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ABSTRACT

Recent advancements in autonomous driving technologies involve the capability
to effectively process and learn from extensive real-world driving data. Current
imitation learning and offline reinforcement learning methods have shown remark-
able promise in autonomous systems, harnessing the power of offline datasets to
make informed decisions in open-loop (non-reactive agents) settings. However,
learning-based agents face significant challenges when transferring knowledge
from open-loop to closed-loop (reactive agents) environment. The performance is
significantly impacted by data distribution shift, sample efficiency, the complex-
ity of uncovering hidden world models and physics. To address these issues, we
propose Sample-efficient Imitative Multi-token Decision Transformer (SimDT).
SimDT introduces multi-token prediction, online imitative learning pipeline and
prioritized experience replay to sequence-modelling reinforcement learning. The
performance is evaluated through empirical experiments and results exceed popu-
lar imitation and reinforcement learning algorithms both in open-loop and closed-
loop settings on Waymax benchmark. SimDT exhibits 41% reduction in collision
rate and 18% improvement in reaching the destination compared with the baseline
method.

1 INTRODUCTION

The rapid advancement in machine learning has led to unprecedented achievements in the au-
tonomous systems domain. One of the critical methodologies in training these neural networks
involves leveraging large offline datasets. These datasets provide the foundational knowledge that
neural networks require to learn and make predictions or decisions. However, deploying these
offline-trained neural networks in real-world scenarios or simulators with reactive agents presents
challenges stemming from the distribution shift between the dataset and the application environment.

Learning from Demonstration (Dauner et al., 2023) (Cheng et al., 2023) (Huang et al., 2023) (Levine
et al., 2020) encounter hurdles when presented scenarios deviate from the training distribution, ex-
emplified by rare events like emergency braking for unforeseen obstacles. Similarly, these methods
grapple with long-tail distribution phenomena during closed-loop tests, such as navigating through
unexpected weather conditions or handling the erratic movements of jaywalking pedestrians.

Interacting with environments allows for improved management of out-of-distribution issues in
closed-loop tests by learning policies focused on reward maximization, thus facilitating adaptation.
However, reinforcement learning (RL) faces challenges in overcoming the simulation-reality dis-
crepancy and suffers from low sampling efficiency (Kiran et al., 2022) (Liu et al., 2022). Traditional
reinforcement learning methods also grapple with the complexities of large state spaces, long-term
planning, and sparse rewards, mirroring the challenges of real-world driving scenarios. Decision
Transformer (Chen et al., 2021b) leverages a transformer-based architecture to learn policies for
decision-making in reinforcement learning tasks via sequence modeling. Despite its potential to
scale with large state space (Zhou et al., 2024), the original architecture and pipeline are designed
for offline learning and are not enough for complex and dynamic autonomous driving tasks. Classic
RL techniques like prioritized experience replay (Schaul et al., 2016) are designed for large-scale
datasets but cannot be applied as the Decision Transformer does not compute temporal differences.

On the other hand, single-token prediction does not fully fit the nature of autonomous driving and
has difficulty uncovering the hidden physical world model. Concentrating solely on single-token
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Figure 1: Comparative Illustration of Learning Approaches. The left figure depicts a data distri-
bution of expert data, highlighting its limitations in managing distributional shifts and challenges
arising from suboptimal training data. In contrast, the right figure presents our imitative reinforce-
ment learning pipeline that demonstrates enhanced robustness by adapting policies online, thereby
achieving superior performance under variable conditions.

prediction renders the model excessively susceptible to immediate contextual patterns, thereby ne-
glecting the necessity for more extensive deliberation over protracted sequences. Models developed
through next-token prediction techniques necessitate extensive datasets to attain a level of cognitive
proficiency that humans achieve with significantly less exposure to tokens (Gloeckle et al., 2024).

This paper seeks to address the challenges associated with closed-loop autonomous driving by in-
troducing Sample-efficient Imitative Multi-token Decision Transformer. The proposed approach
leverages real-world driving data and realistic simulators, providing scenarios that are both realistic
and conducive to online adaptation to distribution shifts. By employing multi-token prediction via
sequence modeling of (state, action, return to go) pairs, the network is enabled to discern the quality
of various action sequences, thereby gaining a deeper insight into the underlying world model. Ex-
periment results indicate that our approach yields a substantial performance enhancement in terms
of policy robustness and sample efficiency both in open-loop and closed-loop settings. SimDT ex-
hibits 41% reduction in collision rate and 18% improvement in reaching the destination compared
with the baseline method. The work is conducted entirely with Jax, which facilitates highly efficient
training on large-scale data and real-time inference. The inference time is 1.63 milliseconds for
SimDT(median) on RTX 3090. The main contributions are as follows:

• We present an online imitative reinforcement learning pipeline designed for wide data dis-
tribution across a collaboration of real-world driving datasets and simulators.

• We propose multi-token Decision Transformer architecture for receding horizon control to
enhance long-horizon prediction and broaden the attention field.

• We introduce prioritized experience replay to sequence modeling-based reinforcement
learning and enable sample-efficient training for large-scale data.

2 RELATED WORK

Reinforcement learning via sequence modeling. Trajectory Transformer (Janner et al., 2021) and
Decision Transformer (DT) (Chen et al., 2021b) are pioneers in this area, leveraging transformer
architectures to model sequences of state-action-reward trajectories and predicting future actions in
an offline manner. Following work (Lee et al., 2022) Meng et al. (2022) (Wu et al., 2023) (Badri-
nath et al., 2023) extends leverage the power of transformers for efficient and generalized decision-
making in RL. Online DT (Zheng et al., 2022) and Hyper DT (Xu et al., 2023) adapt the original
concept for online settings and interact with environments. However, previous work are done on
relatively simple environments compared to autonomous driving environments.

Multi-token prediction. Transformers have significantly impacted NLP since their inception
(Vaswani et al., 2017), outperforming RNNs and LSTMs by processing sequences in parallel and
efficiently handling long-range dependencies. Subsequent models like GPT (Radford et al., 2018)
and BERT (Devlin et al., 2019) have refined the architecture, enhancing pre-training, fine-tuning,
and scalability. Recent studies explore multi-token prediction on semantic representation (Kitaev
et al., 2020), streamline computation (Wang & Cho, 2019), prediction technique (Qi et al., 2020)
and multilingual (Jiang et al., 2020). However, focusing only on single-token prediction makes the
model too sensitive to the immediate context and overlooks the need for deeper analysis of longer
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sequences(Gloeckle et al., 2024). This paper extends the concept to Decision Transformer and ex-
plores the potential benefits of multi-token prediction for motion planning.

Learning with real-world driving data. Much work has been done to accommodate with real-
world driving data (Sun et al., 2020)(H. Caesar, 2021)(Houston et al., 2020)(Phan-Minh et al., 2023)
for generalizable driving policy. Lu et al. (2023) explores the cooperation between reinforcement
learning and imitation learning in terms of loss design for real-world driving data. TuPlan (Dauner
et al., 2023) combines both learning methods with rule-based methods for real-world planning.
Guided Online Distillation (Li et al., 2023) adapts real-world data for reinforcement learning on-
line distillation in MetaDrive Simulator (Li et al., 2022). Trajeglish (Philion et al., 2024) models
real-world traffic autoregressively as a language processing problem with a causal transformer. Our
approach is most similar to Trajeglish as both works tokenize expert driving logs to state-action
sequences, encode agent and map information for better scene understanding and finally output ac-
tions for agent control. However, Trajeglish is fundamentally a supervised learning method and
it inevitably has training and test distribution mismatch. Our approach differs as SimDT addi-
tionally models return to state-action sequences and convert supervised learning to reinforcement
learning sequence modeling (state-action-return) problem to further solve the distribution shift is-
sue. What’s more, SimDT further develops online adaptation and multi-token prediction in contrast
to Trajeglish’s next-token prediction to further enhance its modeling of the driving data.

3 METHODS

In this section, we introduce SimDT, a novel sample-efficient reinforcement learning framework
designed for dynamic driving scenarios through sequence modeling. SimDT integrates a multi-
token decision transformer for nuanced decision-making, an online imitative reinforcement learning
pipeline for continuous adaptation and improvement, and a prioritized experience replay mechanism
to enhance learning efficiency by focusing on more informative experiences.

3.1 NETWORK STRUCTURE

Since the real-world driving environment is complex and dynamic, a specific feature encoding net-
work is designed for the state representation. The real-world driving state contains perceptual infor-
mation such as obstacles, road map, traffic and so on. We follow the vectorized representation to
organize the road map as polylines and then extract with Polyline Encoder (Shi et al., 2022). Obsta-
cles with past 10 historical information are recorded in terms of [position x, position y, yaw, speed,
length, width]. Obstacle and traffic embedding are extracted with multi-layer perception network.

The work further extends the method to goal-conditioned reinforcement learning by adding the
relative vector goal between the ego vehicle and the destination in terms of (x, y). The importance
of goal condition lies in its influence on the decision-making process of the autonomous agent. Even
in an identical environment, the actions taken by the vehicle can vary significantly depending on the
specified goal position.

Real-world data are recorded in terms of trajectory and it is converted to actions via inverse kine-
matics. Multi-token prediction is designed to enhance the network’s understanding of reference
trajectories and short-term momentum impact by learning a fixed horizon of reference actions (Fig-
ure 2,7). Multi-token prediction in a causal transformer simultaneously generates multiple actions
in a single forward pass, while still respecting the autoregressive property that ensures each predic-
tion only depends on previously generated tokens. This is typically achieved by using a masked
self-attention mechanism that allows the model to consider multiple future positions without violat-
ing causal dependencies. As shown in equation 1, the next-token prediction has loss function La

defined as the negative log-likelihood of the policy.

La = − log πθ(at | st:t−c, at−1:t−c, gt:t−c) (1)

where πθ is the training driving policy. maximize the probability of at as the next prediction ac-
tion, given the history of past tokens with context length c of st:t−c = st, ..., st−c. at−1:t−c =
at−1, ..., at−c. gt:t−c = gt, ..., gt−c.
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Figure 2: The general network architecture of SimDT. Feature encoding is applied to extract com-
plex real-world driving perceptual data to small but meaningful embeddings. Inside the causal trans-
former, attention relationships are calculated for past context length of [(st, at, gt)]TT−c. The decoder
now predicts multi-tokens for actions and only the first action is applied during the inference stage.

The loss function is modified for the next n token prediction. Where α, β ... and γ are the coefficients
designed for the network to learn more about current step action predictions.

Lma =− α ∗ log πθ(at | st:t−c, at−1:t−c, gt:t−c)

− β ∗ log πθ(at+1 | st:t−c, at−1:t−c, gt:t−c)− γ ∗ log πθ(at+2 | st:t−c, at−1:t−c, gt:t−c)

− · · · · · · − ω ∗ log πθ(at+n | st:t−c, at−1:t−c, gt:t−c)
(2)

3.2 ONLINE IMITATIVE REINFORCEMENT LEARNING PIPELINE

The general idea of the proposed Algorithm 1 is to perform online imitative reinforcement learning
with off-policy expert data for pre-training at the beginning. Subsequently, the model undergoes
a mixed on-policy adaptation phase which is introduced at the mid-point of the training process.
The core concept behind this is to quickly shift the distribution towards the expert behavior at the
beginning and reduce environmental distribution shift with on-policy adaptation (OPA). Note on-
line policy adaptation and imitative reinforcement learning are performed concurrently after mid of
training, this helps the network not to fall into online local minimal.

Imitative reinforcement learning is done by applying a similar concept as Shaped IL (Judah et al.,
2014) and GRI (Chen et al., 2021a) where the reward is shaped for expert demonstration data. Fol-
lowing the same implementation in (Lu et al., 2023), expert data from real-world driving trajectory
was converted to expert agent actions with inverse kinematics. We also design negative rewards
for off-road and overlap (collision) behavior. The network learns good behavior through imitation
rewards and bad actions through online interaction with off-road and overlap rewards. The over-
all online imitative reinforcement pipeline is essential to achieve the greater data-distributed policy
described in Figure 1.

reward function:

Rimitaiton =

{
1.0 if log divergence < 0.2,

0.0 if log divergence > 0.2,
(3)

Roff−road = −2 (4)
Roverlap = −10 (5)

where log divergence is the euclidean distance between the log history of the ego vehicle and that
of the controlled agent.

The real-time collected transition level replay buffer does not contain return-to-go as it can only be
calculated after the episode is finished and all rewards are collected. Similar to Online DT(Zheng
et al., 2022), the transition level replay buffer is converted to hindsight trajectory replay buffer when
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Algorithm 1 Online Imitative Reinforcement Learning Pipeline
Initialize Transition Replay Buffer Dtrans for capacity A, Trajectory Replay Buffer Dtraj

while n ≤ num scenarios do
while Dtrans is not full do ▷ Online Data Collection

if n ≤ 0.5 ∗ num scenarios then
reproduce scenarios with Human Expert Driving Data, Dtrans ← (s, a, r)

else
reproduce scenarios with Human Expert Driving Data, Dtrans ← (s, a, r)
explore scenarios with Policy agent πθ , Dtrans ← (s, a, r)

end if
end while
HindsightReturnRelabeling: Dtraj ← Dtrans ≡ [[(si,j , ai,j , gi,j)]

T
i=0]

A/T
j=0 ← [(si, ai, ri)]

A
i=0

Dtrans ← ∅
for k in range(1000) do:

sample and ShuffleObstacleOrder: [[(si,j , ai,j , gi,j)]ti=t−c]
B
j=0 ← Dtraj

train on sampled data
end for

end while

a fixed amount of trajectories are collected (HindsightReturnRelabeling). Moreover, the dataloader
randomly shuffles obstacles in order within the state (ShuffleObstacleOrder) to enhance data aug-
mentation.

3.3 PRIORITIZED EXPERIENCE REPLAY FOR DECISION TRANSFORMER

Algorithm 2 Prioritized Experience Replay for Decision Transformer
Initialize Prioritized Trajectory Replay Buffers Dper

single, Dper
overall with capacity B

while n ≤ num scenarios do
Execute online data collection from Algorithm 1 ▷ Online Data Collection
HindsightReturnRelabeling: Dtraj ← Dtrans ≡ [[(si,j , ai,j , gi,j)]

T
i=0]

A/T
j=0 ← [(si, ai, ri)]

A
i=0

Dtrans ← ∅
for k in range(1000) do:

Sample and ShuffleObstacleOrder: [[(si,j , ai,j , gi,j)]tt−c]
B
j=0 ← Dtraj

train on sampled data and obtain Lsingle and Loverall

Dper
single ← {[[(si,j , ai,j , gi,j)]ti=t−c]j , Lsingle}

Dper
overall ← {[[(si,j , ai,j , gi,j)]ti=t−c]j , Loverall}

end for
Train on Dper

single and Dper
overall

end while

The proposed imitative reinforcement learning method not only handles large volumes of offline
demonstration data but also obtains an infinite amount of data through online interactions. The abil-
ity to utilize prioritized experience replay (PER) becomes critical for enhancing sample efficiency.
The original proposed PER(Schaul et al., 2016) selectively samples experiences with high temporal-
difference errors from the replay buffer for focusing on more informative experiences. However, DT
does not use temporal-difference errors and therefore precludes direct application of PER. Instead,
we adapt by using action loss to gauge transition importance within the Decision Transformer, which
assesses state-action-return relationships. The design concept is that if the model’s predicted actions
diverge from actual ones, it indicates a misinterpretation of the environment.

We develop prioritized experience replay for Decision Transformer on top of the previous online
imitative training pipeline(Algorithm 2). Extra replay buffers are designed to store prioritized sam-
pled trajectories based on action loss. The action loss represents the difference between the actions
predicted by the policy network and the actual actions taken. A low actor loss means that the policy
network’s predictions are close to the actual actions, while a high actor loss means that the pre-
dictions are far from the actual actions. Different from bootstrapping RL algorithms which sample
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one pair of state, action and reward (si, ai, ri), Decision Transformer samples a context length(c)
of state-action-return pairs [[(si,j , ai,j , gi,j)]

t
i=t−c]j for sequence modeling. Therefore, the replay

buffers designed for the decision transformer store a set of state-action-return pairs with a specified
context length. Our proposed prioritization rule takes advantage of these state-action-return pairs,
which try to analyze and understand either single scene or cumulative scenes. The proposed method
prioritizes trajectories based on the following criteria:

Criterion 1: Preservation of transitions which contains single-step action discrepancy(Lsingle):
This methodology concentrates on isolating the instances where the model’s prognostications man-
ifest the greatest deviation from expected accuracy. Such a strategy is instrumental in directing the
model’s learning efforts toward ameliorating its most significant errors. The replay buffer for single-
step action discrepancy Dper

single can generally hold unexpected collisions and out-of-line actions.

Criterion 2: Preservation of transitions with maximal cumulative action discrepancy(Loverall):
This methodology is characterized by its emphasis on identifying and retaining sequences wherein
the aggregate error of the model’s predictions reaches its apex. It holds particular utility for endeav-
ors aimed at refining the model’s performance across a continuum of actions for context length of
state-action-return pairs. The replay buffer for cumulative action discrepancy Dper

overall is useful for
preserving rare or long-tail scenarios.

The two replay buffers store data based on high value in low value out. The prioritized experience
replay buffer is sampled for training every fixed amount of episode and its priorities are updated in
the meantime. The goal for the proposed prioritized experience replay in this paper is to prioritize
the trajectories where the model has the biggest misunderstanding of the corresponding scenarios,
and therefore to prioritize long-tail scenarios. The final training pipeline is illustrated in Figure 6.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Dataset, simulator and metrics. Training and experiments are conducted using the Waymo Open
Dataset and the Waymax simulator. Waymax provides embedded support for reinforcement learn-
ing and diverse scenarios drawn from real driving data. It integrates with the Waymo Open Motion
Dataset (WOMD), which offers 531,101 real-world driving scenarios for training and 44,096 sce-
narios for validation. Each scenario contains 90 frames of data. Specifically, WOMD v1.2 and the
exact same metrics (off-road rate, collision rate, kinematic infeasibility, average displacement error
(ADE)) from Waymax are used for benchmarking with the paper. Evaluations are conducted in both
open-loop and closed-loop settings for a wider range of performance comparisons.

Implementation Detail. Models of various sizes are developed to quickly conduct ablation studies
and assess final performance effectively. Raw observation takes ego vehicle, 15 nearest dynamic
obstacles, 300 of closest roadgraph elements, traffic signals and position goal as input. The total
size for each step observation is 8892 and feature extraction is applied to reduce the total size.
SimDT(small) has 384 tokens for each element of (s, a, g) pair, 10 blocks, 16 attention heads and
in total 22.6 million parameters. SimDT(small) has 512 tokens for each element of (s, a, g) pair, 15
blocks, 16 attention heads and in total 53.2 million parameters. Both models use context length with
value 10, which means the causal transformer has access to past 10 (s, a, g) pairs.

4.2 BENCHMARK COMPARISON

SimDT is evaluated both in open-loop and closed-loop settings for comprehensive comparison with
various algorithms. During closed-loop evaluation, Intelligent Driving Model (IDM)(Treiber et al.,
2000) is deployed as the simulated agent. SimDT achieves an Off-Road Rate of 3.36%, Collision
Rate of 2.65%, Kinematic Infeasibility of 0.00%, and ADE of 6.73m. SimDT significantly outper-
forms them in collision rate and is second in off-road rate against other learning-based approaches.
Compared with the same RL category method, SimDT demonstrates a substantial reduction in Off-
Road Rate and Collision Rate than DQN by 45.2%. Similarly, the Collision Rate of SimDT shows
41% improvement over the Behavior Cloning (BC) model. Suggesting that our method is more ef-
fective at keeping the vehicle on the road and avoiding accidents. This improvement in safety-critical
metrics highlights the robustness of SimDT in real-world driving scenarios.
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Agent Action
Space

Train
Sim
Agent

Off-Road
Rate (%)

Collision
Rate (%)

Kinematic
Infeasibility
(%)

ADE (m) Route
Progress
Ratio (%)

Expert Delta - 0.32 0.61 4.33 0.00 100.00
Expert Bicycle - 0.34 0.62 0.00 0.04 100.00
Expert Bicycle(D) - 0.41 0.67 0.00 0.09 100.00
Wayformer
(Nayakanti
et al., 2022)

Delta - 7.89 10.68 5.40 2.38 123.58

BC(Argall
et al., 2009)

Delta - 4.14±2.04 5.83±1.09 0.18±0.16 6.28±1.93 79.58±24.98

BC Delta (D) - 4.42±0.19 5.97±0.10 66.25±0.22 2.98±0.06 98.82±3.46
BC Bicycle - 13.59±12.71 11.20±5.34 0.00±0.00 3.60±1.11 137.11±33.78
BC Bicycle(D) - 1.11±0.20 4.59±0.06 0.00±0.00 2.26±0.02 129.84±0.98
DQN(Mnih
et al., 2013)

Bicycle(D) IDM 3.74±0.90 6.50±0.31 0.00±0.00 9.83±0.48 177.91±5.67

DQN Bicycle(D) Playback 4.31±1.09 4.91±0.70 0.00±0.00 10.74±0.53 215.26±38.20
SimDT(ours) Bicycle Playback 3.52±0.26 2.69±0.10 0.00±0.00 7.14±0.63 106.47±2.8

Table 1: Closed-loop Benchmark. Performance evaluations are done against IDM simulation agents.
Agents run without any termination conditions. Models report mean and standard deviation over 3
seeds. Action space is continuous unless denoted with D (discrete).

Method Train Sim Agent Failure Rate (%) Route Progress Ratio (%)
BC(Argall et al., 2009) - 4.35±0.27 99.00±0.39
SAC(Haarnoja et al., 2018) Playback 6.66±0.44 77.82±8.21
BC-SAC(Lu et al., 2023) Playback 3.35±0.31 95.26±8.64
SimDT (ours) Playback 3.87±0.26 105.63±2.31

Table 2: Open-loop Benchmark. Failure rates (lower is better) of BC-SAC and baselines on different
training/evaluation subsets. The failure rate is the percentage of the run segments that have at least
one collision or off-road event. Models report mean and standard deviation over 3 seeds.

The open-loop evaluation (Figure 2) shows SimDT has comparable results with the state-of-the-art
algorithm BC-SAC. BC again shows a solid performance with a low failure rate of 4.35% and a high
route progress ratio of 99.00%. BC-SAC improves upon SAC, reduces the failure rate to 3.35% and
increases route progress to 95.26%. Remarkably, our proposed SimDT method achieves a moderate
failure rate of 3.87% while surpassing others with a route progress ratio of 105.63%, indicating not
only effective navigation but also the potential for discovering more efficient routes. These results
underline the importance of selecting appropriate training simulations and methods for optimizing
autonomous navigation systems.

When compared to expert demonstrations, SimDT achieves competitive results in terms of safety
metrics. Collision Rates are within the same magnitude as those reported by the experts. However,
the ADE of SimDT is notably higher at 6.73m, which is approximately 6 meters away from the
expert models. This suggests that SimDT learns a safe and feasible policy but is different from the
expert recording. While the ADE for SimDT is higher than that of other imitation learning models,
it is important to note that ADE alone may not capture the complete picture of driving performance.
The emphasis on safety and kinematic feasibility by SimDT may contribute to a cautious driving
style, which can result in a slightly higher ADE but with significantly safer outcomes.

4.3 ABLATION STUDY AND ANALYSIS

Prioritized Experience Replay for Decision Transformer. Compared to the baseline Decision
Transformer model, integrating Prioritized Experience Replay results in a significant reduction of
off-road incidents and collision rates by 26.1% and 5.5%, respectively (Table 3). Moreover, the
enhanced Decision Transformer model achieves comparable performance using only 60% of the
scenarios. The comparison of learning curves with and without Prioritized Experience Replay is
presented in Figure 3. Multiple experiments are conducted with different initial seeds to ensure
reproducibility. Three types of data are preferentially stored for PER (Figure 4). The initial cate-
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Agent Off-Road
Rate (%)

Collision
Rate (%)

Kinematic
Infeasibility

ADE (m)

DT(small) + 1 token prediction 6.21±0.35 3.62±0.18 0.00±0.00 8.32±0.68
DT(small) + PER + 1 token prediction 4.59±0.31 3.42±0.15 0.00±0.00 7.95±0.69
DT(small) + PER + OPA + 1 token prediction 3.97±0.24 2.92±0.13 0.00±0.00 7.64±0.59
DT(small) + PER + OPA + 3 token prediction 3.82±0.25 2.65±0.11 0.00±0.00 7.52±0.55
DT(small) + PER + OPA + 5 token prediction 3.75±0.25 2.59±0.10 0.00±0.00 7.45±0.57
DT(small) + PER + OPA + 7 token prediction 4.14±0.30 3.33±0.11 0.00±0.00 8.19±0.59
DT(median) + PER + OPA + 3 token prediction 3.52±0.26 2.69±0.10 0.00±0.00 7.14±0.63

Table 3: Ablation Study. PER is prioritized experience replay, OPA is online policy adaptation.

Figure 3: Comparison of learning curves for DT(small) settings with and without Prioritized Expe-
rience Replay. The metric for reward indicates that higher values are better, whereas for off-road
incidents, overlap, and log divergence, lower values are better. Models report mean and standard
deviation over 3 seeds.

gory encompasses instances wherein a discernible discrepancy arises between the predicted actions
of the learning model and those executed by an expert. The second category pertains to scenarios
wherein the cumulative action loss associated with a particular trajectory is substantially elevated,
a phenomenon that predominantly transpires within the confines of rare encountered environmental
conditions. The third category is representative of situations where trajectories indicative of sub-
optimal online adaptation are documented, highlighting the model’s challenges in identifying and
rectifying suboptimal behaviors.

A key aspect of the Decision Transformer is its ability to model the relationship between state,
action, and return-to-go (gt). Given the same state observation, expert actions are associated with a
higher gt, and sub-optimal actions with a lower gt. Ideally, DT should learn to act differently (e.g.
choose an expert action, avoid driving out of the lane, or prevent collisions) based on the gt value.
When a predicted action significantly diverges from the ground truth action given state observation
and specific gt, it indicates a misinterpretation of the environment. Intuitively, such misbehaved
experiences need further reinforcement through the replay buffer.

From a high-level perspective, training on large-scale real-world data presents uneven scenario dis-
tributions. When the network begins to generalize common scenarios, rare scenarios like Figures
4(a) and 4(b) are undertrained. At this point, the network performs relatively well on common sce-
narios (low action loss) but not on rare scenarios (high action loss). Consequently, the replay buffer
starts storing more of these rare scenarios. Criterion 2 is applied with accumulated action loss to
prioritize such scenarios. Figure 4(c) illustrates a policy rollout during online adaptation where sub-
optimal actions cause changes in gt. What is important is the record of the corresponding gt with
respect to action, where expert actions and sub-optimal actions are respectively given positive and
negative rewards. eg. Figure 4(c) shows the ego vehicle driving out of the lane with a recorded de-
crease in gt value -2. It is crucial for the neural network to understand which actions cause a -2 value
drop in gt. These suboptimal state-action-return sequences are also important as expert driving data
doesn’t contain such behavior. The next time the agent encounters a similar scenario, the correct gt
will help prevent out-of-lane actions.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Irregular Traffic Junction (b) Parking Slot (c) T Junction

Figure 4: Illustration of Data Selection for Prioritized Experience Replay: 4(a) is chosen because of
its uncommon expert behavior that needs to slow down while steering to the right to keep lane. 4(b)
illustrates a rare parking situation and was picked because it had the most mistakes when looking at
the whole series of actions. 4(c) is kept as the suboptimal (collision) action taken in that situation
was not reproduced given the corresponding low return-to-go.

(a) scenario (b) 1-token prediction (c) 3-token prediction

Figure 5: Attention map comparison for single-token and multi-token prediction. Multi-token pre-
diction network has a more diverse attention field. It indicates that multi-token prediction is less
susceptible to immediate contextual patterns.

Multi-token Decision Transformer. In ablation study detailed in Table 3, we compare the perfor-
mance of single-token prediction against multi-token predictions. The 3-token and 5-token SimDT
variants demonstrate improvements of 3.78% and 6.80% in off-road, 8.56% and 11.3% in collision
rates respectively. This improvement underscores the importance of considering future actions, in-
fluenced by real-world vehicle dynamics like inertia and momentum, which single-token models
may overlook due to their focus on immediate contexts. The attention map in Figure 5 shows that
multi-token prediction has wider attention fields towards long-term context. However, extending
predictions to 7 tokens resulted in slight performance degradation, suggesting existing difficulties
in trajectory stitching for larger sequences modeling by Decision Transformer. These results indi-
cate that while multi-token prediction models offer a more nuanced understanding of environmental
interactions, the optimization of larger token prediction poses a challenge that needs further study.

5 CONCLUSION

We present SmiDT, a novel sequence modeling-based reinforcement learning approach for closed-
loop driving and complex real-world driving scenarios. Our fully online imitative Decision Trans-
former pipeline is adept at handling diverse data distributions found within extensive driving
datasets, ensuring wide applicability and robustness. By implementing a multi-token Decision
Transformer that integrates receding horizon control, we improve the model’s ability to predict
over longer horizons and extend its attention span across broader contexts. Furthermore, the in-
corporation of prioritized experience replay within our framework enhances the sample efficiency
of training, allowing for more effective learning from large-scale datasets. Our work can also benefit
other real-world robotics tasks that demand sample-efficient learning from expert demonstration and
online adaptation.
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APPENDIX

Figure 6: The general training procedure of SimDT. Real-world driving scenarios are reproduced
in the simulator and the produced transitions (s, a, r) are recorded to replay buffer. HindsightRe-
turnRelabeling is performed to transform transitions to state-action-return pairs (s, a, g). During
training, prioritized experience replay is performed for sample efficiency. Finally, online adaptation
is used for better performance.

A. METRICS

The Off-road Rate indicates the percentage of whether the vehicle is driving within the road bound-
aries, with any deviation to the right of the road’s edge considered off-road.

The Kinematic Infeasibility Metric is a binary metric that assesses whether a vehicle’s transition
between two consecutive states is within predefined acceleration and steering curvature limits, based
on inverse kinematics.

Average Displacement Error (ADE) calculates the mean euclidean distance between the vehicle’s
simulated position and its logged position at corresponding time steps across the entire trajectory.

Route Progress Ratio calculates the proportion of the planned route completed by the vehicle, based
on the closest point along the path at a given time step. The Route Progress Ratio feature is not
released yet and the benchmark in this paper will skip this metric.

B. CHOICE FOR IMITATION REWARD LOG DIVERGENCE THRESHOLD

The log divergence is the distance between the logged position and the actual agent position. The
key here is to reward the system when the agent is close to expert human actions. When performing
real-world human demonstration through inverse kinematics, the log divergence is close to zero.
The reason to set it to 0.2 is to reward policy agents. However, we consider 0.2 to be the maximum
that we can set as values bigger than 0.2 can lead to a collision and out-of-lane actions which should
not be rewarded. In general, we do not see a significant difference when varying values from 0.05
to 0.2. The reason can be 1. Change of threshold values has no impact on reward functions during
the offline reinforcement learning phase. 2. Values under 0.2 are still relatively small for agents to
follow during the online exploration phase.

C. COMPARISON WITH BC-SAC

Despite SimDT and BC-SAC both trying to combine imitation learning and reinforcement learning,
they use different approaches to achieve this goal. The key for BC-SAC is to combine reinforcement
learning cost with imitation learning cost during training. Our proposed imitative reinforcement
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Figure 7: The general training procedure of SimDT. We minimize the action loss over a horizon to
thereby minimize the deviation of the resultant predicted trajectory from the reference trajectory.

(a) demonstration(navy) and exploration trajectory (b) learned policy

Figure 8: Illustration of how demonstration and exploration trajectory to learn a generalized policy.

learning pipeline is a reinforcement learning method that combines rewards for imitating expert
demonstration.

D. COEFFICIENT FOR MULTI-TOKEN TRAINING

In the main body of the text, the modified loss function Lma is designed to enhance the network’s
learning capability regarding current step action predictions through the strategic use of coefficients
α, β, ..., and γ. The values that are adapted during training follow a decay setting as we think the
near future token prediction is more important than further future tokens.

Method α β γ δ σ ϕ ω
SimDT (1-token) 1.00 - - - - - -
SimDT (3-token) 0.80 0.40 0.20 - - - -
SimDT (5-token) 0.80 0.30 0.15 0.10 0.08 - -
SimDT (7-token) 0.80 0.25 0.12 0.10 0.08 0.06 0.05
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