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ABSTRACT

Recent studies have introduced a new class of generative models for synthesizing
implicit neural representations (INRs) that capture arbitrary continuous signals
in various domains. These models opened the door for domain-agnostic genera-
tive models, but they often fail to achieve high-quality generation. We observed
that the existing methods generate the weights of neural networks to parameterize
INRs and evaluate the network with fixed positional embeddings (PEs). Arguably,
this architecture limits the expressive power of generative models and results in
low-quality INR generation. To address this limitation, we propose Domain-
agnostic Latent Diffusion Model for INRs (DDMI) that generates adaptive posi-
tional embeddings instead of neural networks’ weights. Specifically, we develop
a Discrete-to-continuous space Variational AutoEncoder (D2C-VAE) that seam-
lessly connects discrete data and continuous signal functions in the shared latent
space. Additionally, we introduce a novel conditioning mechanism for evaluat-
ing INRs with the hierarchically decomposed PEs to further enhance expressive
power. Extensive experiments across four modalities, e.g., 2D images, 3D shapes,
Neural Radiance Fields, and videos, with seven benchmark datasets, demonstrate
the versatility of DDMI and its superior performance compared to the existing
INR generative models. Code is available at https://github.com/mlvlab/DDMI.

1 INTRODUCTION

Implicit neural representation (INR) is a popular approach for representing arbitrary signals as a con-
tinuous function parameterized by a neural network. INRs provide great flexibility and expressivity
even with a simple neural network like a small multi-layer perceptron (MLP). INRs are virtually
domain-agnostic representations that can be applied to a wide range of signals domains, such as im-
age (Müller et al., 2022; Tancik et al., 2020; Sitzmann et al., 2020), shape/scene model (Mescheder
et al., 2019; Peng et al., 2020; Park et al., 2019), video reconstruction (Nam et al., 2022b; Chen
et al., 2022), and novel view synthesis (Mildenhall et al., 2021; Martin-Brualla et al., 2021; Park
et al., 2021; Barron et al., 2021). Also, INR enables the continuous representation of signals at arbi-
trary scales and complex geometries. For instance, given an INR of an image, applying zoom-in/out
or sampling an arbitrary-resolution image is readily achievable, leading to superior performance in
super-resolution (Chen et al., 2021; Xu et al., 2021). Lastly, INR represents signals with high quality
leveraging the recent advancements in parametric positional embedding (PE) (Müller et al., 2022;
Cao & Johnson, 2023).

Recent research has expanded its attention to INR generative models using Normalizing
Flows (Dupont et al., 2022a), GANs (Chen & Zhang, 2019; Skorokhodov et al., 2021; Anokhin
et al., 2021), and Diffusion Models (Dupont et al., 2022a; Zhuang et al., 2023). Especially, Dupont
et al. (2022a); Zhuang et al. (2023); Du et al. (2021); Dupont et al. (2022b) have focused on devel-
oping a generic framework that can be applied across different signal domains. This is primarily
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Figure 1: Generation results of DDMI. Our DDMI generates high-quality samples across four
distinct domains including image, shape, video, and Neural Radiance Fields. DDMI also shows
remarkable results for applications like arbitrary-scale image generation or text-to-shape generation.

accomplished by modeling the distribution of INR ‘weights’ by GAN (Dupont et al., 2022b), latent
diffusion model (Dupont et al., 2022a), or latent interpolation (Du et al., 2021). However, these mod-
els often exhibit limitations in achieving high-quality results when dealing with large and complex
datasets. Arguably, this is mainly due to their reliance on generating weights for an INR function
with fixed PEs. This places a substantial burden on function weights to capture diverse details in
multiple signals, whereas the careful designs of PE (Müller et al., 2022; Chan et al., 2022; Cao &
Johnson, 2023) have demonstrated greater efficiency and effectiveness in representing signals.

Therefore, in this paper, we propose Domain-agnostic Latent Diffusion Model for INRs (DDMI)
that generates adaptive positional embeddings instead of neural networks’ weights (see Fig. 3 for
conceptual comparison). Specifically, we introduce a Discrete-to-continuous space Variational Au-
toEncoder (D2C-VAE) framework with an encoder that maps discrete data into the latent space and
a decoder that maps the latent space to continuous function space. D2C-VAE generates basis fields
using the decoder network conditioned on a latent variable. This means we define sample-specific
basis functions for generating adaptive PEs, shifting the primary expressive power from MLP to PE.
Additionally, we propose two modules that further enhance the expressive capacity of INR: 1) Hi-
erarchically Decomposed Basis Fields (HDBFs): we decompose the basis fields into multiple scales
to better account for the multi-scale nature of signals. 2) Coarse-to-Fine Conditioning (CFC): we
introduce a novel conditioning method, where the multi-scale PEs from HDBFs are progressively
conditioned on MLP in a coarse-to-fine manner. Based on D2C-VAE, we train the latent diffusion
model on the shared latent space (see Fig. 2 for the overall framework). Ultimately, our model can
generate high-quality continuous functions across a wide range of signal domains (see Fig. 1). To
summarize, our contributions are as follows:

• We introduce the Domain-agnostic Latent Diffusion Model for INRs (DDMI), a generative
model synthesizing high-quality INRs across various signal domains.

• We define a Discrete to Continuous space Variational AutoEncoder (D2C-VAE) that gener-
ates adaptive PEs and learns the shared latent space to connect the discrete data space and
the continuous function space.

• We propose Hierarchically-Decomposed Basis Fields (HDBFs) and Coarse-to-Fine Condi-
tioning (CFC) to enhance the expressive power.

• Extensive experiments across four modalities and seven benchmark datasets demonstrate
the versatility of DDMI. The proposed method significantly outperforms the existing INR
generative models, demonstrating the efficacy of our proposed methods.

2 RELATED WORKS

INR-based generative models. Several works have explored the use of INR in generative mod-
eling to leverage its continuous nature and expressivity. Especially the INR generative models are
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Figure 2: Overall pipeline of DDMI. Discrete data x and continuous function ω are connected
in the shared latent space z (D2C-VAE). The decoder generates Hierarchically-Decomposed Basis
Fields (HDBFs) given latent variable z. p1 represents the coarsest scale PE and p3 corresponds to
the finest scale PE. The MLP returns the signal value for queried coordinate c using the Coarse-to-
Fine Conditioning method. Latent diffusion model operates on the shared latent space. Note that we
use a tri-plane latent variable for 3D and video, and a single plane for 2D image.

known for their ability to generate data at arbitrary scales with a single model. Thus, there has been
a surge of recent works across multiple modalities. For 2D images, CIPS (Anokhin et al., 2021) and
INR-GAN (Skorokhodov et al., 2021) employ GANs to synthesize continuous image functions. For
3D shape, recent studies (Nam et al., 2022a; Zheng et al., 2022; Li et al., 2023; Erkoç et al., 2023)
have proposed generating shapes as Signed Distance Functions (SDFs) using GANs or diffusion
models. Also, for videos, DIGAN (Yu et al., 2022) and StyleGAN-V (Skorokhodov et al., 2022)
have introduced GAN-based architectures to generate videos as continuous spatio-temporal func-
tions. However, since these models are designed for specific modalities, they cannot easily adapt to
different types of signals. Another line of research has explored the domain-agnostic architectures
for INR generations, such as GASP (Dupont et al., 2022b), Functa (Dupont et al., 2022a), GEM (Du
et al., 2021), and DPF (Zhuang et al., 2023). Zhuang et al. (2023) directly applies diffusion models
to explicit signal fields to generate samples at the targeted modality, yet it faces a scalability issue
when dealing with large-scale datasets. Others (Dupont et al., 2022b;a; Du et al., 2021; Koyuncu
et al., 2023) attempt to model the weight distribution of INRs with GANs, diffusion models, or latent
interpolation. In contrast, we introduce a domain-agnostic generative model that generates adaptive
positional embeddings instead of weights of MLP in INRs.

Latent diffusion model. Diffusion models (Ho et al., 2020; 2022; Song et al., 2021) have demon-
strated remarkable success in generation tasks. They consistently achieve high-quality results and
high distribution coverage (Dhariwal & Nichol, 2021), often outperforming GANs. However, their
iterative reverse process, typically involving a large number of steps (e.g., 1000 steps), renders them
significantly slower and inefficient compared to the implicit generative models like VAEs (Kingma
& Welling, 2013) and GANs. To alleviate this limitation, recent works (Rombach et al., 2022;
Vahdat et al., 2021) have proposed learning the data distribution in a low-dimensional latent space,
which offers computational efficiency. Latent diffusion models (LDMs) strike a favorable balance
between quality and efficiency, making them an attractive option for various applications. Our work
adopts a latent space approach for designing the computational-efficient generative model.

3 METHODOLOGY

We present a Domain-agnostic latent Diffusion Model for synthesizing high-quality Implicit neural
representations (DDMI). In order to learn to generate continuous functions (INRs) from discrete
data, e.g., images, we propose a novel VAE architecture D2C-VAE that maps discrete data to con-
tinuous functions via a shared latent space in Sec. 3.1. To enhance the quality of INR generation, we
introduce a coarse-to-fine conditioning (CFC) mechanism for evaluating INRs with the generated
hierarchically-decomposed basis fields (HDBFs). Sec. 3.2 outlines the two-stage training proce-
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dures of the proposed method. As with existing latent diffusion models (Rombach et al., 2022),
D2C-VAE learns the shared latent space in the first stage. In the second stage, the proposed frame-
work trains a diffusion model in the shared latent space while keeping the other networks fixed. The
overall pipeline is illustrated in Fig. 2.

3.1 DDMI

Figure 3: Comparison between weight
generation and PE generation for INR
generative models G. c is a coordinate,
p is a PE, γ is a function that maps coor-
dinates to PEs, πθ is MLP, and ω̂(c) is a
predicted signal value. For PE generation,
we sample basis fields Ξ from G instead of
θ. The red line indicates the generation.

Let ω, ω̂ ∈ Ω denote a continuous function repre-
senting an arbitrary signal and its approximation by
neural networks respectively, where Ω is a continuous
function space. Given a spatial or spatiotemporal co-
ordinate c ∈ Rm, and its corresponding signal value
x ∈ Rn, training data x can be seen as the evaluations
of a continuous function at a set of coordinates, i.e.,
x = [ω(c)]Ii=1 = ω(c), where x ∈ RI×n, c ∈ RI×m,
and I is the number of coordinates.

D2C-VAE. We propose an asymmetric VAE architec-
ture, dubbed as Discrete-to-continuous space Varia-
tional Auto-Encoder (D2C-VAE), to seamlessly con-
nect a discrete data space and a continuous function
space via the shared latent space. Specifically, the en-
coder Eϕ maps discrete data x to the latent variable z
as 2D grid features, e.g., a 2D plane for images or a 2D
tri-plane for 3D shapes and videos. The decoder Dψ

generates basis fields Ξ, i.e., Ξ = Dψ(z), where we
define Ξ as a set of dense grids consisting of generated
basis vectors. Then, the positional embedding p for
the coordinate c is computed by p = γ(c; Ξ), where a
function γ performs bilinear interpolation on Ξ, calcu-
lating the distance-weighted average of its four near-
est basis vectors at coordinate c. For tri-plane basis
fields, an axis-aligned orthogonal projection is applied
beforehand (see Fig. 2). In this manner, the proposed method adaptively generates PEs according to
different basis fields. Finally, the MLP πθ returns the signal value given the positional embedding,
i.e., x̂ = πθ(p) = ω̂(c). Fig. 3 shows the distinction between the proposed method and existing
INR generative models. We observed that the PE generation improves the expressive power of INRs
compared to weight generation approaches, see Sec. 4.

Hierarchically-decomposed basis fields. Instead of relying on a single-scale basis field, we pro-
pose decomposing it into multiple scales to better account for signals’ multi-scale nature. To ef-
ficiently generate multi-scale basis fields, we leverage the feature hierarchy of a single neural net-
work. Specifically, the decoder Dψ outputs feature maps at different scale i, i.e., Dψ(z) = {Ξi| i =
1, ..., n}. The feature maps undergo 1 × 1 convolution to match the feature dimensions across scales.
We refer to these decomposed basis fields as Hierarchically-Decomposed Basis Fields (HDBFs).
Then, we can compute multi-scale PEs {pi} as pi = γ(c; Ξi), for all i. In practice, we use three
different scales of basis fields from three different levels of layers. Sec. 4.4 qualitatively validates
the spatial frequencies in HDBFs of generated samples are decomposed into multiple levels. This
demonstrates that each field is dedicated to learning a specific level of detail, leading to a more
expressive representation.

Coarse-to-fine conditioning (CFC). A naı̈ve approach to using multi-scale positional embeddings
from HDBFs for MLP πθ is concatenating them along channel dimensions. However, we found
that it is suboptimal. Thus, we introduce a conditioning mechanism that gradually conditions MLP
πθ on coarse PEs to fine PEs. The intuition is to encourage the lower-scale basis field to focus
on the details missing from the higher-scale basis field. To achieve this, we feed the PE from the
lowest-scale basis field as input to the MLP block and then concatenate (or element-wise sum) its
intermediate output with the next PE from the higher-scale basis field. We continue this process for
subsequent scales until reaching the n-th scale (see Fig. 2).
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3.2 TRAINING PROCEDURE AND INFERENCE

The training of DDMI involves two stages: VAE training and diffusion model training. In the first
stage, D2C-VAE learns the shared latent space with an encoder Eϕ to map discrete data to latent
vector z and a decoder Dψ to generate basis fields Ξ. In the second stage, a diffusion model is
trained in the latent space to learn the empirical distribution of latent vectors z.

D2C-VAE training. We define a training objective for D2C-VAE that maximizes the evidence
lower bound (ELBO) of log-likelihood of the continuous function ω with discrete data x as:

log p(ω) = log

∫
pψ,πθ

(ω|z) · p(z)dz (1)

= log

∫
pψ,πθ

(ω|z)
qϕ(z|x)

· qϕ(z|x) · p(z) dz (2)

≥
∫

log

(
pψ,πθ

(ω|z)
qϕ(z|x)

· p(z)
)
· qϕ(z|x) dz (3)

=

∫
qϕ(z|x) ·

(
log pψ,πθ

(ω|z)− log

(
qϕ(z|x)
p(z)

))
(4)

= Eqϕ(z|x) [log pψ,πθ
(ω|z)]−DKL(qϕ(z|x)||p(z)), (5)

where the inequality in Eq. 3 is by Jensen’s inequality. qϕ(z|x) is the approximate posterior, p(z)
is a prior, and pψ,πθ

(x|z) is the likelihood. The first term in Eq. 5 measures the reconstruction loss,
and the KL divergence between the posterior and prior distributions p(z) encourages latent vectors
to follow the prior. However, since we do not have observation ω but only discrete data x = ω(c),
we approximate pψ,πθ

(ω|z) by assuming coodinate-wise independence as

pψ,πθ
(ω|z) ≈ pψ,πθ

(ω(c)|z) =
∏
c∈c

pψ,πθ
(ω(c)|z), (6)

where ω̂(c) = πθ(γ(c, Dψ(z))). Thus, our training objective in Eq. 5 can be approximated as
Lϕ,ψ,θ(x) := Eqϕ(z|x) [log pψ,πθ

(ω|z)]−DKL(qϕ(z|x)||p(z)) (7)

≈ Eqϕ(z|x)

[∑
c∈c

log pψ,πθ
(ω(c)|z)

]
−DKL(qϕ(z|x)||p(z)). (8)

Since the reconstruction loss varies depending on the number of coordinates, i.e., |c|, in practice, we
train D2C-VAE with the re-weighted objective function given as:

Lϕ,ψ,πθ
(x) = Eqϕ(z|x),c∈c [log pψ,πθ

(ω(c)|z)]− λz ·DKL(qϕ(z|x)||p(z)), (9)

where λz balances the two losses, and p(z) is a standard normal distribution.

Diffusion model training. Following existing LDMs (Vahdat et al., 2021; Rombach et al., 2022;
Ho et al., 2020), the forward diffusion process is defined in the learned latent space as a Markov chain
with pre-defined Gaussian kernels q(zt|zt−1) := N (zt;

√
1− βtzt−1, βtI). The forward diffusion

process is given as q(z1:T |z0) =
∏T
t=1 q(zt|zt−1), where T indicates the total number of diffusion

steps and βt is a pre-defined noise schedule that satisfies q(zT ) ≈ N (zT ; 0, I). The reverse diffusion
process is also defined in the latent space as pφ(z0:T ) = p(zT )

∏T
t=1 pφ(zt−1|zt), where pφ(z0)

is a LDM prior. The Gaussian kernels pφ(zt−1|zt) := N (zt;µφ(zt, t), ρ
2
t I) is parameterized by a

neural network µφ(zt, t) and ρ2t is the fixed variances. The reverse diffusion process pφ(zt−1|zt) is
trained with the following noise prediction using reparameterization trick:

Lφ(z) = Ez0,ϵ,t

[
w(t)||ϵ− ϵφ(zt, t)||22

]
. (10)

Inference. Continuous function generation involves the reverse diffusion process pφ, D2C-VAE
decoder Dψ , and read-out MLP πθ. First, a latent z0 ∼ pφ(z0) is generated by iteratively conducting

ancestral sampling, zt−1 = 1√
αt

(
zt − βt√

1−ᾱt
ϵφ(zt, t)

)
+ σtζ,where ζ ∼ N (0, I) and p(zT ) =

N (zT ; 0, I). Then, the latent z0 is fed to D2C-VAE decoder Dψ to generate HDBFs Ξ. Finally,
combining HDBFs with MLP πθ learned in the first stage, the proposed method parameterizes a
continuous function ω(·).
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Table 1: FID results on CelebA-HQ.

642 1282 2562 3842

<Discrete representation>
LDM (Rombach et al., 2022) - - 5.51 -
LSGM (Vahdat et al., 2021) - - 7.22 -

<Continuous representation>
Domain-specific
INR-GAN (Skorokhodov et al., 2021) - - 10.3 -
CIPS (Anokhin et al., 2021) 15.41 13.53 11.4 15.8
Domain-agnostic
Functa (Dupont et al., 2022a) 40.4 - - -
GEM (Du et al., 2021) 30.4 - - -
GASP (Dupont et al., 2022b) 13.5 19.2 - -
DPF (Zhuang et al., 2023) 13.2 - - -
DDMI (Ours) 9.74 8.73 7.25 10.44

Table 2: Precision and Recall results.

CelebA-HQ AFHQv2 Cat
<Continuous representation> P ↑ R ↑ P ↑ R ↑
INR-GAN (Skorokhodov et al., 2021) 0.671 0.333 0.719 0.281
CIPS (Anokhin et al., 2021) 0.682 0.287 0.716 0.117
DDMI (Ours) 0.734 0.408 0.808 0.367

Table 3: FID results on AFHQv2 Dog.

1282 2562 3842

<Discrete representation>
StyleGAN (Karras et al., 2020a) - 6.73 -
<Continuous representation>
Domain-specific
INR-GAN (Skorokhodov et al., 2021) - 31.27 -
CIPS (Anokhin et al., 2021) 26.95 23.93 28.97
Domain-agnostic
GASP (Dupont et al., 2022b) - 35.78 -
DDMI (Ours) 10.81 8.54 11.47

Table 4: FID results on AFHQv2 Cat.

1282 2562 3842

<Discrete representation>
StyleGAN (Karras et al., 2020a) - 3.25 -
<Continuous representation>
Domain-specific
INR-GAN (Skorokhodov et al., 2021) - 11.2 -
CIPS (Anokhin et al., 2021) 7.85 7.35 11.8
Domain-agnostic
GASP (Dupont et al., 2022b) - 17.48 -
DDMI (Ours) 5.88 4.27 7.94

4 EXPERIMENTS

We evaluate the effectiveness and versatility of DDMI through comprehensive experiments across
diverse modalities, including 2D images, 3D shapes, and videos. We assume a multivariate normal
distribution for the likelihood function qϕ(ω(c)|z) for images and videos and Bernoulli distribution
for shapes (occupancy function). For all domains, the multivariate normal distribution is used for
the posterior pψ,πθ

(z|x). For the type of latent variables for each domain, the encoder maps input
data to the latent variable z as 2D grid features, e.g., a single 2D plane for images using a 2D CNN-
based encoder (Ho et al., 2020) or a 2D tri-plane for 3D shapes following Conv-ONET (Peng et al.,
2020) and videos as outlined in Timesformer (Bertasius et al., 2021). Then, we use a 2D CNN-based
decoder Dψ to convert latent variable z into basis fields Ξ. Additional experiments (e.g., NeRF) and
more implementation details, evaluation, and baselines are provided in the supplement.

4.1 2D IMAGES

Datasets and baselines. For images, we evaluate models on AFHQv2 Cat and Dog (Choi
et al., 2020) and CelebA-HQ dataset (Karras et al., 2018) with a resolution of 2562. We com-
pared our method with three groups of models: 1) Domain-agnostic INR generative models such
as Functa (Dupont et al., 2022a), GEM (Du et al., 2021), GASP (Dupont et al., 2022b), and
DPF (Zhuang et al., 2023), which are the primary baselines, 2) Domain-specific INR generative
models that are specifically tailored for image generation like INR-GAN (Skorokhodov et al., 2021)
and CIPS (Anokhin et al., 2021). Apart from DPF, which generates the explicit signal field, every
baseline operates weight generation, whereas ours opts for PE generation. 3) Discrete represen-
tation based generative models for reference. We provide results from state-of-the-art generative
models (Vahdat et al., 2021; Rombach et al., 2022; Karras et al., 2020a) that learn to generate dis-
crete images.

Quantitative analysis. We primarily measure FID (Heusel et al., 2017), following the setup in (Sko-
rokhodov et al., 2021). Tab. 1, 3, and 4 showcase the consistent improvement of DDMI over pri-
mary baselines for multiple resolutions. For instance, Tab. 1 shows that compared to DPF, the recent
domain-agnostic INR generative model, our approach achieves an FID score of 9.74 as opposed to
13.2 on the CelebA-HQ at a resolution of 642. Moreover, on AFHQv2 Cat in Tab. 4, DDMI demon-
strates superior performance over CIPS, specifically developed for arbitrary scale image generation,
achieving an average FID improvement of 2.97 across three different resolutions. In Tab. 2, we com-
pare precision and recall with image-targeted INR generative models. Here, precision and recall are
indicative of fidelity and diversity, respectively. DDMI exhibits a significant advantage over both
baselines (Skorokhodov et al., 2021; Anokhin et al., 2021), demonstrating superior performance for
both CelebA-HQ and AFHQv2 Cat datasets. We provide additional results on CIFAR10 (Krizhevsky
et al., 2009) and Lsun Churches (Yu et al., 2015) in Tab. 11 of the supplement.
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64! 128! 256!

(a) ScaleParty (Discrete representation)

64! 128! 256!

(b) Ours

Figure 4: Comparison between DDMI and
ScaleParty on arbitrary-scale generation.

256! 512! 1024!

(a) CIPS (domain-specific INR)

256! 512! 1024!

(b) Ours

Figure 5: Comparison between DDMI and
CIPS on arbitrary-scale generation.

Qualitative analysis. For further validation, we generate images at arbitrary scales and conduct
comparisons with two notable models: ScaleParty (Ntavelis et al., 2022), a recent generative model
designed for multi-resolution discrete images, and CIPS, an image-targeted INR generative model.
DDMI demonstrates an impressive capability to consistently generate clearer images across various
resolutions, from low to high. In Fig. 4, our model excels at generating images with preserved facial
structure, whereas Ntavelis et al. (2022) struggles to maintain the global structure of the image
for lower-resolution cases. Also, in Fig. 5, DDMI succeeds in capturing high-frequency details
across images of varying resolutions, while Anokhin et al. (2021) tends to lack finer details as the
resolution increases.

4.2 3D SHAPES

Datasets and baselines. For shapes, we adopt the ShapeNet dataset (Chang et al., 2015) with two
settings: a single-class dataset with 4K chair shapes and a multi-class dataset comprising 13 classes
with 35K shapes, following the experimental setup in (Peng et al., 2020). We learn the shape as
the occupancy function (Mescheder et al., 2019) ω : R3 → {0, 1}, where it maps 3D coordinates
to occupancy values, e.g., 0 or 1. Still, domain-agnostic INR generative models from Sec. 4.1 are
our primary baselines, where we also compare with domain-specific INR generative models for 3D
shapes like 3D-LDM (Nam et al., 2022a) and SDF-Diffusion (Shim et al., 2023). We also include
results from generative models for generating discrete shapes, such as point clouds.

Quantitative analysis. We conduct extensive experiments with unconditional and conditional shape
generation. Beginning with unconditional shape generation (Tab. 5), we measure fidelity and diver-
sity using Minimum Matching Distance (MMD) and Coverage (Achlioptas et al., 2018). DDMI sur-
passes both domain-agnostic and domain-specific baselines, achieving the best MMD for the single
chair class (1.5) and multi-class (1.3) settings. Moreover, we attain the highest COV in multi-class
shape generation, showcasing our ability to generate diverse shapes with high fidelity.

Next, we provide text-guided shape generation results on Text2Shape (T2S) dataset (Chen et al.,
2019), comprising 75K paired examples of text and shapes on chairs and tables. For training, we
utilize pre-trained CLIP text encoder (Radford et al., 2021) τ for encoding text prompt t into em-
bedding τ(t) and condition it to LDM eθ(zt, t, τ(t)) by cross-attention (Rombach et al., 2022). For
generation, the text-conditioned score ê is derived using classifier-free guidance (Ho & Salimans,
2022): êθ(zt, t, τ(t)) = eθ(zt, t, ∅) + w · (eθ(zt, t, τ(t))− eθ(zt, t, ∅)), where ∅ and w indicates an
empty prompt and guidance scale, respectively. We measure classification accuracy, CLIP-S (CILP
similarity score), and Total Mutual Difference (TMD) to evaluate against shape generative mod-
els (Mittal et al., 2022; Li et al., 2023; Liu et al., 2022). Tab. 7 illustrates the strong performance of

7



Published as a conference paper at ICLR 2024

Table 5: Generation results on 3D shapes.

Chair Multi Class
MMD ↓ COV ↑ MMD ↓ COV ↑

<Discrete representation>
PVD (Zhou et al., 2021) 6.8 0.421 - -
DPM3D (Luo & Hu, 2021) 1.3∗ 0.567∗ - -

<Continuous representation>
Domain-specific
LatentGAN (Chen & Zhang, 2019) - - 1.7 0.389
3D-LDM (Nam et al., 2022a) 1.68 0.426 - -
SDF-StyleGAN (Zheng et al., 2022) 1.9 0.411 1.55 0.398
SDF-Diffusion (Shim et al., 2023) 8.0 0.498 - -
HyperDiffusion (Erkoç et al., 2023) 7.1 0.530 - -
Domain-agnostic
GASP (Dupont et al., 2022b) 2.5 0.353 2.1 0.341
GEM (Du et al., 2021) - - 1.4 0.409
DPF (Zhuang et al., 2023) - - 1.6 0.419
DDMI (Ours) 1.5 0.510 1.3 0.421
∗ are trained on Acronym (Eppner et al., 2021) dataset.

Table 6: Generation results on videos.

SkyTimelapse
FVD ↓

<Discrete representation>
VideoGPT (Yan et al., 2021) 222.7
MoCoGAN (Tulyakov et al., 2018) 206.6
MoCoGAN-HD (Tian et al., 2021) 164.1
LVDM (He et al., 2022) 95.2
PVDM (Yu et al., 2023) 71.46

<Continuous representation>
Domain-specific
DIGAN (Yu et al., 2022) 83.11
StyleGAN-V (Skorokhodov et al., 2022) 79.52
Domain-agnostic
DDMI (Ours) 66.25

Table 7: Text-to-shape generation results.

Acc ↑ CLIP-S ↑ TMD ↓
Domain-specific
IMLE (Liu et al., 2022) 34.79 - 0.891
Auto-SDF (Mittal et al., 2022) 83.88 - 0.581
Diffusion-SDF (Li et al., 2023) 88.56 28.63 0.169
Domain-agnostic
DDMI (Ours, w = 3) 91.30 30.30 0.204

Table 8: Ablation study.

Generation
target HDBFs CFC First Stage

(PSNR)
Second Stage

(FID)
PE 32.72 8.54
PE ✓ 33.17 8.23
PE ✓ ✓ 33.56 7.82

DDMI, indicating our method generates high-fidelity shapes (accuracy and CLIP-S) with a diversity
level comparable to baselines (TMD).

Qualitative analysis. Fig. 1 and Fig.6 present qualitative results. Fig. 6 displays visualizations of
text-guided shape generations, demonstrating our model’s consistent generation of faithful shapes
given text conditions (e.g., “a two-layered table”) over Diffusion-SDF (Li et al., 2023). Fig. 1 incor-
porates the comprehensive results, including unconditional shape generation, text-conditioned shape
generation, and unconditional Neural Radiance Field (NeRF) generation. Especially for NeRF, we
train DDMI with SRN Cars dataset (Sitzmann et al., 2019). Specifically, we encode point clouds
to the 2D-triplane HDBFs, allowing MLP to read out triplane features at queried coordinate and
ray direction into color and density via neural rendering (Mildenhall et al., 2021). For more re-
sults, including a qualitative comparison between Functa (Dupont et al., 2022a) and ours on NeRF
generation, see Fig. 15 in the supplement.

4.3 VIDEOS

Datasets and baselines. For videos, we use the SkyTimelapse dataset (Xiong et al., 2018) and
preprocess each video to have 16 frames and a resolution of 2562, following the conventional setup
used in recent video generative models (Skorokhodov et al., 2022; Yu et al., 2023). We learn 2D
videos as a continuous function ω maps spatial-temporal coordinates to corresponding RGB values,
i.e., ω : R3 → R3. We compare our results with domain-specific INR generative models (Yu et al.,
2022; Skorokhodov et al., 2022) as well as discrete video generative models like LVDM (He et al.,
2022) and PVDM (Yu et al., 2023).

Quantitative analysis. Tab. 6 illustrates the quantitative results of 2D video generation. We em-
ploy Fréchet Video Distance (FVD) (Unterthiner et al., 2018) as the evaluation metric, following
StyleGAN-V (Skorokhodov et al., 2022). DDMI shows competitive performance to the most recent
diffusion model (PVDM (Yu et al., 2023)), which is specifically trained on discrete video (pixels).
This validates the effectiveness of our design choices in enhancing the expressive power of INR. We
also provide qualitative results in Fig. 1 and 14, where the generated videos exhibit realistic quality
in each frame and effectively capture the motion across frames, demonstrating the versatility of our
model in handling not only spatial but also temporal dimensions.

4.4 ANALYSIS
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A rocking chairA two layered table

Diffusion-SDF

Ours

Diffusion-SDF

Ours

Figure 6: Qualitative comparison on text-guided shape generation. We present a comparison of
the generation results produced by Diffusion-SDF and DDMI for given text prompt. DDMI excels in
generating intricate details while preserving smooth surfaces. In contrast, Diffusion-SDF struggles
to capture fine details and often produces less polished surfaces.

Figure 7: HDBFs analysis. The upper two
rows show generated images whereas the bot-
tom one shows the spectral magnitude after ap-
plying Fourier transform. The far left column
indicates the generated image. Other columns
indicate the generated image with (a): Ξ2,Ξ3,
(b): Ξ1,Ξ3, and (c): Ξ1,Ξ2 zeroed out, respec-
tively. We employ histogram equalization for
better visualization.

Decomposition of HDBFs. In Fig. 7, we ana-
lyze the role of different scales of HDBFs in rep-
resenting signals. Specifically, we zero out all
HDBFs except one during generation and observe
the results in both spatial and spectral domains.
When (a) Ξ2 and Ξ3 are zeroed out, the generated
image contains coarser details, such as colors, in-
dicating that the first Ξ1 focuses on larger-scale
components. In contrast, (c) with the third Ξ3,
our model generates images of high-frequency
details, such as whiskers and furs. Results in
the spectral domain after Fourier transform also
match the tendency in the spatial domain, as the
spectra of (c) exhibit high magnitudes in the high-
frequency domains, whereas those of (a) have
high magnitudes in the low-frequency domains.
The analysis indicates that HDBFs effectively de-
compose basis fields to capture the signals of dif-
ferent scales.

Ablation. Here, we conduct an ablation study to
evaluate the impact of each component in DDMI.
We train DDMI using various configurations on
the AFHQv2 Cat dataset with a 3842 resolution.
Refer to Tab. 8 for the specific configurations.
The baseline refers to D2C-VAE without HDBFs
and CFC. We incrementally introduce compo-
nents and present the Peak Signal-to-Noise Ratio (PSNR) and FID scores at the end of the first
and second training stages. The results, outlined in Tab. 8, reveal a gradual increase in PSNR and
a corresponding decrease in FID scores as we incorporate additional components. This underscores
the effectiveness of these components in enhancing the fidelity and realism of INR.

5 CONCLUSION

In this paper, we propose DDMI, a domain-agnostic latent diffusion model designed to synthesize
high-quality Implicit Neural Representations (INRs) across various signal domains. Our approach
defines the Discrete-to-continuous space Variational AutoEncoder (D2C-VAE), which generates Po-
sitional Embeddings (PEs) and establishes a seamless connection between discrete data and contin-
uous functions. Leveraging this foundation and our novel coarse-to-fine conditioning mechanism
with Hierarchically Decomposed Basis Fields (HDBFs), our extensive experiments across a wide
range of domains have consistently demonstrated the versatility and superior performance of DDMI
when compared to existing INR-based generative models.
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A IMPLEMENTATION DETAILS

We here provide more details of our implementation, including the architecture of our models and
hyperparameters. The comprehensive lists of hyperparameters used in experiments are provided in
Tab. 9.

Encoders and latent spaces. We use slightly different encoder backbones and structures for the
latent variable depending on the signal domains. For a 2D image x, we encode it into a latent
variable z as a 2D plane, using a 2D CNN-based U-Net encoder (Ho et al., 2020).

For a 3D point cloud input x ∈ R3×N , consisting of N points in xyz-coordinates, we encode it into a
tri-plane latent variable z = {zxy, zyz, zxz}, following Conv-ONet (Peng et al., 2020). Specifically,
given an input point cloud, we employ PointNet (Qi et al., 2017) for feature extraction and apply
an orthographic projection to map its feature onto three canonical planes. Features projecting onto
the same pixel are aggregated using a local pooling operation, resulting in three distinct 2D grid
features. We then apply a shared 2D CNN encoder to the projected features on grid features to
obtain the tri-plane latent variables.

Lastly, for 2D video x, we encode it into a latent variable as a 2D tri-plane. We first convert it
into 3D features using TimesFormer (Bertasius et al., 2021) encoder. Then, we perform 2D projec-
tion onto three canonical planes for latent variables z = [zxy, zys, zxs] using three separate small
Transformers (Vaswani et al., 2017), respectively, following Yu et al. (2023). Note that s denotes a
temporal dimension.

Decoders. For all domains, we use 2D CNN-based U-Net decoder Dψ to convert latent variable z
into basis fields Ξ. We maintain the structure of the basis fields to be consistent with the structure
of the latent variables. For instance, in the case of 3D shapes, we compute tri-plane basis fields as
Ξ = {Ξxy,Ξyz,Ξxz}, where Ξxy = Dψ(zxy),Ξyz = Dψ(zyz), and Ξxz = Dψ(zxz). The same
procedure is applied to other data domains, e.g., Ξ = Ξxy for images and Ξ = [Ξxy,Ξys,Ξxs] for
videos. As mentioned in the main paper, we use three different scales of basis fields (Ξ1, Ξ2, and
Ξ3) from our HDBFs.

MLP function. Given the basis fields Ξ computed above, we compute positional embedding p
for given coordinate c by bilinear interpolation that uses the distance-weighted average of the four
nearest features of Ξ from the coordinate c. We apply the same procedure to each scale of basis
fields for a given coordinate to achieve p1, p2, and p3. For tri-plane Ξ, an axis-aligned orthogonal
projection for each plane is applied beforehand. Then the positional embedding p at c is fed into
MLP-based residual blocks nπ with wπ channels.

Latent diffusion model. For the LDM backbone, we adopt the 2D Unet model LDM (Rombach
et al., 2022) and modify the hyperparameters.

B TRAINING AND INFERENCE

Our framework performs two-stage training. In the first stage, the proposed method learns the latent
space by optimizing D2C-VAE. In the second stage, we optimize a diffusion model in the learned
latent space. In this work, all experiments are conducted on 8 NVIDIA RTX3090 and 8 V100 GPUs.
We provide the hyperparameters of training in Tab. 10.

B.1 FIRST-STAGE TRAINING.

In the first stage, we optimize the encoder, decoder, and MLP of D2C-VAE using the
AdamW (Loshchilov & Hutter, 2017) optimizer. We minimize the re-weighted ELBO objective
of D2C-VAE in Eq. 9. We assume the standard normal prior distribution p(z) and a multivariate
normal distribution for the posterior qϕ(z|x). The KL divergence loss between the posterior and the
prior is calculated using the reparameterization trick Kingma & Welling (2013). For image, video,
and NeRF, we assume that pψ,πθ

(ω(c)|z) follows the multivariate normal distribution with isotropic
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Table 9: Hyperparameters of models.

AFHQ Cat/Dog CelebA-HQ CIFAR10 Lsun Church ShapeNet SKY
2562 2562 322 1282 Chair Multi Class 2562

Encoder
latent z shape 2D plane 2D plane 2D plane 2D plane 2D tri-plane 2D tri-plane 2D tri-plane
dims. of z 643 643 162 · 64 322 · 64 162 · 64 162 · 64 643

Decoder
channel multiplier (4,2,1) (4,2,1) (4,2,1) (4,2,1) (4,2,1) (4,2,1) (8,4,2,1)
head channel 64 64 64 64 32 32 64
basis field Ξ shape 2D plane 2D plane 2D plane 2D plane 2D tri-plane 2D tri-plane 2D tri-plane
basis field res. (1,2,4) (1,2,4) (1) (1,2,4) (1,2,4) (1,2,4) (1,2,4)
MLP
nπ 4 4 4 4 4 4 4
wπ 256 256 256 256 256 256 256
Latent diffusion model
residual blocks 2 2 2 2 2 2 2
channel multiplier (4,3,2,1) (4,3,2,1) (4,3,2,1) (4,3,2,1) (4,3,2,1) (4,3,2,1) (4,3,2,1)
head channel 256 256 128 256 256 256 256
attn res. (2,4,8) (2,4,8) (2,4) (2,4,8) (2,4,8) (2,4,8) (2,4,8)

Table 10: Training details

AFHQ Cat/Dog CelebA-HQ CIFAR10 Lsun Church ShapeNet SKY
2562 2562 322 1282 Chair Multi Class 2562

First stage training
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
SN weight start 10 10 10 10 10 10 10
SN weight decay anneal linear linear linear linear linear linear linear
λz start 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
λz end 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
λz anneal linear linear linear linear linear linear linear
λz anneal portion 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Second stage training
learning rate 1e-4 1e-4 1e-4 1e-4 2e-4 2e-4 1e-4
optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW

covariance σ:

pψ,πθ
(ω(c)|z) =

∏
c∈c

1

Z
exp

(
−||ω(c)− ω̂(c)||22

2σ2

)
, ω(c) ∈ R. (11)

For the occupancy function, we assume the Bernoulli distribution:

pψ,πθ
(ω(c)|z) =

∏
c∈c

ω̂(c)ω(c) · (1− ω̂(c))ω(c), ω(c) ∈ {0, 1}. (12)

In practice, we employ ℓ1-loss for image, video, and NeRF, and binary cross-entropy for 3D shapes.
We linearly increase the weight λz during training and apply a spectral normalization (SN) regular-
ization for the encoder, following Vahdat et al. (2021).

Multi-scale training and scale injection. For training our model on images, we incorporate the
multi-scale training scheme (Ntavelis et al., 2022) to further encourage the estimation of accurate
ω̂. In our approach, we incorporate a scale variable s ∈ R that represents the sampling period of
the coordinate set c for the discrete data x. Through the training of D2C-VAE with data of diverse
scales, e.g., utilizing multi-resolution data or applying random crop augmentation, we enable the
INR to explore a wider range of coordinate sets c in Eq. 9, enabling high-quality generation at
arbitrary scales. In addition to multi-scale training, we incorporate a Scale Injection (SI) to enhance
the performance of our framework further. We modulate the weights of each fully connected layer
of MLP with the scale variable s, similar to style modulation in StyleGAN Karras et al. (2020b).
The injection of scale information makes INR aware of the target scale. Specifically, the (i, j) entry
of lth layer weight ϕl ∈ Rm×n is modulated to ϕ̂l:

ϕ̂li,j(s) =
ϕli,j ·Al(s)j√

Σk

(
ϕli,k ·Al(s)k

)2

+ ε

, (13)
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where ε is a small constant for numerical stability and Al indicates layer-wise mapping function.
s undergoes Fourier embedding with a fully connected layer before the layer-wise mapping. In
practice, we provide the encoder with full-frame fixed-resolution images of size r×r (e.g., 256×256)
to make fixed-size latent variables. Then, for each batch of latent variables, we randomly select a
resolution from a predefined set of resolutions {r, 1.5 × r, 2 × r} that the INR aims to present in
a discrete image. For images with a higher resolution than r, we randomly crop them to match the
resolution r.

B.2 SECOND-STAGE TRAINING.

In the second stage, we optimize LDM on the empirical distribution of the latent variables using the
AdamW (Loshchilov & Hutter, 2017) optimizer. We minimize the noise prediction loss, discussed
in the main paper, while the other networks trained in the first stage are frozen. In the case of tri-
plane latent variables, e.g., 3D and video, we use a single 2D Unet model to denoise each latent
plane and add attention layers that operate on the intermediate features of three latent planes follow-
ing PVDM (Yu et al., 2023). This allows us to effectively model the dependency between planes
and use the shared 2D Unet structure across different domains. The training objective of LDM in
Eq. 10 is by reparameterization trick µφ(zt, t) =

1√
αt
(zt − βt√

1−ᾱt
ϵφ(zt, t)), where αt := 1 − βt

and ᾱt :=
∏t
s=1 αs. We mostly follow techniques proposed in the previous literature. Specifically,

we utilize mixed parameterization of score function (Vahdat et al., 2021). We found mixed param-
eterization beneficial for training the latent space of INRs since we also regularize the posterior
distribution towards standard normal distribution in the first stage. Following existing works, we use
an exponential moving average (EMA) of the parameters of the LDM network with a 0.9999 decay
rate.

B.3 INFERENCE.

For generation, we use a reverse diffusion process with a fixed number of steps T = 1000 (DDPM
sampling) for all experiments presented in the main paper unless stated otherwise. However, our
model can also leverage recent advanced samplers as discussed in Tab. 12.

C BASELINES AND EVALUATION METRICS

In this section, we provide a brief overview of baselines and the evaluation metrics employed to
assess the performance of the model.

C.1 2D IMAGE

Baselines. CIPS (Anokhin et al., 2021), INR-GAN (Skorokhodov et al., 2021), and
ScaleParty (Ntavelis et al., 2022) incorporate adversarial training (Goodfellow et al., 2020) within
the StyleGANv2 framework (Karras et al., 2020b). These models utilize fixed single-scale Fourier
features for PEs instead of constant input used in StyleGANv2 and modulate the activation function
of the network with global latent variables. In particular, ScaleParty (Ntavelis et al., 2022) deploys a
CNN-based architecture instead of an MLP and leverages multi-scale training to make the network
aware of the generation scale. VaMoH (Koyuncu et al., 2023) employs multiple hyper-generators
that generate the weights of INRs with fixed PEs to capture different aspects of signals.

Fréchet Inception Distance (FID) (Heusel et al., 2017) is utilized to quantify the dissimilarity
between two distributions, typically used in the context of generative models. It operates by com-
paring the mean and standard deviation of features extracted from the deepest layer of the Inception
v3 neural network. In our evaluation, we compute the FID between all available real samples, up
to a maximum of 50K, and 50K generated samples, following Karras et al. (2020b). FID helps
gauge the quality and diversity of the generated samples by assessing their proximity to the real data
distribution. Lower FID scores signify better agreement between the two distributions.

Improved precision and recall (P&R) (Kynkäänniemi et al., 2019) measures the expected like-
lihood of real (fake) samples belonging to the support of fake (real) distribution. They approximate
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the support of distribution by constructing K-nearest neighbor hyperspheres around each sample.
P&R typically represents fidelity and diversity of generative model, respectively. In our evalua-
tion, we compute the P&R between all available real samples, up to a maximum of 50K, and 50K
generated samples.

C.2 3D SHAPE

Baselines. DPM3D (Luo & Hu, 2021) and PVD construct diffusion processes for point clouds by
utilizing point cloud generators. LatentGAN (Chen & Zhang, 2019) and SDF-StyleGAN (Zheng
et al., 2022) both make use of a global latent vector to represent global 3D shape features through
adversarial training. Specifically, SDF-StyleGAN employs global and local discriminators to gen-
erate fine details in the 3D shapes. 3D-LDM (Nam et al., 2022a) learns the global latent vector of
SDF through an auto-decoder and trains diffusion models in the latent space. SDF-Diffusion (Shim
et al., 2023) introduces a diffusion model applied to voxel-based Signed Distance Fields (SDF)
and another diffusion model for patch-wise SDF voxel super-resolution. AutoSDF (Mittal et al.,
2022) combines a non-sequential autoregressive prior for 3D shapes conditioned on a text prompt.
Diffusion-SDF (Li et al., 2023) encodes point clouds into a voxelized latent space and introduces a
voxelized diffusion model for text-guided generation.

Classification Accuracy involves the use of a voxel-based classifier that has been pre-trained
to classify objects into 13 different categories within the ShapeNet dataset (Chang et al., 2015),
following the approach (Sanghi et al., 2022). It is employed to gauge the semantic authenticity of
the generated samples, assessing how well the generated shapes align with the expected categories
in ShapeNet.

CLIP similarity score (CLIP-S) employs the pre-trained CLIP model for measuring the corre-
spondence between images and text descriptions by computing the cosine similarity. It evaluates
how well the generated shape aligns with the intended text. We follow the evaluation protocol in
Li et al. (2023): we render five different views for the generated shape measure CLIP-S for these
rendered images and use the highest score obtained for each text description.

Total mutual difference (TMD). In order to measure TMD, we follow the protocols in Li et al.
(2023). Specifically, we generate ten different samples for each given text description. Subsequently,
we calculate the average Intersection over Union (IoU) score for each generated shape concerning
the other 9 shapes. The metric then computes the average IoU score across all text queries. TMD
serves as a measure of generation diversity for each specific text query.

C.3 VIDEO

Baselines. MoCoGAN (Tulyakov et al., 2018) decomposes motion and content in video generation
by employing separate generators. DIGAN (Yu et al., 2022) and StyleGAN-V (Skorokhodov et al.,
2022) introduce Implicit Neural Representation (INR)-based video generators with computationally
efficient discriminators. VideoGPT (Yan et al., 2021) encodes videos into sequences of latent vec-
tors using VQ-VAE and learns autoregressive Transformers. PVDM (Yu et al., 2023) also encodes
videos into a projected tri-plane latent space and subsequently learns a latent diffusion model. While
our model shares a similar structure with PVDM, it is primarily designed for generating fixed dis-
crete pixels, which limits its adaptability to other domains. There are other recent works, such as
VLDM (Blattmann et al., 2023), that utilize diffusion models on the spatio-temporal latent spaces.
However, VLDM employs a 3D voxel-based latent space and a 3D-CNN-based network, which can
be computationally more intensive. Furthermore, their work relies on a large-scale in-house dataset
without open-source code availability, which hinders a fair comparison with our model.

Fréchet Video Distance (FID) is a metric that calculates the Fréchet distance between the feature
representations of real and generated videos. To obtain appropriate feature representations, FVD
employs a pre-trained Inflated 3D Convnet. In our evaluation, we compute FVD by comparing 2,048
real video samples with 2,048 fake samples, following the preprocessing protocol recommended in
Skorokhodov et al. (2022).
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Table 11: Generation results on diverse datasets.

CIFAR10 322 Lsun Churches 1282

FID ↓ FID ↓
<Discrete representation>
DDPM++(VP) (Song et al., 2021) 2.47 -
StyleGANv2 (Karras et al., 2020b) 11.07 3.78
LSGM (Vahdat et al., 2021) 2.10 -
<Continuous representation>
Domain-specific
CIPS (Skorokhodov et al., 2021) 8.62 7.38
Domain-agnostic
GEM (Du et al., 2021) 23.83 -
DPF (Zhuang et al., 2023) 15.1 -
DDMI (Ours) 4.53 5.12

D ADDITIONAL RESULTS

D.1 QUANTITATIVE RESULTS

CIFAR10 and Lsun Church. To demonstrate that DDMI can generalize effectively to datasets
with more diverse global structures and classes, we have trained our model on the CIFAR10 and
LSUN Church datasets. As shown in Tab. 11, DDMI achieves a significant performance improve-
ment over both domain-specific INR generative model (CIPS) and domain-agnostic INR generative
models (GEM and DPF) on both datasets. This result further affirms the efficacy of our design
choices, e.g., basie fields generation with D2C-VAE, HDBFs, and CFC, holds for datasets with
diverse characteristics.

Efficient sampling with ODE solver. Recent advances in diffusion models, such as sam-
pling via ODE (Ordinary Differential Equation) solvers Song et al. (2021); Vahdat et al.
(2021); Karras et al. (2022), have shown promising results in reducing sampling time. We
use an RK45 ODE solver, instead of ancestral sampling, similar to Vahdat et al. (2021).

Table 12: NFE vs. FID.

AFHQv2 Cat AFHQv2 Dog
Avg. NFE FID FID
1000 4.27 8.54
50 5.32 11.04
25 5.93 14.23

By increasing the ODE solver error tolerances, we
generate samples with lower NFEs (number of func-
tion evaluations). In Tab. 12, we report FID scores
on AFHQv2 Cat and Dog datasets for three cases:
1) T=1000, 2) ODE solver error tolerances of 10−3,
and 3) ODE solver error tolerances of 10−5. The
results demonstrate that our DDMI framework per-
forms efficient sampling while still achieving satis-
factory performance (see Fig. 16 and 17 for qualita-
tive results).

D.2 QUALITATIVE RESULTS

Visualization of the nearest neighbor samples. In order to confirm that our model is not over-
fitting to the training dataset, we employ a visualization technique that displays the nearest training
samples to the generated samples in the VGG feature space. This visualization is presented in
Fig. 13.

Arbitrary-scale 2D image synthesis. Fig. 8, 9, and 10 show the generated 2D images at arbitrary
resolutions, including 2562, 3842, and 5122. These results demonstrate the ability of our model to
generate continuous representations with high quality.

3D shape generation. In Fig 12, we compare the qualitative results on 3D shape with two recent
baselines: GASP (Dupont et al., 2022b) (domain-agnostic) and SDF-StyleGAN (Zheng et al., 2022)
(domain-specific). The result demonstrates that our method generates more sophisticated details
while maintaining smooth surfaces compared to the baselines. Moreover, Fig. 11 shows that our
DDMI generates diverse and high-fidelity 3D shapes across various object categories: airplane, car,
chair, desk, gun, lamp, ship, etc.
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Video generation. Fig. 14 presents video generation results on the SkyTimelapse dataset. The re-
sults demonstrate the capability of our model to generate visually appealing and coherent sequences
of images.

Neural radiance fields generation. Fig. 15 displays the NeRF generation results of our model on
the SRN car dataset in comparison to Functa.

E BROADER IMPACTS

The development of generative models with controllability across diverse data domains has been a
long-standing objective in the field. Our proposed generative model, DDMI, represents a significant
advancement in the realm of INR generative models, offering high-fidelity generation and effective
applicability to a wide range of data domains. Moreover, one key strength of DDMI is its capability
to generate samples at arbitrary scales, providing enhanced controllability that can be leveraged in
conjunction with existing conditional generation techniques Rombach et al. (2022). This opens up
exciting possibilities for tasks like text-guided super-resolution video generation, where the fine-
grained control offered by DDMI can yield compelling results. By enabling controllable generation
across different data modalities, DDMI has the potential to drive further advancements in creative
applications, and other domains that rely on generative modeling.

However, it is important to acknowledge potential concerns that arise with the deployment of gen-
erative models Tinsley et al. (2021), including DDMI. Like other generative models, there is a risk
of revealing private or sensitive information present in the data. Additionally, generative models
may exhibit biases Esser et al. (2020) that are present in the dataset used for training. Addressing
these concerns and ensuring the ethical and responsible deployment of generative models is crucial
to mitigate potential negative impacts and promote fair and inclusive use of the technology.

F LIMITATIONS

Domain-agnostic INR generation has shown promising results in a wide range of applications with
great flexibility. The proposed method enhances the expressive power of INR generation via asym-
metric variational autoencoder (VAE) connecting the discrete data space and the continuous function
space. One caveat of the proposed method is the relatively long generation time. This is one well-
known common disadvantage of diffusion models. In Sec. D.1, we studied advanced solvers to
speed up the generation process but it is not satisfactory. With a small number of function evalu-
ations (NFEs), the generation suffers from quality degradation. More efficient generation schemes
leveraging compact latent spaces will be an interesting future direction.
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Figure 8: Uncurated samples on AFHQv2 Cat for various resolutions generated from single DDMI
model.

Figure 9: Uncurated samples on AFHQv2 Dog for various resolutions generated from single DDMI
model.
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Figure 10: Uncurated samples on CelebA-HQ for various resolutions generated from single DDMI
model.

Figure 11: Uncurated samples on ShapeNet generated from DDMI model.
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(a) GASP Dupont et al. (2022b)

(b) SDF-StyleGAN Zheng et al. (2022)

(c) Ours

Figure 12: Qualitative comparison on 3D INR generation. We compare GASP (domain-agnostic),
SDF-StyleGAN (domain-specific), and DDMI on 3D shapes.

Figure 13: Nearest neighbors of our CelebA-HQ model, computed in the features of VGG16. The
leftmost sample is from our model, and the remaining samples in each row are its 7 nearest neigh-
bors.
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Figure 14: Uncurated samples on SkyTimelapse generated from DDMI.
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(a) Functa Dupont et al. (2022a)

(b) Ours

Figure 15: Qualitative comparison on NeRF generation. Our model generates sophisticated de-
tails and vivid color texture while maintaining smooth surfaces. In contrast, Functa exhibits limita-
tion in capturing intricate details and tends to produce blurry texture.
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Figure 16: Uncurated samples on AFHQv2 Cat generated from DDMI model using ODE solver
with 10−5 tolerance (Avg. NFE=25).

Figure 17: Uncurated samples on AFHQv2 Dog generated from DDMI model using ODE solver
with 10−3 tolerance (Avg. NFE=50).
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