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ABSTRACT

Feature pyramids have become ubiquitous in multi-scale computer vision tasks
such as object detection. Based on their importance, we divide a computer vi-
sion network into three parts: a backbone (generating a feature pyramid), a core
(refining the feature pyramid) and a head (generating the final output). Most exist-
ing networks operating on feature pyramids, named cores, are shallow and mostly
focus on communication-based processing in the form of top-down and bottom-
up operations. We present a new core architecture called Trident Pyramid Net-
work (TPN), that allows for a deeper design and for a better balance between
communication-based processing and self-processing. We show consistent im-
provements when using our TPN core on the COCO object detection benchmark,
outperforming the popular BiFPN baseline by 1.5 AP. Additionally, we empiri-
cally show that it is more beneficial to put additional computation into the TPN
core, rather than into the backbone, by outperforming a ResNet-101+FPN base-
line with our ResNet-50+TPN network by 1.7 AP, while operating under similar
computation budgets. This emphasizes the importance of performing computation
at the feature pyramid level in modern-day object detection systems. Code will be
released.

1 INTRODUCTION

Many computer vision tasks such as object detection and instance segmentation require strong fea-
tures both at low and high resolution to detect both large and small objects respectively. This is
in contrast to the image classification task where low resolution features are sufficient as usually
only a single object is present in the center of the image. Networks developed specifically for the
image classification task (e.g. Simonyan & Zisserman (2014); He et al. (2016a); Xie et al. (2017)),
further denoted by backbones, are therefore insufficient for multi-scale vision tasks. Especially poor
performance is to be expected on small objects, as shown in Lin et al. (2017a).

In order to alleviate this problem, named the feature fusion problem, top-down mechanisms are
added (Lin et al., 2017a) to propagate semantically strong information from the low resolution to
the high resolution feature maps, with improved performance on small objects as a result. Addition-
ally, bottom-up mechanisms can also be appended (Liu et al., 2018) such that the lower resolution
maps can benefit from the freshly updated higher resolution maps. These top-down and bottom-up
mechanisms can now be grouped into a layer, after which multiple of these layers can be concate-
nated, as done in Tan et al. (2020). We call this part of a computer vision network the core, laying in
between the backbone and the task-specific head (see Figure 1). In general, we define a core module
to be any module taking as input a feature pyramid and outputting an updated feature pyramid.

These top-down and bottom-up operations can be regarded as communication-based processing op-
erating on two feature maps, as opposed to content-based self-processing operating on a single fea-
ture map. Existing cores such as FPN (Lin et al., 2017a), PANet (Liu et al., 2018) and BiFPN (Tan
et al., 2020) mostly focus on communication-based processing, as this nicely supplements the back-
bone merely consisting of self-processing. However, when having multiple communication-based
operations in a row, communication tends to saturate (everyone is up to date) and hence becomes
superfluous. We argue it is therefore more effective to alternate communication-based processing
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Figure 1: High-level view of a computer vision network. The backbone (left) processes the image
to output a set of feature maps (i.e. a feature pyramid). The core (middle) takes in a feature pyramid
(denoted by FP) and returns an updated feature pyramid. Finally, the head (right) produces the loss
during training and makes predictions during inference from the final feature pyramid. In this work,
we focus on improving the core.

with sufficient self-processing, such that feature maps have the time to come up with new findings
to be communicated.

Based on this observation, we design the Trident Pyramid Network (TPN) core consisting of sequen-
tial top-down and bottom-up operations alternated with parallel self-processing mechanisms. The
TPN core is equipped with hyperparameters controlling the amount of communication-based pro-
cessing and self-processing. During the experiments, we empirically investigate what the optimal
balance is between communication-based processing and self-processing (see Subsection 4.3).

The TPN core is compared to various baselines on the COCO object detection benchmark (Lin et al.,
2014). Specific care is taken to ensure the baselines have similar computational characteristics,
such that a fair comparison can be made. Using a ResNet-50 backbone and a simple one-stage
detector head, our TPN core peaks at 41.8 AP on the COCO validation set when using the 3x
training schedule (see Subsection 4.2). This is a 1.5 AP improvement over a BiFPN core of similar
computational expense.

When having additional compute to improve performance, practitioners typically decide to replace
their backbone with a heavier one. A ResNet-50+FPN network for example gets traded for the
heavier ResNet-101+FPN network. Yet, one might wonder whether it is not more beneficial to add
additional computation into the core (i.e. at the feature pyramid level) by using a ResNet-50+TPN
network, rather than into the backbone by using a ResNet-101+FPN network. When comparing
both options under similar computational characteristics, we show a 1.7 AP improvement of the
ResNet-50+TPN network over the ResNet-101+FPN network. This empirically shows that it is more
beneficial to add additional computation into the core, highlighting the importance of performing
computation at the feature pyramid level in modern-day object detection systems. We hope this new
insight drives researchers to design even better cores in the future.

2 RELATED WORK

In order to obtain multi-scale features, early detectors performed predictions on feature maps directly
coming from the backbone, such as MS-CNN (Cai et al., 2016) and SSD (Liu et al., 2016). As the
higher resolution maps from the backbone contain relatively weak semantic information, top-down
mechanisms were added to propagate semantically strong information from lower resolution maps
back to the higher resolution maps as in FPN (Lin et al., 2017a) and TDM (Shrivastava et al.,
2016). Since, many variants and additions have been proposed: PANet (Liu et al., 2018) appends
bottom-up connections, M2det (Zhao et al., 2019) uses a U-shape feature interaction architecture,
ZigZagNet (Lin et al., 2019) adds additional pathways between different levels of the top-down and
bottom-up hierarchies, NAS-FPN (Ghiasi et al., 2019) and Hit-Detector (Guo et al., 2020) use Neural
Architecture Search (NAS) to automatically design a feature interaction topology, and BiFPN (Tan
et al., 2020) modifies PANet by removing some connections, adding skip connections and using
weighted feature map aggregation. All of the above variants focus on improving the communication
between the different feature maps. We argue however that to be effective, extra content-based
self-processing is needed in between the communication flow.

Not all methods use a feature pyramid to deal with scale variation. TridentNet (Li et al., 2019)
applies parallel branches of convolutional blocks with different dilations on a single feature map to
obtain scale-aware features. In DetectoRS (Qiao et al., 2021), they combine this idea with feature
pyramids, by applying their switchable atrous convolutions (SAC) inside their recursive feature
pyramids (RFP). Note that to avoid any name confusion with TridentNet, we call our core by its
abbreviated name TPN as opposed to Trident Pyramid Network.
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Figure 2: Collection of building blocks for core architecture design. Here Pl denotes feature map of
level l which is 2l times smaller compared to the initial image resolution. (Left) General top-down
operation updating feature map Pl with information from lower resolution map Pl+1. (Middle)
General self-processing operation updating feature map Pl with information from itself, i.e. from
feature map Pl. (Right) General bottom-up operation updating feature map Pl with information
from higher resolution map Pl−1.
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Figure 3: (Left) A layer from the FPN core architecture. (Right) A layer from the PANet core
architecture.

Our TPN core is also related to networks typically used in segmentation such as U-Net (Ronneberger
et al., 2015) and stacked hourglass networks (Newell et al., 2016), given that these networks also use
a combination of top-down, self-processing and bottom-up operations. A major difference of these
networks with our TPN core however, is that they do not operate on a feature pyramid in the sense
that lower resolution maps are only generated and used within a single layer (e.g. within a single
hourglass) and are not shared across layers (e.g. across two neighboring hourglasses).

Finally, note that some works such as Guo et al. (2020) and Bochkovskiy et al. (2020) refer to the
the network part connecting the backbone with the head as the neck (instead of the core). That name
implies that the neck is merely a connection piece between the backbone and the head, and is of little
importance. Yet, we show that the neck is in fact an important part of the network, and therefore call
it the core instead.

3 METHOD

3.1 TPN CORE ARCHITECTURE

Generally speaking, the core receives a feature pyramid as input, and outputs an updated feature
pyramid. Here, a feature pyramid is defined as a collection of feature maps, with feature maps
defined as a collection of feature vectors (called features) organized in a two-dimensional map.
More specifically, feature map Pl denotes a feature map of level l which is 2l times smaller in width
and height compared to the initial image resolution. A popular choice for the feature pyramid (Lin
et al., 2017b) is to consider feature maps {P3, P4, P5, P6, P7}, which we will use as the default
setting throughout our discussions and experiments.

The core is constructed from three building blocks: top-down operations, self-processing operations
and bottom-up operations (see Figure 2). In this subsection, we focus on how these operations
are best combined, independently of their precise implementations. We call this configuration of
operations making up a core, the core architecture. The specific implementations corresponding
to the top-down, self-processing and bottom-up operations will be discussed in Subsection 3.2 and
Subsection 3.3.

Using these general building blocks, we can recreate the popular FPN (Lin et al., 2017a) and PANet
(Liu et al., 2018) core architectures in Figure 3. Note that the architectures slightly differ from those
found in the original works (Lin et al., 2017a; Liu et al., 2018), as the input layers are missing. Given
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Figure 4: Our TPN core architecture consisting of L consecutive TPN core layers (bottom), with
each self-processing operation consisting of B consecutive bottleneck layers (top).

that these input layers are meant to transition from backbone feature sizes to core feature sizes, we
decided to move these transition layers from the core to the backbone instead, such that multiple
core layers can easily be concatenated. Note moreover that Figure 3 only defines the architecture of
the core, without specifying the implementation of the top-down and bottom-up operations. These
implementations could hence differ from those found in the original works (Lin et al., 2017a; Liu
et al., 2018).

From the FPN and PANet core architectures from Figure 3, we make following two observations.
First, we can see that the top-down and bottom-up operations are sequential. Secondly, we observe
the lack of self-processing operations in both core architectures. In what follows, we discuss both
aspects in more depth.

First, we discuss the trade-off between sequential and parallel operations in greater detail. By se-
quential operations, we mean that Pl is updated with the new Pl±1 instead of with the old one,
forcing the operations to be performed sequentially as the new feature maps must be available. Al-
ternatively, one could instead opt for parallel operations by solely relying on the old feature maps.
The choice between parallel and sequential could be regarded as a trade-off between speed and ac-
curacy, while maintaining a similar memory consumption. Given that the top-down and bottom-up
operations can be quite expensive, especially on high resolution maps, it is important to get the most
out of every single operation. We hence believe that the sequential variant should be preferred here
for the top-down and bottom-up operations, as found in the FPN and PANet core architectures.

Secondly, we discuss the lack of self-processing operations in the FPN and PANet core architectures.
When looking at the PANet architecture, we see that bottom-up operations immediately follow the
top-down operations. We argue that this is sub-optimal. Take for example a look at the P4-P3 top-
down operation, followed immediately by the P3-P4 bottom-up operation. The P3 map was just
updated with information from P4 and now P3 must immediately communicate its content back to
P4 before having the possibility to digest and work on this new information. We hence argue that
the top-down and bottom-up operations should be separated with self-processing operations. This
gives the feature maps the opportunity to work on themselves before communicating back to their
peers.

By combining the insights from previous two discussions, we arrive at the Trident Pyramid Network
(TPN) core architecture consisting of sequential top-down and bottom-up operations alternated with
self-processing operations (see lower part of Figure 4). The name is inspired by the top-down, first
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Figure 5: Bottleneck layer used as base self-processing operation. It is a skip-connection operation
with a residual branch consisting of three convolution operations: a convolution operation of kernel
size 1 reducing the original feature size to the hidden feature size, a content convolution operation
of kernel size 3 applied on the hidden feature size, and finally a convolution operation of kernel
size 1 expanding the hidden feature size back to the original feature size. Note that each convolution
operation (i.e. pink convolution node) consists of the actual convolution preceded (He et al., 2016b)
by group normalization (Wu & He, 2018) and a ReLU activation function.

self-processing and bottom-up operations resembling a trident. Note that the TPN self-processing
operations happen in parallel. This is not necessary, but we believe this to be the most natural choice.

3.2 COMMUNICATION VS. CONTENT

When looking at the TPN core in Figure 4, we have on the one hand communication-based top-down
and bottom-up operations, and on the other hand content-based self-processing operations. One
might now wonder what the optimal balance between communication and content is. In order to
investigate this matter, we introduce hyperparameters enabling us to control the amount of content-
based processing on the one hand, and the amount of communication-based processing on the other
hand.

First, we take a closer look at the self-processing operation. In general, we consider this self-
processing operation to be a sequence of layers, with each layer containing the base self-processing
operation. In this paper, we chose the bottleneck architecture from He et al. (2016a) (see Figure 5) as
the base self-processing operation. The number of bottleneck layers B per self-processing operation
then determines the amount of content-based processing within a TPN layer.

Secondly, with each TPN layer consisting of one top-down and one bottom-up sequence, the number
of TPN core layers L determines the amount of communication-processing within the TPN core.
Note that while the total amount of communication-based processing only depends on the number
of TPN layers L, the total amount of self-processing within TPN depends on both the number of
bottleneck layers per self-processing operation B, as well as on the total number of TPN layers L.
In Figure 4, an overview of our TPN core architecture is shown, displaying the number of bottleneck
layers B and the number of TPN core layers L. By varying these hyperparameters B and L, we can
hence control the balance between content-based processing and communication-based processing
respectively. In Subsection 4.3, we empirically find out which combinations work best.

3.3 TOP-DOWN AND BOTTOM-UP OPERATIONS

Let us now take a closer look at the top-down and bottom-up operations. Generally speaking, these
operations update a feature map based on a second feature map, either having a lower resolution
(top-down case) or a higher resolution (bottom-up case). Our implementation of the top-down and
bottom-up operations are shown in Figure 6. The operations consist of adding a modified version
of Pl±1 to Pl. This is similar to traditional skip-connection operations, with the exception that
the residual features originate from a different feature map. The residual branch of the top-down
operation consists of a linear projection followed by bilinear interpolation. The presence of the linear
projection is important here, as it makes the expectation of the residual features zero at initialization.
Failing to do so can be detrimental, especially when building deeper core modules, as correlated
features add up without constraints. An alternative consists in replacing the blue addition nodes
with averaging nodes. This however fails to keep the skip connection computation free (due to the
0.5 factor), which is undesired (He et al., 2016b). The residual branch of the bottom-up operation is
similar to the bottleneck residual branch in Figure 5. Only the middle 3 × 3 convolution has stride
2 instead of stride 1, avoiding the need for an interpolation step later in the residual branch.
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Figure 6: Implementation of the top-down (left) and bottom-up (right) operations. The pink convolu-
tion nodes are defined as in Figure 5, with the subscript denoting the kernel size and the superscript
denoting the stride (stride 1 when omitted). The green node is an interpolation node resizing the
input feature map to the required resolution by using bilinear interpolation.

4 EXPERIMENTS

4.1 SETUP

Dataset. We perform our experiments on the 2017 COCO dataset (Lin et al., 2014), where we
train on the 118k training images and evaluate on the remaining 5k validation images.

Implementation details. Throughout our experiments, we use an ImageNet (Deng et al., 2009)
pretrained ResNet-50 (or ResNet-101) backbone (He et al., 2016a), with frozen stem, stage 1 and
batchnorm layers (see Radosavovic et al. (2020) for used terminology).

Our feature pyramid consists of five feature maps, ranging from P3 to P7, each having feature size
256. Our initial feature pyramid is constructed based on the backbone output feature maps C3 to
C5 from stages 2, 3 and 4 respectively. Remember that the subscript denotes how many times the
feature map was downsampled with factor 2 compared to the input image. The initial P3 to P5 maps
are obtained by applying simple linear projections on C3 to C5, whereas the initial P6 and P7 maps
are obtained by applying a simple network on C5 consisting of 2 convolutions with stride 2, with a
ReLU activation in between (similar to Lin et al. (2017b)). Throughout our TPN core modules, we
use group normalization (Wu & He, 2018) with 8 groups. For the bottleneck layers (see Figure 5),
we use a hidden feature size of 64.

As detection head, we use the one-stage detector head from RetinaNet (Lin et al., 2017b), with 1 or
4 hidden layers in both classification and bounding box subnets. We follow the implementation and
settings from Wu et al. (2019), except that the last layer of the subnets has kernel size 1 (instead of
3) and that we normalize the losses per feature map (instead of over the whole feature pyramid).

We train our models with the AdamW optimizer (Loshchilov & Hutter, 2017) with weight decay
10−4 using an initial learning rate of 10−5 for the backbone parameters and an initial learning rate
of 10−4 for the remaining model parameters. Our main experiment results in Subsection 4.2 are
obtained by using the 3x training schedule, consisting of 36 epochs with learning rate drops after the
27th and 33rd epoch with a factor 0.1. Our models are trained on 2 GPUs with batch size 2, while
using the same data augmentation scheme as in Carion et al. (2020).

4.2 MAIN TPN EXPERIMENTS

Baselines. In this subsection, we perform experiments to evaluate the TPN core. As baseline, we
consider the BiFPN core architecture from Tan et al. (2020), with Swish-1 activation functions re-
placed by ReLU activation functions. Multiple of these BiFPN layers will be concatenated such that
the BiFPN core shares similar computational characteristics compared to the tested TPN modules.
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Figure 7: (Left) The baseline bFPN core architecture simulating a heavier backbone followed by
a single FPN layer. (Right) The baseline hFPN core architecture simulating a single FPN layer
followed by a heavier head.

Table 1: Experiment results on the 2017 COCO validation set of different TPN cores (top four rows)
and its baselines (bottom five rows). The five leftmost columns specify the network (Back = Back-
bone, Core, B = Number of bottleneck layers per self-processing node, L = Number of layers, C =
Number of hidden layers in classification and bounding box subnets), the middle six columns show
its performance and the five rightmost columns show its computational characteristics. These char-
acteristics were obtained on a GeForce GTX 1660 Ti GPU by applying the network on a batch of two
800×800 images, each containing 10 ground-truth objects during training. The training characteris-
tics are found under the columns ‘Params’, ‘tFPS’ and ‘tMem’, whereas the inference characteristics
are found under the ‘iFPS’ and ‘iMem’ columns. Here the FPS metric should be interpreted as the
number of times the GPU can process above input. Note that both forward and backward passes
(with parameter update from the optimizer) are used to obtain the training characteristics.

Back Core B L C AP AP50 AP75 APS APM APL Params tFPS tMem iFPS iMem

R50 TPN 7 1 1 41.3 60.5 44.2 26.3 45.9 52.5 36.3 M 1.7 3.31 GB 5.3 0.50 GB
R50 TPN 3 2 1 41.6 60.9 44.6 26.4 45.8 53.2 36.2 M 1.7 3.21 GB 5.5 0.50 GB
R50 TPN 2 3 1 41.8 61.1 44.4 26.2 46.1 53.7 36.7 M 1.6 3.27 GB 5.3 0.50 GB
R50 TPN 1 5 1 41.8 61.2 45.0 26.0 46.3 53.4 37.1 M 1.6 3.22 GB 5.3 0.50 GB

R50 BiFPN − 7 1 40.3 59.8 43.3 24.5 44.1 52.2 34.7 M 1.9 3.28 GB 6.1 0.49 GB

R50 bFPN 14 − 1 39.6 60.3 42.4 24.2 43.5 51.3 36.1 M 1.7 3.26 GB 5.4 0.49 GB
R50 hFPN 14 − 1 40.0 60.2 43.0 25.6 43.9 51.1 36.1 M 1.7 3.26 GB 5.4 0.49 GB

R101 FPN − 1 4 40.1 60.1 42.8 24.0 44.0 52.7 55.1 M 1.4 3.20 GB 4.1 0.57 GB
R101 TPN 2 1 1 40.9 61.0 44.2 25.0 45.3 52.6 51.7 M 1.6 3.20 GB 4.6 0.55 GB

As the FPN layer was not designed to be concatenated many times, we provide two additional base-
lines using a single FPN (see Figure 7). Here the bFPN baseline performs additional self-processing
before the FPN simulating a heavier backbone, while the hFPN baseline performs additional self-
processing after the FPN simulating a heavier head. As such, we will not only be able to evaluate
whether the TPN core outperforms other cores, but also whether it outperforms detection networks
using a simple core with heavier backbones or heads, while operating under similar computation
budgets.

Finally, we also compare ResNet-101+FPN and ResNet-101+TPN networks with a ResNet-50+TPN
network of similar computation budget, to further assess whether it is more beneficial to put addi-
tional computation into the backbone or into the core.

Results. The experiment results evaluating four different TPN configurations against the five base-
lines, are found in Table 1.

First, notice how the B and L hyperparameters (defining the TPN configuration) are chosen in order
to obtain models with similar computational characteristics. Here hyperparameter B denotes the
number of bottleneck layers per self-processing node, while hyperparameter L denotes the number
of consecutive core layers (see Figure 4). These similar computational characteristics ensure us that
a fair comparison can be made between the different models.
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Figure 8: Accuracy vs. efficiency comparisons between 15 different (L,B) TPN configurations
using the ‘parameters’ (left), ‘training latency’ (middle) and ‘inference latency’ (right) efficiency
metrics. The accuracies correspond to the COCO validation APs, obtained after training the mod-
els for 12 epochs using the 1x schedule. The TPN configurations yielding the best accuracy vs.
efficiency trade-off at various computation budgets, are highlighted in magenta.

Secondly, we observe that the results between the four different TPN configurations are very similar,
all four obtaining between 41.3 and 41.8 AP. At first glance, it appears that having more TPN core
layers L is slightly more beneficial than having more bottleneck layers B under similar computa-
tional budgets. In Subsection 4.3, we will further investigate which TPN configurations yield the
best accuracy vs. efficiency trade-off at various computation budgets.

Thirdly, when comparing our TPN cores (top four rows) with the BiFPN core (fifth row), we clearly
see the superiority of the TPN core. All four TPN configurations outperform the BiFPN core with 1.0
up to 1.5 AP, where improvements are found across all object sizes. Note that the BiFPN baseline
has slightly fewer parameters and is slightly faster compared to the used TPN cores. However,
when using additional BiFPN layers to better align the BiFPN computation budget with the TPN
budgets, we did not obtain any performance improvements. We therefore chose to report the results
of a slightly lighter BiFPN core instead. In Appendix A.1, we provide additional results where we
compare the TPN core with the BiFPN core when using a large backbone.

Fourthly, when comparing the ResNet-50+TPN networks (top four rows) with the ResNet-50+bFPN,
ResNet-50+hFPN, ResNet-101+FPN and ResNet-101+TPN baselines (bottom four rows), we again
see that the ResNet-50+TPN networks work best. The best-performing baseline (ResNet-101+TPN)
from this category is outperformed by all four ResNet-50+TPN configurations with 0.4 up to 0.9 AP.
Note that the ResNet-101+TPN baseline has considerably more parameters and is clearly slower at
inference, but still does not match the performance of the ResNet-50+TPN networks despite its
higher computational cost. This hence shows that the TPN core not only outperforms other cores
such as BiFPN, but also other detection networks using heavier backbones or heads while operating
under similar overall computation budgets. This highlights the importance of core modules operating
on feature pyramids in general object detection networks.

4.3 COMPARISON BETWEEN DIFFERENT TPN CONFIGURATIONS

In this subsection, we investigate which TPN configurations yield the best accuracy vs. efficiency
trade-off at various computation budgets. Here, a TPN configuration is determined by the hyperpa-
rameter pair (L,B), respectively denoting the number of TPN layers and the number of bottleneck
layers per self-processing node. We use the same settings as explained in Subsection 4.1, except
that we only train for 12 epochs using the 1x training schedule. In Figure 8, we compare 15 dif-
ferent (L,B) TPN configurations using the ‘parameters’, ‘training latency’ and ‘inference latency’
efficiency metrics, with the latency metrics obtained using the same methodology as in Table 1.

We can see from the magenta curves yielding the optimal TPN configurations at various computation
budgets, that having a good balance between communication-based processing (in the form of TPN
layers L) and self-processing (in the form of bottleneck layers per self-processing node B) is im-
portant. We can for example see that the balanced (2, 2) configuration outperforms the unbalanced
(3, 1) and (1, 5) configurations. The same observation can be also made at higher computation bud-
gets, where the balanced (2, 4), (4, 2) and (3, 3) configurations outperform the unbalanced (6, 1)
and (7, 1) configurations.
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Table 2: Comparison of our best-performing TPN model with other prominent object detection
networks on the 2017 COCO validation set (see Table 1 for the definitions of B, L and C). All
models use a ResNet-50 (He et al., 2016a) backbone. The number of FLOPS are computed as in
Carion et al. (2020), by applying the flop count operators tool from Detectron2 (Wu et al.,
2019) on the first 100 images of the validation set. The number of inference FPS ‘iFPS’ is calculated
as explained in Table 1, while using the implementations provided by MMDetection (Chen et al.,
2019) for the baseline models.

Model B L C Epochs AP AP50 AP75 APS APM APL Params GFLOPS iFPS

Faster R-CNN+FPN (Wu et al., 2019) − 1 4 37 40.2 61.0 43.8 24.2 43.5 52.0 41.5 M 180 4.1
RetinaNet+FPN (Wu et al., 2019) − 1 4 37 38.7 58.0 41.5 23.3 42.3 50.3 37.7 M 208 5.1

DETR (Carion et al., 2020) − − − 500 42.0 62.4 44.2 20.5 45.8 61.1 41.3 M 86 7.3
Deformable DETR (Zhu et al., 2020) − − − 50 43.8 62.6 47.7 26.4 47.1 58.0 39.8 M 173 3.5

RetinaNet+TPN (ours) 2 3 1 36 41.8 61.1 44.4 26.2 46.1 53.7 36.7 M 121 5.3

We hence empirically show that balanced (L,B) configurations with L ≥ 2 and B ≥ 2 are to
be preferred over unbalanced configurations such as (L, 1) and (1, B). By having only one self-
processing operation in between each communication-based operation, existing cores with a (L, 1)
configuration such as PANet (Liu et al., 2018) and BiFPN (Tan et al., 2020) crucially lack self-
processing. The TPN core solves this problem by introducing the (L,B) hyperparameter pair, such
that a better balance between communication-based processing and self-processing can be chosen.

4.4 COMPARISON WITH OTHER OBJECT DETECTION NETWORKS

In Table 2, we compare the performance of our best-performing model against other prominent
object detection networks. We make following two sets of observations.

First, we compare our model with the popular two-stage object detector Faster R-CNN+FPN (Ren
et al., 2015; Lin et al., 2017a) and the popular one-stage object detector RetinaNet+FPN (Lin et al.,
2017b;a) (top two rows). Under similar training schedules, we observe that our model performs
better across all object sizes, while being computationally cheaper (three rightmost columns). Note
that the RetinaNet+FPN model closely resembles our RetinaNet+TPN model, except that they use
a FPN core and a heavier head using 4 hidden layers in the classification and bounding box subnets
(Wu et al., 2019) instead of 1. The results again show that it is more beneficial to put additional
computation into the core (RetinaNet+TPN) rather than into the head (RetinaNet+FPN).

Secondly, we compare our model with the DETR (Carion et al., 2020) and Deformable DETR (Zhu
et al., 2020) models (middle two rows). These are two recent object detectors based on transformers
with set prediction. On small objects, we observe similar results for our model and Deformable
DETR, while DETR performs significantly worse. This can be understood from the fact that DETR
only operates on a single low resolution feature map instead of on a feature pyramid, once again
proving the importance of feature pyramids. On large objects on the other hand, we see a clear
superiority of the transformer-based detectors with set prediction compared to our model using a
simple RetinaNet-like head. Given that our TPN model only specifies the core module, we could
combine it with this new type of detection head that uses a transformer decoder combined with set
prediction (Carion et al., 2020). We believe this should improve the performance of our TPN model
for large objects in a similar way as for the DETR and Deformable DETR models. We will further
investigate this in future work.

5 CONCLUSION

In this paper, we introduced a new type of core architecture, called the Trident Pyramid Network
(TPN). We show consistent improvements when using our TPN core on the COCO object detec-
tion benchmark compared to various baselines. From our TPN experiments, we see that both
communication-based processing and self-processing are crucial within core modules in order to
obtain good results. We additionally observe that our TPN performance could not be matched by
heavier backbones or heads under similar overall computation budgets, showing the importance and
effectiveness of the core within object detection systems.
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A APPENDIX

A.1 COMPARISON BETWEEN TPN AND BIFPN WHEN USING LARGE BACKBONE

In this appendix subsection, we provide additional results comparing the TPN core with the BiFPN
core, when using the large ResNeXt-101-32x4-DCNv2 (Xie et al., 2017; Zhu et al., 2020) backbone.
To carry out these experiments, we chose the TPN core with L = 3 TPN layers, and B = 2 bottle-
neck layers per self-processing node. We follow the same settings as explained in Subsection 4.1,
except that we use the 1x training schedule and train on only one GPU instead of two.

The results are found in Table 3. We can see that the TPN core outperforms the BiFPN core by 0.7
AP, while having a similar computation budget. We can moreover see that the TPN core has a better
performance across all object scales. These additional experimental results show that the superiority
of the TPN core compared to the BiFPN core generalizes to larger backbones.

Table 3: Experiment results on the 2017 COCO validation set comparing the TPN core (top row)
with the BiFPN core (bottom row), when using the large ResNeXt-101-32x4-DCNv2 backbone.
The six leftmost columns specify the model and training settings, the six middle columns show the
model performance, and the five rightmost columns contain the computational characteristics of the
model. These characteristics are obtained as explained in Table 1, except that we use a batch of two
600 × 600 images (instead of two 800 × 800 images) to avoid an out-of-memory (OOM) error on
the used GeForce GTX 1660 Ti GPU.

Backbone Core B L C Epochs AP AP50 AP75 APS APM APL Params tFPS tMem iFPS iMem

X101-DCNv2 TPN 2 3 1 12 44.1 64.9 47.7 27.9 48.6 58.0 59.1 M 1.1 3.60 GB 4.7 0.39 GB
X101-DCNv2 BiFPN − 7 1 12 43.4 64.1 46.9 26.6 47.9 56.7 57.1 M 1.2 3.59 GB 5.1 0.38 GB
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