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ABSTRACT

Distribution shifts pose a significant challenge to the reliable deployment of ma-
chine learning models. Invariant representation learning aims to mitigate this
challenge by learning feature spaces that remain invariant across diverse out-
of-distribution (OOD) scenarios. However, a critical gap exists in directly and
efficiently evaluating the true invariance of learned representations across varied
environments. To address this, we introduce DRIC, a novel and computationally
efficient criterion designed for the direct assessment of invariant representation
performance. DRIC establishes a formal link between the conditional expectation
of invariant predictors and environmental diversity through the density ratio, pro-
viding a theoretically sound and practical evaluation framework. We validate the
effectiveness and robustness of DRIC through extensive numerical experiments on
both synthetic and real-world datasets, demonstrating its utility in quantifying and
comparing the invariance of learned representations, ultimately contributing to the
development of more robust machine learning models.

1 INTRODUCTION

The assumption of independently and identically distributed (i.i.d.) data has been a standard as-
sumption in statistical machine learning. However, in real-world scenarios, data can originate from
diverse environments, potentially violating the assumption of homogeneous distribution (Ahuja et al.,
2021; Cai et al., 2023). The Empirical Risk Minimization (ERM) (Yang et al., 2023) has proven
effective in solving this problem by considering the average loss across all training environments.
However, if the training environments themselves exhibit heterogeneity, the resulting model may
struggle to generalize to unseen environments. This sensitivity to training environments introduces
model instability. Thus, many invariant learning methods are proposed to enhance generalization
across unseen environments.

The significance of invariant learning (IL) lies in its ability to enhance the robustness of machine
learning models. By incorporating assumptions of invariance properties (Peters et al., 2016) in
learning invariant representations, these models can better handle scenarios where data may vary
in different environments. Examples of invariant learning include Domain-Adversarial Neural
Network (DANN) developed by Ganin et al. (2015) and Ganin et al. (2016) for domain adaptation. Li
et al. (2018) proposed an end-to-end conditional invariant deep domain generalization approach by
leveraging deep neural networks for domain-invariant representation learning. Motiian et al. (2017)
introduced a deep model augmenting the classification and contrastive semantic alignment loss to
address the domain generalization problem. Mitrovic et al. (2020) proposed Representation Learning
via Invariant Causal Mechanisms (RELIC) for the classification task by enforcing the preservation of
the underlying probability across different domains. Domain-Specific Adversarial Network (DSAN)
from Stojanov et al. (2021) offered broader applicability by assuming the invariance of the conditional
distribution of the outcomes. Yao et al. (2022) proposed LISA, a simple mix-up-based technique to
learn invariant predictors via selective augmentation. Arjovsky et al. (2019) introduced Invariant Risk
Minimization (IRM) by simply assuming the invariance of the conditional expectation of the outcome
given the invariant representation, which is applicable to diverse learning tasks.

There are extensive literature on IL methods, see Section 5. A representation is a mapping ϕ : X → Z
from covariates to a latent space; IL seeks a domain-invariant ϕ for which the predictive relation
between Z = ϕ(X) and Y is identical across environments. In practice, enforcing invariance often
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lowers training accuracy yet can improve OOD test accuracy up to a point. If over-enforced, they
degrade both, so model selection must balance accuracy and invariance. The lack of standardized
assessment makes it challenging to evaluate the overall performance of such methods and to strike this
balance. To address this issue, our study develops a robust assessment that measures representation-
level invariance and thereby guides the selection of an optimal invariant representation.

In this paper, we propose a quantity called the Density Ratio based Representation Invariance
Criterion (DRIC) to serve as a robust metric of invariance for all IL methods that employ the invariance
property 2.2. The overall DRIC workflow is shown in Figure 1, comprising candidate invariant models,
a DRIC evaluator, and optimal representation selection. DRIC is the first environment-agnostic,
normalized metric that is comparable across IL methods and datasets with the following contributions.

• We introduce a density-ratio–based, environment-agnostic, normalized metric that directly
measures representation-level invariance and is comparable across IL methods and datasets.

• We give a simple, classifier-based plug-in estimator and a representation selection workflow.
• We provide theoretical guarantees for DRIC and its estimator’s convergence, along with

information lower bounds balancing accuracy and invariance.

The broader contribution is a systematic and reliable tool for evaluating and selecting invariant
representations, enabling practitioners to build models that remain robust under distribution shift.

Figure 1: DRIC workflow for evaluating and selecting invariant representations.

2 BACKGROUND

2.1 INVARIANT RISK MINIMIZATION

We consider data drawn from environments E , each inducing a distribution on X × Y . Let (Xe, Y e)
denote variables from e ∈ E and define the per-environment risk Re(f) = E[ℓ(f(Xe), Y e)]. Our
goal is to control worst-case OOD risk using training environments Etr ⊂ E :

min
f :X→Y

ROOD(f) = min
f

max
e∈E

Re(f).

This standard Empirical Risk Minimization (ERM) on pooled data may overfit environment-specific
correlations in Etr. To tackle this issue, Arjovsky et al. (2019) seek a representation that remains stable
across different domains, while ensuring that stability in unseen environments as well, specifically
finding an invariant predictor across Etr defined as follows.
Definition 2.1. Given an embedded space H, a data representation ϕ : X → H is said to be an
invariant representation across environments E if there exists a classifier w : H → Y simultaneously
optimal for all environments, i.e., for all e ∈ E , w ∈ argmaxw̄:H→Y Re(w̄, ϕ). If the invariant
representation ϕ elicits the classifier w, then w ◦ ϕ is called an invariant predictor.
Definition 2.2 (Expectation-level invariance). If the optimal classifier in any environment of E can
be written as a conditional expectation, then a data representation ϕ is invariant if and only if, for all
e, e′ ∈ E and all h in the intersection of the supports of ϕ(Xe) and ϕ(Xe′),

E[Y e|ϕ(Xe) = h] = E[Y e′ |ϕ(Xe′) = h], (1)
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where E[Y e|ϕ(Xe)] = E[Y | ϕ(X), E = e] is the conditional expectation of Y given ϕ(X) and e.

While some methods may adopt stronger conditions, the invariance on the conditional expectation
remains a fundamental truth in all scenarios. We adopt Definition 2.2 as a minimal and widely
applicable invariance condition. By (1), Invariant Risk Minimization (IRM) can be posed as

min
ϕ:X→H
w:H→Y

∑
e∈Etr

Re(w, ϕ), subject to w ∈ arg min
w̄:H→Y

J (w, ϕ), for all e ∈ Etr, (2)

and is typically relaxed with a penalty J (w, ϕ). IRMv1 proposes J (w, ϕ) = ∥∇wR
e(w, ϕ)∥2

(Arjovsky et al., 2019). Under a stronger invariant assumption that P[Y |ϕ(Xe)] = P[Y |ϕ(Xe′)],
Krueger et al. (2021) proposed VREx with J (w, ϕ) = Var(Re(w, ϕ)),while Chang et al. (2020)
proposed InvRat with J (w, ϕ) = λ(Re(w, ϕ)−Re(we, ϕ)).

2.2 DISTRIBUTION SHIFT AND DENSITY RATIO

In statistics and machine learning, distribution shift refers to a mismatch between the training and test
distributions (Masashi and Klaus-Robert, 2005). We extend this notion to multiple environments E ,
each inducing a distribution on X × Y; such shifts are common across sites, instruments, and time.

A traditional approach to address the difference between two distributions is to reweight the dis-
tribution by the density ratio to match the other. For example, for two closely-related variables
X1, X2 : X → R with distributions P1,P2, respectively, observe that

EX1(X1) =

∫
X
x dP1(x) =

∫
X
x

dP1(x)

dP2(x)
dP2(x) = EX2

(
X2

dP1(X2)

dP2(X2)

)
,

where dP1(x)/dP2(x) denotes the likelihood ratio(density ratio), of X1 over X2. Thus, the density
ratio can be applied to the data with distinct distributions across different environments.

Classical covariate-shift adaptation applies the same reweighting on X to align source and target
domains (Shimodaira, 2000; Sugiyama and Müller, 2005; Sugiyama et al., 2007; Quinonero-Candela
et al., 2008; Reddi et al., 2015; Chen et al., 2016). We adopt this tool here and estimate ρe,e′ from
data; robust and practical implementation details are provided in Appendix A.2.

3 METHODOLOGY

3.1 FROM INVARIANCE PROPERTY TO DRIC

Suppose that we obtain a data representation ϕ from (2) in IL methods, and we want to assess how
close it is to an ideal invariant representation. Without loss of generality, we denote Y | E = e by
Y e, X | E = e by Xe, and P(x|E = e) by Pe(x). Although there exist stronger conditions for
invariant representation shown in Section 5, we adopt the minimal assumption in 2.2, and thus our
DRIC metric works for general IL methods. Then under assumption 2.2, for any e, e′ ∈ Etr, we have

EXe (E(Y e|ϕ(Xe))) =

∫
X
E (Y e|ϕ(Xe) = ϕ(x)) dPe(x)

=

∫
X
E
(
Y e′ |ϕ(Xe′) = ϕ(x)

)
dPe(x) =

∫
X
E
(
Y e′ |ϕ(Xe′) = ϕ(x)

) dPe(x)

dPe′(x)
dPe′(x)

= EXe′

(
E(Y e′ |ϕ(Xe′))ρ(Xe, Xe′)(Xe′)

)
, (3)

where ρ(Xe, Xe′)(x) := dPe/dPe′(x) is the point-wise density ratio of Xe to Xe′ when they are
continuous distributed. For any e, e′ ∈ Etr, let us define

qϕ(e, e
′) = EXe′

(
E(Y e′ |ϕ(Xe′))ρ(Xe, Xe′)(Xe′)

)
. (4)

Clearly, qϕ(e, e) = EXe (E(Y e|ϕ(Xe))), which can be denoted as EX|E=e (E(Y |ϕ(X), E = e)).
From (3), we observe that qϕ(e, e) differs from qϕ(e, e

′) only by a covariate-shift reweighting via
the density ratio. Thus, (3) suggests that any (qϕ(e, e

′) − qϕ(e, e))
2 should be zero when ϕ is
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ideally invariant. We can then naturally argue that, for an arbitrary data representation ϕ, the closer
(qϕ(e, e

′)− qϕ(e, e))
2’s are to zero, the closer ϕ is to the ideal invariant representation.

In order to derive a robust quantity for the invariance of ϕ that is not affected by linear transformations
of Y or choices of e, e′, we propose a normalized quantity,

Qϕ =

∑
e,e′∈Etr

(qϕ(e, e
′)− qϕ(e, e))

2∑
e,e′∈Etr

(qΥ(e, e′)− qΥ(e, e))2
=

V arE{E[Y |ϕ(X), E]− E(Y |E)}
V arE{E[Y |Υ(X), E]− E(Y |E)}

(5)

where the representation1 Υ is the identity mapping defined by Υ(x) = x. DRIC value Qϕ measures
how much the conditional expectation E[Y |ϕ(X)] varies across environments, serving as a proxy for
representation invariance. It has several desirable properties:

1. Environment-agnostic: Both the numerator and denominator of Qϕ average over all environ-
ment pairs, ensuring the score is not biased by specific environment choices.

2. Interpretable and normalized: The numerator captures the residual variation after applying
ϕ, while the denominator reflects the baseline variation without invariant learning. A value
Qϕ < 1 indicates that ϕ achieves some level of invariance.

3. Scale-invariant: Qϕ remains unchanged under linear transformations of the outcome Y ,
making it robust to rescaling.

We name this quantity Qϕ the Density-ratio-based Representation Invariance Criterion (DRIC). A
lower Qϕ value naturally indicates greater invariance of ϕ. For very small values we report logQϕ

for readability. Two representations have the same invariance level if Qϕ = Qϕ′ .
Remark 3.1 (Sufficiency). It is natural that Qϕ = 0 is a necessary condition for Assumption 2.2 to
hold. We can verify that it is also sufficient almost surely. Qϕ = 0 implies one of two cases:

• E(Y e′ |ϕ(x)) = E(Y e|ϕ(x)) for all x, directly satisfying the desired invariance condition.
• The density ratio dP e(x)

dP e′ (x)
= 0, which occurs when the supports of P e and P e′ are disjoint.

Case 1 confirms true invariance. Case 2, while also resulting in a zero difference, reflects disjoint
covariate support, which makes invariant learning infeasible. In practice, this can be detected when
estimated density ratios are close to zero across most inputs, indicating that the environments share
no common input space, violating assumptions required for DRIC to function meaningfully.
Remark 3.2 (Invariance vs. Predictive Utility). IL methods target the conditional invariance Y ⊥ E |
ϕ(X), while test accuracy is an indirect, distribution–dependent consequence. Accuracy conflates fit
and shift magnitude, depends on the unknown test mix, and is non-monotone in invariance strength.
We therefore measure invariance directly via DRIC Qϕ and use accuracy as a complementary metric
to explore oracle representations, see Section 3.3 and 3.4.

3.2 EMPIRICAL ESTIMATION OF DRIC

To estimate DRIC (5) using the training dataset D, we start by estimating the important intermediate
term qϕ(e, e

′) defined in (4). By Definition 2.2, the true invariant representation ϕ and the elicited
classifier w leads to the conditional expectation of Y . Thus, in theory we can obtain population level
expectation by,

qϕ(e, e
′) = EXe′

(
1

ne′

ne′∑
i=1

w ◦ ϕ(xe′

i )ρ(X
e, Xe′)(xe′

i )

)
.

Suppose that we empirically learn a classifier ŵ and data representation ϕ̂ from D. Intuitively, an
estimator of qϕ(e, e′) would consist of an empirical term,

q̂ϕ(e, e
′) =

1

ne′

ne′∑
i=1

ŵ ◦ ϕ̂(xe′

i )ρ(X
e, Xe′)(xe′

i ), q̂ϕ(e, e) =
1

ne

ne∑
i=1

ŵ ◦ ϕ̂(xe
i ). (6)

1The predictor elicited by Υ equals to the predictor learned by ERM, and thus ERM DRIC is always 1.
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With the general empirical estimator (6), all other terms appearing in DRIC value (5) can be naturally
estimated. We list them as follows.

q̂Υ(e, e) =
1

ne

ne∑
i=1

w̃(xe
i ), q̂Υ(e, e

′) =
1

ne′

ne′∑
i=1

w̃(xe′

i )ρ(X
e, Xe′)(xe′

i ), (7)

where w̃ is the baseline classifier learned without employing any additional representation. Using the
empirical estimations (6) and (7), we can estimate DRIC in the following way,

Q̂ϕ =

∑
e,e′∈Etr

(q̂ϕ(e, e
′)− q̂ϕ(e, e))

2∑
e,e′∈Etr

(q̂Υ(e, e′)− q̂Υ(e, e))2
. (8)

Time and Memory Cost. DRIC uses a classification-based method to estimate density ratios (Section
A.2), making it both scalable and efficient. The computational complexity is O(ndT ) in time and
O(nd) in memory, where n is the total number of samples, d the input dimension, and T the training
steps. Runtime and memory usage scale linearly with data size, as detailed in Section A.4. This
confirms DRIC’s practical applicability with minimal overhead.

Sample Complexity. We can derive a sample complexity bound for estimating qϕ(e, e
′) using

Hoeffding’s inequality. To ensure an estimation error ε with probability 1− α, the required sample
size must satisfy ne′ ≥ Cσ2 log(α−1)/ε2, where σ2 is the variance of the weighted density ratio
term. We show how stable DRIC estimates are achievable with sufficient samples in Section A.4.

3.3 GUIDANCE OF DRIC REPRESENTATION SELECTION

In practice, DRIC can be a diagnostic tool for different representations ϕ. It can guide the selection
of feature extractors in domain generalization settings, where robustness is critical.

Post-hoc model selection. For each candidate ϕh in pipelines Φ = {ϕh : h ∈ H}, e.g., IRM/IB-
IRM/VREx, we have DRIC scores Q̂ϕh

and validation risks Rval(ϕh). Since Q̂ is environment-
agnostic and normalized, the pairs {(Rval(ϕh), Q̂ϕh

)} are comparable. Select ϕ⋆ via any of:

(i) Accuracy-constrained: ϕ⋆ = argminϕh
Q̂ϕh

s.t. Rval (ϕh) ≤ Rmin + ε,

(ii) Target-invariance: ϕ⋆ = argminϕh
Rval (ϕh) s.t. Q̂ϕh

≤ Q⋆,

(iii) Scalarization: ϕ⋆ = argminϕh
Rval (ϕh) + λselQ̂ϕh

,

where Rmin = minh Rval(ϕh), ε ≥ 0 is an accuracy tolerance, Q⋆ is a target invariance level. In
practice, we can plot {(Rval, Q̂)} and pick a Pareto knee.

Joint training. Instead of enumerating candidates, one can train ϕ by directly penalizing DRIC:

min
ϕ,w

R(ϕ(X), Y ; w) + λQϕ, (9)

where R is the empirical risk and Qϕ is the DRIC objective. We implement (9) with alternating
update (ϕ,w) to reduce R+ λQϕ using environment-balanced mini-batches. As shown in Section
4.4, DRIC regularization yields more robust, domain-invariant representations with low Q̂ϕ and
strong OOD test accuracy. Theorem 3.5 shows the ideal lower bound for (9).

Rule-of-thumb guidance. Theoretically, Q̂ admits an information–theoretic lower bound even at
ideal predictive risk (Section 3.4), so 0 DRIC is unattainable. Safety/robustness/fairness–critical
cases prefer lower Q̂ stronger invariance and accept small accuracy drops. Benchmark-style settings
prioritize accuracy, but use Q̂ to diagnose residual environment leakage and motivate robustness
work. In Section 4.3, we show the fairness use case where we treat gender as environment.

3.4 THEORETICAL GUARANTEE FOR DRIC

The accuracy guarantee of DRIC estimator Eq. (8) is ensured by the following theorem.

5
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Theorem 3.3. Suppose that, for any e ∈ Etr, {xe
i}

ne
i=1 are independently sampled from the distribution

Pe, and that there exists some a, b > 0 such that an < ne < bn. Moreover, assume that ϕ is
continuous, w is Lipschitz continuous and

∑
e,e′∈Etr

(qΥ(e, e
′)− qΥ(e, e))

2 > 0. If ||ϕ̂−ϕ||∞, ||ŵ−
w||∞ converge to 0 and w̃ is uniformly convergent as n → ∞, then |Q̂ϕ −Qϕ| = op(1).

This shows that the DRIC value closely approximates the true expectation (5). When ϕ̂ approaches
the ideal invariant representation that captures all invariant features, the DRIC value approaches zero.
Remark 3.4. The within-environment independence assumption on {xe

i}
ne
i=1 is not a necessary

condition for the convergence of DRIC’s estimation. In fact, any assumption that enables the Law of
Large Numbers to hold is acceptable, such as the common scenario of stationary time series. For the
sake of simplicity in the proof, we assumed independence for {xe

i}
ne
i=1.

All the other assumptions stated in Theorem 3.3 are reasonable. The assumption on the bounds
on ne guarantees that the sampling process is not imbalanced between different environments.
For a practically applicable invariant representation, it is crucial that ϕ exhibits continuity and
w demonstrates Lipschitz continuity in a satisfactory manner. The necessity of the condition∑

e,e′∈Etr
(qΥ(e, e

′)− qΥ(e, e))
2 > 0 arises from the fact that without it, there would be no need for

invariant learning. Although the uniform convergence of ϕ̂ and ŵ may depend on which approxima-
tion method used, it is satisfied for most of the existing methods in the literature. If the impact of the
outliers is negligible, w̃ naturally exhibits uniform convergence.

According to Zhao et al. (2022), achieving a proper invariant representation involves balancing
model accuracy and invariance. Specifically, for a given representation ϕ(X), we assume the
loss function is the mean squared error, so the optimal empirical risk over parameters w satisfies
infw EDℓ(w(ϕ(X)), Y ) = E[Var(Y |ϕ(X))]. We now show an information bound on the DRIC
value under the condition that ϕ(X) perfectly predicts Y , i.e. E[V ar(Y | ϕ(X))] = 0.

Theorem 3.5. Given Qϕ for a representation ϕ, suppose E[V ar(Y |ϕ(X))] = 0 almost surely, which
implies Y is a deterministic function of ϕ(X). Then, under some regular conditions,

min
ϕ:E[V ar(Y |ϕ(X))]=0

Qϕ ≥ Cov2(Y,E),

where Cov(Y,E) is the covariance between response Y and the environment variable E.

This result indicates that if the representation ϕ(x) perfectly determines Y (i.e., Y = f(ϕ(x)) almost
surely), then the DRIC value cannot be made arbitrarily small. When Y and E are independent, the
lower bound can be 0, meaning that the representation information among different environments is
invariant. In other words, achieving ideal predictive accuracy imposes a nonzero lower bound on the
DRIC measure, reflecting the inherent trade-off between invariance and exact prediction.

If Y is highly environment-dependent, achieving both perfect prediction and high invariance is
theoretically impossible. Therefore DRIC can help diagnose overfitting to environment-specific
patterns, by quantifying residual environment dependence even when predictive performance is high.

4 EXPERIMENTS

In this section, we present various empirical studies of our proposed DRIC metric. We first validate its
effectiveness across three distinct settings: synthetic data ( 4.1), a domain generalization benchmark (
4.2), and several real-world datasets ( 4.3). Besides, we show the utility of DRIC in joint optimization
beyond post-hoc evaluation ( 4.4). Additional results are included in the Appendix, covering nonlinear
settings of synthetic data (B.1), the DomainBed benchmark and ECE evaluation (B.2), group-invariant
methods (B.4), robustness analysis (B.5), and model complexity (A.4).

4.1 SYNTHETIC STRUCTURAL EQUATION MODEL DATA

We conduct experiments on a linear structural equation model (SEM) introduced by Arjovsky
et al. (2019) and Krueger et al. (2021). We generate the experimental dataset from (Xe, Y e) for
e ∈ {0.2, 2.0, 5.0}. Xe = (Xe

1 , X
e
2) contains a causal effect Xe

1 and a non-causal effect Xe
2 , with

6
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both X1 and X2 being generated as 5-dimensional vectors. The generation details are as follows.

He ∼ N (0, e2), Xe
1 ∼ WH→1H

e +N (0, e2),

Y e ∼ W1→Y X
e
1 +WH→Y H

e +N (0, σ2
y), Xe

2 ∼ WY→2Y +N (0, σ2
2).

In the context above, WH→1,W1→Y ,WH→Y and WY→2 are all fixed parameters. The value of
W1→Y is consistently set to 1 in all experiments, while the settings of the remaining parameters are
varied across different experimental scenarios. The following illustrations depict these variations.

Table 1: Summary of experimental settings combining hidden structure and noise types.

No. Hidden Paths Noise Type Notation Description
1 Partially-observed (P) Homoskedastic (O) POU W ∼ N (0, 1); σ2

y = e2, σ2
2 = 1

2 Partially-observed (P) Heteroskedastic (E) PEU W ∼ N (0, 1); σ2
y = 1, σ2

2 = e2

3 Fully-observed (F) Homoskedastic (O) FOU W = 0; σ2
y = e2, σ2

2 = 1
4 Fully-observed (F) Heteroskedastic (E) FEU W = 0; σ2

y = 1, σ2
2 = e2

We generate a total sample size of n = 1300 or 1800 independent observations from the described
structural equation modeling (SEM) model. We allocate 800 and 1200 samples, respectively, from
the total samples to train the IRMv1, VREx, ERM, and LISA (Yao et al., 2022) models, and
the remaining are test samples. Following the training phase using various methods, we obtain
corresponding estimates for the representation ϕ̂ and the classifier ŵ (or w̃ for ERM). These estimates
are then used to calculate Q̂ϕ. The entire process is repeated 10 times for each of the settings 1-4.

For clarity of illustration, we present our results using log10 Q̂ϕ for both training and testing data in
Figures 2. Firstly, The values of log10 Q̂ϕ for IRMv1, VREx and LISA are consistently below 0 in
all settings, demonstrating their superiority over ERM in terms of invariant learning. This result is
reasonable since ERM does not capture the invariant patterns. Secondly, compared to IRMv1, VREx
exhibits better invariance performance due to its stronger penalty on cross-environmental variance.
We also observed greater variance in the DRIC value of IRMv1, suggesting potential instability of this
method. Lastly, LISA achieves smaller DRIC values compared to VREx indicating the effectiveness
of selective data augmentation in generating more invariant representations.

Moreover, we conduct further simulation studies under the nonlinear, non-Gaussian setting. We also
calculate the R2 in linear settings to show the explained variance in different methods and relate it
with DRIC. In our synthetic data generation settings, the true value qϕ(e, e′) is 0 in four settings. The
results are shown in Figure 4 and Table 8, 18 in Appendix.

(a) Training = 800, Testing = 500 (b) Training = 1200, Testing = 600

Figure 2: DRIC values on the SEM task. The y-axis represents different methods: IRMv1, VREx,
and LISA. The red line indicates the baseline log(Q̂ϕ) = 0 of ERM.

7
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4.2 DOMAINBED

We evaluated DRIC on the DomainBed (Gulrajani and Lopez-Paz, 2020) benchmark using CMNIST
dataset, which varies the level of spurious correlation across three environments (+90%, +80%, -90%).
We tested invariant learning algorithms including IRM, VREx, GroupDRO, and IB-IRM, against the
baseline ERM. The detailed experimental settings are included in Appendix B.1.

The results are presented in Figure 3a. Among the evaluated methods, the ERM baseline performed
the worst, as it failed to learn invariant features and resulted in the highest DRIC score and lowest
testing accuracy. In contrast, IB-IRM achieved the best performance with a testing accuracy of
50.60% and a DRIC score of 0.19. Other invariant learning algorithms performed between these
two extremes. Ahuja et al. (2021) argue that their information-bottleneck term “enforces stronger
invariance”, and our empirical DRIC scores first quantify this claim at representation-level invariance
in practice. This finding is also consistent with Yoshida and Naganuma (2024), further validates the
effectiveness of DRIC as a metric for assessing model invariance.

(a) DRIC vs. Test accuracy of different method
on CMNIST dataset in Domainbed benchmark

(b) -log (DRIC) on training domain (− log10 Q̂)
and on test domain (− log10 Q̂t) for Finance,
Law School, Adult, and Bike Sharing datasets.

Figure 3: DRIC values on the Domainbed benchmark and real data analysis task.

4.3 REAL DATA

To evaluate the practical utility of DRIC, we conducted an analysis on four real-world datasets using
three invariant learning methods (IRMv1, VREx, and LISA), benchmarked against a standard ERM
model. The datasets include: the Finance Data, which uses U.S. stock market information to predict
price variation, with each year from 2014 to 2018 serving as a distinct environment; the Law School
Data, which predicts undergraduate GPA, where environments are constructed based on gender
to simulate domain shifts; Adults Data, which predicts income levels, also using gender to define
environments; and the Bike Sharing Data, which predicts rental counts, with each season treated as a
separate environment. The details of implementation are shown in Appendix B.3.

The results of each dataset are presented in Figure 3b and Table 16. Across different datasets, DRIC
provides a consistent evaluation: with LISA consistently perform best (lowest DRIC) due to its
selective augmentation technique, and IRMv1 demonstrated the weakest results (highest DRIC) due
to its unstable regularization, which is aligned with previous literature (Yao et al., 2022). These
results validate DRIC’s utility as a robust metric for cross-dataset algorithm comparison.

4.4 DRIC AS A REGULARIZER FOR JOINT TRAINING

The previous sections have empirically validated DRIC as a robust post-hoc metric for evaluating the
invariance of learned representations. Here we evaluate the joint optimization method described in
Section 3.3 beyond post-hoc evaluation. Specifically, we compare DRIC-regularized model against
ERM, VREx, and IRM, using experimental setup identical to Section 4.1. To ensure a fair comparison,

8
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the penalty hyperparameter λ, for each regularized method was chosen by cross-validation, with the
optimal value selected based on performance on a held-out validation set.

As shown in Table 2, the DRIC-regularized model achieves the lowest Mean Squared Error (MSE)
on both the training and testing domains. This superior performance suggests that using DRIC as a
penalty provides a more effective optimization objective, guiding the model towards a more robust
representation that achieves a better point on the Pareto frontier of accuracy and invariance.

Table 2: Compare DRIC-regularized model with ERM, VREx, and IRM on training and testing MSE
.

Method MSE (Train) MSE (Test)
ERM 0.2616 0.8050
VREx 0.2775 0.7643
IRM 0.4334 0.7889
DRIC-regularized 0.2459 0.7472

5 RELATED WORK

Many follow-up works have been proposed to improve the performance of IRM. Rosenfeld et al.
(2020) pointed out limitations of IRM in classification tasks. Zhou et al. (2022) added a sparsity
constraint to the network and trained a neural network that is sparse to prevent overfitting. Lin
et al. (2022) extended InvRat using a Bayesian method with a posterior distribution of the classifier
w. Chang et al. (2020), Koyama and Yamaguchi (2020), Ahuja et al. (2021), and Li et al. (2022)
considered the invariant learning problem from the perspective of information theory. Mahajan et al.
(2021) introduced a novel regularizer to match the representation of the same object in different
environments. Creager et al. (2021) proposed EIIL, which attempts to automatically partition a
dataset into different environments to learn environment labels that maximize the IRM’s penalty.
Wang et al. (2022) proposed a simple post-processing method for solving the IRM problem without
retraining the model. Zhang et al. (2023a) proposed Generalization Adjustment to address scenarios
where the support of multi-domain data is not available during mini-batch training. Yang et al. (2023)
addressed the limitations of existing methods in handling sufficiency and necessity properties in
out-of-distribution generalization by introducing the sufficiency and necessity causes risk. Huang et al.
(2024) proposed the EVIL algorithm, which utilizes distribution knowledge to identify parameters
sensitive to distribution shifts. Zhang et al. (2023b) introduced a metric that quantifies the presence
of covariate shift. Testing for distributional invariance under arbitrary symmetry groups is another
direction of invariance evaluation (Chen et al., 2022). Soleymani et al. (2025) introduced a robust,
kernel-based framework for testing group invariance in data and support for subtle asymmetries.
Koning and Hemerik (2024) proposed a more efficient invariance testing method by replacing random
transformation subsets with fixed subgroups. Chiu and Bloem-Reddy (2023) developed general
non-parametric tests for distributional equivariance under group actions using kernel methods. DRIC
differs in its primary focus, as it centers on the performance in invariant learning method even under
distribution shift scenarios.

6 CONCLUDING REMARKS

This paper proposed DRIC, a density ratio-based criterion to assess the domain-invariant representa-
tions. DRIC relies on density–ratio estimation and well-specified environments, and misspecified
or imbalanced environments can bias Q̂ϕ. In the future, we will calibrate Q̂ϕ with uncertainty
quantification, develop estimators robust to imbalance or weak overlap, and refine environments,
while strengthening finite-sample guarantees.

DRIC offers a pathway toward more trustworthy and fair AI systems, enabling models that perform
consistently across different environments and populations. From robust healthcare predictions
across hospitals to reliable autonomous driving under varying conditions, DRIC can help mitigate
algorithmic bias and promote equitable AI deployment in real-world applications.

9
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 THEORETICAL PROOFS

Proof of Theorem 3.3. We begin by proving |q̂ϕ(e, e′)− qϕ(e, e
′)| = op(1) for any e, e′ ∈ Etr. For

ease of illustration, we denote that

q̃ϕ(e, e
′) =

1

ne′

ne′∑
i=1

w ◦ ϕ(xe′

i )ρ(X
e, Xe′)(xe′

i ).

Since ||ϕ̂−ϕ||∞, ||ŵ−w||∞ = o(1), ϕ is continuous and w is Lipschitz continuous, we clearly have
||ŵ ◦ ϕ̂− w ◦ ϕ||∞ = o(1). Thus, we can derive that

|q̂ϕ(e, e′)− q̃ϕ(e, e
′)| =

∣∣∣∣∣ 1

ne′

ne′∑
i=1

ŵ ◦ ϕ̂(xe′

i )ρ(X
e, Xe′)(xe′

i )−
1

ne′

ne′∑
i=1

w ◦ ϕ(xe′

i )ρ(X
e, Xe′)(xe′

i )

∣∣∣∣∣
=

∣∣∣∣∣ 1

ne′

ne′∑
i=1

(
ŵ ◦ ϕ̂(xe′

i )− w ◦ ϕ(xe′

i )
)
ρ(Xe, Xe′)(xe′

i )

∣∣∣∣∣
≤ ||ŵ ◦ ϕ̂− w ◦ ϕ||∞ ·

∣∣∣∣∣ 1

ne′

ne′∑
i=1

ρ(Xe, Xe′)(xe′

i )

∣∣∣∣∣ .
Since ne′ > an, by Law of Large Numbers, we have

1

ne′

ne′∑
i=1

ρ(Xe, Xe′)(xe′

i )
a.s.→ EXe′

(
ρ(Xe, Xe′)(xe′

i )
)
=

∫
X

dPe(x)

dPe′(x)
dPe′(x) = 1.

Therefore, with probability 1 we have

|q̂ϕ(e, e′)− q̃ϕ(e, e
′)| ≤ ||ŵ ◦ ϕ̂− w ◦ ϕ||∞ · 1 = o(1).

On the other hand, again by Law of Large Numbers, we have

q̃ϕ(e, e
′) =

1

ne′

ne′∑
i=1

w ◦ ϕ(xe′

i )ρ(X
e, Xe′)(xe′

i )
a.s.→ EXe′

(
E(Y e′ |ϕ(Xe′))ρ(Xe, Xe′)(Xe′)

)
= qϕ(e, e

′).

Hence, it follows that

|q̂ϕ(e, e′)− qϕ(e, e
′)| ≤ |q̂ϕ(e, e′)− q̃ϕ(e, e

′)|+ |q̃ϕ(e, e′)− qϕ(e, e
′)| = op(1).

Next, we note that |q̂ϕ(e, e) − qϕ(e, e)| = op(1) is a direct conclusion of the first step. Thus, we
clearly have∣∣∣∣∣∣

∑
e,e′∈Etr

(q̂ϕ(e, e
′)− q̂ϕ(e, e))

2 −
∑

e,e′∈Etr

(qϕ(e, e
′)− qϕ(e, e))

2

∣∣∣∣∣∣ = op(1).

Following similar procedures, we can show that∣∣∣∣∣∣
∑

e,e′∈Etr

(q̂Υ(e, e
′)− q̂Υ(e, e))

2 −
∑

e,e′∈Etr

(qΥ(e, e
′)− qΥ(e, e))

2

∣∣∣∣∣∣ = op(1).

Therefore, since
∑

e,e′∈Etr
(qΥ(e, e

′)− qΥ(e, e))
2 > 0, it follows that |Q̂ϕ −Qϕ| = op(1).
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Proof of Theorem 3.5. The optimal solution to the loss function infϕ EDℓ(y, ϕ(x)) is ϕ(x) =
E[Var(y|ϕ(x))]. Meanwhile, the DRIC value can be written as

VarE {E[y|ϕ(x), E]− E(Y |E)} .

We denote ϕ(X) by Z, and denote the difference of conditional means by ∆(Z,E) = E[Y |
Z,E]− E[Y | E]. Thus the DRIC value is V ar(∆(Z,E)) over the joint distribution of (Z,E).

By law of total variance, we have Cov(Y,E) = E [Cov(Y,E|Z)]+Cov(E(Y |Z,E(E|ϕ(x)))). The
optimal risk minimizer constraint V ar(E[Y | Z]) = V ar(Y ) means that all the variance of Y is
explained by Z. Equivalently, we can write Y = f(Z) + ε, with ε ⊥ Z and V ar(ε) = 0. Thus,
Y is effectively a deterministic function of Z. In other words, Y = f(Z) almost surely. Given
Y = f(Z) + ϵ, we have E[Y | Z,E] = E[f(Z) | Z,E] = f(Z) for any Z.

Since Y is almost surely determined by Z. Hence, ∆(Z,E) = f(Z)− E[Y | E]. Thus,

V ar(∆(Z,E)) = V ar(f(Z)− E[Y | E])

= E {f(Z)− E(Y | E)− E [f(Z)− E(Y | E)]}2

= V ar {E[Y − E(Y |E)|Z]}+ EV ar{E[Y − E(Y |E)|Z]}
≥ V ar{E(Y |Z)− E(Y |E,Z)}+ EVar(E(Y |E)|Z)− EVar(Y |Z)

= Var(Y ) + Var(E(Y |E))− Cov(Y,E(Y |E))

≥ Var(E(Y |E))

By Cauchy-Schwarz inequality, we have Cov(Y,E(Y | E))2 ≤ V ar(Y )V ar(E(Y | E)). By law of
total variance, we have

V ar(E(Y | Z)) = V ar(E[E(Y | Z) | E]) + E[V ar(E(Y | Z) | E)]

Rearranging, we get:

V ar(E(Y | E)) = V ar(E(Y | Z))− E[V ar(E(Y | Z,E))]

= Var(Y ) + Var(E(Y |Z,E)).

Suppose that E(Y | Z) is a convex function of Z, then by Jensen’s inequality, we have

E(Y | E) = E[E(Y | Z) | E] ≥ E(Y | E(Z | E))

We continue to use law of total variance, thus we will have

V ar(E(Y | E)) ≥ V ar{E(Y | E(Z | E))}
= Var(Y )− EVar(Y | E(Z | E))

= V ar[E(Y |E(Z|E))]

≥ V arf [E(Z|E(Z,E))]

≥ V ar [f(Z)E(Z,E)] ≥ Var(Y )Var(E(Z | E).

From Zhao et al. (2022) we have Var(E(E|Z)) ≥ Var(E)ρ2Y E , where ρY E is the correlation
coefficient of Y and E.

Therefore, the DRIC value is bounded by

V ar(∆(Z,E)) ≥ Var(Y )Var(E)ρ2Y E = Cov2(Y,E).

A.2 ESTIMATION OF THE DENSITY RATIO

In the main paper, we estimated DRIC using the learned ŵ and ϕ̂, under the assumption of known
likelihood ratio ρ(Xe, Xe′). Under certain assumptions regarding the distributions of Xe, such as the
normal distribution, the likelihood functions of Xe can be easily estimated by calculating the sample
means and variances from {xe

i}
ne

i=1. However, in a more general scenario, we do not hold any prior
knowledge about Pe, which necessitates estimating ρ(Xe, Xe′) without assuming any specific data
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distributions. Therefore, in this subsection, we present a generic estimation strategy for the likelihood
ratio, which extends the application of DRIC to a broader context.

Our method mainly follows the work done by Tibshirani et al. (2019). For two environments e1, e2 ∈
Etr, let (Xe1,e2 , E) be a pair of variables that is identically distributed as (Xe, e)|e = e1 or e2.
Tibshirani et al. (2019) showed that

Pr(E = e1|Xe1,e2 = x)

Pr(E = e2|Xe1,e2 = x)
=

Pr(E = e1)

Pr(E = e2)

dPe1(x)

dPe2(x)
.

By observing that Pr(E = e1|Xe1,e2 = x) + Pr(E = e2|Xe1,e2 = x) = 1, we have

dPe1(x)

dPe2(x)
=

Pr(E = e1|Xe1,e2 = x)

1− Pr(E = e1|Xe1,e2 = x)
· Pr(E = e2)

Pr(E = e1)
.

Apparently, Pr(E = e2)/Pr(E = e1) can be estimated by ne2/ne1 . On the other hand, we consider
the dataset denoted by Ce1, e2, defined as follows:

Ce1, e2 = (xe
i , e) : e = e1 or e2, 1 ≤ i ≤ ne.

We can then employ various classifiers, such as logistic regression or random forest, to estimate the
conditional probability of class membership for Ce1,e2 . Subsequently, if p̂(x) represents the classifier’s
estimate of Pr(E = e1|Xe1,e2 = x), we can then estimate ρ(Xe1 , Xe2)(x) = dPe1(x)/dPe2(x) by

ρ̂(Xe1 , Xe2)(x) =
ne2 p̂(x)

ne1(1− p̂(x))
. (10)

Density ratio estimation is a well-studied area, and the method described here belongs to a general
class of probabilistic classification approaches. Two other classes of density ratio estimation methods
include moment matching and the minimization of f -divergences, such as the Kullback-Leibler
divergence. For a comprehensive review of these approaches and the underlying theory, we refer
readers to the work of Sugiyama et al. (2012).
Remark A.1. Similar to Cai et al. (2023), we employs the density ratio of covariates as a means to
quantify the distribution shifts encountered across different environments. Our approach does not
require a strict covariate shift assumption that PY e′ |Xe′ = PY e|Xe . In fact, our method is flexible
and can be applied to various distribution shift scenarios.

We further evaluate density ratio estimation across dimensions 1, 5, and 10 using MLP, RuLSIF,
and Logistic Regression. The source distribution is P ∼ N (0, I) and the target distribution is
Q ∼ N (0.2, 1.5I), with 10,000 samples per setting. Performance is measured by the Mean Absolute
Error (MAE) of log density ratios. As shown in Table 3 below, classification-based methods (MLP
and Logistic Regression) strike a favorable balance between accuracy and computational efficiency.

Table 3: Comparison of different density ratio estimators.

Dimension MLP RuLSIF Logistic
1 0.0894 0.4899 0.2029
5 0.4540 1.4500 0.5302
10 0.9004 2.5778 0.8002

A.3 CONNECTION TO REPRESENTATION LEVEL DENSITY-RATIO

In practice, we can compute the density ratio in representation space Z where Z = ϕ(x). For any
e, e′ ∈ Etr, we have

EZe (E(Y e|Ze)) = EZe′

(
E(Y e′ |Ze′)ρ(Ze, Ze′)(Ze′)

)
, (11)

where ρ(Ze, Ze′)(z) := dPe/dPe′(z) is the point-wise density ratio of Ze to Ze′ when they are
continuous distributed. Moreover, this is a special case for any Z-measurable function g that

EXe (g(Xe)) = EZe (g(Ze)) = EZe′

(
g(Ze′)ρ(Ze, Ze′)

)
,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

when ϕ mapping from X to Z is (i) differentiable and (ii) invertible. If Z is the ideal domain-invariant
feature such that Y ⊥ E | Z, then E(ρ(Ze, Ze′)) = 1. The equation will hold that when our density
ratio and the conditional expectation are calculated in the same representation space. In practice, we
can compute ratios on the same representation we evaluate when the representation ϕ satisfies (i) and
(ii). However, most of the neural network-based algorithms do not satisfy these conditions.

A.4 SAMPLE REQUIREMENTS AND COMPUTATIONAL COMPLEXITY OF DRIC ESTIMATION

The computational overhead primarily arises from estimating the density ratio, which is similar in
form to what is used in KL divergence estimation. We adopt a classification-based approach to
estimate this ratio (as detailed in Appendix Section 3), which is both practical and scalable.

Theoretically, the overall time complexity of DRIC is O(ndT ) where n is the total number of samples
across environments, d is the input dimension and T is the number of optimization iterations for
training the density ratio estimator. The memory complexity is O(nd). which accounts for storing all
samples and their corresponding representations.

Runtime and memory usage for DRIC across different datasets are reported in Table 2 and 3 in the
additional experiment. We observe that with a 3-layer MLP classifier, the computation time increases
approximately linearly with ne

train, and computing DRIC with ne
train = 700 takes approximately 1

second in total, which indicates the minimal computational requirement for DRIC estimation.

While we do not derive an exact theoretical lower bound in the main paper, we agree that characterizing
the sample complexity of the DRIC estimator is critical. Below, we provide a simple theoretical
justification based on concentration inequalities, and complement it with empirical observations.

Let σ2 = V ar[ωϕ(xe′

i )ρ(X
e, Xe′)(xe′)]. Since q̂ϕ(e, e

′) is computed as the empirical average of
ne′ i.i.d. terms, we can obtain a general concentration bound via Hoeffding’s inequality:

P{|q̂ϕ(e, e′)− Exe′ (q̂ϕ(e, e
′))| ≥ ε} ≤ exp

(
−Cne′ε

2

σ2

)
,

for some constant C. Rearranging gives the sample size ne′ needed to bound the estimation error by
estimation error ε with probability 1− α, ne′ ≥ Cσ2 log(α−1)/ε2. This suggests that the required
number of samples grows proportionally with the variance of the weighted density ratio term and
inversely with the square of the target accuracy ε. In our experiments, we observe that the DRIC
estimate stabilizes with as few as 300 samples per environment, depending on the dimensionality and
distributional divergence.

Now we investigate the sample requirements and computational complexity of DRIC estimation
under different subsample size. To estimate the sample requirement for DRIC calculation, we analyze
the relationship between subsample size and the classification accuracy of the MLP classifier. To
estimate the time consumption of DRIC calculation, we record the total computation time for DRIC
each run.

The data is generated following the procedure outlined in the Section 1. We first train ERM and
IRM models on the the full training set with ne

train = 1000 for each environment. We then fix
the trained models and compute the DRIC estimates on sub-sampled training sets with ne

sub =
[100, 300, 500, 700, 900] per environment. The DRIC value, time consumption and classification
accuracy are presented in Table 4 and 5.

We observe that that the MLP classifier achieves a classification accuracy of 0.8 when using DRIC
estimated from 300 samples per environment, for both ERM and IRM. This indicates that ne

train = 300
is sufficient for accurate DRIC estimation under the current setting. We also observe that the
computation time increases approximately linearly with with ne

sub, and computing DRIC with ne
sub =

700 takes approximately 1 second in total, which indicates the minimal computational requirement
for DRIC estimation.
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Table 4: Results for ERM

subsample DRIC DRIC TIME train loss classification accuracy
100 0.0092 0.1095 0.5142 0.7417
300 0.0233 0.1973 0.5088 0.8194
500 0.0119 0.6707 0.5272 0.9183
700 0.0126 0.9883 0.5369 0.9143
900 0.0118 1.1677 0.5393 0.9269

Table 5: Results for IRM

subsample DRIC DRIC TIME train loss classification accuracy
100 0.0212 0.1125 0.5746 0.7583
300 0.0053 0.3961 0.5190 0.8806
500 0.0084 0.6134 0.5290 0.8733
700 0.0051 1.2258 0.5118 0.9417
900 0.0053 1.1660 0.5225 0.9269

B ADDITIONAL NUMERICAL RESULTS

B.1 SYNTHETIC DATA EXPERIMENT

B.1.1 EXPERIMENTAL SETTINGS

For synthetic data experiment, the samples are generated from three environments e = 0.2, 2, 5. For
IRM and VREx, the invariance regularizer lambda is cross validated using the environment = 5. The
experimental settings are listed in Table 6.

Table 6: Settings for Synthetic Data

Parameter Value
Lambda 0, 1e-4, 1e-1

Iterations of penalty annealing 1
Number of repetitions 5

L2 regularizer 1
Learning rate 1e-3

Number of iterations 20
Number of training samples 800, 1200
Number of testing samples 500, 600

Table 7: MLP architecture

# Layer
1 Linear (in_features=input_size, out_features=256, bias=True)
2 ReLU
3 Dropout (p=0.5)
4 Linear (in_features=256, out_features=256, bias=True)
5 ReLU
6 Dropout (p=0.5)
7 Linear (in_features=256, out_features=1, bias=True)

B.1.2 ADDITIONAL RESULTS FOR SYNTHETIC DATA: LINEAR SETTING

Under the setting shown above, we obtain the results shown in Table 8.
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Table 8: The estimated log10 Q̂ϕ under different settings where true qϕ = 0, the sample size is
1300(above) and 1800(below) respectively.

Method IRMv1 VREx LISA

POU −4.493(1.173) −9.292(0.456) −9.344(0.175)
FOU −5.231(2.920) −9.142(0.556) −9.468(0.938)
PEU −4.603(1.134) −8.970(0.923) −9.347(0.604)
FEU −5.241(2.553) −8.915(1.202) −9.476(0.302)

Method IRMv1 VREx LISA

POU −4.398(1.155) −9.462(0.661) −9.534(0.473)
FOU −5.400(0.707) −8.835(1.009) −9.761(1.022)
PEU −4.321(1.134) −9.380(0.679) −9.520(0.344)
FEU −5.886(1.508) −8.886(1.466) −9.607(0.944)

B.1.3 ADDITIONAL RESULTS FOR SYNTHETIC DATA: NONLINEAR SETTING

We conduct additional simulation studies under nonlinear and non-Gaussian setting with modified
original synthetic structural equation model. We generate the data (Xe, Y e) for environment e ∈
{0.1, 1.0, 10.0}. Xe = (Xe

1 , X
e
2) contains a causal effect Xe

1 and a non-causal effect Xe
2 , and both

Xe
1 and Xe

2 are generated as 1-dimensional normal vectors. Specifically, we employ a quadratic
relationship between X1 and Y and replace Gaussian noise with a noise following Student T
distribution with df = 3. The data generation settings are detailed as below:

He ∼ N (0, e2),

Xe
1 ∼ WH→1H

e +N (0, e2),

Y e ∼ W1→Y (X
e
1)

2 +WH→Y H
e + t3(0, σ

2
y),

Xe
2 ∼ WY→2Y

e +WH→2H
e + t3(0, σ

2
2),

where WH→1,W1→Y ,WH→Y ,WY→2,WH→2, σ
2
y, σ

2
2 are parameter vary across 4 experiment sce-

narios defined in Section 4.1. For each scenario, we generate ne
train = 1000 training samples and

ne
test = 500 testing samples per environment. The results are presented in Fig 4

B.2 DOMAINBED EXPERIMENT

B.2.1 EXPERIMENTAL SETTINGS

We utilize the DomainBed dataset to evaluate the performance of invariance learning algorithms.
DomainBed dataset (Gulrajani and Lopez-Paz, 2020) is a Pytorch testbed for domain generalization
including multiple multi-domain datasets, baseline algorithms, and model selection criteria. It
streamlines reproducible and rigorous research in domain generalization. The detailed setup of the
experiment is shown in Table 9, and the model architecture is shown in Table 10.
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Figure 4: Nonlinear Synthetic Data

Table 9: Settings for DomainBed Experiment

Condition Parameter Value

MNIST ConvNet

learning rate 0.001
batch size 64
generator learning rate 0.001
discriminator learning rate 0.001

IRM lambda 10
iterations of penalty annealing 500

VREx lambda 10
iterations of penalty annealing 500

All weight decay 0
generator weight decay 0

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: MNIST ConvNet architecture

# Layer
1 Conv2D (in=d, out=64)
2 ReLU
3 GroupNorm (groups=8)
4 Conv2D (in=64, out=128, stride=2)
5 ReLU
6 GroupNorm (8 groups)
7 Conv2D (in=128, out=128)
8 ReLU
9 GroupNorm (8 groups)
10 Conv2D (in=128, out=128)
11 ReLU
12 GroupNorm (8 groups)
13 Global average-pooling

B.2.2 CMNIST

We conduct our experiment on the CMNIST dataset, a variant of the MNIST handwritten digit
classification dataset. In CMNIST, images are assigned binary labels (digits < 5 vs. digits ≥ 5), and
three environments are generated with varying strengths of spurious correlations between color and
label (+90%,+80%,−90%).

We evaluate five domain generalization algorithms—ERM, IRM, VREx, GroupDRO—using Do-
mainBed’s training framework. For each algorithm, we train five models (2 independent trials × 3
random hyper-parameter choices), resulting in a total of 60 models. During training, we use 2,333
examples for training and hold out 20% of data from each environment for validation. The best model
for each algorithm is selected based on its validation performance in the training environment, and
the validation accuracy are presented in Table 11.

Dataset: ColoredMNIST

Algorithm +90% +80% -90% Avg

ERM 67.4 ± 0.8 68.6 ± 0.5 10.3 ± 0.1 48.7
IRM 70.7 ± 1.3 71.5 ± 0.8 9.9 ± 0.1 50.7
GroupDRO 69.3 ± 0.0 69.3 ± 0.9 9.3 ± 0.3 49.3
VREx 71.0 ± 1.6 70.3 ± 0.5 12.1 ± 0.8 51.1

Table 11: Validation Accuracy on CMNIST. e = [+90%,+80%,−90%] are environment labels. Avg
denotes the average accuracy on all environments.

We then evaluate the selected models on a new split, consisting of 2,333 unseen examples from each
environment. We calculate their test accuracy and DRIC values, as shown in Table 12 and Fig 3a. Our
results show that all domain generalization algorithms achieve lower DRIC values than the baseline
(DRIC for ERM = 1) and higher test accuracy, indicating that the more a model learns invariant
relationships, the better it generalizes to unseen data.

Algorithm DRIC Test Accuracy

ERM 1.0000 48.12
IRM 0.2204 48.52
GroupDRO 0.2962 48.22
VREx 0.2660 48.52
IB-IRM 0.1900 50.60

Table 12: DRIC value and test accuracy of algorithms on CMNIST
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Figure 5: DRIC vs. Test accuracy

We further apply SVD method to reduce the high dimensionality of the input images to facilitate the
calculation of density ratio, and obtain dimension of 128 for each flattened image in CMNIST dataset
after SVD. In Table 13, we present the accuracy, DRIC value of three algorithms on 2 OOD-datasets,
CMNIST. Table 13 shows that VREx DRIC value is smallest among three approaches, which shows
that the VREx obtains the most invariant result among the three. This conclusion is consistent with
the fact that VREx has the strongest invariance assumption.

Table 13: Reduce Dimension CMNIST

Train Accuracy Test Accuracy DRIC
ERM 0.7614 0.6732 0
IRM 0.7372 0.7291 -0.51

VREx 0.7451 0.7291 -0.82

B.2.3 PACS

We conduct experiments on the PACS dataset to evaluate invariance using the Expected Calibration
Error (ECE). PACS is an image dataset with four different styles: photo, art painting, cartoon, and
sketch. Each environment contains seven categories.

Following the experimental settings in Yoshida and Naganuma (2024), we set the training environ-
ments as cartoon, photo, and sketch, and use art as the testing environment. We record the ECE
Variance values and test domain accuracy, with the results presented in Table 14. Our observations
show that achieving lower ECE Variance is consistent with better prediction accuracy on unseen
data. This suggests that learning invariant features and maintaining consistent calibration across
environments enhances the model’s generalization under environmental variations.

B.3 REAL DATA EXPERIMENT

We listed the details of dataset and training setting for Real Data Section as below:

Finance Data 2 consists of factors in the U.S. stock market over five years. The data cleaning resulted
in 37 features for company information and a target variable indicating stock price variation. The

2https://www.kaggle.com/datasets/cnic92/200-financial-indicators-of-us-stocks-20142018
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Algorithm Test Accuracy (%) ECE Variance

ERM 70.99 19.54
IRM 61.00 21.87
GroupDRO 69.67 17.95
V-REx 70.78 17.91

Table 14: ECE variance and test accuracy of algorithms on PACS

training data includes stock data from 2014 to 2016, while the testing data includes stock data from
2017 to 2018. Each year is an environment, with varying sample sizes per year.

Law School Data 3 includes student information for law school admission, with undergraduate GPA
as the continuous target variable. The data contains 18 attributes after one-hot encoding. The training
and testing sets include 1092 and 728 samples, respectively. For this dataset, environments were
constructed based on the ’gender’ attribute to simulate domain shifts. Following the protocol of
prior work Zhao et al. (2022), we partitioned the data to create distinct training environments, each
engineered to have a different correlation strength between gender and the target GPA.

Adults Data 4 is derived from the 1994 U.S. Census database to predict whether income exceeds 50K
per year. It contains 14 features of personal information, which become 106 attributes after one-hot
encoding, and a binary target. The training and testing sample sizes are 6,000 and 4,000 respectively.
Similar to the Law School dataset, we use gender to define the environments.

Bike Sharing Data 5 contains the hourly and daily count of rental bikes, including 13 features and
the target variable of total rental bikes count. Each season is treated as an environment, and data from
2011 and 2012 were used as training and test sets respectively.

For real data experiment, IRM, VREx, and LISA algorithms are employed training on Adults, Law
school, Stock market, and Bike dataset. The experimental settings are listed in Table 15, and the
detailed numerical results are listed in Table 16.

Table 15: Settings for House Price and Stock Market Experiment

Parameter Value
IRM penalty 1e4

VREx penalty 1e4
L2 regularizer 0.001

Iterations of penalty annealing 1
Optimizer Adam

Learning rate 1e-3

Table 16: The − log10 DRIC Value of different representation methods on training (− log10(Q̂ϕ))
and testing (− log10(Q̂

t
ϕ)) of Finance Data, Law School Data, Adults data, and Bike Sharing Data.

Finance Law School Adults Bike Sharing

− log10(Q̂ϕ) − log10(Q̂
t
ϕ) − log10(Q̂ϕ) − log10(Q̂

t
ϕ) − log10(Q̂ϕ) − log10(Q̂

t
ϕ) − log10 Q̂ϕ) − log10 Q̂

t
ϕ)

IRM 2.420 3.046 1.992 2.796 1.466 2.469 1.272 1.307
VREx 3.000 3.155 2.222 3.699 2.456 4.019 2.260 2.338
LISA 4.223 3.222 2.268 3.699 2.013 6.253 5.804 4.000

3https://github.com/algowatchpenn/GerryFair/blob/
4https://archive.ics.uci.edu/dataset
5https://www.kaggle.com/datasets/lakshmi25npathi/bike-sharing-dataset
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B.4 ADDITIONAL EXPERIMENT: COMPARISON WITH INVARIANT TESTING METHODS

In this section we compare our DRIC metric with group invariant techniques in Soleymani et al.
(2025); Koning and Hemerik (2024); Chiu and Bloem-Reddy (2023), and domain classifier accu-
racy Ganin et al. (2016). We generate data according to a non-linear, non-Gaussian setting with
environments e = [0.1, 1, 10], each containing ne

train = 600 training samples and ne
test = 400 test

samples. We train the algorithms ERM, IRM, VREx, MMD (Li et al., 2017), GroupDRO, and Mixup
on ne

train using an MLP with hidden dimension 256 for 100 steps. After training, we evaluate each
model on ne

test, extract the final-layer representation ϕ̂(xe) for each algorithm, and concatenate it with
the corresponding target ye. To test invariance for each algorithm, we calculate DRIC value on test
set, (i) perform statistical hypothesis testing on the joint distributions (ϕ̂(xe), ye) to assess whether
they are group invariant using techniques in Soleymani et al. (2025); Koning and Hemerik (2024);
Chiu and Bloem-Reddy (2023), (ii) use domain classifier accuracy like Ganin et al. (2016) to predict
environment label e with augmented variable (ϕ̂(xe), ye).

We begin with (i), where the symmetry group G corresponds to the set of data domains. We randomly
select one environment’s data, denoted as Z = [ϕ̂(xe), ye], and treat the other environments as its
group-transformed counterparts, G(Z) = [ϕ̂(xe′), ye

′
]. To evaluate invariance, we first apply the

Kernel Maximum Invariance Criterion (KMaxIC) proposed by Soleymani et al. (2025). As shown in
the KMaxIC column of Table 17, we observe that ERM exhibits the the highest KMaxIC value of
0.0197, while VREx, MMD, and Mixup achieve significantly lower KMaxI values of 0.0048, 0.0071
and 0.0068 each, which indicates that these methods learn representations that are closer to being
invariant.

Next, we divide environments into sub-environments and apply the subgroup-invariance test from
Koning and Hemerik (2024). We use maximum mean discrepancy as the test statistic to evaluate
whether the learned representations of each method remain distributionally invariant. We record the
test statistic T (GX) of each subgroup, and record the mean of T (GX), denote as Tsub. A higher
Tsub indicates more sever violations of the invariance assumption, suggesting the method learns less
stable representations. As shown in the Tsub column of Table 17, ERM exhibits the highest Tsub value
(0.3857), indicating the weakest invariance. In contrast, VREx (0.1141), MMD (0.1248) and Mixup
(0.1272) perform better, suggesting they learn more stable representations.

Lastly, we apply the non-parametric hypothesis test from Chiu and Bloem-Reddy (2023), using the
Cramer–Wold (CW) projection method to assess distributional invariance. Under the null hypothesis
H0: the data distribution is invariant to the group action (data domains), we compute the CW statistic
and corresponding p-values. As shown in the CW, p-value, H0 columns of Table 17, ERM obtains a
p-value of 0, leading to rejection of H0 and indicating non-invariance. In contrast, IRM, VREX, and
Mixup obtain p-values of 0.16, 0.26, and 0.42 respectively, failing to reject H0 and suggesting these
methods learn invariant representations.

The total results are presented in Table 17, and the relations between DRIC and KMaxIC, Tsub
are presented in Figure 6. These results consistently indicate that ERM method violate invariance
assumption, while others are closer to invariance. We also observe a consistent monotonic trend
relationship between the DRIC value and these invariant measures, indicating the alignment between
the measures, and the reliability of DRIC in quantifying invariance.

Method DRIC DCA KMAXIC Tsub CW p-value H0: is invariant
ERM 0.0335 1.0000 0.0197 0.3587 0.0003 0.00 reject
IRM 0.0197 0.3300 0.0084 0.1542 0.0000 0.16 fail to reject
VREx 0.0022 0.3100 0.0048 0.1141 0.0000 0.26 fail to reject
MMD 0.0052 0.3283 0.0071 0.1248 0.0000 0.50 fail to reject
GroupDRO 0.0061 0.3275 0.0081 0.1333 0.0000 0.20 fail to reject
Mixup 0.0037 0.3167 0.0068 0.1272 0.0000 0.42 fail to reject

Table 17: Results of DRIC vs Group Invariant Testing and Domain Classifier.

For (ii), we train an MLP classifier to predict the environment label e using the augmented input
(ϕ̂(x), y). Since the ERM algorithm does not learn an invariant representation, we say (ϕ̂ERM(x), y)
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(a) DRIC vs. KMAXIC (b) DRIC vs. Tsub

(c) DRIC vs. Domian Classification Accuracy
(DCA)

Figure 6: DRIC values vs other metrics.

is environment dependent, and thus use (ϕ̂ERM(x), y) for training. The trained MLP classifier
is then used to perform domain classification using the augmented variables obtained from each
algorithm. The resulting classification accuracies and their relationship to DRIC are presented in
column ACCUR in Table 17 and Figure 6. We obeserve that higher DRIC value corresponds to higher
Domain Classification Accuracy (DCA) on e, indicating more environment information on (ϕ̂(x), y),
and the less invariance the method is.

B.5 ADDITIONAL EXPERIMENT: ROBUSTNESS OF DRIC

Theoretically, we have 0 ≤ Q(ϕ) ≤ 1. In addition, by Theorem 3.4, Cov2(Y,E) ≤ Q(ϕ) when the
prediction risk is minimized. (i) Worst case: when ϕ(X) = X , Q(ϕ) = 1. Consider DRIC as defined
in Equation (5), if ϕ(X) = X , which means that the representation learns the original features, then
it can not capture any domain invariant factors and thus the output of the algorithm is equivalent
to the ERM. Therefore, qϕ(e, e′) = qΥ(e, e

′) and qϕ(e, e) = qΥ(e, e), yielding Qϕ = 1. (ii) Ideal
case: We derive the lower bound of DRIC such that Q(ϕ) = Cov2(Y,E) under the condition that
E[V ar(Y |ϕ(X))] = 0 almost surely. Therefore, the DRIC value is bounded in general cases, and
will be upper bounded by 1 even in the worst case. Thus we can conclude that DRIC is a robust
measurement.

Moreover, to validate the robustness of DRIC empirically, we conduct a simulation study un-
der the nonlinear, non-Gaussian setting. We construct a family of representations of the form:
ϕ̂(X) = (X1, βX2), where β varies from 0 to 1, X1 is environment-invariant feature, and X2 is
environment-dependent variable. By varying β, we interpolate between different level of invariance
in representation ϕ(x). From Figure 7 in the supplementary material, we observe that DRIC values
increase monotonically from 0 to 1 as β increases, showing that that DRIC is adaptive to the degree
of invariance, yet remains bounded and stable even in extreme cases.

Overall, we can conclude that the DRIC metric is a robust measurement of invariance with both
empirical and theoretical guarantee.
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Figure 7: Robustness of DRIC.

B.6 ADDITIONAL EXPERIMENT: COMPARISON BETWEEN GROUPDRO AND MIXUP IN
LINEAR MODEL

To compare the performance of GroupDRO and MixUP algorithms, we fit a linear models by each,
and compare DRIC value, loss and evaluate the R2 value of the algorithms. We generate the data
under the linear setting:

He ∼ N (0, e2),

Xe
1 ∼ WH→1H

e +N (0, e2),

Y e ∼ Xe +WH→Y H
e +N (0, 1),

Xe
2 ∼ WY→2Y

e +WH→2H
e +N (0, e2).

We train GroupDRO and MixUP model on this linear synthetic data and the results are shown in
Table 18. In Table 18, we show DRIC value and test accuracy for Mixup and GroupDRO methods
under linear setting. The Tabel 18 shows that the Mixup and GroupDRO methods produce similar
test loss while DRIC value are 0.5113, 0.6875 respectively. The corresponding R2 value for the two
methods are 0.6470, 0.6325 respectively, which demonstrate that the better performance of DRIC
relies on higher explained variance.

Table 18: Comparison of Mixup and GroupDRO

Metric Mixup GroupDRO

Q Test 0.5113 0.6875
Test R2 0.6470 0.6325
Test Loss 0.3530 0.3675

B.7 ADDITIONAL EXPERIMENT: DRIC’S CORRELATION WITH OOD RISK

To verify that DRIC tracks representation-level invariance and to show the relationship between test
risk and DRIC, we swept the VREx penalty λ on the SEM synthetic data generated in Section 4.1
and recorded train/test MSE and unnormalized DRIC.

Observation. We can observe that test-MSE drops from 3.19 to 1.36 as DRIC falls, despite the
training-MSE rising. Thus, the model that looks worst on training loss is actually the most robust
once DRIC is considered. This sweep shows that DRIC and OOD accuracy move together, but
non-linearly.

Plotting (Accuracy, DRIC) against λ shows:

• Up to the knee at λ ≈ 105, increasing λ lowers both DRIC and OOD test error.
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Table 19: VREx penalty (λ) sweep results on the SEM synthetic data.

Penalty (λ) Train MSE Test MSE DRIC (unnormalized)
10 0.20538 3.19179 1.297e-5
100 0.21147 3.16218 1.0355e-4
1000 0.21586 3.11066 7.786e-5
10000 0.25938 2.61928 5.913e-5
100000 0.63894 1.45442 3.385e-5
1000000 0.70784 1.35925 2.94e-6

• Beyond that knee, accuracy plateaus while DRIC continues to shrink.

A reasonable stopping rule is therefore: increase λ until accuracy saturates or a target DRIC is
reached.
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