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ABSTRACT

The local and global interpretability of various ML models has been studied ex-
tensively in recent years. Yet despite significant progress in the field, many of
the known results are either informal or lack sufficient mathematical rigor. In this
work, we propose a framework based on computational complexity theory to sys-
tematically evaluate the local and global interpretability of different ML models.
In essence, our framework examines various forms of explanations that can be
computed either locally or globally and assesses the computational complexity in-
volved in generating them. We begin by rigorously studying global explanations,
and establish: (i) a duality relationship between local and global forms of expla-
nations; and (ii) the inherent uniqueness associated with certain global forms of
explanations. We then proceed to evaluate the computational complexity associ-
ated with these forms of explanations, with a particular emphasis on three model
types usually positioned at the extremes of the interpretability spectrum: (i) linear
models; (ii) decision trees; and (iii) neural networks. Our findings reveal that,
assuming standard complexity assumptions such as P ̸= NP, computing global
explanations is computationally more difficult for linear models than for their lo-
cal counterparts. Surprisingly, this phenomenon is not universally applicable to
decision trees and neural networks: in certain scenarios, computing a global ex-
planation is actually more tractable than computing a local one. We consider these
results as compelling evidence of the importance of analyzing ML explainability
from a computational complexity perspective, as the means of gaining a deeper
understanding of the inherent interpretability of diverse ML models.

1 INTRODUCTION

Interpretability is becoming an increasingly important aspect of ML models, as it plays a key role
in ensuring the safety, transparency and fairness of these models (Doshi-Velez & Kim (2017)). The
ML community has been studying two notions of interpretability: global interpretability, aimed at
understanding the overall decision logic of an ML model; and local interpretability, aimed at un-
derstanding specific decisions made by that model (Zhang et al. (2021); Du et al. (2019)). Various
claims have been made concerning the relative interpretability of various ML models (Gilpin et al.
(2018)). For instance, it has been proposed that linear classifiers inherently possess local inter-
pretability, but lack global interpretability; whereas decision trees are acknowledged to possess both
local and global interpretability (Molnar (2020)). Although such insights are intuitively helpful, they
often lack mathematical rigor.

Here, we argue that a more formal basis is required in order to establish a sound theoretical founda-
tion for assessing interpretability. To do so, we propose to study interpretability through the lens of
computational complexity theory. We seek to study different notions of model explanations, and de-
termine the computational complexity of obtaining them — in order to measure the interpretability
of different models. Intuitively, the lower the complexity, the more interpretable the model is with
respect to that form of explanation. Recent work provided new insights in this direction (Barceló
et al. (2020); Marques-Silva et al. (2020); Arenas et al. (2022)), but focused mainly on local forms
of explanations — thus contributing to formally measuring the local interpretability across various
contexts, rather than addressing the issue of global interpretability.
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Our contributions. We present a formal framework for evaluating the local and global interpretabil-
ity of ML models. The framework rigorously assesses the computational complexity required to ob-
tain various explanation forms, either local (pertaining to a specific instance x) or global (pertaining
to any possible x). Consequently, it affords insights into the local and global interpretability level of
the various models and explanation forms. We focus on the following forms of explanations:

1. Sufficient reasons: subsets of input features that are sufficient for determining the model’s
output. Global sufficient reasons imply that this subset always determines the result,
whereas local sufficient reasons imply that this subset determines the classification under a
partial assignment of some input. We also study the problem of obtaining sufficient reasons
of smallest cardinality.

2. Redundant features: input features that do not contribute to a specific prediction, or, in
the global case, do not contribute to any prediction.

3. Necessary features: input features essential for determining a specific prediction, or, in
the global case, for determining any prediction.

4. Completion count: the relative portion of assignments that maintain a prediction, given
that we fix some subset of features. This form relates to the probability of obtaining a
prediction, and can be computed either locally or globally.

We present several novel insights concerning the overarching characteristics of these types of expla-
nations, culminating in: (i) a duality relationship between local and global forms of explanations;
and (ii) a result on the uniqueness of certain global forms of explanations, in stark contrast to the
exponential abundance of their local counterparts.

In addition, we study the computational complexity of obtaining these forms of explanations, for
various ML models. We focus on models that are frequently mentioned in the literature as being at
the two ends of the interpretability spectrum: (i) decision trees; (ii) linear models; and (iii) neural
networks. Our results allow us to determine whether models are more locally interpretable (it is
easier to interpret them locally than globally), or more globally interpretable (the opposite case);
and also establish a complexity hierarchy of explaining various models.

In some cases, our results rigorously justify prior claims. For example, we establish that linear
models are indeed easier to interpret locally than globally (Molnar (2020)): while obtaining local
sufficient reasons can be performed in polynomial time, obtaining global sufficient reasons for these
models is coNP-Complete. In other cases, our results actually defy intuition. For example, we
discover that neural networks and decision trees are easier to interpret globally than locally, for some
explanation forms: e.g., minimally sized global sufficient reasons can be obtained in polynomial
time for decision trees, but obtaining their local counterparts is NP-Complete. A similar pattern is
found for neural networks, and again both for neural networks and decision trees when concerning
the evaluation of redundant features. These results highlight the benefits of a rigorous study of these
topics.

Due to space constraints, we include a brief outline of the proofs of our various claims within the
paper, and relegate the complete proofs to the appendix.

2 PRELIMINARIES

Complexity Classes. The paper assumes basic familiarity with the common complexity classes
of polynomial time (PTIME) and nondeterministic polynomial time (NP, co-NP). We also mention
classes of the second order of polynomial hierarchy, i.e., ΣP

2 , which describes the set of problems
that could be solved in NP given an oracle that solves problems of co-NP in constant time, and
ΠP

2 , which describes the set of problems that could be solved in co-NP given an oracle that solves
problems of NP in constant time. Both NP and co-NP are contained in both ΣP

2 and ΠP
2 , and it

is also widely believed that this containment is strict i.e., PTIME⊊ NP, co-NP⊊ ΣP
2 , ΠP

2 (Arora
& Barak (2009)) which is a consequence of the assumption that PTIME̸=NP. We also discuss the
class #P, which corresponds to the total number of accepting paths of a polynomial-time nondeter-
ministic Turing machine. It is also widely believed that #P strictly contains the second order of the
polynomial hierarchy, i.e., that ΣP

2 , ΠP
2 ⊊ #P (Arora & Barak (2009)).
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Domain. We assume a set of n features x := (x1, . . . , xn), and use F := {0, 1}n to denote the entire
feature space. Our goal is to interpret the prediction of a classifier f : F→ {0, 1}. In the local case,
we seek the reason behind the prediction f(x) made for a specific instance x. In the global case,
we seek to explain the general behavior of f . (We follow common practice and focus on Boolean
input and output values, to simplify the presentation (Arenas et al. (2021); Wäldchen et al. (2021);
Barceló et al. (2020)). We note, however, that many of our results carry over to the real-valued case,
as well.)

Explainability Queries. To address interpretability’s abstract nature, prior work often uses a con-
struct called an explainability query (Barceló et al. (2020)), denotedQ, which defines an explanation
of a specific type. As prior work focused mainly on local explanation forms, the input ofQ is usually
comprised of both f and x, and its output is an answer providing information regarding the inter-
pretation of f(x). For any given explainability query Q, we define its corresponding global form of
explanation as G-Q. In contrast to Q, the input of G-Q does not include any specific instance x and
the output conditions hold for any x ∈ F rather than only for x. We provide the full formalization of
each local and global explainability query in Section 3.

3 LOCAL AND GLOBAL EXPLANATION FORMS

Although model interpretability is subjective, there are several commonly used notions of local and
global explanations, on which we focus here:

Sufficient reasons. A local sufficient reason is a subset of features, S ⊆ {1, . . . , n}. When the
features in S are fixed to their corresponding values in x, the prediction is determined to be f(x),
regardless of other features’ assignments. Formally, S is a sufficient reason with respect to ⟨f, x⟩ if
for any x ∈ F it holds that f(xS ; zS̄) = f(x). Here, (xS ; zS̄) represents an assignment where the
values of elements of S are taken from x, and the remaining values S are taken from z.

A set S ⊆ {1, . . . , n} is a global sufficient reason of f if it is a local sufficient reason for all x.
More formally: for any x, z ∈ F, it holds that f(xS ; zS̄) = f(x). We denote suff(f, S, x) = 1
when S is a local sufficient reason of ⟨f, x⟩, and suff(f, S, x) = 0 otherwise. Similarly, we denote
suff(f, S) = 1 when S is a global sufficient reason of f , and suff(f, S) = 0 otherwise. This leads
us to our first explainability query:

CSR (Check Sufficient Reason):
Input: Model f , input x, and subset of features S
Output: Yes if suff(S, f, x) = 1, and No otherwise

To differentiate between the local and global setting, we use G-CSR to refer to the explainability
query that checks whether S is a global sufficient reason of f . Due to space limitations, we relegate
the full formalization of global queries to the appendix.

A common notion in the literature suggests that smaller sufficient reasons (i.e., with smaller |S|) are
more meaningful than larger ones (Ribeiro et al. (2018); Halpern & Pearl (2005)). Consequently,
it is interesting to consider cardinally minimal sufficient reasons (also known as minimum sufficient
reasons), which are computationally harder to obtain (Barceló et al. (2020)).

MSR (Minimum Sufficient Reason):
Input: Model f , input x, and integer k
Output: Yes if there exists some S such that suff(S, f, x) = 1 and |S| ≤ k, and No otherwise

Similarly, G-MSR denotes the explainability query for obtaining global cardinally minimal sufficient
reasons. This notion aligns with the optimization goal of many feature selection tasks (Wang et al.
(2015)), where one seeks to select minimal subsets of features that globally determine a prediction.

Necessity and redundancy. When interpreting a model, it is common to measure the importance of
each feature to a prediction. Here we analyze the complexity of identifying the two extreme cases:
features that are either necessary or redundant to a prediction (Huang et al. (2023)). These kinds
of features are useful in the study of some notions of fairness (Ignatiev et al. (2020a)): necessary
features can be seen as biased features, whereas redundant features are protected features that should
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not be used for decision-making, such as gender, age, etc. (Arenas et al. (2021); Darwiche & Hirth
(2020)).

Formally, we say that a feature i is necessary with respect to ⟨f, x⟩ if it is contained in all sufficient
reasons of ⟨f, x⟩. This implies that removing i from any sufficient reason S causes it to cease being
sufficient; i.e., for any S ⊆ {1, . . . , n} it holds that suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 0.

In the global case, we would seek to determine whether feature i is globally necessary to f , meaning
it is necessary to all instances of ⟨f, x⟩. Formally, for any x ∈ F and for any S ⊆ {1, . . . , n} it holds
that suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 0.

FN (Feature Necessity):
Input: Model f , input x, and integer i
Output: Yes if i is necessary with respect to ⟨f, x⟩, and No otherwise

The G-FN formalization (along with other global queries in this section) appears in the appendix.

Conversely, a feature i is said to be locally redundant with respect to ⟨f, x⟩ if removing it from any
sufficient reason S does not affect S’s sufficiency. Formally, for any S ⊆ {1, . . . , n} it holds that
suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 1:

FR (Feature Redundancy):
Input: Model f , input x, and integer i.
Output: Yes, if i is redundant with respect to ⟨f, x⟩, and No otherwise.

We say that a feature is globally redundant if it is locally redundant with respect to all inputs; i.e.,
for any x ∈ F and S ⊆ {1, . . . , n} it holds that suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 1.

Counting completions. One final common form of explainability is based on exploring the rela-
tive portion of assignment completions that maintain a specific classification, which relates to the
probability that a prediction remains the same, assuming the other features are uniformly and in-
dependently distributed. We define the local completion count c of S as the relative portion of
completions which maintain the prediction of f(x):

c(S, f, x) :=
|{z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x)}|

|{z ∈ {0, 1}|S||
(1)

In the global completion count case, we count the number of completions for all possible assign-
ments x ∈ F:

c(S, f) :=
|{x ∈ F, z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x)}|

|{x ∈ F, z ∈ {0, 1}|S||
(2)

CC (Count Completions):
Input: Model f, input x, and subset of features S
Output: The completion count c(S, f, x)

We acknowledge that other explanation forms can be used, and do not argue that one form is superior
to others; rather, our goal is to study some local and global versions of common explanation forms
as a means of assessing the local and global interpretability of different ML models.

4 PROPERTIES OF GLOBAL EXPLANATIONS

We now present several novel results concerning the characteristics of global explanations, and in
Section 5 we subsequently illustrate how these results significantly affect the complexity of actually
computing such explanations.

4.1 DUALITY OF LOCAL AND GLOBAL EXPLANATIONS

Our analysis shows that there exists a dual relationship between local and global explanations. To
better understand this relationship, we make use of the definition of contrastive reasons, which
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describes subsets of features that, when altered, may cause the classification to change. Formally,
a subset of features S is a contrastive reason with respect to ⟨f, x⟩ iff there exists some z ∈ F such
that f(xS̄ ; zS) ̸= f(x).

While sufficient reasons provide answers to “why?” questions, i.e., “why was f(x) classified to class
i?”, contrastive reasons seek to provide answers to “why not?” questions. Clearly, S is a sufficient
reason of ⟨f, x⟩ iff S is not a contrastive reason of ⟨f, x⟩. Contrastive reasons are also well related
to necessity. This is shown by the following theorem, whose proof appears in the appendix:

Theorem 1 A feature i is necessary with respect to ⟨f, x⟩ if and only if {i} is a contrastive reason
of ⟨f, x⟩.

We can similarly define a global contrastive reason as a subset of features that may cause a mis-
classification for any possible input. Formally, for any x ∈ F there exists some z ∈ F such that
f(xS̄ ; zS) ̸= f(x). This leads to a first dual relationship between local and global explanations:

Theorem 2 Any global sufficient reason of f intersects with all local contrastive reasons of ⟨f, x⟩,
and any global contrastive reason of f intersects with all local sufficient reasons of ⟨f, x⟩.

This formulation can alternatively be expressed through the concept of hitting sets (additional details
appear in the appendix). In this context, global sufficient reasons correspond to hitting sets of local
contrastive reasons, while local contrastive reasons correspond to hitting sets for global sufficient
reasons. It follows that the minimum hitting set (MHS; see appendix) aligns with cardinally minimal
reasons. Formally:

Theorem 3 The MHS of all local contrastive reasons of ⟨f, x⟩ is a cardinally minimal global suffi-
cient reason of f , and the MHS of all local sufficient reasons of ⟨f, x⟩ is a cardinally minimal global
contrastive reason of f .

4.2 UNIQUNESS OF GLOBAL EXPLANATIONS

As stated earlier, small sufficient reasons are often assumed to provide a better interpretation than
larger ones. Consequently, we are interested in minimal sufficient reasons, i.e., explanation sets
that cease to be sufficient reasons as soon as even one feature is removed from them. We note that
minimal sufficient reasons are not necessarily cardinally minimal, and we can also consider subset
minimal sufficient reasons (alternatively referred to as locally minimal). The choice of the terms
cardinally minimal and subset minimal is deliberate, to reduce confusion with the concepts of global
and local explanations.

A greedy approach for computing subset minimal explanations appears in Algorithm 1. It starts with
the entire set of features and gradually attempts to remove them until converging to a subset minimal
sufficient reason. Notably, the validation step at Line 3 within the algorithm, which determines
the sufficiency of a feature subset, is not straightforward. In Section 5, we delve into a detailed
discussion of the computational complexities associated with this process.

Algorithm 1 Local Subset Minimal Sufficient Reason
Input f , x

1: S ← {1, . . . , n}
2: for each i ∈ {1, ..., n} by some arbitrary ordering do
3: if suff(f, S \ {i}, x) = 1 then
4: S ← S \ {i}
5: end if
6: end for
7: return S ▷ S is a subset minimal local sufficient reason

While Algorithm 1 converges to a subset-minimal local sufficient reason, it is not necessarily a
cardinally minimal sufficient reason. This is due to the algorithm’s strong sensitivity to the order
in which we iterate over features (Line 2). The number of subset-minimal and cardinally minimal
sufficient reasons depends on the function f . Nevertheless, it can be shown that their prevalence is,
in the worst-case, exponential in the number of features n:
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Proposition 1 There exists some f and some x ∈ F such that there are 2⌊
n
2 ⌋ local subset minimal

or cardinally minimal sufficient reasons of ⟨f, x⟩.

A similar, greedy approach for global explanations appears in Algorithm 2:

Algorithm 2 Global Subset Minimal Sufficient Reason
Input f

1: S ← {1, . . . , n}
2: for each i ∈ {1, ..., n} by some arbitrary ordering do
3: if suff(f, S \ {i}) = 1 then
4: S ← S \ {i}
5: end if
6: end for
7: return S ▷ S is a subset minimal global sufficient reason

Given that the criteria for a subset of features to constitute a global sufficient reason are more strin-
gent than those for the local case, it is natural to ask whether they are also exponentially abundant.
To start addressing this question, we establish the following proposition:

Proposition 2 If S1 and S2 are two global sufficient reasons of f , then S1 ∩ S2 = S ̸= ∅, and S is
a global sufficient reason of f .

Proof Sketch. Using the duality property of Theorem 2, it is possible to conclude that S1 ∩ S2 ̸= ∅.
For the second part of the claim, whenever S1 ⊆ S2 or S2 ⊆ S1, the proof is trivial. When that is
not the case, we observe that S = S1 ∩S2 must be a local sufficient reason with respect to ⟨f, x⟩ for
any x ∈ F, and is hence a global sufficient reason with respect to f .

From Proposition 2 now stems the following theorem:

Theorem 4 There exists one unique subset-minimal global sufficient reason of f .

Thus, while the local form of explanation presents us with a worst-case scenario of an exponential
number of minimal explanations, the global form, on the other hand, offers only a single, unique
minimal explanation. As we demonstrate later, this distinction causes significant differences in the
complexity of computing such explanations. We can now derive the following corollary:

Proposition 3 For any possible ordering of features in Line 4.2 of Algorithm 2, Algorithm 2 con-
verges to the same global sufficient reason.

The uniqueness of global subset-minimal sufficient reasons also carries implications for the assess-
ment of feature necessity and redundancy, as follows:

Proposition 4 Let S be the subset minimal global sufficient reason of f . For all i, i ∈ S if and only
if i is locally necessary for some ⟨f, x⟩, and i ∈ S if and only if i is globally redundant for f .

In other words, subset S, which is the unique minimal global sufficient reason of f , categorizes the
features into two possible sets: those necessary to a specific instance x, and those that are globally
redundant. This fact is further exemplified by the subsequent corollary:

Proposition 5 Any feature i is either locally necessary for some ⟨f, x⟩, or globally redundant for f .

5 THE COMPUTATIONAL COMPLEXITY OF GLOBAL INTERPRETATION

We seek to conduct a comprehensive analysis of the computational complexity of computing local
and global explanations, of the forms discussed in Section 3. We perform this analysis on three
classes of models: free binary decision diagrams (FBDDs), which are a generalization of decision
trees, Perceptrons, and multi-layer Perceptrons (MLPs) with reLU activation units. A full formal-
ization of these model classes is provided in the appendix.
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We use Q(C) (respectively, G-Q(C)) to denote the computational problem of solving the local
(respectively, global) explainability query Q on models of class C. Table 1 summarizes our results,
and indicates the complexity classes for model class and explanation type pairs.

Table 1: Complexity classes for pairs of explainability queries and model classes. Cells highlighted
in blue are the result of novel proofs, presented here; while the rest are based on prior work.

FBDDs MLPs Perceptrons
Local Global Local Global Local Global

CSR PTIME PTIME coNP-C coNP-C PTIME coNP-C
MSR NP-C PTIME ΣP

2 -C coNP-C PTIME coNP-C
CC PTIME PTIME #P-C #P-C #P-C #P-C
FR coNP-C PTIME ΠP

2 -C coNP-C coNP-C coNP-C
FN PTIME PTIME PTIME coNP-C PTIME PTIME

As these results demonstrate, there is often a strict disparity in computational effort between cal-
culating local and global explanations, emphasizing the need for distinct assessments of local and
global forms. We further study this disparity and investigate the comparative computational efforts
required for local and global explanations across various models and forms of explanations. This
examination enables us to address the fundamental question of whether certain models exhibit a
higher degree of interpretability at a global level compared to their interpretability at a local level,
within different contextual scenarios. In Section 5.1, we introduce a framework to investigate this
question. In section 5.2, we delve into the technical aspects of the required reductions for proving
these complexity classes.

5.1 LOCAL VS. GLOBAL INTERPRETABILITY

We say that a model is more locally interpretable for a given explanation type if computing the local
form of that explanation is strictly easier than computing the global form, and say that it is more
globally interpretable in the opposite case. Formally put:

Definition 1 Let Q denote an explainability query and C a class of models, and suppose Q(C) is
in class K1 and G-Q(C) is in class K2. Then:

1. C is strictly more locally c-interpretable with respect to Q iff K1 ⊊ K2 and G-Q(C) is
hard for K2.

2. C is strictly more globally c-interpretable with respect to Q iff K2 ⊊ K1 and Q(C) is hard
for K1.

We begin by studying the Perceptron model. As depicted in Table 1, there exists a disparity between
the local and global forms for the CSR and MSR queries: while the local forms can be obtained in
polynomial time, obtaining the global forms is coNP-Complete. This leads us to our first corollary:

Theorem 5 Perceptrons are strictly more locally c-interpretable with respect to CSR and MSR.

The fact that a class of models is more locally interpretable may seem intuitive. Nevertheless, it
is rather surprising that, in certain instances, acquiring global explanations can be comparatively
simpler. Notably, our findings demonstrate that this surprising result holds for both FBDDs and
MLPs. For FBDDs, the minimum-sufficient-reason (MSR) and feature redundancy (FR) queries are
easier to obtain at the global level, leading us to our second corollary:

Theorem 6 FBDDs are strictly more globally c-interpretable with respect to MSR and FR.

As we later discuss in Section 5.2, this result stems from the fact that global cardinally minimal
sufficient reasons are unique, making them easier to obtain for some models. Additionally, due to the
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relationship between global cardinally minimal sufficient reasons and globally redundant features
(Theorem 4), the uniqueness property can also affect the complexity of G-FR queries. Notice that
this is the case for FBDDs but was not the case for Perceptrons, since the complexity for checking
global sufficient reasons in Perceptrons (G-CSR) was higher to begin with, consequently affecting
the complexities of the G-MSR and G-FR queries.

Finally, in the case of MLPs, our analysis does not provide a clear-cut division between local and
global interpretability.

Theorem 7 MLPs are (i) strictly more globally c-interpretable with respect to MSR and FR, and
(ii) strictly more locally c-interpretable with respect to FN.

5.2 COMPUTATIONAL CLASSES FOR GLOBAL EXPLAINABILITY QUERIES

The outcomes outlined in the preceding section stem directly from our novel proofs of the asso-
ciated global forms of explainability queries. In this section, we delve further into the associated
complexity classes and discuss the reductions used to obtain them.

Complexity of Global Sufficient Reasons. We start off with providing proof sketches of the com-
plexity classes associated with checking if a subset of features is a sufficient reason:

Proposition 6 G-CSR is (i) coNP-Complete for MLPs/Perceptrons, and (ii) in PTIME for FBDDs.

Proof Sketch. Membership in coNP holds since one can guess certificates x ∈ F and z ∈ F and
validate whether S is not sufficient. For Perceptrons, we propose a reduction from the SSP (subset-
sum problem), which is coNP-Complete. Hardness for Perceptrons clearly also holds for MLPs, but
we nevertheless show that it can be obtained via a reduction from (local) CSR for MLPs, which is
coNP-Complete. For FBDDs, we provide a polynomial algorithm.

We then move on to assess the complexity associated with obtaining cardinally minimal global
sufficient reasons. In contrast to the local scenario where obtaining cardinally minimal sufficient
reasons is harder (Barceló et al. (2020)), this difference does not persist in the global context:

Proposition 7 G-MSR is (i) coNP-Complete for MLPs/Perceptrons and (ii) in PTIME for FBDDs.

Proof Sketch. Membership is a consequence of Proposition 4, which shows that any feature that is
contained in the subset minimal global sufficient reason is necessary for some ⟨f, x⟩, or is glob-
ally redundant otherwise. We hence can guess n assignments x1, . . . , xn, and for each feature
i ∈ {1, . . . n}, validate whether i is locally necessary for ⟨f, xi⟩, and whether this holds for more
than k features. We prove hardness for MLPs/Perceptrons using a similar reduction to CSR. Given
that CSR for FBDDs can be solved in PTIME, it follows from Algorithm 2 that MSR is in PTIME.

Complexity of Global Necessity and Redundancy. We provide proof sketches for the complexity
of validating whether input features are globally redundant or necessary, starting with redundancy:

Proposition 8 G-FR is (i) coNP-Complete for MLPs/Perceptrons, and (ii) in PTIME for FBDDs.

Proof Sketch. From Theorem 1 and Proposition 5, we can conclude that i is not globally redundant
iff {i} is contrastive for some ⟨f, x⟩. This property is useful for demonstrating membership and
hardness for MLPs/Perceptrons and for devising a polynomial algorithm for FBDDs.

For global necessity, we derive different complexity classes:

Proposition 9 G-FN is (i) coNP-Complete for MLPs, and (ii) in PTIME for Perceptrons and FB-
DDs.

Proof Sketch. Membership in coNP can be obtained using Theorem 1. We prove hardness for MLPs
by reducing from TAUT, a classic coNP-Complete problem that checks whether a Boolean formula
is a tautology. For Perceptrons and FBDDs we suggest polynomial algorithms whose correctness is
derived from Theorem 1.

These results imply an intriguing consequence regarding the complexity of validating necessity and
redundancy in the specific case of MLPs:
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Observation 1 For MLPs, global necessity (G-FN) is strictly harder than local necessity (FN),
whereas global redundancy (G-FR) is strictly less hard than local redundancy (FR).

Another interesting insight from the previous theorems is the comparison between MLPs and Per-
ceptrons. Since Perceptrons are a specific case of MLPs with only one layer, analyzing the compu-
tational complexity difference between them can provide insights into the influence of hidden layers
on model intricacy. Our findings indicate that for some queries while hidden layers affect local
queries, they do not impact global queries.

Observation 2 Obtaining CSR, MSR, and FR is strictly harder for MLPs compared to MLPs with
no hidden layers. However, this disparity does not exist for G-CSR, G-MSR, and G-FR.

Complexity of Global Count Completions. Finally, We offer proof sketches for the global CC
queries. Unlike the previous queries, here the complexity classes for global configurations remain
akin to their local counterparts.

Proposition 10 G-CC is (i) #P -Complete for MLPs and Perceptrons and (ii) in PTIME for FBDDs.

Proof Sketch. Membership in #P is straightfowrad. For the hardness in case of Perceptrons/MLPs,
we reduce from (local) CC of Perceptrons which is #P -complete. For FBDDs, we offer a polyno-
mial algorithm.

Our work also introduces new complexity classes for local explanation configurations, as shown in
Table 1. For brevity, we include the proofs in the appendix (Proposition 11).

6 RELATED WORK

Our work contributes to a line of research on formal explainable AI (XAI) (Marques-Silva et al.
(2020)), which focuses on obtaining explanations with mathematical guarantees. Several papers
have already explored the computational complexity of obtaining such explanations (Barceló et al.
(2020); Wäldchen et al. (2021); Arenas et al. (2022)); however, these efforts focused on local expla-
nations, whereas we focus on both local and global explanations.

Some of the terms leveraged in our work were discussed in the literature: “sufficient reasons” are
also known as abductive explanations (Ignatiev et al. (2019)), while minimal sufficient reasons are
sometimes referred as prime implicants in Boolean formulas (Darwiche & Marquis (2002)). A
notion similar to the CC query is the δ-relevant set (Wäldchen et al. (2021); Izza et al. (2021)),
which asks whether the completion count exceeds a threshold δ. Similar duality properties to the
ones studied here were shown to hold considering the relationship between local sufficient and
contrastive reasons (Ignatiev et al. (2020b)), and the relationship between absolute sufficient reasons
and adversarial attacks (Ignatiev et al. (2019)). Minimal absolute sufficient reasons refer to subsets
that are the smallest among all possible inputs and rely on partial input assignments. In our global
sufficient reason definition, we do not rely on particular inputs or partial assignments.

The necessity and redundancy queries that we discussed were studied previously (Huang et al.
(2023)) and are related to forms of fairness (Ignatiev et al. (2020a)). In this context, necessity
is related to biased features, and redundant features are related to protected features (Arenas et al.
(2021); Darwiche & Hirth (2020)). Of course, there exist many notions of bias and fairness (Mehrabi
et al. (2021)).

7 CONCLUSION

We present a theoretical framework using computational complexity theory to assess both local and
global interpretability of ML models. Our work uncovers new insights, including a duality relation-
ship between local and global explanations and the uniqueness inherent in some global explanation
forms. We also offer novel proofs for complexity classes related to global explanations and demon-
strate how our insights impact these classes. This allows us to formally measure interpretability
for different models across various contexts. We apply these insights to commonly evaluated ML
models, including linear models, decision trees, and neural networks.
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Appendix
The appendix contains formalizations and proofs that were mentioned throughout the paper:

Appendix A formalizes the set of global explainability queries.
Appendix B formalizes the classes of models that were assessed in the paper.
Appendix C contains the proofs regarding the duality between local and global forms of explana-
tions.
Appendix D contains the proofs concerning the inherent uniqueness of global forms of explanations.
Appendix E contains the proof of Proposition 6 (Complexity of G-CSR)
Appendix F contains the proof of Proposition 7 (Complexity of G-MSR)
Appendix G contains the proof of Proposition 8 (Complexity of G-FR)
Appendix H contains the proof of Proposition 9 (Complexity of G-FN)
Appendix I contains the proof of Proposition 10 (Complexity of G-CC)
Appendix J contains the proof of Proposition 11 (Complexity of local forms of explanations)

A GLOBAL FORMS OF MODEL EXPLANATIONS

In this section, we present the global forms of the explainability queries previously mentioned,
which were initially formulated in the paper for their local configuration.

G-CSR (Global Check Sufficient Reason):
Input: Model f ,and subset of features S.
Output: Yes, if S is a global sufficient reason of f (i.e., suff(f, S) = 1), and No otherwise.

G-MSR (Global Minimum Sufficient Reason):
Input: Model f , and integer k.
Output: Yes, if there exists a global sufficient reason S for f (i.e., suff(f, S) = 1) such that |S| ≤ k,
and No otherwise.

G-FR (Global Feature Redundancy):
Input: Model f , and integer i.
Output: Yes, if i is globally redundant with respect to f , and No otherwise.

G-FN (Global Feature Necessity):
Input: Model f , and integer i.
Output: Yes, if i is globally necessary with respect to f , and No otherwise.

G-CC (Global Count Completions):
Input: Model f , and subset S.
Output: The global completion count c(S, f)

B MODEL CLASSES

In the next appendix, we describe in detail the various model classes that were taken into account
within this work:

Free Binary Decision Diagram (FBDD). A BDD is a graph-based model that represents a Boolean
function f : F → {0, 1} (Lee (1959)). The arbitrary Boolean function is realized by an acyclic
(directed) graph, for which the following holds: (i) every internal node v corresponds with a single
binary input feature (1, . . . , n); (ii) every internal node v has exactly two output edges, that represent
the values {0, 1} assigned to v; (iii) each leaf node corresponds to either a True, or False, label; and
(iv) every variable appears at most once, along every path α of the BDD.
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Hence, any assignment to the inputs x ∈ F corresponds to one unique path α from the BDD’s root
to one of its leaf nodes. We denote f(x) := 1 if the label of the leaf node is true, and f(x) := 0 if
it is false. Moreover, we regard the size of a BDD (i.e., |f | ) to be the overall number of edges in
the BDD’s graph. In this work, we focus on the popular variant of Free BDDs (FBDDs) models, for
which different paths, α, α′ are allowed to have different orderings of the input variables {1, . . . , n}
and on every path α no two nodes have the same label. A decision tree can be essentially described
as an FBDD whose foundational graph structure is a tree.

Multi-Layer Perceptron (MLP). A Multi-Layer Perceptron (Gardner & Dorling (1998); Ramchoun
et al. (2016)) f with t− 1 hidden layers (gj for j ∈ {1, . . . , t− 1}) and a single output layer (gt), is
recursively defined as follows: g(j) := σ(j)(g(j−1)W (j) + b(j)) (j ∈ {1, . . . , t}), given t weight
matrices W (1), . . . ,W (t), t bias vectors b(1), . . . , b(t), and also t activation functions f (1), . . . , f (t).

The MLP f outputs the value f := g(t), while g(0) := x ∈ {0, 1}n is the input layer that receives
the input of the model. The biases and weight matrices are defined by a series of positive values
d0, . . . , dt that represent their dimensions. Furthermore, we assume that all the weights and biases
possess rational values, denoted as W (j) ∈ Qdj−1×dj and b(j) ∈ Qdj , which have been acquired
during the training phase. Due to our focus on binary classifiers over {1, . . . , n}, it necessarily
holds that: d0 = n and dt = 1. In this work, we focus on the popular reLU(x) = max(0, x)
activation function, with the exception of the single activation in the last layer, that is typically a
sigmoid function. Nonetheless, given our emphasis on post-hoc interpretability, it is without loss of
generality that we may assume the last activation function is represented by the step function, i.e.,
step(z) = 1 ⇐⇒ z ≥ 0.

Perceptron. A Perceptron (Ralston et al. (2003)) is a single-layered MLP (i.e., t = 1): f(x) =
step((w · x) + b), for b ∈ Q and w ∈ Qn×d1 . Thus, for a Perceptron f the following holds w.l.o.g.:
f(x) = 1 ⇐⇒ (w · x) + b ≥ 0.

C THE DUALITY OF LOCAL AND GLOBAL EXPLANATIONS

Minimum Hitting Set (MHS). Given a collection S of sets from a universe U, a hitting set h for S
is a set such that ∀S ∈ S, h ∩ S ̸= ∅. A hitting set h is said to be minimal if none of its subsets is a
hitting set, and minimum when it has the smallest possible cardinality among all hitting sets.

Theorem 1 A feature i is necessary w.r.t ⟨f, x⟩ if and only if {i} is a contrastive reason of ⟨f, x⟩.

Proof. For the first direction, let us begin by assuming that {i} is a contrastive reason with respect
to ⟨f, x⟩. It then follows that S \ {i} is not a sufficient reason for ⟨f, x⟩. Consequently, any subset
S′ ⊆ S \ {i} is also not a sufficient reason for ⟨f, x⟩. In other words, this implies that for every
subset S ⊆ {1, . . . , n} we have that suff(f, x, S \ {i}) = 0. As a direct consequence, for any
S ⊆ {1, . . . , n} the following condition holds: suff(f, x, S) = 1→ suff(f, x, S \ {i}) = 0.

For the second direction, let us assume that i is necessary with respect to ⟨f, x⟩. We now assume,
by way of contradiction, that {i} is not a contrastive reason for ⟨f, x⟩. Therefore, it follows that
{1, . . . , n} \ {i} is a sufficient reason for ⟨f, x⟩. Moreover, it clearly holds that the entire set
{1, . . . , n} is a sufficient reason with respect to ⟨f, x⟩ (fixing all features necessarily determines
that the prediction remains the same). Overall, we get that:

suff(f, x, {1, . . . , n}) = 1 ∧ suff(f, x, {1, . . . , n} \ {i}) = 1 (3)

This is in contradiction to the assumption that i is necessary with respect to ⟨f, x⟩.

Theorem 2 Any global sufficient reason of f intersects with all local contrastive reasons of ⟨f, x⟩
and any global contrastive reason of f intersects with all local sufficient reasons of ⟨f, x⟩.

Proof. For the first part, let us assume, for the sake of contradiction, that there exists some global
sufficient reason S of f and some local contrastive reason S′ of ⟨f, x⟩ for which it holds that S∩S′ =
∅. Given that S ∩ S′ = ∅, it naturally follows that S′ ⊆ S̄. Taking into account that S is a global
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sufficient reason of f , we can infer that S is also a local sufficient reason of ⟨f, x⟩. Therefore, S̄ does
not qualify as a contrastive reason with respect to ⟨f, x⟩, leading to the implication that no subset of
S can be a contrastive reason either. This assertion, however, contradicts the previously established
S′ ⊆ S̄.

The second part of the claim will be almost identical to the first part: we can again assume, by way
of contradiction, that there exists some global contrastive reason S of f and some local sufficient
reason S′ of ⟨f, x⟩ for which it holds that: S ∩ S′ = ∅. Given that S ∩ S′ = ∅, it naturally follows
that S′ ⊆ S̄. Since S is a global contrastive reason of f it also acts as a local cntrastive reason for
⟨f, x⟩. As a consequence, S̄ can not be a sufficient reason for ⟨f, x⟩. This implies that no subset of
S can serve as a sufficient reason for ⟨f, x⟩, creating a contradiction with the premise that S′ ⊆ S̄.

Theorem 3 The MHS of all local contrastive reasons of ⟨f, x⟩ is a cardinally minimal global suffi-
cient reason of f , and the MHS of all local sufficient reasons of ⟨f, x⟩ is a cardinally minimal global
contrastive reason of f .

Given some f , we denote S as the set of all local sufficient reasons of ⟨f, x⟩ and denote C as the set
of all local contrastive reasons of ⟨f, x⟩. As a direct consequence of theorem 2, we can determine
the following claim:

Lemma 1 A subset S is a global sufficient reason of f if and only if S is a hitting set of S and is a
global contrastive reason of f if and only if S is a hitting set of C.

As a consequence of Lemma 1, it directly follows that cardinally minimal local contrastive reasons
are with correspondence to MHSs of S, and cardinally minimal local sufficient reasons are with
correspondence to MHSs of C.

The importance of the MHS duality. An essential finding when dealing with inconsistent sets of
clauses lies in a similar MHS duality between Minimal Unsatisfiable Sets (MUSes) and Minimal
Correction Sets (MCSes) (Birnbaum & Lozinskii (2003); Bacchus & Katsirelos (2015)). In this
context, MCSes are MHSs of MUSes, and vice versa (Bailey & Stuckey (2005); Liffiton & Sakallah
(2008)). This discovery has played a pivotal role in the advancement of algorithms designed for
MUSes and MCSes and this result has found applications in various contexts (Bacchus & Katsirelos
(2015); Liffiton et al. (2016)). While the majority of this research focuses on propositional theories,
others focus on Satisfiability Modulo Theories (SMT) (De Moura & Bjørner (2008)).

Within the context of explainable AI, previous research has shown similar duality relationships
considering the relationship between local contrastive and sufficient reasons (Ignatiev et al. (2020b))
as well as the relationship between absolute sufficient reasons and adversarial attacks (Ignatiev et al.
(2019)). This relationship was shown to be critical in the exact computation of local sufficient
reasons for various ML models such as decision trees (Izza et al. (2022)), tree ensembles (Audemard
et al. (2023)), and neural networks (Bassan & Katz (2023)).

D THE UNIQUENESS OF GLOBAL EXPLANATIONS

Proposition 1 There exists some f and some x ∈ F such that there are 2⌊
n
2 ⌋ local subset minimal

or cardinally minimal sufficient reasons of ⟨f, x⟩.

Proof. We construct f as follows:

f(y) =

{
1 if

∑n
i=1 yi ≥ ⌊

n
2 ⌋

0 otherwise
(4)

We define the instance x := 1. Clearly any subset S of size ⌊n2 ⌋ or larger is a local sufficient reason
of ⟨f, x⟩ (since fixing the values of S to x determines that the prediction remains: 1). Furthermore,
every one of these subsets is minimal due to the fact that any subset of size ⌊n2 ⌋− 1 or smaller is not
a sufficient reason of ⟨f, x⟩ (it may cause a misclassification to class 0). Thus, it satisfies that there
are 2⌊

n
2 ⌋ subset minimal local sufficient reasons of ⟨f, x⟩. Given that no local sufficient reason of

size smaller than ⌊n2 ⌋ is present, these are, also cardinally-minimal sufficient reasons.
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Proposition 2 If S1 and S2 are two global sufficient reasons of some non-trivial f , then S1 ∩ S2 =
S ̸= ∅, and S is a global sufficient reason of f .

Proof. Our proof focuses on non-trivial functions, i.e., functions that do not always output 0 or
always output 1. In other words, there exist some x,y ∈ F such that f(x) = 1 and f(y) = 0.

We begin by proving the following lemma:

Lemma 2 For any f and x ∈ F, if S is a sufficient reason of ⟨f, x⟩ then there does not exist any
y ∈ F such that f(y) = ¬f(x) and there exists some S′ ⊆ S that is a sufficient reason of ⟨f,y⟩.

Proof. Given that S is sufficient for ⟨f, x⟩, it follows that:

∀(z ∈ F). [f(xS ; zS̄) = f(x) ̸= f(y)] (5)

By way of contradiction, let us assume that there exists some y ∈ F for which there exists some
S′ ⊆ S that is a sufficient reason of ⟨f,y⟩. This also implies that S is sufficient for ⟨f,y⟩. In other
words, the following condition holds:

∃(y ∈ F), ∀(z ∈ F). [f(yS̄ ; zS) = f(y) ̸= f(x)] (6)

Given that Equation 6 is valid for any z ∈ F, it is, consequently, applicable specifically to x. In other
words:

∃(y ∈ F) [f(yS̄ ; xS) = f(y) ̸= f(x)] (7)

This is inconsistent with the assertion that S is sufficient for ⟨f, x⟩.

Lemma 3 For a non-trivial function f , if S is a sufficient reason of ⟨f, x⟩ then any S′ ⊆ S is not a
global sufficient reason of f .

Proof. Given that S serves as a sufficient reason for ⟨f,x⟩, it follows from Lemma 2 that there does
not exist any y ∈ F for which f(y) = ¬f(x) and S̄ is not sufficient for ⟨f,y⟩. Consequently, if
there indeed exists some y ∈ F for which S̄ serves as a sufficient reason for ⟨f,y⟩, it necessarily
follows that f(x) = f(y).

Let us, for the sake of contradiction, assume the existance of some S′ ⊆ S that serves as a global
sufficient reason of f . This implication further entails that S is also a global sufficient reason for
f . Consequently, S is also a local sufficient reason for ⟨f,y⟩ for any y ∈ F. Given the property
highlighted earlier, it holds that for any y ∈ F, we have f(y) = f(x), which stands in contradiction
to the premise that f is non-trivial.

We are now in a position to prove the first part of proposition 2:

Lemma 4 If S1 and S2 are two global sufficient reasons of some non-trivial f , then S1 ∩ S2 ̸= ∅.

Proof. Let us assume, to the contrary, that S1 ∩ S2 = ∅. Hence, it follows that S1 ⊆ S2. Given
that S2 is a global sufficient reason for f , it naturally follows that it is also a local sufficient reason
for some ⟨f, x⟩. However, Lemma 3 determines that there does not exist any S′ ⊆ S2 that can be a
global sufficient reason for f . This is in direct contradiction with our earlier inference that S1 ⊆ S2

is a global sufficient reason for f .

We now can proceed to prove the second part of proposition 2:

Lemma 5 If S1 and S2 are global sufficient reasons of f ,then S = S1 ∩ S2 is a global sufficient
reason of f .

Proof. First, from Lemma 4, it holds that S ̸= ∅. In instances where either S1 ⊆ S2 or S2 ⊆ S1, the
claim is straightforwardly true. Therefore, our remaining task is to prove the claim for a non-empty
set S with the conditions S ⊊ S1 and S ⊊ S2.
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Let us define the set S′ = {1, . . . , n} \ {S1 ∪S2}. Consider an arbitrary vector x ∈ F. Our aim is to
prove that S is a local sufficient reason with respect to ⟨f, x⟩. Should this hold true for an arbitrary
x, it follows that S constitutes a global sufficient reason of f .

Given that S1 and S2 are global sufficient reasons, it holds that:

∀(z ∈ F). [f(xS1
; zS̄1

) = f(x) = f(xS2
; zS̄2

)] (8)

To demonstrate that S is a local sufficient reason for ⟨f, x⟩, let us assume, for the sake of contradic-
tion, that it is not. Therefore, it satisfies that:

∃(z ∈ F). [f(xS ; zS̄) ̸= f(x)] ⇐⇒
∃(z ∈ F). [f(xS ; zS2\S ; zS̄2

) ̸= f(x)]
(9)

Recall that S2 is a global sufficient reason of f . Thus, assigning the features of S to the correspond-
ing values x and those of S2 \ S to z determines that the prediction remains the same (which in this
case is not the value f(x)). Formally put:

∀(z′ ∈ F). [f(xS ; zS2\S ; z′S̄2
) ̸= f(x)] (10)

This can be equivalently expressed as:

∀(z′ ∈ F). [f(xS ; zS2\S ; z′S1\S ; z′S′) ̸= f(x)] (11)

But we know that S1 is a global sufficient reason and hence fixing the values of S1 to x determines
that the prediction is f(x). Particularly, fixing the values of S1 to x and the values of S2 \S to z still
determines that the prediction is always f(x).

∀(z′ ∈ F). [f(xS1
; zS2\S ; z′S′) = f(x)] (12)

This particularly implies that:

∃(z′ ∈ F). [f(xS1 ; zS2\S ; z′S′) = f(x)] ⇐⇒
∃(z′ ∈ F). [f(xS ; zS2\S ; xS1\S ; z′S′) = f(x)]

(13)

This contrasts with Equation 11.

Theorem 4 There exists one unique subset-minimal global sufficient reason of f .

Proof. First, for the scenario in which f is trivial (always outputs 1 or always outputs 0) it holds
that any subset S is a global sufficient reason. Therefore, S = ∅ is a unique subset-minimal global
sufficient reason. Let us now consider a non-trivial function f . For the sake of contradiction, let us
assume that two distinct subset minimal global sufficient reasons of f exist: S1 ̸= S2. Since S1 and
S2 are subset minimal, it clearly holds that S1 ̸⊆ S2 and S2 ̸⊆ S1. Moreover, from proposition 2 it
can be asserted that S1 and S2 are not disjoint, i.e., S1 ∩ S2 ̸= ∅. Now, we can use proposition 5,
and conclude that S = S1 ∩ S2 is also a global sufficient reason of f . This clearly contradicts the
subset minimality of S1 and S2.

Proposition 3 For any possible ordering of features in line 4.2 of Algorithm 2, Algorithm 2 con-
verges to the same global sufficient reason.

Since Algorithm 2 converges to a subset-minimal global sufficient reason, and there is only one
unique subset-minimal global sufficient reason (Theorem 4), then iterating over any ordering of
features in line 4.2 of Algorithm 2 will converge to the same subset.

Proposition 4 Let S be the unique subset minimal global sufficient reason of f . For all i, i ∈ S if
and only if i is locally necessary for some ⟨f, x⟩, and i ∈ S if and only if i is globally redundant for
f .
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We begin by proving the first part of the claim:

Lemma 6 S is a unique subset-minimal global sufficient reason of f if and only if for any i ∈ S it
holds that i is locally necessary for some ⟨f, x⟩.

Proof. For the first direction, assume i is necessary for some ⟨f, x⟩. Then, from Theorem 1, it holds
that {i} is contrastive for some ⟨f, x⟩. Furthermore, the first duality theorem (Theorem 2), implies
that each local contrastive reason intersects with each global sufficient reason. Hence, we conclude
that i ∈ S.

For the second direction, suppose that S is a unique subset-minimal global sufficient reason of
f . Let there be some i ∈ S. Since S is a unique subset minimal global sufficient reason, then
{1, . . . , n} \ {i} is necessarily not a global sufficient reason. If this was so, then there would exist
some subset S′ ⊆ {1, . . . , n} \ {i} that is a subset-minimal global sufficient reason, contradicting
the uniqueness of S.

Since {1, . . . n} \ {i} is not a global sufficient reason, there exist some x′, z′ ∈ F such that:

f(x′
{1,...n}\i; z′i) ̸= f(x′) (14)

Thus, {i} serves as a contrastive reason for ⟨f, x′⟩ and from Theorem 1 we can infer that i is neces-
sary with respect to ⟨f, x′⟩.
For the second part of the claim, we prove the following Lemma:

Lemma 7 Let S be the unique subset-minimal global sufficient reason of f . Then i is globally
redundant if and only if i ∈ S.

Proof. For the first direction, let us assume that i is globally redundant and assume, for the sake of
contradiction, that i ∈ S. Given that i is globally redundant for f then it holds that for any x ∈ F:
suff(f, x, S) = 1 → suff(f, x, S \ {i}) = 1. Hence, S \ {i} is also a global sufficient reason of S,
contradicting the subset-minimality of S.

For the second direction, assume that i ∈ S. From Lemma 6, it holds that i is not locally necessary
for any ⟨f, x⟩. In other words, there does not exist any x ∈ F for which suff(f, x, S) = 1 →
suff(f, x, S \ {i}) = 0. This implies that for any x ∈ F it satisfies that suff(f, x, S) = 1 →
suff(f, x, S \ {i}) = 1, i.e., that i is globally redundant with respect to f .

Proposition 5 Any feature i is either locally necessary for some ⟨f, x⟩ or globally redundant for f .

Building upon Proposition 4, we can discern that the unique subset minimal sufficient reason S of
f categorizes all features into two distinct categories: those that are necessary for some ⟨f, x⟩ and
those that are globally redundant for f .

E PROOF OF PROPOSITION 6

Proposition 6 G-CSR is (i) coNP-Complete for MLPs, (ii) in PTIME for FBDDs and (iii) coNP-
Complete for Perceptrons

Lemma 8 G-CSR is coNP-Complete for MLPs.

Proof. Membership is straightforward and is obtained since we can guess some x, z ∈ F and validate
whether it satisfies that f(xS ; zS̄) ̸= f(x). If so, ⟨f, S⟩ ̸∈ G-CSR.

Given our forthcoming proof that the G-CSR query for Perceptrons is coNP-Hard, it follows straight-
forwardly that the same is true for MLPs. Nevertheless, we show how hardness can also be proved
particularly for MLPs via a reduction from the (local) CSR explainability query for MLPs.

Given the tuple ⟨f, x, S⟩ we construct an MLP f ′ which satisfies the following conditions:
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f ′(y) =

{
f(y) if (xS = yS)

1 if (xS ̸= yS)
(15)

If ⟨f, x, S⟩ ∈ CSR, then it satisfies that:

∀(z ∈ F). [f(xS ; zS̄) = f(x)] (16)

Given that f ′(y) = f(y) holds for any input for which xS = yS , then it also satisfies that:

∀(z ∈ F). [f ′(xS ; zS̄) = f ′(x)] ⇐⇒
∀(x, z ∈ F). (xS = zS)→ [f ′(xS ; zS̄) = f ′(x)]

(17)

If xS ̸= yS then it consequently holds that f ′(y) = 1. This implies that:

∀(x, z ∈ F). (xS ̸= zS)→ [f ′(xS ; zS̄) = f ′(x) = 1] (18)

Overall, we arrive at that:

∀(x, z ∈ F). [f ′(xS ; zS̄) = f ′(x)] (19)

implying that ⟨f ′, S⟩ ∈ G-CSR.

If ⟨f, x, S⟩ ̸∈ CSR, then it satisfies that:

∃(z ∈ F). [f(xS ; zS̄) ̸= f(x)] (20)

Given that f ′(y) = f(y), it follows that for any input satisfying xS = yS the following condition is
also met:

∃(z ∈ F). [f ′(xS ; zS̄) ̸= f ′(x)] (21)

implying that:

∃(x, z ∈ F). [f ′(xS ; zS̄) ̸= f ′(x)] (22)

Thus, it holds that ⟨f ′, S⟩ ̸∈ G-CSR.

Lemma 9 G-CSR can be solved in polynomial time for FBDDs.

Proof. Let ⟨f, S⟩ be an instance. We describe the following polynomial algorithm: We enumerate
pairs of leaf nodes (v, v′) that correspond to the paths (α, α′). Let us denote by αS the subset of
nodes from α that correspond to the features of S. Given the pair (α, α′), the algorithm checks if α
and α′ “match” on all features from S (more formally, there do not exist two nodes vα ∈ αS and
vα′ ∈ α′

S with the same input feature i and with different output edges). If we find two paths α
and α′ that match on all features in S, and that have different labels (one classified as True and the
other: False) the algorithm returns “False” (i.e., S is not a global sufficient reason of f ). If we do
not encounter any such pair (v, v′), the algorithm returns True.

Lemma 10 G-CSR is coNP-Complete for Perceptrons.

Proof. Membership is straightforward since we can simply guess some x, z ∈ F and validate whether
it satisfies that f(xS ; zS̄) ̸= f(x). If so, ⟨f, S⟩ ̸∈ G-CSR.

We now will proceed to prove that G-CSR is also coNP-hard, We first briefly describe how the
problem of (local) CSR can be solved in polynomial time for perceptrons, as proven by Barceló
et al. (2020). This will give better intuition for the hardness reduction for the global setting. Given
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some ⟨f, x, S⟩, recall that a Perceptron f is defined as f = ⟨w, b⟩, where w is the weight vector and
b is the bias term. Therefore, it is possible to obtain the exact value of

∑
i∈S xi · wi.

Then, for the remaining features in S̄, one can linearly determine the y assignments corresponding to
the maximal and minimal values of

∑
i∈S̄ yi · wi. The maximal value is obtained by setting yi := 1

whenever wi ≥ 0 and yi := 0 whenever wi = 0. The minimal value is obtained respectively (setting
yi := 1 whenever wi < 0 and yi := 0 whenever wi ≥ 0). We are now equipped with the capability
to compute the entire spectrum of potential values that may be realized by assigning the values of
S to x. It is hence straightforward that S is a (local) sufficient reason for ⟨f, x⟩ if and only if this
entire range is always positive or always negative. This can be determined by checking whether both
the minimal possible value and maximal possible value are both positive or both negative which is
equivalent to checking whether the maximal possible value is negative or the minimal possible value
is positive. Formally put:

∑
i∈S

xi · wi +max{
∑
i∈S̄

yi · wi + b | y ∈ F} ≤ 0 ∨

∑
i∈S

xi · wi +min{
∑
i∈S̄

yi · wi + b | y ∈ F} > 0
(23)

This can clearly be determined in linear time using the computation method outlined above. Note
that we require a strict inequation on the second term since we assumed w.l.o.g that a zero weighted
term is classified as 0 (the negative weighted class) and not 1 (the positive weighted class).

Now, for the global setting, we notice that max{
∑

i∈S̄ yi · wi + b | y ∈ F} and min{
∑

i∈S̄ yi ·
wi + b | y ∈ F} can still be computed in the same manner as above. However, one must verify
that equation 27 is satisfied for every possible value x. This, in turn, carries implications for the
associated complexity. We show, indeed, that G-CSR for perceptrons is coNP-hard.

We reduce G-CSR for Perceptrons from SSP , known to be coNP-Complete. SSP (subset-sum-
problem) is a classic NP-Complete problem which is defined as follows:

SSP (Subset Sum Problem):
Input: ⟨(z1, z2, . . . , zn), T ⟩, where (z1, z2, . . . , zn) is a set of positive integers and T , is the target
integer.
Output: Yes, if there exists a subset S′ ⊆ {1, 2, . . . , n} such that

∑
i∈S′ zi = T , and No otherwise.

For the case of SSP , the language decides whether there does not exist a subset of features S′ ⊆
(1, 2, . . . , n) for which

∑
i∈S′ zi = T

We reduce G-CSR for Perceptrons from SSP . Given some ⟨(z1, z2, . . . , zn), T ⟩ we construct a
Perceptron f := ⟨w, b⟩ where it holds that w := (z1, z2, . . . , zn) · (wn+1) (w is of size n + 1),
where wn+1 := 1

2 , and b := −(T + 1
4 ). The reduction computes ⟨f, S := {1, . . . , n}⟩.

Clearly, it holds that:

max{
∑
i∈S̄

yi ·wi | y ∈ F} = max{1
2
, 0} = 1

2 (24)

and that:

min{
∑
i∈S̄

yi ·wi | y ∈ F} = min{1
2
, 0} = 0 (25)

If ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP , there does not exist a subset S′ ⊆ S = {1, 2, . . . , n} for which∑
i∈S′ zi = T , put differently — for any subset S′ ⊆ S = {1, 2, . . . , n} it holds that

∑
i∈S′ zi > T

or
∑

i∈S zi < T . But since the values in (z1, z2, . . . , zn) are positive integers then it also holds that
for any subset S′ the following condition is met:
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[
∑
i∈S′

zi > T +
1

4
] ∨ [

∑
i∈S′

zi < T − 1

4
] ⇐⇒

[
∑
i∈S′

xi · wi > T +
1

4
] ∨ [

∑
i∈S′

xi · wi < T − 1

4
] ⇐⇒

[
∑
i∈S

xi · wi > T +
1

4
] ∨ [

∑
i∈S

xi · wi < T − 1

4
]

(26)

Thus, equation 26 is maintained for any possible instance x ∈ F. This implies that for any x ∈ F,
fixing the values of S = {1, . . . , n} always maintains either a positive or a negative value for f , thus
implying that S is a global sufficient reason of f and that ⟨f, S⟩ ∈ G-CSR.

If ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP , then there exists a subset S′ ⊆ S = {1, 2, . . . , n} for which∑
si∈S′ zi = T , implying that:

[T − 1

4
] ≤

∑
i∈S′

zi ≤ [T +
1

4
] ⇐⇒

[T − 1

4
] ≤

∑
i∈S

xi · wi ≤ [T +
1

4
]

(27)

Hence, S is not a global sufficient reason for f and ⟨f, S⟩ ̸∈ G-CSR. This concludes the reduction.

Hardness results for Perceptrons, clearly indicate coNP-hardness for MLPs.

F PROOF OF PROPOSITION 7

Proposition 7 G-MSR is (i) coNP-Complete for MLPs, (ii) in PTIME for FBDDs and (iii) coNP-
Complete for Perceptrons

Lemma 11 G-MSR is coNP-Complete for Perceptrons.

Proof. Membership. Membership is derived from the fact that one can guess some x1, . . . xn ∈
F and z1, . . . , zn ∈ F. We then can validate for every feature i ∈ (1, . . . , n) whether:
f(xi

{1,...,n}\{i}; zi{i}) ̸= f(xi). This will imply that {i} is contrastive with respect to ⟨f, xi⟩ and
from Theorem 1, i is necessary with respect to ⟨f, xi⟩. Now, from Proposition 4 it holds that i is
contained in the unique global subset minimal sufficient reason of f if and only if i is necessary
with respect to some ⟨f, x⟩. Therefore, it is possible to validate whether ⟨f, k⟩ ̸∈ G-MSR using a
certificate that checks whether the number of features that satisfy: f(xi{1,...,n}\{i}; zi{i}) ̸= f(xi) is
larger than k.

Hardness. For hardness, we perform a similar reduction to the one performed for G-CSR for Per-
ceptrons and reduce G-MSR for Perceptrons from SSP . Given some ⟨(z1, z2, . . . , zn), T ⟩, construct
a Perceptron f := ⟨w, b⟩ where we define w := (z1, z2, . . . , zn) · (wn+1) (i.e., w is of size n+ 1),
where wn+1 := 1

2 , and b := −(T + 1
4 ). The reduction computes ⟨f, k := n⟩.

Consider that ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP . Drawing upon Lemma 10, we can infer that S =
{1, 2, . . . , n} constitutes a global sufficient reason of f . To put it differently, a subset exists — triv-
ially of of size k = n in this instance — that serves as a global sufficient reason of f . Consequently,
⟨f, k⟩ ∈ G-MSR for Perceptrons.

Assume ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP . We need to prove that there does not exist any global suf-
ficient reason of f of size k or less. Since any subset containing a sufficient reason is a sufficient
reason, it is enough to show that there does not exist any global sufficient reason of exactly size k.
From Lemma 10 we indeed already know that (z1, z2, . . . , zn) is not a sufficient reason in this case.
However, we still need to prove that there does not exist any other sufficient reason of size k.
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Let j ̸= n + 1 be some feature and let S := {1, 2, . . . , n + 1} \ {j} be some subset of features.
We prove that S is not a global sufficient reason for f . Since any zj in (z1, z2, . . . , zn) is a positive
integer, and since wn+1 = 1

2 is also positive, then it holds that:

max{
∑
i∈S̄

yi · wi | y ∈ F} = max{zj , 0} = zj ∧

min{
∑
i∈S̄

yi · wi | y ∈ F} = min{zj , 0} = 0
(28)

This implies that that S is a global sufficient reason of f iff for any x ∈ F it holds that:

[
∑
i∈S

xi · wi > T ] ∨ [
∑
i∈S

xi · wi ≤ T − zj ] (29)

Within Lemma 10 we have already determined that if ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP , then there must
exist a value x ∈ F such that:

∑
i∈{1,...,n}

xi · wi = T ⇐⇒

∑
i∈{1,...,n}\{j}

xi · wi = T − zj ⇐⇒

∑
i∈{1,...,n,n+1}\{j}

xi · wi = T − zj +
1

2

(30)

Now, since T and zj are positive integers, then from equation 30 it holds that there exists some
instance x ∈ F such that:

T − zj <
∑

i∈{1,...,n,n+1}\{j}

xi · wi < T (31)

From equation 29, this implies that {1, . . . , n, n + 1} \ {j} is not a global sufficient reason of f .
Since there does not exist any j for which {1, . . . , n, n+ 1} \ {j} is a global sufficient reason of f
and since we have already determined that {1, . . . , n} is not a global sufficient reason of f , we are
left with that there does not exist any global sufficient reason of size k, concluding the reduction.

Lemma 12 G-MSR is in PTIME for FBDDs.

Proof. Since G-CSR is in PTIME for FBDDs, we can use Proposition 3 which states that algorithm 2
always converges to the unique global cardinally minimal sufficient reason after a linear number of
calls checking whether suff(f, S \{i}) = 1. Each one of these calls can be performed in polynomial
time (since G-CSR is polynomial for FBDDs), so hence using algorithm 2, we can obtain the unique
global cardinally minimal sufficient reason of f in polynomial time, and return True if it’s size is
smaller or equal to k, and False otherwise.

Lemma 13 G-MSR is coNP complete for MLPs.

Both Hardness and Membership results trivially derive from those described for Perceptrons.

G PROOF OF PROPOSITION 8

Proposition 8 G-FR is (i) coNP-Complete for MLPs, (ii) in PTIME for FBDDs and (iii) coNP-
Complete for Perceptrons

Lemma 14 G-FR is coNP-Complete for Perceptrons.
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Proof. Membership is established from the fact that one can guess some x, z ∈ F and validate
whether: f(x{1,...,n}\{i}; z{i}) ̸= f(x). From Theorem 1, this condition holds if and only if i
is necessary with respect to ⟨f, x⟩. Furthermore, Proposition 5 establishes that this situation is
equivalent to i being not globally redundant with respect to f , thereby implying ⟨f, i⟩ ̸∈ G-FR.

Before proving hardness, we will make use of the following Lemma which is simply a refined
version of Proposition 4:

Lemma 15 S is a global sufficient reason of f iff for any i ∈ S, i is globally redundant.

Proof. S is a global sufficient reason of f if and only if there exists some S′ ⊆ S which is a subset
minimal global sufficient reason of f . From Proposition 4, it holds that any feature i ∈ S̄′ is globally
redunant, and since S̄ ⊆ S̄′, it satisfies that any feature i ∈ S̄ is globally redundant.

We are now in a position to employ Lemma 15, from which we can discern that S qualifies as
a global sufficient reason of f if and only if every i ∈ S̄ is globally redundant. Consequently,
we can leverage the reduction that was utilized for establishing the coNP-Hardness of G-CSR for
Perceptrons, as detailed in Lemma 10.

In other words, we can reduce G-FR for Perceptrons from SSP . Given some ⟨(z1, z2, . . . , zn), T ⟩
we can again construct a Perceptron f := ⟨w, b⟩ where w := (z1, z2, . . . , zn) · (wn+1) (w is of size
n+ 1), wn+1 := 1

2 , and b := −(T + 1
4 ). The reduction computes ⟨f, i := n+ 1⟩.

It has been established in Lemma 10 that S = {1, 2, . . . , n} serves as a global sufficient reason of
f if and only if no subset S′ ⊆ S = {1, 2, . . . , n} exists for which

∑
i∈S′ zi = T . Moreover, due

to Lemma 15, the set S = {1, 2, . . . , n} is a global sufficient reason of f if and only if any feature
in S̄ is globally redundant. However, S̄ is in our case simply {n+ 1}. This leads to the conclusion
that feature n+ 1 is globally redundant, thereby concluding the reduction.

Lemma 16 G-FR is coNP-Complete for MLPs.

Both Hardness and Membership proofs for Perceptrons also trivially hold for MLPs.

Lemma 17 G-FR can be solved in polynomial time for FBDDs.

Proof. Let ⟨f, i⟩ be an instance. We describe the following polynomial algorithm: We enumerate
pairs of leaf nodes (v, v′) that correspond to the paths (α, α′). We denote by αS the subset of nodes
from α that correspond to the features of S. Given the pair (α, α′) we check if α and α′ “match” on
all features from {1, . . . , n} \ {i} (more formally, there do not exist two nodes vα ∈ α{1,...,n}\{i}
and vα′ ∈ α′

{1,...,n}\{i} with the same input feature j and with different output edges). If we find
two paths α and α′ that (i) match on all features in {1, . . . , n} \ {i}, (ii) do not match on feature
i (i.e., have different output edges), and (iii) have different labels (one is classified as True and the
other: False) the algorithm returns “False” (i.e, i is not redundant with respect to f ). If we do not
encounter any such pair (v, v′), the algorithm returns “True”.

H PROOF OF PROPOSITION 9

Proposition 9 G-FN is (i) coNP-Complete for MLPs, (ii) in PTIME for FBDDs and (iii) in PTIME
for Perceptrons

Lemma 18 G-FN is coNP-Complete for MLPs.

Proof. To obtain membership, given a feature i that we aim to verify as globally necessary with
respect to f , we can guess an instance x ∈ F and determine whether:

f(x{1,...,n}\{i};¬x{i}) = f(x) (32)

In other words, we wish to validate whether fixing all features in {1, . . . , n} \ {i} to their values in
x, and negating only the value of feature i (to be ¬xi) changes the prediction of f(x). Clearly, this
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holds if and only if {i} is not a contrastive reason for ⟨f, x⟩ and from Theorem 1 this holds if and
only if i is not necessary with respect to ⟨f, x⟩. Put differently, there exists some x ∈ F for which i
is not necessary with respect to ⟨f, x⟩. This implies that ⟨f, i⟩ ̸∈ G-FN.

For Hardness, we will make use of the following Lemma whose proof appears in the work of Barceló
et al. (2020).

Lemma 19 If we have a Boolean circuit B, we can create an MLP fB in polynomial time that
represents an equivalent Boolean function with respect to B.

We now prove hardness by reducing from TAUT, a well-known coNP-Complete problem which is
defined as follows:

TAUT (Tautology):
Input: A boolean formula ψ
Output: Yes, if ψ is a tautology and No otherwise.

Given some ⟨ψ⟩ with variables: x1, . . . xn we can construct a new boolean formula:

ψ′ := ψ ∨ (xn+1 ∧ xn+1) (33)

We then can use Lemma 19 to transform it to an MLP f and construct ⟨f, i := n+ 1⟩.
If ⟨ψ⟩ ∈ TAUT then it holds that:

f(x{1,...,n};1n+1) = 0 ∧ f(x{1,...,n};0n+1) = 1 (34)

where 1n+1 and 0n+1 denote that feature n+ 1 is set to either 1 or 0.

Hence, for any value x ∈ F we can find a corresponding instance z ∈ F such that:

f(x{1,...,n}; z{n+1}) ̸= f(x) (35)

This implies that the subset {n + 1} is contrastive with respect to any ⟨f, x⟩ and from theorem 1,
n+ 1 is necessary with respect to any ⟨f, x⟩. Thus, it satisfies that n+ 1 is globally necessary with
respect to f and consequently, ⟨f, i⟩ ∈ G-FN.

Let us now consider the scenario where ⟨ψ⟩ ̸∈ TAUT. Under this assumption, it follows that there
exists a False assignment for ⟨x1, . . . , xn⟩, rendering ψ′ false irrespective of the assignment to xn+1.
To put it differently, this scenario satisfies the following condition:

f(x{1,...,n};1n+1) = 0 ∧ f(x{1,...,n};0n+1) = 0 (36)

Thus, we can take an arbitrary vector x and set some other arbitrary vector z to be equal to x on the
first n features and negated on feature n + 1. Both of these vectors will be labeled to class 0 and it
thereby satisfies that:

∃z, x ∈ F f(x{1,...,n}\{i}; z{n+1}) = f(x) (37)

We can thus conclude that {n + 1} is not a contrastive reason of ⟨f, x⟩ and from theorem 1, this
implies that n+1 is not necessary with respect to ⟨f, x⟩. Particularly, n+1 is not globally necessary,
consequently implying that ⟨f, i⟩ ̸∈ G-FN.

Lemma 20 G-FN can be solved in polynomial time for FBDDs.

Proof. Let ⟨f, i⟩ be an instance. We describe the following polynomial algorithm: We enumerate
pairs of leaf nodes (v, v′) that correspond to the paths (α, α′). We denote by αS the subset of nodes
from α that correspond to the features of S. Given the pair (α, α′) we check if α and α′ “match” on
all features from {1, . . . , n} \ {i} (more formally, there do not exist two nodes vα ∈ α{1,...,n}\{i}
and vα′ ∈ α′

{1,...,n}\{i} with the same input feature j and with different output edges). If we find
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two paths α and α′ that (i) match on all features in {1, . . . , n} \ {i}, (ii) do not match on feature
i (i.e., have different output edges), and (iii) have the same label (both classified as True, or both
classified as False) the algorithm returns “False” (i.e, i is not globally necessary with respect to f ).
If we do not encounter any such pair (v, v′), the algorithm returns “True”.

Clearly, if the algorithm encounters two paths (α, α′) that satisfy these three conditions, then it can
be concluded that {i} is not contrastive with respect to any assignment x associated with α and α′.
From Theorem 1, this implies that i is not necessary with respect to the corresponding instances of
⟨f, x⟩. However, if no such pair was encountered, then there does not exist an input x ∈ F for which
{i} is not contrastive. It hence holds that {i} is contrastive for any ⟨f, x⟩ and Theorem 1 thereby
implies that i is necessary with respect to any ⟨f, x⟩.

Lemma 21 G-FN can be solved in linear time for Perceptrons.

Proof. Given some ⟨f, i⟩ such that f := ⟨w, b⟩ is some Perceptron, we can perform a similar process
to the one described under Lemma 10 and calculate: max{

∑
j∈{1,...,n}\{i} yj · wj + b | y ∈ F} as

well as: min{
∑

j∈{1,...,n}\{i} yj · wj + b | y ∈ F} in polynomial time. We now simply need to
check whether there exists any instance x ∈ F for which:

xi · wi +max{
∑

j∈{1,...,n}\{i}

yj · wj + b | y ∈ F} ≤ 0 ∨

xi · wi +min{
∑

j∈{1,...,n}\{i}

yj · wj + b | y ∈ F} > 0
(38)

This condition can obviously be validated in polynomial time since there are only two possible
relevant scenarios (xi = 1 or xi = 0). If this condtion holds for one of the two possibilities then there
exists an instance x ∈ F for which {1, . . . , n} \ {i} is a local sufficient reason of ⟨f, x⟩. It thereby
holds that {i} is not a contrastive reason of ⟨f, x⟩. Hence, we can use Theorem 1, and conclude that
i is not necessary with respect to ⟨f, x⟩, thus implying that i is also not globally necessary. Should
equation 38 not hold, it follows that for any x ∈ F the set {1, . . . , n} \ {i} does not constitute a
local sufficient reason of ⟨f, x⟩. This conveys that {i} is a local contrastive reason for any ⟨f, x⟩.
Theorem 1 further establishes that i is necessary for any ⟨f, x⟩, and hence i is consequently globally
necessary.

I PROOF OF PROPOSITION 10

Proposition 10 G-CC is (i) #P -Complete for MLPs, (ii) in PTIME for FBDDs and (iii) #P -
Complete for Perceptrons.

Lemma 22 G-CC is #P -Complete for Perceptrons.

For simplification, we follow common conventions (Barceló et al. (2020)) and prove that the global
counting procedure for: C(S, f) = |{x ∈ F, z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x)}| is #P -Complete,
rather than c(S, f). Clearly, it holds that: C(S, f) = c(S, f) · 2|S̄|+n and hence c(S, f) and C(S, f)
are interchangeable.

Membership. Membership is straightforward since the sum: |{x ∈ F, z ∈ {0, 1}|S|, f(xS ; zS̄) =
f(x)}| is equivalent to the sum of certificates (x, z) satisfying:

∃x ∈ F,∃z ∈ {0, 1}|S|, f(xS ; zS̄) = f(x) (39)

which is of course polynomially verifiable.

Hardness. We reduce from (local) CC of Perceptrons, which is #P -Complete. Given some
⟨f, S, x⟩, where f := ⟨w, b⟩ is a Perceptron, the reduction computes f(x) and if f(x) = 1 constructs
f ′ := ⟨w′, b′⟩ such that b′ := b +

∑
i∈S(xi · wi), and w′ := (wS̄ , δ), with δ := (

∑
i∈S |wi|) − b′.

wS̄ denotes a partial assignment where all features of the subset S̄ are drawn from the vector w (the
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vector w′ is of size |S̄| + 1). If f(x) = 0, the reduction constructs f ′ := ⟨w′, b′⟩ with the same b′
but with w′ := (wS̄ , δ

′), such that δ′ := −(
∑

i∈S |wi|)− b′ − 1.

For both reduction scenarios (f(x) = 1 or f(x) = 0) we will demonstrate that given the global
completion count C(∅, f ′) we can determine the local completion count of c(S, f, x) in polynomial
time. We do this by proving the following Lemma:

Lemma 23 Given the polynomial construction of f ′ it satisfies that:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (40)

We denote m and t as the number of assignments x′ ∈ {0, 1}|S|+1, for which f ′ predicts 0 or 1.
Formally:

m :=
∣∣∣{x′ ∈ {0, 1}|S|+1

∣∣∣ f ′(x′) = 1
}∣∣∣ , t :=

∣∣∣{x′ ∈ {0, 1}|S|+1
∣∣∣ f ′(x′) = 0

}∣∣∣ (41)

Clearly, it holds that:

m+ t = 2|S|+1 (42)

It also satisfies that:

C(S := ∅, f ′) = |{x′ ∈ {0, 1}|S|+1, z ∈ {0, 1}|S|+1, f ′(x′
S ; zS̄) = f ′(x′)}| = m2 + t2 (43)

As a result of equations 42 and 43, it satisfies that:

C(∅, f ′) = m2 + (2|S̄|+1 −m)2 (44)

This implies that the aforementioned values of m/t obey the following quadratic relation:

m/t =
−(−2|S|+2)±

√
(−2|S|+2)2 − 4 · 2 · (22|S|+2 − c(∅, f ′))

2 · 2

=
2|S|+2 ±

√
22|S|+4 − 8 · (22|S|+2 − c(∅, f ′))

4

= 2|S| ±
√
22|S|−(22|S|+1− 1

2 ·c(∅,f ′))

Accordingly, m/t must obey the following condition:

m/t = 2|S| ±
√

1

2
· c(∅, f ′)− 22|S| (45)

We will start by proving the first part of the Lemma. Specifically, to establish that when f(x) = 1
the following condition is satisfied:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (46)

We will first prove that when f(x) = 1, then there are at least 2|S̄| vectors x′ ∈ {0, 1}|S̄|+1 for
which f ′(x′) = 1.

First, we assume that x′|S̄|+1
= 1. For all x′ ∈ {0, 1}|S|+1 such that x′

|S̄|+1
= 1 it holds that:
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w′ · x′ + b′ =

w′
S̄ · x

′
S̄ + w′

|S|+1
· x′|S|+1

+ b′ =

w′
S̄ · x

′
S̄ + δ + b′ =

w′
S̄ · x

′
S̄ +

(
∑
i∈S

|wi|)− b′
+ b′ =

w′
S̄ · x

′
S̄ +

∑
i∈S

|wi| ≥ 0

(47)

Given that there are precisely 2|S̄| assignments where x′
|S̄|+1

= 1, it can be inferred that there are at

least 2|S̄| assignments for which f ′(x′) = 1. Hence, the following condition holds:

m = 2|S| +

√
1

2
· C(∅, f ′)− 22|S| (48)

Consequently, the exact number of assignments with x′|S|+1 = 0 that satisfy that f ′(x) = 1 is
exactly:

√
1

2
· C(∅, f ′)− 22|S| (49)

Furthermore, it holds that:

f ′(x′
S̄ ;0|S̄|+1) = w′

S̄ · x
′
S̄ + 0 + b′ =

wS̄ · x′S̄ + b+
∑
i∈S

(xi · wi) =

wS̄ · x′
S̄ + wS · xS + b = f(xS ; x′S̄)

(50)

Thus, it follows that the count of assignments for which x′|S|+1 = 0 that satisfy f ′(x) = 1 precisely
equals the number of assignments for which f(xS ; x′

S̄
) = 1. This is, in fact, equivalent to the local

completion count: C(S, f, x). Put differently, this implies that:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (51)

We now turn our attention to proving the second part of the Lemma. Specifically, we show that in
the scenario where f(x) = 0, the following condition is satisfied:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (52)

We will similarly begin by proving that, given f(x) = 0, there exist at least 2|S̄| vectors x′ ∈
{0, 1}|S|+1 for which f ′(x′) = 0.

First, we assume that x′|S̄|+1
= 1. Now, for all x′ ∈ {0, 1}|S|+1 such that x′|S̄|+1

= 1 it holds that:
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w′ · x′ + b′ =

w′
S̄ · x

′
S̄ + w′

|S|+1
· x′

|S|+1
+ b′ =

w′
S̄ · x

′
S̄ + δ′ + b′ =

w′
S̄ · x

′
S̄ +

−(∑
i∈S

|wi|)− b′ − 1

+ b′ =

w′
S̄ · x

′
S̄ −

∑
i∈S

|wi| − 1 < 0

(53)

Given that there are precisely 2|S̄| assignments where x′
|S̄|+1

= 1, it follows that there exist at least

2|S̄| assignments for which f ′(x′) = 0. Consequently, the following is satisfied:

t = 2|S| +

√
1

2
· C(∅, f ′)− 22|S| (54)

Therefore, the number of assignments, where x′|S|+1 = 1, that satisfy the condition f ′(x) = 0 is as
follows:

√
1

2
· C(∅, f ′)− 22|S| (55)

Given the aforementioned reasons, we can deduce again that: f ′(x′
S̄
;0|S̄|+1) = f(xS ; x′

S̄
). Conse-

quently, the number of assignments where x′|S|+1 = 0 and f ′(x) = 0 coincides with those where
f(xS ; x′

S̄
) = 0. This corresponds to the local completion count: C(S, f, x) in this context. In other

words, it again holds that:

C(S, f, x) =
√

1

2
· C(∅, f ′)− 22|S| (56)

which concludes the reduction.

Lemma 24 G-CC is #P -Complete for MLPs.

Proofs of membership and Hardness for Perceptrons will also clearly hold for MLPs.

Lemma 25 G-CC is in PTIME for FBDDs.

Proof. Similarly to the proof of the complexity of G-CC for Perceptrons (Lemma 22), we will
assume the normalized count C(S, f) which is interchangeable with c(S, f). Each leaf node v of
f corresponds to some path α. We denote by αS the subset of nodes from α that correspond to the
features of S. We suggest the following polynomial algorithm: We enumerate pairs of leaf nodes
(v, v′) which correspond to paths (α, α′). Given the pair (v, v′), we perform a counting procedure
iff there do not exist two nodes vα ∈ αS and vα′ ∈ α′

S with the same input feature i and with
different output edges. Intuitively, this means that α and α′ do not match on the subset S.

We define w.l.o.g that v corresponds to the counting procedure over x ∈ F and that v′ corresponds
to the counting procedure over z ∈ {0, 1}|S|. Therefore, for each counting procedure, we add
2n−|α| · 2|S|−|α′

S̄
|. Upon completing the iteration across all pairs (v, v′), we derive C(S, f).

J PROOF OF PROPOSITION 11

In this section, we present detailed proofs of several results pertaining to local complexity queries,
which have been referenced throughout the paper. First, we will briefly reference the results from
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previous studies presented in Table 1. The findings related to the complexity of the local queries:
CSR, MSR and CC for Perceptrons, FBDDs, and MLPs are drawn from the work of Barceló et al.
(2020). Local complexity results for the FR and FN queries in the case of FBDDs as well as the
local complexity class of the FR query for MLPs is provided in the works of Huang et al. (2023)
and Huang et al. (2021). We now obtain the remaining complexity results that were mentioned in
Table 1:

Proposition 11 (i) (Local) FN is in PTIME for Perceptrons and MLPs and (ii) (local) FR is coNP-
Complete for Perceptrons.

Lemma 26 FN is in PTIME for Perceptrons and MLPs

Building upon the correctness of Theorem 1, we can deduce that determining the necessity of
feature i in relation to ⟨f, x⟩ aligns with verifying if {i} serves as a contrastive reason for
⟨f, x⟩. For both MLPs and Perceptrons, it is possible to compute both f(x{1,...,n}\{i};1{i}) and
f(x{1,...,n}\{i};0{i}) and validate whether:

f(x{1,...,n}\{i};1{i}) ̸= f(x{1,...,n}\{i};0{i}) (57)

The given condition is satisfied if, and only if, {i} is contrastive with respect to ⟨f,x⟩, thereby
ascertaining whether i is necessary in relation to ⟨f,x⟩.

Lemma 27 FR is coNP-Complete for Perceptrons

Proof. Membership. We recall that validating whether a subset S is a local sufficient reason with
respect to some ⟨f, x⟩ can be done in polynomial time for Perceptrons, as was elaborated on in
Lemma 10. This can be done by polynomially calculating both: max{

∑
j∈S̄ yj · wj + b | y ∈ F}

and min{
∑

j∈S̄ yj · wj + b | y ∈ F} and then validating whether it holds that:

xi · wi +max{
∑
j∈S̄

yj · wj + b | y ∈ F} ≤ 0 ∨

xi · wi +max{
∑
j∈S̄

yj · wj + b | y ∈ F} > 0
(58)

Hence, membership in coNP holds since we can guess some subset S ⊆ {1, . . . , n} and polynomi-
ally validate whether it holds that:

suff(f, S, x) = 1 ∧ suff(f, S \ {i}, x) = 0 (59)

If the following condition holds, then it satisfies that i is not redundant with respect to ⟨f, x⟩ and
hence ⟨f, i⟩ ̸∈ FR.

Hardness. We reduce FR for Perceptrons from the subset sum problem (SSP), specifically from
SSP which is coNP-Complete. Given some ⟨(z1, z2, . . . , zn), T ⟩ construct a Perceptron f :=
⟨w, b⟩ where we set w := (z1, z2, . . . , zn) · (wn+1) (w is of size n + 1), where wn+1 := 1

2 ,
and b := −(T + 1

4 ). The reduction computes ⟨f, x := 1, i := n+ 1⟩.

Assume that ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP . This implies that there does not exist any subset
S ⊆ {1, . . . , n} for which

∑
j∈S zj = T . Given that the values in (z1, . . . , zn) are integers, it

consequently follows that there does not exist a subset S satisfying that:

T − 1

2
<

∑
j∈S

zj < T +
1

2 (60)

Consequently, it holds that there is no subset S for which:
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T − 1

2
<

∑
j∈S

wj · 1 < T +
1

2
⇐⇒

−3

4
<

∑
j∈S

wj · 1 + b <
1

4

(61)

which is equivalent to:

[−3

4
<

∑
j∈S

wj · 1 +wn+1 · 0 + b <
1

4
] ∧ [−1

4
<

∑
j∈S

wj · 1 +wn+1 · 1 + b <
3

4
] (62)

Therefore, no subset S′ ⊆ {1, . . . , n, n+ 1} exists such that:

f(1S′ ;0S̄′) ̸= f(1S′\{n+1};0S̄′∪{n+1}) (63)

Expressed differently, it can be asserted that:

∀S′ ⊆ {1, . . . , n, n+ 1} suff(f, S′,1) = 1→ suff(f, S′ \ {n+ 1},1) = 1 (64)

Therefore, n+ 1 is redundant with respect to ⟨f,1⟩, implying that ⟨f,1, i⟩ ∈ FR.

Let us assume that ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP . From this assumption, it follows that there exists a
subset of features, S ⊆ {z1, . . . zn} for which:

∑
j∈S zj = T . We can express this equivalently as:

T =
∑
j∈S

zj ⇐⇒ −1

4
=

∑
j∈S

wj + b ⇐⇒

[−1

4
=

∑
j∈S

wj +wn+1 · 0 + b] ∧ [
1

4
=

∑
j∈S

wj +wn+1 · 1 + b]

(65)

We denote S′ := S∪{n+1}. Based on equation 65, we have that f(1S′ ;0S̄′) = 1. Moreover, given
that all features in S̄′ are positive integers, it is also established that for any S′′ ⊆ {1, . . . , n + 1}
for which S′ ⊆ S′′ the following holds: f(1S′′ ;0S̄′′) = 1. Hence, S′ is sufficient with respect to
⟨f,1⟩. Referring to equation 65, we observe that: f(1S′\{n+1};0S̄′∪{n+1}) = 0. This implies that
S′ \ {n+ 1} is not sufficient with respect to ⟨f,1⟩. In other words, we can conclude that:

∃S′ ⊆ {1, . . . , n, n+ 1} suff(f, S′,1) = 1 ∧ suff(f, S′ \ {n+ 1},1) = 0 (66)

Consequently, feature n + 1 is not redundant with respect to ⟨f,1⟩, thus implying that ⟨f, x, i⟩ ̸∈
FR.
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