The critic takes as input the set of
all agents’ histories and predict the value at timestep t as:

Vψ(z̃≤t), where z̃≤t = {z1≤t, z2≤t, . . . , zN≤t}

In asynchronous settings, not all agents can obtain macro-
observations zit at every timestep t. To address this, missing
macro-observations are replaced with the latest valid macro-
observations, zit,latest, when constructing the history:

zi≤t =

{
{zi≤t−1, z

i
t}, if zit is available,

{zi≤t−1, z
i
t,latest}, if zit is unavailable.

This mechanism ensures that the input to the critic z̃≤t
remains consistent across timesteps, even when macro-
observations are missing. By leveraging the latest valid
macro-observations, the centralized critic adapts effectively
to asynchronous environments while maintaining compati-
bility with the training process.

Decentralized Actor. In decentralized execution, each
agent independently receives its local macro-observation
and selects an macro-action based on its current local macro-
observation and past history. Unlike the critic, there is
no structural difference between synchronous and asyn-
chronous settings, as each agent operates independently.
The macro-action mi

t for the i-th agent at timestep t is sam-
pled as follows:

mi
t ∼ πiθi(· | z

i
≤t),

Actor-Critic Algorithm for Asynchronous MARL. We
employ an actor-critic algorithm to train decentralized ac-
tors, each parameterized by θi, alongside a centralized critic

3

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

Agent-Centric

Encoder 1

Agent-Centric

Encoder 2

Agent-Centric

Encoder N

Self-Attention

Average Pooling

MLP

MLP

GRU

Time
Embedding

Figure 4. Overall structure of the agent-centric centralized critic:
(Left) Agent-centric encoder, and (Right) Centralized critic inte-
grating agent-centric histories.

parameterized by ψ. The training procedure is outlined as
follows:

L(ψ) = Eτ

({ ∞∑
u=t

γu−tru

}
− Vψ(z̃≤t)

)2

L(θi) = −Eτ
[
log πiθi

(
m | zi≤t

)
At
]

where τ is sampled trajectories using the current actors and
rt denotes the reward at timestep t. The advantage function
At is defined as:

At =
{tnext−1∑

u=t

γu−tru

}
+ γtnext−tVψ(z̃≤tnext)− Vψ(z̃≤t).

where tnext is the next timestep at which a new macro-
observation for any agent becomes available.

3.2. Agent-Centric Centralized Critic

In synchronous MARL, joint history abstraction is typically
achieved by collecting joint observations at each timestep.
However, we argue that this method does not align well with
asynchronous MARL settings, where only a subset of agents
may provide observations at any given timestep. Although
padding can be employed to fill in missing observations,
this approach often introduces redundant information and
leads to inaccuracies in the joint history representation.

To address these issues, we propose a method that first con-
structs each agent’s history on a per-agent basis and then
integrates these agent-specific histories into a joint represen-
tation. Specifically, we introduce an agent-centric history
encoder to capture each agent’s macro-observation history.

Update 
hidden state No Update

New observation

I’m done.

What’s next?

Executing Macro-actions

Chopping... Going to 
Onion...

Agent-Centric

Centralized Critic

Agent-Centric

Decentralized Actor

New

Hidden State

Latest

Hidden State

Latest

Hidden State

Macro-action Macro-value

Figure 5. Illustration of the agent-centric actor-critic.

These agent-centric histories are then aggregated using an
attention-based module, resulting in a more accurate joint
history representation for value estimation. By focusing on
encoding each agent’s history before combining them, our
approach effectively handles the lack of macro-observations
typical in asynchronous MARL and mitigates the limitations
of padding-based methods.

Agent-Centric Encoders. Each agent’s history can be
abstracted from its macro-observations using a recurrent
network. However, in asynchronous MARL, it is essential
to account for the time elapsed between consecutive macro-
observations. Without this duration information, identical
consecutive macro-observations lack context about whether
the interval between them is one timestep or ten, which
can lead to unstable or inaccurate learning of each agent’s
history due to varying durations.

To address this, we propose an agent-centric encoder that
integrates both the macro-observation zit and the correspond-
ing timestep pit = t of each macro-observation. In the
proposed encoder, the timestep information pit is embed-
ded using sinusoidal positional encoding (Vaswani et al.,
2017). This embedded timestep is then concatenated with
the macro-observation. The combined information is pro-
cessed through a multilayer perceptron (MLP) and a gated
recurrent unit (GRU) to effectively abstract each agent’s
history.

By incorporating timestep information pit alongside macro-
observation zit, the agent-centric encoder ensures that each
agent’s history is learned accurately and consistently, even
in asynchronous MARL settings. The left side of Figure 4
illustrates the structure of the agent-centric encoder.

Centralized Critic. The proposed agent-centric centralized
critic consists of two main components: an agent-centric
encoder that abstracts each agent’s history and an attention-
based aggregation module that combines these abstracted
histories.

4

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

The components and overall structure of the agent-centric
centralized critic are illustrated in Figure 4. The centralized
critic at timestep t is computed as follows:

hit = Encψi

(
zi≤t, p

i
≤t
)

h̃t =
{
h1t , h

2
t , . . . , h

N
t

}
Vψ(h̃t) = fψ

(
Aggr-Moduleψ

(
h̃t

))
where pi≤t =

{
piu | ziu is available, u ≤ t

}
is the timestep

information of macro-observations of agent i until timestep
t.

Figure 5 provides an example of its input and output at
timestep t of the agent-centric centralized critic and actor.
In this example, the blue agent (on the left) can obtain a
new macro-observation and is able to select a new macro-
action. In contrast, the green (in the middle) and the red (on
the right) agents cannot obtain a new macro-observation be-
cause their previous macro-action is still in progress. In such
cases, agents that have acquired a new macro-observation
input their macro-observations into their respective agent-
centric encoders to generate updated histories. Conversely,
agents that have not obtained a new macro-observation use
their existing history as input to the aggregation module.
This approach allows the centralized critic to accurately
estimate the value by leveraging the most recent and rele-
vant historical information from each agent, even in asyn-
chronous MARL settings. We provide detailed comparison
between padding-based methods and ACAC in Appendix C.

3.3. Agent-Centric Actor-Critic Algorithm

We introduce the Agent-Centric Actor-Critic (ACAC), a
PPO-based MARL algorithm that utilizes an agent-centric
centralized critic. In this section, we provide a comprehen-
sive description of the ACAC algorithm.

First, leveraging the agent-centric encoder described previ-
ously, we construct each agent’s actor, denoted as πiθi(· | h

i
t).

Each actor is trained using a loss function based on the es-
timated advantage, similar to the actor loss employed in
MAPPO (Yu et al., 2022). The loss function is defined as:

L(θi) = Eτ [min (surr1, surr2)]

surr1 = ρit(θ
i)Aλt

surr2 = clip
(
ρit(θ

i), 1− ϵ, 1 + ϵ
)
Aλt

where the importance sampling ratio is given by

ρit(θ
i) =

πiθi(m
i
t | hit)

πi
θiold

(mi
t | hit)

representing the ratio of the current policy πiθi to the
old policy πi

θiold
for selecting macro-action mi

t given the

macro-observations and their corresponding timesteps up
to timestep t. Here, Aλt denotes the advantage estimate at
timestep t using Generalized Advantage Estimation (GAE)
(Schulman et al., 2016) with a discounting factor λ, and ϵ is
the clipping ratio.

For the centralized critic, the loss function is defined as:

L(ψ) = Eτ
[(
R̂t − Vψ(h̃t)

)2]
where R̂t is the return at timestep t computed by using
GAE. We also adopt a value normalization technique, named
PopArt (Hessel et al., 2019), which was used in MAPPO
(Yu et al., 2022).

3.4. Generalized Advantage Estimation (GAE) for
Asynchronous MARL

Generalized Advantage Estimation (GAE) (Schulman et al.,
2016) is a common technique for estimating advantage func-
tions, balancing the high variance of empirical returns with
the high bias of temporal difference estimates through a
hyperparameter λ. Specifically, λ = 0 relies on single-step
temporal difference (TD) estimates, while λ = 1 uses the
full empirical return minus the baseline. Intermediate values
of λ provide a controlled balance between these extremes.

In the original GAE, λ-discounting is typically applied at the
micro-timestep level, reflecting the fixed intervals between
micro-actions in synchronous environments. However, ap-
plying this standard formulation directly to asynchronous
MARL environments, particularly those employing tem-
poral abstraction via macro-actions (e.g., in a MacDec-
POMDP setting), presents a significant challenge. The in-
tervals between consecutive macro-observations can vary
substantially. This makes traditional micro-timestep-based
discounting unsuitable because it doesn’t align with the
varying durations of macro-actions. Specifically, as a macro-
action becomes longer, this discounting method applies a
greater discount to its future rewards, thereby diminishing
the perceived importance of that macro-action decision.

Proposed GAE for Asynchronous Settings. To address
the challenges of asynchronous environments, we propose
a modified GAE approach. Our key insight lies in shift-
ing the λ-discounting from the micro-timestep2 level to the
macro-timestep level. This means that future TD errors are
discounted based on the number of macro-action decision
steps taken, rather than the timesteps elapsed.

Consider an example where macro-observations (and con-
sequently, value estimates) are obtained at micro-timesteps

2To clarify the distinction, throughout the remainder of this
section, we use micro-timesteps interchangeably with timesteps. A
macro-timestep, on the other hand, is defined as the count of micro-
timesteps at which any agent obtains a new macro-observation.

5

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

l(0), l(1), l(2), l(3), . . . (e.g., 0, 2, 5, 6, . . .). Here the index in
the parenthesis, k, represents macro-timestep corresponding
to the micro-timestep l(k). The multi-step TD errors at these
micro-steps are defined as:

δl(0) = (r0 + γr1) + γ2Vl(1) − Vl(0) ,

δl(1) =
(
r2 + γr3 + γ2r4

)
+ γ3Vl(2) − Vl(1) ,

δl(2) = (r5) + γVl(3) − Vl(2) ,

...

δl(k)
=
(∑l(k+1)−1

t=l(k)

γt−l(k)rt
)
+ γVl(k+1)

− Vl(k)

Given these TD errors, we have two primary choices for de-
signing the advantage function, differing in their application
of λ-discounting:

• Micro-level discounting: Discounts future TD errors
based on the actual micro-timesteps elapsed between
decision points. This is standard in many GAE imple-
mentations.

Aλ,micro
l(0)

:= δl(0) + λ(l(1)−l(0))γ(l(1)−l(0))δl(1)

+ λ(l(2)−l(0))γ(l(2)−l(0))δl(2) + . . .

This can be generally written as:

Aλ,micro
l(0)

=

∞∑
k=0

(λγ)(l(k)−l(0))δl(k)

• Macro-level discounting: Discounts future TD errors
based on the sequence of macro-action decision points.
Each transition between decision points (e.g., l(0) to
l(1)) counts as a single macro-timestep, regardless of
the actual micro-timesteps.

Aλ,macro
l(0)

:= δl(0) + λγ(l(1)−l(0))δl(1)

+ λ2γ(l(2)−l(0))δl(2) + . . .

This can be generally written as:

Aλ,macro
l(0)

=

∞∑
k=0

λkγ(l(k)−l(0))δl(k)

The key distinction lies in the exponent of λ: it is the macro-
timestep k for macro-level discounting, whereas for micro-
level discounting, it is the micro-timestep l(k).

For the ACAC algorithm, we adopt the macro-level dis-
counting approach. This choice was driven by its ability
to effectively handle the variable intervals inherent in our
asynchronous setting. By aligning the discounting with the
critical decision points associated with macro-actions, this

method emphasizes both the significance of future rewards
and the strategic importance of each macro-action choice.
This approach directly contributed to the strong performance
observed with ACAC in the asynchronous MacDec-POMDP
environment.

This formulation preserves the key properties of the original
GAE: when λ = 0, it reduces to the single-step temporal
difference at l(0), and when λ = 1, it becomes the empirical
return minus the baseline. Hence, λ continues to govern
the bias–variance trade-off in advantage estimation as the
original GAE does. For a more detailed derivation, please
refer to Appendix D.

4. Related Work
Macro-action-based MARL, or Hierarchical MARL, has
been actively studied in the field of multi-agent sys-
tems (Nachum et al., 2019; Yang et al., 2020; Wang et al.,
2021a;b). Most works focus on learning macro-actions
(options or skills) and typically enforce fixed durations,
operating in synchronous settings. In contrast, our work ad-
dresses scenarios with pre-defined macro-actions of varying
durations, focusing on training high-level policies for asyn-
chronous MARL, thereby broadening MARL’s applicability
to more realistic environments.

Asynchronous MARL has recently gained attention, with
several methods proposed to address specific tasks such as
cooperative charging in sensor networks (Chen et al., 2021;
Liang et al., 2022), bus holding control (Wang & Sun, 2021),
warehouses logistics (Yoshitake & Abbeel, 2023; Krnjaic
et al., 2024), petrochemical scheduling optimization (Hong
et al., 2024). The studies most closely related to our work
aim to address the more general problem of asynchronous
MARL by defining it within the framework of MacDec-
POMDPs (Amato et al., 2014) and conducting research
based on this formulation.

Xiao et al. (2020a) presented two deep Q-networks
(DQNs) (Mnih et al., 2013) based approaches that learn
macro-action-value functions in decentralized manner and
centralized manner. Xiao et al. (2020b) proposed DQN
based approach for learning in CTDE setting. Xiao et al.
(2022) extended the previous macro-action based DQN
methods to an actor-critic method for asynchronous MARL.
Yu et al. (2023) modeled multi-robot cooperative explo-
ration, where agents can communicate with each other while
performing actions, as an asynchronous MARL problem and
applied MAPPO to address it.

Previous works have applied conventional actor-critic ar-
chitectures from synchronous MARL by padding missing
observations, which often introduces redundancy and in-
accuracies in joint history representation. In contrast, we
propose an agent-centric history encoding approach that

6

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

(a) BoxPushing (b) Map A (c) Map B (d) Map C

Figure 6. The collection of environments. (a) BoxPushing environ-
ment with grid size 10, and (b-d) Overcooked environments with
different maps.

aggregates individual agent histories through an attention-
based module, providing a more accurate joint history rep-
resentation without relying on padding.

5. Experiment
We evaluate our method on two collections of MacDec-
POMDP environments: BoxPushing and Overcooked (Xiao
et al., 2020b; 2022).

BoxPushing. The BoxPushing environment, a benchmark
for MacDec-POMDP, involves two agents (blue and green)
cooperating to push a large box to a yellow goal area. It
features three maps of varying sizes, including a 10 × 10
grid shown in Figure 6 (a). Agents observe one of five possi-
ble conditions for the cell ahead (e.g., EMPTY, BOUNDARY,
BIG BOX) and can take actions like PUSH, MOVE-TO-BOX,
or TURN.3 While a small box can be pushed alone, pushing
a large box requires both agents; otherwise, attempting to
push it alone incurs a penalty. Agents receive a small reward
for delivering a small box to the goal and a large reward for
a large box. The episode ends as soon as any box reaches the
goal, emphasizing the need for coordination to maximize
rewards and avoid suboptimal strategies.

Overcooked. Adapted from Gym-Cooking (Wu et al.,
2021), Overcooked environment involves three agents work-
ing together to prepare and deliver salads (e.g., tomato,
onion). Vegetables must be chopped, plated, and delivered
to a designated location (marked by a yellow star). The
environment consists of three 7 × 7 grid maps (A, B, C),
as shown in Figure 6 (b-d). Agents observe a 5 × 5 grid
around themselves and execute macro-actions like GO TO
TOMATO, CHOP, and DELIVER. Macro-actions terminate
upon completion or if the goal is unreachable (e.g., in map
B, separated regions prevent reaching a tomato). Agents
receive rewards for chopping and delivering correct salads
but incur penalties for incorrect deliveries and time delays.
They are required to collaborate swiftly and efficiently to
successfully prepare and deliver the salad.

3We use local macro-observations for training agents, while
Xiao et al. (2022) allow access to the ground truth state.

Overcooked-Rand. Since the original Overcooked environ-
ments have no randomness and only limited uncertainty, we
introduce a more complex setting where object and agent
positions are randomized each episode. This introduces
randomness and significantly increases uncertainty, prevent-
ing agents from memorizing a fixed action sequence and
allowing evaluation of their generalization ability. To ensure
all configurations remain solvable, we adjust any random
placements that would make the scenario infeasible.

5.1. Evaluation

We compare our proposed method, ACAC, with two padding-
based baselines: naive independent actor centralized critic
(Mac-NIACC) and independent actor individual centralized
critic (Mac-IAICC) (Xiao et al., 2022). The main distinc-
tion between these baselines is whether they use a single
centralized critic (Mac-NIACC) or a individual critic for
each agent (Mac-IAICC). Both methods employ an actor-
critic-based CTDE framework with policy gradients. We
also evaluate ACAC-Vanilla, a variant of ACAC that
shares the same architecture but does not use the PPO-style
loss function, instead adopting the same loss function as the
two baselines.

The baselines labeled with the suffix micro are evalu-
ated in environments without macro-actions (i.e., standard
synchronous MARL). MAPPOmicro denotes the original
MAPPO algorithm applied to the micro-action-based envi-
ronment. Each experiment was run with five random seeds,
and we report the mean and standard error of returns.4 The
detailed hyperparameters can be found in Appendix F.

5.2. Comparison with Baselines

Figure 7 shows that ACAC effectively handles various
environments, including BoxPushing, Overcooked, and
Overcooked-Rand.

Micro-action baselines (labeled with micro) generally fail
to reach optimal performance, likely due to the sparse re-
ward structure requiring longer-term planning—an aspect
better handled by macro-actions. Among these micro-action
baselines, ACACmicro and MAPPOmicro, both PPO-based,
perform relatively well in Overcooked, emphasizing the
importance of the underlying PPO algorithm.

Compared to other macro-action baselines, ACAC con-
verges more quickly and more reliably to optimal perfor-
mance in all environments. For instance, in Overcooked,
ACAC surpasses other baselines both in the speed of con-
vergence and the stability of returns. This improvement
stems from ACAC’s novel architectural design, which
avoids padding-related issues. Even in the more challenging

4We report undiscounted returns, whereas Xiao et al. (2022)
reported discounted returns.

7

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (1M)

0

200

Re
tu

rn

BoxPushing-6x6

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (1M)

0

200

BoxPushing-8x8

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (1M)

0

200

BoxPushing-10x10

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-A

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Overcooked-B

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Overcooked-C

0 8 16 24 32 40
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Rand-A

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-B

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-C

Figure 7. Training curves on (upper) BoxPushing, (middle) Overcooked, and (lower) Overcooked-Rand environments. The maximum
training environment step depends on the difficulty of each environment.

Overcooked-Rand, ACAC maintains superior performance,
underscoring its generalization capabilities.

ACAC-Vanilla outperforms most baselines, as its architec-
ture effectively mitigates the padding issues in Mac-NIACC
and Mac-IAICC. However, it trains slower than ACAC,
highlighting the benefits of a PPO-based objective.

These overall results indicate that our approach more effec-
tively handles history abstraction and structural reasoning
across agent histories in MacDec-POMDP problems. We hy-
pothesize that the padding in Mac-NIACC and Mac-IAICC
complicates value function learning, reducing their overall
performance compared to ACAC.

5.3. Further Comparison in More Challenging Scenario

To conduct a more rigorous evaluation, we introduce
Overcooked-Large, a substantially harder environment. We
increase the map size from 7× 7 to 11× 11, raise the num-
ber of agents from 3 to 6, and increase the number of tools
(e.g., knives and plates) from 2 to 4, thus expanding both
the joint macro-observation and macro-action spaces. These
changes require significantly more complex cooperation.

Since Overcooked-Large requires much longer planning
horizons, most micro-action-based approaches fail to learn
effectively. As a result, we limited our comparison here to
macro-action-based models.

As shown in Figure 8, the performance gap between ACAC
and other baselines is even more pronounced in Overcooked-
Large. In nearly all tasks, ACAC achieves the optimal return,
while the existing baselines often fail to learn effectively.
These difficulties are likely attributable to prolonged macro-
actions that require extensive padding in conventional archi-
tectures, making it harder to learn reliable value estimates.

5.4. Ablation Studies

Effect of Padding in History Encoders. To further as-
sess the impact of eliminating padding in the joint his-
tory encoder, we introduce ACAC-Duplicate, an ab-
lated version of ACAC that duplicates macro-observations
as in Mac-IAICC. More specifically, ACAC-Duplicate re-
tains the same overall architecture and algorithm as ACAC
but differs in how it updates the agent-centric history en-
coder at each timestep. In ACAC, only newly received
macro-observations are used to update an agent’s encoder

8

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

0 20 40 60 80 100
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Large-A

0 20 40 60 80 100
Environment steps (1M)

0

100

200

Overcooked-Large-B

0 20 40 60 80 100
Environment steps (1M)

0

100

200

Overcooked-Large-C

0 20 40 60 80 100
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Large-Rand-A

0 20 40 60 80 100
Environment steps (1M)

40

20

0

20
Overcooked-Large-Rand-B

0 20 40 60 80 100
Environment steps (1M)

0

100

200

Overcooked-Large-Rand-C

Figure 8. Training curves on Overcooked-Large environments.

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (1M)

0

100

200

300

Re
tu

rn

BoxPushing

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Overcooked

0 8 16 24 32 40
Environment steps (1M)

0

100

200

Overcooked-Rand

Figure 9. An ablation study examining the effects of removing
padding and implementing macro-level λ-discounting in GAE. We
report average return over all environments for each collections.

for value computation. By contrast, ACAC-Duplicate up-
dates every agent’s encoder at each timestep using that
agent’s most recent macro-observation—whether newly re-
ceived or padded from a previous timestep—thereby dupli-
cating macro-observations in the learning process. This
setup allows us to directly compare how the presence
(ACAC-Duplicate) or absence (ACAC) of duplicate macro-
observations influences both learning speed and final perfor-
mance.

In Figure 9, ACAC consistently achieves optimal perfor-
mance, whereas ACAC-Duplicate converges more slowly
or even settles into suboptimal solutions. We hypothesize
that repetitive and potentially confusing training signals re-
sulting from padded macro-observations hinder the learning
of an accurate value function, highlighting the advantage of
ACAC’s design, which avoids such padding.

Effect of Macro-level λ-discounting in GAE. We now
examine the choice of λ-discounting in GAE within asyn-
chronous MARL. We compare the performance of GAE
using the micro-level λ-discounting (referred to as ACAC
(micro-level GAE)) against our proposed macro-
level λ-discounting.

As Figure 9 illustrates, our results consistently show that
macro-level discounting in GAE significantly outperforms
its micro-level counterpart across various environments, in-
cluding BoxPushing, Overcooked, and Overcooked-Rand.
We believe this is because macro-level discounting better
emphasizes the value of future rewards and the strategic
importance of each macro-action choice. This strongly sug-
gests that macro-level λ-discounting is a superior approach
for GAE in asynchronous MARL.

For a complete set of ablation studies and additional results,
please see Appendix E.

6. Conclusion
In this work, we introduced the Agent-Centric Actor-Critic
(ACAC) algorithm to address the challenges of asynchronous
multi-agent reinforcement learning (MARL) within the Cen-
tralized Training with Decentralized Execution framework.
ACAC’s architecture integrates two key components: 1)
an agent-centric history encoder that captures each agent’s
macro-observation history along with the specific timestep
at which their macro-action begins, and 2) an aggregation
module that integrates these individual, agent-specific his-
tories into a centralized critic. This design allows ACAC
to effectively address the inefficiencies inherent in padding-
based methods. To train this novel architecture, we further
proposed a PPO-based algorithm and adapted the standard
Generalized Advantage Estimation (GAE)—originally con-
ceived for synchronous settings—to handle the varying du-
rations of macro-actions in asynchronous MARL.

Our experimental results on macro-action-based multi-agent
benchmarks demonstrate that ACAC consistently outper-
forms existing approaches, proving particularly effective in
scenarios that demand complex coordination and robust gen-
eralization. By directly addressing padding-related issues
through its agent-centric design and a PPO-based objec-
tive, ACAC achieves both accelerated training convergence
and superior overall performance. Moreover, comprehen-
sive ablation studies confirmed that eliminating duplicated
macro-observations and using the modified GAE is crucial
for preventing suboptimal outcomes, thereby underscoring
ACAC’s efficacy in asynchronous multi-agent environments.

While ACAC excels in macro-action-based MARL, extend-
ing its capabilities to continuous action spaces is a key future
direction. We believe ACAC is adaptable for continuous
control. However, a primary challenge is the current lack
of asynchronous MARL benchmarks that combine continu-
ous actions with defined macro-actions. Developing such
benchmarks is crucial future work. Successfully adapting
ACAC for these settings would significantly broaden its ap-
plicability in dynamic fields like robotics and autonomous
driving, enhancing its versatility.

9

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Amato, C., Konidaris, G., and Kaelbling, L. P. Planning

with macro-actions in decentralized POMDPs. In Inter-
national Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), pp. 1273–1280, 2014.

Amato, C., Konidaris, G., Kaelbling, L. P., and How, J. P.
Modeling and planning with macro-actions in decentral-
ized POMDPs. Journal of Artificial Intelligence Research,
64:817–859, 2019.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein,
S. The complexity of decentralized control of markov
decision processes. Mathematics of Operations Research,
27(4):819–840, 2002.

Chen, Y., Wu, H., Liang, Y., and Lai, G. VarLenMARL:
A framework of variable-length time-step multi-agent re-
inforcement learning for cooperative charging in sensor
networks. In IEEE International Conference on Sens-
ing, Communication, and Networking (SECON), pp. 1–9,
2021.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradients.
In AAAI Conference on Artificial Intelligence, 2018.

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt,
S., and Van Hasselt, H. Multi-task deep reinforcement
learning with popart. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 3796–3803,
2019.

Hong, S., Yoon, D., Jung, W., Lee, J., Yoo, H., Ham, J.,
Jung, S., Moon, C., Jung, Y., Lee, K., Lim, W., Jeon, S.,
Lee, M., Hong, S., Lee, J., Jang, H., Kwak, C., Park, J.,
Kang, C., and Kim, J. Naphtha cracking center scheduling
optimization using multi-agent reinforcement learning.
In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2024.

Krnjaic, A., Steleac, R. D., Thomas, J. D., Papoudakis, G.,
Schäfer, L., To, A. W., Lao, K., Cubuktepe, M., Haley, M.,
Börsting, P., and Albrecht, S. V. Scalable multi-agent re-
inforcement learning for warehouse logistics with robotic
and human co-workers. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp.
677–684, 2024.

Kuba, J. G., Chen, R., Wen, M., Wen, Y., Sun, F., Wang, J.,
and Yang, Y. Trust region policy optimisation in multi-
agent reinforcement learning. In International Confer-
ence on Learning Representations (ICLR), 2022.

Liang, Y., Wu, H., and Wang, H. ASM-PPO: Asynchronous
and scalable multi-agent PPO for cooperative charging.
In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 798–806, 2022.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mor-
datch, I. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 30, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nachum, O., Ahn, M., Ponte, H., Gu, S. S., and Kumar, V.
Multi-agent manipulation via locomotion using hierarchi-
cal Sim2Real. In Conference on Robot Learning (CORL),
pp. 110–121, 2019.

Omidshafiei, S., Agha-Mohammadi, A.-A., Amato, C., and
How, J. P. Decentralized control of partially observ-
able markov decision processes using belief space macro-
actions. In IEEE International Conference on Robotics
and Automation (ICRA), pp. 5962–5969. IEEE, 2015.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P., and Vian, J.
Deep decentralized multi-task multi-agent reinforcement
learning under partial observability. In International Con-
ference on Machine Learning (ICML), pp. 2681–2690.
PMLR, 2017.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G.,
Foerster, J., and Whiteson, S. QMIX: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learn-
ing (ICML), pp. 4295–4304. PMLR, 2018.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. In International Conference on
Learning Representations (ICLR), 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sutton, R. S., Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1–2):
181–211, 1999.

10

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Wang, J. and Sun, L. Reducing bus bunching with asyn-
chronous multi-agent reinforcement learning. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
pp. 426–433, 2021.

Wang, R., Kew, J. C., Lee, D., Lee, T.-W., Zhang, T., Ichter,
B., Tan, J., and Faust, A. Model-based reinforcement
learning for decentralized multiagent rendezvous. In
Conference on Robot Learning (CORL), pp. 711–725,
2021a.

Wang, T., Gupta, T., Mahajan, A., Peng, B., Whiteson, S.,
and Zhang, C. RODE: Learning roles to decompose multi-
agent tasks. In International Conference on Learning
Representations (ICLR), 2021b.

Wu, S. A., Wang, R. E., Evans, J. A., Tenenbaum, J. B.,
Parkes, D. C., and Kleiman-Weiner, M. Too many cooks:
Coordinating multi-agent collaboration through inverse
planning. Topics in Cognitive Science, 2021.

Xiao, Y., Hoffman, J., and Amato, C. Macro-action-based
deep multi-agent reinforcement learning. In Conference
on Robot Learning (CORL), pp. 1146–1161, 2020a.

Xiao, Y., Hoffman, J., Xia, T., and Amato, C. Learning
multi-robot decentralized macro-action-based policies via
a centralized Q-net. In IEEE International Conference
on Robotics and Automation (ICRA), pp. 10695–10701,
2020b.

Xiao, Y., Tan, W., and Amato, C. Asynchronous actor-critic
for multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Yang, J., Borovikov, I., and Zha, H. Hierarchical cooperative
multi-agent reinforcement learning with skill discovery.
In International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pp. 1566–1574, 2020.

Yoshitake, H. and Abbeel, P. The impact of overall optimiza-
tion on warehouse automation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
1621–1628, 2023.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen,
A., and Wu, Y. The surprising effectiveness of PPO in
cooperative multi-agent games. In Advances in Neural
Information Processing Systems (NeurIPS) Datasets and
Benchmarks Track, pp. 24611–24624, 2022.

Yu, C., Yang, X., Gao, J., Chen, J., Li, Y., Liu, J., Xiang,
Y., Huang, R., Yang, H., Wu, Y., and Wang, Y. Asyn-
chronous multi-agent reinforcement learning for efficient
real-time multi-robot cooperative exploration. In Interna-
tional Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 1107–1115, 2023.

11

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

A. Detailed Explanation of the Overcooked Example in Figure 2

(a) Overcooked Problem

Timesteps

Observation

& Decision Time

Macro-action

Go to

Lettuce

Go to Knife 2

Go to Knife 1

Chop

Go to Plate 1

Chop

Go to Onion

Go to Tomato

(b) Asynchronous Decisions with Macro-Actions

Figure 10. (a) Example of an Overcooked problem. (b) Example trajectory of asynchronous decisions.

This section provides a detailed explanation of Figure 2 introduced in the main text. The same figure is reproduced here as
Figure 10.

Figure 10 (a) illustrates an Overcooked environment where three agents collaborate to efficiently prepare and deliver salads
(e.g., tomato, onion). In this environment, tasks such as chopping vegetables, plating them, and delivering them to a
designated delivery point (yellow star) need to be performed. The agents’ macro-actions include GO TO TOMATO, CHOP,
DELIVER, and more. Once a macro-action is selected, the agent executes a sequence of micro-actions (e.g., navigating along
a path) to reach the target location and complete the assigned task.

Figure 10 (b) demonstrates an example of agent behavior using macro-actions, with their actions depicted across different
timesteps. Below is a step-by-step breakdown of the agents’ behavior:

• Timestep 0:
Each agent selects a macro-action based on its current macro-observation:

– Agent 1 selects GO TO TOMATO.
– Agent 2 selects GO TO LETTUCE.
– Agent 3 selects GO TO ONION.

• Timestep 2:
Agent 2 completes its GO TO LETTUCE macro-action and receives a new macro-observation. Based on this, Agent 2
selects a new macro-action: GO TO KNIFE 2.

• Timestep 4:
Agent 1 completes its GO TO TOMATO macro-action and receives a new macro-observation. Based on this, Agent 1
selects a new macro-action: GO TO KNIFE 1.

• Timestep 7:
Agent 3 completes its GO TO ONION macro-action and receives a new macro-observation. Based on this, Agent 3
selects a new macro-action: GO TO PLATE 1.

• Timestep 8:
Agent 2 completes its GO TO KNIFE 2 macro-action and receives a new macro-observation. Based on this, Agent 2
selects a new macro-action: CHOP.

• Timestep 9:
Agent 1 completes its GO TO KNIFE 1 macro-action and receives a new macro-observation. Based on this, Agent 1
selects a new macro-action: CHOP.

• Timestep 11:
Agent 3 completes its GO TO PLATE 1 macro-action and receives a new macro-observation. Based on this, Agent 3
selects its next macro-action.

This process demonstrates the asynchronous decision-making dynamics in the Overcooked environment.

12

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

B. Formal Definition of MacDec-POMDP
The Macro-Action Decentralized Partially Observable Markov Decision Process (MacDec-POMDP) (Amato et al., 2019)
incorporates the options framework (Sutton et al., 1999) into the Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) by defining a set of macro-actions (or options) for each agent.

Followed by the previous work (Xiao et al., 2022), a MacDec-POMDP is represented as a tuple
⟨I,S,A,M,Ω, ζ, T ,R, O, Z, γ⟩, where I = {1, . . . , N} is a set of indices of agents, S is the state space, A =

∏
i∈I Ai

is the joint micro-action space, M =
∏
i∈I Mi is the joint macro-action space, Ω =

∏
i∈I Ωi is the joint micro-observation

space, ζ =
∏
i∈I ζ

i is the joint macro-observation space, T (s′|s, a) is the state transition probability, R is the reward
function shared over all agents, O(o|s′, a), o ∈ Ω is the joint observation probability, Z(z|s′,m), z ∈ ζ is the joint
macro-observation probability, and γ is the discounting factor. Note that this paper uses “micro-action” instead of
“primitive-action” for intuitive understanding.

Each macro-action is a tuple mi = ⟨βmi , Imi , πmi⟩ ∈ Mi composed of a termination condition βmi : Hi
mic → [0, 1], a

initiation set Imi ⊂ Hi
mac, and a low-level policy πmi : Hi

mic → Ai, where Hi
mic (or Hi

mac) is the micro(or macro)-action-
observation history space.

The objective in MacDec-POMDP is then to find a joint high-level policy Ψ =
∏
i∈I Ψi that maximizes the following

expected discounted return from an initial state s0 for given low-level policies, i.e., macro-actions:

Ψ∗ = argmaxΨE [
∑∞
t=0 γ

tR (st, at) | s0,Ψ] . (1)

B.1. Example of Macro-Actions in the Overcooked Environment

To illustrate how inter-agent interaction is handled in practice, consider the Overcooked environment:

• Intra-option policy: A macro-action like GO TO TOMATO may involve a path planning. If another agent is blocking the
path, the intra-option policy handles this by having the agent wait until the path is clear, then continue. This behavior is
naturally encoded into the policy without requiring the macro-action to terminate.

• Termination condition: If the task goal becomes invalid—for instance, another agent picks up the tomato—the macro-
action terminates automatically according to its predefined termination condition. These behaviors are not considered
“interruptions” in the conventional sense. Rather, they are expected outcomes under the macro-action’s design. The
inter-agent interaction and adaptation are achieved through well-defined intra-option policies and termination conditions,
enabling cooperative behaviors to naturally emerge within the framework.

13

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

C. Comparison of the Procedures for Padding-Based Methods and ACAC
In this section, we provide a detailed explanation of how two different approaches—Padding-based methods and our
proposed ACAC—operate within an Asynchronous MARL setting. To illustrate these procedures, we refer to the example
in Figure 10. Both methods follow a CTDE (Centralized Training and Decentralized Execution) framework under a
(MacDec-)POMDP setting, meaning they rely on macro-observation histories. In practice, these histories are typically
processed by recurrent networks (e.g., RNNs or LSTMs) in both the decentralized actors and the centralized critic to
combine past and current macro-observations effectively.

D
e

c
e

n
tr

a
liz

e
d

A
c
to

r
1

D
e

c
e

n
tr

a
liz

e
d

A
c
to

r
2

D
e

c
e

n
tr

a
liz

e
d

A
c
to

r
3

C
e

n
tr

a
liz

e
d

 C
ri

ti
c

Actor 1

Actor 2

Actor 3 Actor 3 Actor 3

Actor 2 Actor 2

Actor 1 Actor 1

Critic Critic Critic Critic Critic Critic Critic

Figure 11. Full CTDE procedure of padding-based methods for the example in Figure 10

C.1. Procedure of Padding-Based Methods

In the padding-based approach, each agent’s decentralized actor selects a macro-action solely based on its own macro-
observation. The actor is only active at timesteps when a new macro-observation arrives (i.e., whenever a new macro-action
can be chosen). At each such timestep, the agent updates its actor’s hidden state to incorporate the newly received
macro-observation.

Meanwhile, the centralized critic takes as input the concatenation of all agents’ macro-observations, along with the
concatenated history of these macro-observations, to estimate the joint value. When any agent obtains a new macro-
observation, a joint macro-observation must be constructed to compute the value for that timestep. For agents that do not
receive a new observation at that timestep, the critic uses each agent’s most recent macro-observation. The centralized critic
then updates its hidden state with this joint macro-observation and, based on the updated hidden state, provides a value
estimate.

Figure 11 illustrates how the decentralized actors and the centralized critic operate under the Padding approach in the
example from Figure 10.

14

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

C.2. Procedure of ACAC
D

ec
en

tr
al

iz
ed

A
ct

or
 1

D
ec

en
tr

al
iz

ed

A

ct
or

 2
D

ec
en

tr
al

iz
ed

A
ct

or
 3

C
en

tr
al

iz
ed

 C
ri

tic

MLP

Agent-Centic

Encoder 1

MLP

Agent-Centic

Encoder 2

MLP

Agent-Centic

Encoder 3

MLP

Agent-Centic

Encoder 2

MLP

Agent-Centic

Encoder 1

MLP

Agent-Centic

Encoder 1

MLP

Agent-Centic

Encoder 2

MLP

Agent-Centic

Encoder 3

MLP

Agent-Centic

Encoder 3

Agent-Centic

Encoder 3

Agent-Centic

Encoder 2

Agent-Centic

Encoder 1

Aggregation

Module

MLP

Agent-Centic

Encoder 2

Aggregation

Module

MLP

Agent-Centic

Encoder 1

Aggregation

Module

MLP

Agent-Centic

Encoder 3

Aggregation

Module

MLP

Agent-Centic

Encoder 2

Aggregation

Module

MLP

Agent-Centic

Encoder 1

Aggregation

Module

MLP

Agent-Centic

Encoder 3

Aggregation

Module

MLP

Figure 12. Full CTDE procedure of ACAC for the example in Figure 10

In ACAC, the decentralized actor functions similarly to that in padding-based methods, with one key difference: in
addition to receiving the macro-observation as input, it also receives the timestep at which the macro-observation was
obtained. This provides information about the duration between consecutive macro-observations, allowing for a richer
history representation.

Structurally and operationally, ACAC’s centralized critic differs significantly from padding-based methods. In the padding-
based approach, all agents’ macro-observations must be available at each timestep to compute the value; when no new
macro-observation is obtained by a particular agent, its most recent observation is reused (i.e., padded). By contrast, the
centralized critic in ACAC is designed to accept only new macro-observations as input. More concretely, each agent’s
macro-observations are processed by an agent-centric history encoder, which updates that agent’s hidden state. At a timestep

15

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

when an agent receives a new macro-observation, it updates its hidden state through its agent-centric history encoder. The
centralized critic then aggregates each agent’s most recently updated hidden state—whether from the current or a previous
timestep—via an aggregation module to estimate the value. This design enables the critic to combine agent-specific history
representations without padding stale observations from other agents.

Figure 12 illustrates the structure and operation of ACAC’s decentralized actor and centralized critic for the example in
Figure 10.

16

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

D. GAE Derivation
D.1. Motivation and Objectives of GAE

Generalized Advantage Estimation (GAE) (Schulman et al., 2016) is a widely used technique in policy gradient methods
such as PPO (Schulman et al., 2017), primarily because it helps strike a balance between the high variance of empirical
returns and the high bias of temporal difference (TD) estimates. GAE introduces a hyperparameter λ that adjusts this
bias–variance trade-off. Specifically, when λ = 0, GAE relies solely on TD estimates, while when λ = 1, it uses the
empirical returns minus the current value estimate. Setting λ to an intermediate value between 0 and 1 allows for a smooth
trade-off between these two extremes.

D.2. Illustrating GAE in Asynchronous MARL

In asynchronous MARL, intervals between consecutive macro-observations can vary. This irregularity renders the standard
GAE formula (originally designed for synchronous MARL) inapplicable. To address this issue, we propose a modified GAE
procedure that accounts for the asynchronous nature of MARL.

Rather than presenting the formula immediately, we begin with a concrete example illustrating how to compute GAE in an
asynchronous setting (see Figure 10). In this example, new macro-observations occur at timesteps t = 0, 2, 4, 7, 8, 9, 11.
From the perspective of macro-action decision points, the temporal differences (TDs) can be computed as follows:

• Timestep 0: δ0 := {r0 + γr1}+ γ2V2 − V0

• Timestep 2: δ2 := {r2 + γr3}+ γ2V4 − V2

• Timestep 4: δ4 :=
{
r4 + γr5 + γ2r6

}
+ γ3V7 − V4

• Timestep 7: δ7 := {r7}+ γV8 − V7

• Timestep 8: δ8 := {r8}+ γV9 − V8

• Timestep 9: δ9 := {r9 + γr10}+ γ2V11 − V9

By taking the γ-discounted sum of these TDs, we obtain various advantage estimates at timestep 0. For instance:

A
(1)
0 := δ0

= −V0 + {r0 + γr1}+ γ2V2 (2)

A
(2)
0 := δ0 + γ2δ2

= −V0 +
{
r0 + γr1 + γ2r2 + γ3r3

}
+ γ4V4 (3)

A
(3)
0 := δ0 + γ2δ2 + γ4δ4 (4)

= −V0 +
{
r0 + γr1 + γ2r2 + γ3r3 + γ3r4 + γ5r5 + γ6r6

}
+ γ7V7 (5)

A
(4)
0 := δ0 + γ2δ2 + γ4δ4 + γ7δ7 (6)

= −V0 +
{
r0 + γr1 + γ2r2 + γ3r3 + γ3r4 + γ5r5 + γ6r6 + γ7r7

}
+ γ8V8 (7)

...

A
(∞)
0 = −V0 +

∞∑
t=0

γtrt (8)

Next, we apply an exponential weighting with parameter λ, analogous to the standard GAE approach, to produce the final

17

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

advantage estimate:

A
(λ)
GAE,0 := (1− λ)

(
A

(1)
0 + λA

(2)
0 + λ2A

(3)
0 + λ3A

(4)
0 + . . .

)
(9)

= (1− λ)
(
δ0 + λ{δ0 + γ2δ2}+ λ2{δ0 + γ2δ2 + γ4δ4}+ λ3{δ0 + γ2δ2 + γ4δ4 + γ7δ7}+ . . .

)
(10)

= (1− λ)
(
δ0{1 + λ+ λ2 + . . .}+ γ2δ2{λ+ λ2 + λ3 + . . .} (11)

+ γ4δ4{λ2 + λ3 + λ4 + . . .}+ γ7δ7{λ3 + λ4 + λ5 + . . .}+ . . .
)

= (1− λ)
(

1
1−λδ0 + γ2 λ

1−λδ2 + γ4 λ2

1−λδ4 + γ7 λ3

1−λδ7 + . . .
)

(12)

= δ0 + γ2λδ2 + γ4λ2δ4 + γ7λ3δ7 + . . . (13)

Note that this version of GAE, derived for the asynchronous case, differs from the standard GAE used in synchronous
MARL. The main adaptation is in how the TDs are accumulated across irregular macro-observation intervals to accurately
reflect asynchronous dynamics.

D.3. Generalized Asynchronous GAE Formulation

Building on the above example, we now present a generalized formulation for asynchronous GAE. First, define the timesteps
at which any agent obtains a new macro-observation. These timesteps can be defined recursively:

l(0) = t, (14)

l(k+1) = min
{
u
∣∣ z̃≤u ̸= z̃≤l(k)

, u > l(k)

}
for k ≥ 0, (15)

where z̃≤u denotes the histories of all agents up to timestep u. Intuitively, l(k+1) is the first timestep after l(k) at which any
new macro-observation arises. Given these macro-observable timesteps l(k), we define the temporal difference at each l(k) as

δl(k)
:= −Vl(k)

+
{l(k+1)−1∑

u=l(k)

γu−l(k)ru

}
+ γl(k+1)−l(k)Vl(k+1)

. (16)

Next, for t = l(k), we define the advantage estimates A(m)
t using δl(k)

as follows:

A
(1)
t := δl(k)

= −Vl(k)
+
{l(k+1)−1∑

u=l(k)

γu−l(k)ru

}
+ γl(k+1)−l(k)Vl(k+1)

, (17)

A
(2)
t := δl(k)

+ γl(k+1)−l(k)δl(k+1)

= −Vl(k)
+
{l(k+2)−1∑

u=l(k)

γu−l(k)ru

}
+ γl(k+2)−l(k)Vl(k+2)

, (18)

A
(3)
t := δl(k)

+ γl(k+1)−l(k)δl(k+1)
+ γl(k+2)−l(k)δl(k+2)

= −Vl(k)
+
{l(k+3)−1∑

u=l(k)

γu−l(k)ru

}
+ γl(k+3)−l(k)Vl(k+3)

, (19)

...

A
(m)
t := δl(k)

+ γl(k+1)−l(k)δl(k+1)
+ γl(k+2)−l(k)δl(k+2)

+ · · · + γl(k+m)−l(k)δl(k+m)

= −Vl(k)
+
{l(k+m)−1∑

u=l(k)

γu−l(k)ru

}
+ γl(k+m)−l(k)Vl(k+m)

. (20)

18

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

We then compute an exponentially weighted sum of these terms with parameter λ (analogous to the original GAE):

A
(λ)
GAE,t := (1− λ)

(
A

(1)
t + λA

(2)
t + λ2A

(3)
t + · · ·

)
(21)

= (1− λ)
(
δl(k)

+ λ{δl(k)
+ γl(k+1)−l(k)δl(k+1)

}+ λ2{δl(k)
+ γl(k+1)−l(k)δl(k+1)

+ γl(k+2)−l(k)δl(k+2)
}+ · · ·

)
= (1− λ)

(
δl(k)

{1 + λ+ λ2 + . . .}+ γl(k+1)−l(k)δl(k+1)
{λ+ λ2 + λ3 + . . .} (22)

+ γl(k+2)−l(k)δl(k+2)
{λ2 + λ3 + λ4 + . . .}+ . . .

)
= (1− λ)

(
1

1−λδl(k)
+ γl(k+1)−l(k) λ

1−λδl(k+1)
+ γl(k+2)−l(k) λ2

1−λδl(k+2)
+ · · ·

)
(23)

= δl(k)
+ γl(k+1)−l(k)λδl(k+1)

+ γl(k+2)−l(k)λ2δl(k+2)
+ · · · (24)

=

∞∑
m=k

γl(m)−l(k)λm−kδl(m)
. (25)

Notably, this asynchronous GAE formulation still satisfies the original GAE objectives. When λ = 0, it reduces to using
only temporal differences:

A
(0)
GAE,t = δl(k)

,

where t = l(k). When λ = 1, it relies on the empirical returns minus the current value function:

A
(1)
GAE,t =

∞∑
m=k

γl(m)−l(k) δl(m)
(26)

= δl(k)
+ γl(k+1)−l(k)δl(k+1)

+ γl(k+2)−l(k)δl(k+2)
+ . . . (27)

=

−Vl(k)
+
{l(k+1)−1∑

u=l(k)

γu−l(k)ru

}
+ γl(k+1)−l(k)Vl(k+1)

 (28)

+ γl(k+1)−l(k)

−Vl(k+1)
+
{l(k+2)−1∑
u=l(k+1)

γu−l(k+1)ru

}
+ γl(k+2)−l(k+1)Vl(k+2)

+ . . .

=
{ ∞∑
u=l(k)

γu−l(k)ru

}
− Vl(k)

(29)

=
{ ∞∑
u=t

γu−tru

}
− Vt. (30)

19

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

E. Additional Results
E.1. Full Results on Effect of Removing Padding and Implementing Macro-level λ-discounting for GAE

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (1M)

0

100

200

300

Re
tu

rn

BoxPushing-6x6

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (1M)

0

100

200

300
BoxPushing-8x8

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (1M)

0

100

200

300
BoxPushing-10x10

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-A

0 4 8 12 16 20
Environment steps (1M)

0

100

200
Overcooked-B

0 4 8 12 16 20
Environment steps (1M)

0

100

200
Overcooked-C

0 8 16 24 32 40
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Rand-A

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-B

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-C

Figure 13. Ablation study examining the effects of removing padding and implementing macro-level λ-discounting for GAE

20

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

E.2. Further Sensitivity Analysis and Ablation Study

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-A

0 4 8 12 16 20
Environment steps (1M)

0

100

200
Overcooked-B

0 4 8 12 16 20
Environment steps (1M)

0

100

200
Overcooked-C

0 8 16 24 32 40
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Rand-A

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-B

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-C

Figure 14. Sensitivity analysis of the effect of the clipping ratio ϵ

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-A

0 4 8 12 16 20
Environment steps (1M)

0

100

200
Overcooked-B

0 4 8 12 16 20
Environment steps (1M)

0

100

200
Overcooked-C

0 8 16 24 32 40
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Rand-A

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-B

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-C

Figure 15. Ablation study on the effects of time embedding (TE) and self-attention (SA)

21

Agent-Centric Actor-Critic for Asynchronous Multi-Agent Reinforcement Learning

F. Hyper-parameters
The hyper-parameter used for our proposed method, ACAC, is described in Table 1. We mostly follow experimental setting
of (Xiao et al., 2022), while we used the better value for some hyper-parameters.

Table 1. Common hyper-parameters used across the environment collections

Hyper-parameter BoxPushing Overcooked Overcooked-Rand Overcooked-Large(-Rand)

Total training timesteps 500K 20M 40M 100M

MLP Layer Size (Actor) [32, 32] [32, 32] [128, 64]

RNN Layer Size (Actor) 32 32 64

MLP Layer Size (Critic) [32, 32] [128, 64]

RNN Layer Size (Critic) 32 64

Discount factor γ 0.98 0.99

Episodes per train 16 8

Episodes per target critic update 64 32

Clipping ratio ϵ 0.05 0.01

Epochs 2 5

Episodes per train 16 8

Max episode length 100 200

Learning Rate (Actor) 3e-4

Learning Rate (Critic) 3e-4

Minibatch size 8

GAE λ 0.95

G. Computational Resources for Experiments
We used AMD EPYC 7453 28-Core Processor and A10 for our experiments, and the running time of the proposed ACAC
typically ranges from approximately 24 hours to 150 hours on Overcooked environments and from approximately 30 minutes
to 2 hours on BoxPushing environments.

H. Implementation and License Information
The implementation code for this work can be found at https://github.com/LGAI-Research/acac. The
implementation code is based on the original implementation code for the previous work (Xiao et al., 2022), but there is
no license information in the repository at https://github.com/yuchen-x/MacroMARL. We use the transformer
implementation from Hugging Face, which is licensed under the Apache 2.0 License. The gym-cooking environment (Wu
et al., 2021) at https://github.com/rosewang2008/gym-cooking and its macro-action version (Xiao et al.,
2022) at https://github.com/WeihaoTan/gym-macro-overcooked, which were used for the evaluation of
the proposed method and baseline algorithms, are licensed under the MIT license.

22

https://github.com/LGAI-Research/acac
https://github.com/yuchen-x/MacroMARL
https://github.com/rosewang2008/gym-cooking
https://github.com/WeihaoTan/gym-macro-overcooked

